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Current security solutions face significant challenges in dealing with the ever-increasing complexity and sophistication of cyber-attacks. This is particularly true for the solutions that inherently rely on deep packet inspection (DPI) techniques for malicious traffic detection, as almost all the network traffic is now encrypted, rendering these methods ineffective. Recently, there has been a surge of research focused on adopting behaviorbased detection techniques, such as Anomaly-based Network Intrusion Detection System (A-NIDS), that leverage machine and deep learning (ML & DL) approach for detecting malicious encrypted traffic. In spite of their promising results, these approaches are still far from being widely deployed in real-world scenarios. In this paper, we have devised a fully-supervised autoencoder (AE) architecture with a custom reconstruction loss in order to effectively model both benign and malicious encrypted network traffic, with the aim of identifying malicious instances. The experimental results demonstrate that our proposed approach outperforms state-of-the-art methods on the UNSW-NB15 dataset, while achieving comparable performance on the CSE-CIC-IDS2018 dataset.

I. INTRODUCTION

The increasing integration of cyberspace in various aspects of society, coupled with the growth of network applications, has led to significant advancements but has also introduced unprecedented challenges in ensuring cybersecurity and mitigating cyberattacks. These threats have severe consequences, including financial losses, damage to reputation, and negative impacts on individuals' mental health. According to a report by Check Point 1 , global cyberattacks saw a 38% increase in 2022 compared to the previous year. Additionally, cybersecurity ventures 2 predict that cybercrimes will cost companies worldwide an estimated $10.5 trillion annually by 2025.

Network Intrusion detection systems (NIDS) alongside Firewalls aim at detecting malicious traffic flows at the network edge, thereby safeguarding the network and its endpoints, including computers, mobile devices, and servers, from unauthorized access, modifications, and potential compromises. [START_REF] Buczak | A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection[END_REF], 1 Checkpoint report 2023 (https://tinyurl.com/Checkpointreseach) 2 Cybersecurity ventures (https://cybersecurityventures.com/our-company/) [START_REF] Yang | A systematic literature review of methods and datasets for anomalybased network intrusion detection[END_REF]. Signature-based NIDS and next-generation firewalls are the most known and widely adopted network security solutions because of their superior performance compared to the other schemes. However, both rely on Deep Packet Inspection (DPI) techniques, which involve searching for specific patterns matching signatures stored in a database. Thereby, the reliance on DPI introduces high latency and privacy issues due to the encryption/decryption of the network traffic since almost all traffic circulating the internet is encrypted. Moreover, both signature-based NIDS and next-generation firewalls require frequent updating of their signature databases to stay abreast of emerging attack techniques. Consequently, they are unable to detect previously unseen attacks [START_REF] Kilincer | Machine learning methods for cyber security intrusion detection: Datasets and comparative study[END_REF], commonly known as zero-day attacks. These limitations highlight the need for complementary security measures that could be able to detect previously unseen encrypted malicious traffic without the need to decrypt it.

In response, the community started adopting a behaviorbased analysis technique referred to as Anomaly-based Network Intrusion Detection Systems (A-NIDS) using Machine Learning (ML). It is believed that within the exchanged traffic between two endpoints, known as a bi-directional flow (viz. biflow) 3 , there exist hidden patterns that could help in distinguishing between benign and malicious network traffic [START_REF] Molina-Coronado | Survey of network intrusion detection methods from the perspective of the knowledge discovery in databases process[END_REF], [START_REF] Buczak | A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection[END_REF], [START_REF] Yang | A systematic literature review of methods and datasets for anomalybased network intrusion detection[END_REF].

A plethora of research has been conducted utilizing various Machine Learning (ML) techniques with the aim of developing A-NIDS that overcomes the limitations of traditional defense mechanisms. Notable techniques explored in this context include Decision Tree (DT) [START_REF] Bahlali | Machine learning anomaly-based network intrusion detection: Experimental evaluation[END_REF], Random Forest (RF) [START_REF] Guarino | On the use of machine learning approaches for the early classification in network intrusion detection[END_REF], K-Nearest Neighbors (KNN) [START_REF] Lichy | When a RF beats a CNN and GRU, together-A comparison of deep learning and classical machine learning approaches for encrypted malware traffic classification[END_REF], and Support Vector Machine (SVM) [START_REF] Li | An efficient intrusion detection system based on support vector machines and gradually feature removal method[END_REF]. However, these classical ML techniques have exhibited unsatisfactory performance outcomes and struggle with limited generalization capabilities.

Deep learning (DL), a sub-field of ML, has gained considerable attention in recent literature. This can be attributed to two primary factors. Firstly, DL has demonstrated remarkable success in various domains, including computer vision, speech recognition, and natural language processing. Secondly, DL has exhibited superior and promising performance outcomes in addressing the challenges of A-NIDS.

To take advantage of DL techniques, various models have been utilized, including Artificial Neural Network (ANN) [START_REF] Bahlali | Machine learning anomaly-based network intrusion detection: Experimental evaluation[END_REF], [START_REF] Zhu | A deep learning model for multi-classification of abnormal and encrypted traffic of Internet of Things[END_REF], [START_REF] Diallo | Adaptive clustering-based malicious traffic classification at the network edge[END_REF], Convolutional Neural Network (CNN) [START_REF] Zhang | Network intrusion detection with group-gating convolutional neural network[END_REF], [START_REF] Nascita | Machine and Deep Learning Approaches for IoT Attack Classification[END_REF], Auto-Encoder (AE) [START_REF] Švihrov Á | A semi-supervised approach for network intrusion detection[END_REF], [START_REF] Bovenzi | Network anomaly detection methods in IoT environments via deep learning: A Fair comparison of performance and robustness[END_REF].

Some recent studies have also considered the A-NIDS problem in semi-supervised [START_REF] Li | Semi-WTC: A Practical Semi-supervised Framework for Attack Categorization through Weight-Task Consistency[END_REF], [START_REF] Jeong | Poster Abstract : A Semi-Supervised Approach for Network Intrusion Detection Using Generative Adversarial Networks[END_REF] and fully-unsupervised settings [START_REF] Araujo-Filho | Unsupervised GAN-Based Intrusion Detection System Using Temporal Convolutional Networks and Self-Attention[END_REF]. This consideration is driven by the challenges associated with two main factors: the difficulty of collecting malicious network traffic and the tedious requirement of labeling, often necessitating human expertise intervention. Indeed, it is empirically undeniable that fully-supervised learning outperforms semi-supervised and unsupervised learning approaches.

In this paper, we have developed a fully-supervised AE model that incorporates a customized differentiable reconstruction loss. The experimental results have shown that our proposed approach surpasses the state-of-the-art proposals on the UNSWB-NB15 dataset [START_REF] Moustafa | A comprehensive data set for network intrusion detection systems[END_REF] while achieving similar performance on the CSE-CICIDS2018 dataset [START_REF] Sharafaldin | Toward generating a new intrusion detection dataset and intrusion traffic characterization[END_REF].

II. RELATED WORK

The section summarizes some recent significant works that leverage DL techniques in addressing A-NIDS challenges. In general, most studies approach the problem as a classification task in two fashions: a coarse-grained (i.e., binary classification: benign vs. malicious) and a fine-grained (i.e., multi-class classification: identification of the exact type of attack).

In [START_REF] Diallo | Adaptive clustering-based malicious traffic classification at the network edge[END_REF], The authors propose a technique called Adaptive Clustering (AC) that enhances the initial handcrafted feature sets by learning new feature sets specific to biflows belonging to the same traffic class. These augmented feature sets are then combined with the initial handcrafted features and used as input to the RF classifier. Despite the authors' claims of good performance, it is worth noting that the proposed architecture becomes computationally expensive as the number of classes increases. Each class requires its own set of weights and biases, resulting in exponential complexity. They reported a 100% accuracy and 0% (FAR) in binary and multiclass classification. However, it should be noted that these results were not reproducible using the same settings. Furthermore, the authors did not test their solution on the widely used UNSW-NB15 dataset.

Bahlali et al. [START_REF] Bahlali | Machine learning anomaly-based network intrusion detection: Experimental evaluation[END_REF] conducted an experimental evaluation on the UNSW-NB15 dataset using ML and DL techniques in order to assess their performance in A-NIDS applications. The experimental results showed that ANN outperforms MLbased techniques, achieving an accuracy of 88.77% in binary classification and 73.13% in multi-class classification. They also showed the effect of the unbalanced nature of the dataset on the performance of the classifier, in which the ANN classifier demonstrated better generalization on the more populated classes compared to the less populated ones, indicating the influence of class distribution on the classifier's performance. However, the performance of the best-performing DL model is still far from reaching a level suitable for deployment in the wild. There is ample opportunity for further improvement and refinement.

The paper by Zhang et al. [START_REF] Zhang | Network intrusion detection with group-gating convolutional neural network[END_REF] introduces a modified CNN called RANet, which incorporates a Group-Gating module and applies an overlapping method to the final max-pooling layer. The results indicate an approximate classification accuracy of 85% in the UNSWB-NB15 dataset. However, the authors employed the inherent vector representation of biflows, which is not compatible with the CNN model's design for analyzing grid-like data (such as matrices in 1D or 2D form). As a result, utilizing a CNN with a vectorial representation of biflows lacks justification. Moreover, the authors did not use the partitioning (viz. train and test sets) provided with the UNSW-NB15 dataset for fair future comparison.

In [START_REF] Duan | Network traffic anomaly detection method based on multi-scale residual classifier[END_REF], the authors proposed a combined solution that includes Discrete Wavelet Transform (DWT) with a DL technique such as Stacked AE to model the behavior of the benign class so they can detect network attacks. The performance results show an accuracy of 90.12% and 85.88% on the UNSW-NB15 and CSE-CIC-IDS2018, respectively. They treated the elements of a given biflow vector in UNSW-NB15 and CSE-CIC-IDS2018 datasets as sequences in order to apply the DWT technique for decomposition and reconstruction. Indeed, this approach is not appropriate since the biflow vector elements do not possess a sequential nature. Moreover, the authors have erroneously swapped the train and test sets (in reality, they contain 175,341 and 82,332, respectively), making a direct comparison of their proposed solution unfeasible.

Lopez-Martin et al. [START_REF] Lopez-Martin | Contrastive Learning over Random Fourier Features for IoT Network Intrusion Detection[END_REF] proposed a modified architecture for ANN, replacing the dense layer with a contrastively trained Random Fourier Features (RFF) layer. The objective is to bring samples closer to their true label in the embedding space while maintaining distance from negative samples (viz. this is a wellknown technique called center loss [START_REF] Wen | A discriminative feature learning approach for deep face recognition[END_REF] not as claimed as a new embedding technique). They achieved an accuracy of 88.8%, precision of 92.1%, and recall of 87.1% when evaluated on the UNSW-NB15 dataset. Contrary to the guidelines provided in the UNSW-NB15 dataset [START_REF] Moustafa | A comprehensive data set for network intrusion detection systems[END_REF], which states that the whole dataset consists of 2,540,044 samples, from which specific train and test set partitions of 175,341 and 82,332 samples, respectively, were created. They mistakenly used a partition of 2,540,044 samples for training and 82,332 samples for testing, resulting in their model being trained with test samples. This leads to data leakage, a lack of generalization to unseen data, and invalid evaluation. Moreover, The inference process is time-consuming due to the necessity of evaluating all pairs, which involves the feature vector and every other label vector, to classify the given input sample.

In semi-supervised settings, Jeong et al. [START_REF] Jeong | Poster Abstract : A Semi-Supervised Approach for Network Intrusion Detection Using Generative Adversarial Networks[END_REF] proposed an approach using Generative Adversarial Networks (GANs). Their method addressed the challenge of limited labeled data by leveraging only 10 labeled biflows per class. The GANs were employed to generate synthetic biflows, reducing the need for extensive manual collection and labeling of data. Although the results obtained (88.7% acc.) are promising, they still fall short compared to supervised approaches.

III. PROBLEM FORMULATION

A. Dataset Notation

Let the dataset that represents both benign and malicious biflow network traffic be: X = {x 0 , x 1 , x 2 , . . . , x n } ∈ R n×m that contains n samples. Every sample is a m-dimentional vector (∀x i ∈ X : x i ∈ R m ) that embeds the hand-crafted features. Additionally, Y = {y 0 , y 1 , y 2 , . . . , y n } ∈ R n is n-dimentional vector of target real values of each data instance, where y i ∈ {0, 1} with 0 and 1 represent benign and malicious classes, respectively.

B. Basic Auto-Encoder

Basically, an AE is a type of ANN that is trained to attempt to reconstruct a given input by mapping the input's dimension into a lower-dimension known as latent space, and from this dimension, it tries to decode it back to the original dimension. Internally, it consists of two components (i.e., two functions): an encoder E φ : x i → z i parametrized by φ that maps the input ∀x i ∈ X into a code z i that represents the input and capture only useful properties (salient features) and usually its dimension is smaller than the dimension of the input. A decoder D ρ : z i → x i parametrized by ρ that attempt to reconstruct the original input ∀x i ∈ X from its latent space z i . In a nutshell, an AE could mathematically be seen as a function F parametrized by θ in which it is a composition of an encoder and a decoder

F θ (x i ) = D ρ (E φ (x i )) where θ = φ ∪ ρ and F θ (x i ) = x i ≈ x i .
The learning process involves minimizing the mean squared error (MSE) as the reconstruction loss between the original input and its corresponding reconstructed output, as described in Equation 1. This is achieved by iteratively updating the model's parameters θ in an unsupervised and end-to-end fashion using a gradient descent method.

L(X, F θ (X)) = 1 n n i=0 (x i -F θ (x i )) 2 (1) 

C. Our Proposed Reconstruction Loss

In this work, we have devised a supervised AE model using a differentiable customized reconstruction loss to model the benign and malicious biflows, thereby enabling effective malicious biflows detection. The core idea is to attempt to learn an AE to minimize the reconstruction loss for the benign samples while simultaneously maximizing it for malicious ones. In other words, training the AE model to produce reconstructed output vectors that closely resemble the input for benign samples whereas reconstructing dissimilar output vectors for malicious samples. The similarity between the input vector and the reconstructed output vector is evaluated using the Cosine Similarity (CS) metric.

CS is a measurement metric that quantifies the similarity between two vectors by calculating the cosine of the angle between them [START_REF] Han | Getting to Know Your Data[END_REF], [START_REF] Metcalf | Cybersecurity and Applied Mathematics[END_REF] as described mathematically in Equation 2 where A and B are two given vectors.

CS(A, B) = cos(Θ

AB ) = A • B A B = n i=1 A i B i n i=1 A 2 i n i=1 B 2 i (2)
The CS metric yields a value within the interval [-1, 1], where a score of -1 indicates complete dissimilarity between the two vectors, while a score of 0 suggests orthogonality, implying no significant similarity. As the CS value approaches 1, the similarity between the given vectors increases, indicating a higher degree of similarity [START_REF] Han | Getting to Know Your Data[END_REF]. The advantage of this metric resides in its low complexity, especially for sparse vectors [START_REF] Han | Getting to Know Your Data[END_REF], [START_REF] Metcalf | Cybersecurity and Applied Mathematics[END_REF], which is the case with the biflow network traffic datasets due to the encoding of categorical features.

The optimization problem then consists of the maximization of the CS between the benign input biflows with their corresponding reconstructed outputs by the AE, while simultaneously maximizing the CS between the input malicious biflows with their reconstructed output. Let X B ∈ R k×m and X M ∈ R t×m represent the samples of benign and malicious biflows, respectively, where X = X B ∪ X M and n = k+t. Furthermore, let CS B = CS(X B , F θ (X B )) and CS M = CS(X M , F θ (X M )) denote the similarity scores between the original samples and their corresponding reconstructions by the AE model for the benign and malicious biflow subsets, respectively. Maximizing CS B and minimizing CS M can be mathematically formulated as a multi-objective optimization problem. This can be expressed using the Formula in 3.

L(CS

B , CS M ) = -CS B + CS M (3) 
The optimization of our custom reconstruction loss is derived from mathematical intuition where if some objective function is to be maximized, it is equivalent to minimizing its negative. In our case, maximizing CS B is equivalent to minimizing -CS B , and we directly minimize CS M as our goal is to do so. This approach allows us to formulate the optimization problem as a minimization task by adding both terms in a single formula as described in 4.

arg min θ L(CS B , CS M ) = arg min θ -CS(X B , F θ (X B )) + CS(X M , F θ (X M )) (4)

D. Malicious Traffic Detection Using The Proposed Method

Malicious biflows are detected based on the similarity score between the input biflow sample and its reconstructed output. A threshold is fixed during the training process, and based on it, we could distinguish between a benign and a malicious biflow. Let α be the defined threshold, ∀x i ∈ X an arbitrary Fig. 1: A summary of the end-to-end AE architecture with our proposed custom reconstruction loss. biflow and CS(x i , F θ (x i )) the similarity score. The decision process follows the formulation in Equation 5.

ŷi = Benign, if CS(x i , F θ (x i )) ≥ α Malicious, if CS(x i , F θ (x i )) < α (5) 
The complete end-to-end learning process of our AE with the proposed reconstruction loss is depicted in Figure 1.

IV. EXPERIMENTAL SETUP

A. Datasets Description

While the NSL-KDD dataset [START_REF] Tavallaee | A detailed analysis of the kdd cup 99 data set[END_REF] was one of the earliest publicly released datasets and has remained widely used, it is no longer representative of the current patterns of benign and malicious network traffic. Therefore, it is important to consider more recent and up-to-date datasets that capture the characteristics of modern network traffic.

The UNSW-NB15 [START_REF] Moustafa | A comprehensive data set for network intrusion detection systems[END_REF] 4 and CSE-CIC-IDS2018 [19]5 datasets are highly prominent in the literature and have been recently developed for research purposes. These datasets are comprehensive in nature, encompassing a wide range of both modern benign and malicious network traffic, making them suitable for A-NIDS evaluation. Moreover, in addition to raw traffic, these datasets provide a vector-based representation of samples extracted from raw traffic (pcap files). Each vector encompasses a handcrafted header and statistical features that summarize information about the biflow.

The UNSW-NB15 dataset consists of 2,540,04 biflows and 49 handcrafted features. The dataset creators have configured a partition of train and test sets (refer to Table I) to establish a benchmark for direct and fair comparisons. Although many studies utilize the full dataset (as it often yields good results due to the random selection of a favorable test set), we have specifically chosen to use the partition provided by the creators because it is more challenging to achieve good performance on the defined test set, providing a more rigorous evaluation. The CSE-CIC-IDS2018 dataset is larger, comprising approximately 16.5 million biflow samples, each with 80 handcrafted features. From this dataset, a random partition of train and test sets has been selected. The partition is deliberately balanced, ensuring that the number of benign and malicious samples is approximately equal in both sets, as shown in Table I. The reason for this selection is the absence of a predefined partition by the authors, and the lack of significant difference in performance between the baseline models trained on the full dataset compared to the selection partition. 

B. Data Preparation

C. Hyperparamaters Tunning

Hyperparameter selection greatly impacts model performance and behavior. By exploring various combinations, we observe differences in training speed, convergence, and accuracy. Thus, conducting a thorough hyperparameter search is vital in optimizing model performance. In this study, we used a grid search technique to perform an extensive search, resulting in two distinct best settings for each dataset as shown in Table II. Given our use of Min-Max normalization to scale features within the range [0, 1], it is essential for our model to produce vector elements within the same range. To achieve this, we employed the Sigmoid activation function at the output layer. (Note: HL: Hidden Layer, OL: Output Layer)

D. Evaluation Metrics

We employed commonly used evaluation metrics for classification tasks to evaluate the performance of our model. These metrics include Accuracy = TP+TN TP+TN+FP+FN , Precision = TP TP+FP , Recall = TP TP+FN , F1-Score = 2•Precision•Recall Precision+Recall , and FAR = FP FP+TN . In the equations, TP, TN, FP, and FN represent True Positive, True Negative, False Positive, and False Negative, respectively.

E. Hardware and Software Setup

We conducted our experiments using Sklearn 1.1.2 and PyTorch 1.12.1 as the ML and DL software frameworks, respectively. The hyperparameter search was performed on the HPC cluster at the University of Aix-Marseille (Mésocentre 6 ), which consisted of 10 selected nodes of Dell PowerEdge C6420 machines. Each node had 32 cores, an Intel® Xeon® Gold 6142 (SkyLake) processor running at 2.6 GHz, and 96GB of RAM. 6 https://mesocentre.univ-amu.fr/ V. RESULTS AND DISCUSSION Our proposed approach involves employing an AE with a custom reconstruction loss. The effectiveness of this method is evident from the training process, as depicted in 2a for UNSW-NB15 and 2b for CSE-CIC-IDS2018. During training, we observe successful maximization of CS B and simultaneous minimization of CS M , achieved by minimizing the total loss (see 4) using the gradient descent method, as described in subsection III-C.

Furthermore, we showed the distribution of the CS scores in the testing sets of both employed datasets before and after training our proposed model. To visualize these distributions, we created histograms before training (Figures 3a,4a) and after training (Figures 3b,4b) on testing sets of UNSW-NB15 and CSE-CIC-IDS2018, respectively. We have also estimated the Probability Density Function (PDF) using the Kernel Density Estimation (KDE) technique. The KDE plots are shown in 3c, 4c, 3d, and 4d for both testing sets, before and after training, respectively. We observe that the CS scores of benign samples are primarily concentrated around one, indicating their similarity to the original input. Conversely, the scores of malicious samples are predominantly concentrated around zero, indicating their dissimilarity to the original input.

Our proposed method, featuring a customized reconstruction loss, demonstrates remarkable effectiveness in accurately modeling both benign and malicious classes across both datasets. However, an interesting observation arises from the average CS scores in the malicious class, which consistently hovers around 0. This suggests orthogonality between the input vectors and their reconstructed outputs. In essence, our model refrains from producing reconstructed vectors that point in the opposite direction of the input vectors (i.e., having elements with opposite signs) due to the adoption of the sigmoid function at the output layer that confines the output range to [0,1], which prevents the generation of such opposing-direction vectors.

During training, a threshold value of α = 0.5 was set using the train set, allowing for the classification of any given biflow based on the Formula 5.

Tables III and IV present the results obtained from our proposed method, as well as the performance of two baseline classifiers (RF and ANN) for comparison. We also include results from recent relevant works in the literature for further comparison and discussion. Our proposed method outperformed the baseline models and state-of-the-art methods on the UNSW-NB15 testing set, achieving an accuracy of 91.17% and a false alarm rate (FAR) of 15.29%. It also provided a better precision/recall trade-off compared to the alternative approaches. While the other methods demonstrated impressive recall results, they exhibited poor precision. In contrast, our method achieved good recall without sacrificing precision. On the other hand, the performance results on the CSE-CIC-IDS2018 dataset were relatively similar across all methods, including ours, with an approximate accuracy of 97% and a FAR of less than 1.5%. As observed in Table III and IV, the performance of a simple shallow classifier like RF is comparable to that of more advanced DL classifiers. However, this is not the case with the UNSW-NB15 dataset, where the shallow classifier RF exhibits lower generalization capabilities compared to the sophisticated DL techniques. This suggests that the underlying patterns of malicious and benign traffic in the CSE-CICIDS2018 dataset are relatively less complex, making them easily captured by simple shallow classifiers.

Confusion matrices (see 5) are included to provide a detailed assessment of the performance of our proposed solution. It is evident from the confusion matrix for the UNSW-NB15 dataset (Fig. 5a) that our model performs well in classi- fying malicious biflows compared to benign biflows. This observation can be attributed to the inherent nature of the dataset, which contains a higher proportion of malicious biflow samples than benign ones despite the fact that we used the oversampling with repetition technique to overcome this issue. In CSE-CIC-IDS2018 dataset 5b, our model performs slightly better on benign than malicious class.

VI. CONCLUSION

In this work, we devised a modified version of Auto-Encoder with a custom reconstruction loss trained in a supervised end-to-end fashion. It aims to model the benign and malicious biflows by maximizing the cosine similarity of input benign samples against their corresponding reconstructed output and minimizing the cosine similarity of input malicious samples against their corresponding reconstructed output. The experimental results reveal that our proposed approach successfully models both the benign and malicious classes, leading to superior performance on the UNSW-NB15 dataset compared to state-of-the-art methods. Additionally, it achieves comparable performance on the CSE-CIC-IDS2018 dataset, which already showed satisfactory results with a simple shallow classifier like RF. To the best of our knowledge, this is the first attempt to formulate the anomaly detection problem in the manner presented, signifying a novel approach to address it. This approach holds the potential for further improvements and generalization to other domains in future research.

  Data preparation plays a critical role in ML and DL by ensuring that input data is appropriately formatted for model training and evaluation. In this study, we employed the Min-Max normalization technique ( xi = xi-Min(xi) Max(xi)-Min(xi) ) to scale the data between [0, 1] and performed one-hot encoding to handle categorical features with discrete values. Additionally, to address the inherent class imbalance in the training set of the UNSW-NB15 dataset, we utilized the oversampling with replacement technique in the less populated classes.
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 23 Fig. 2: Average loss value of the CS score of benign (viz. CS B increasing), malicious (viz. CS M decreasing), and the total loss (viz. L(CS B , CS M ) decreasing) 4 over the course of training.
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 4 Fig. 4: Histogram and an estimated PDF of CS score distribution over the testing set of CSE-CIC-IDS2018 dataset before and after training using our proposed method.
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TABLE I :

 I Distribution of biflow samples in train and test sets in both datasets.

TABLE II :

 II Grid search results for hyperparameters tunning.

	Hyperparameters	UNSW-NB15 CSE-CIC-IDS2018
	No. hidden layers	2	2
	No. neurons on HL 1	256	512
	No. neurons on HL 2	128	256
	HLs activation function	Tanh	ReLu
	OL activation function	Sigmoid	Sigmoid
	Optimizer	Adam	RMSprop
	Learning rate	0.00194	0.00086
	Batch size	512	512
	Epochs	82	250
	Loss Function	Ours (Eq. 4)	Ours (Eq. 4)

TABLE III :

 III Performance results summary of our proposed method along with other works and baselines on the UNSW-NB15 testing set.

TABLE IV :

 IV Performance results summary of our proposed method along with other works and baselines on the CSE-CIC-IDS2018 testing set.

A biflow is a set of packets exchanged between two end-points over a period of time sharing the same 5-tuple {src IP, src port, dst IP, dst port, protocol} where the IP addresses and port numbers could be interchanged to encompass both the forward and backward packets within the biflow. 979-8-3503-3559-0/23/$31.00 ©2023 IEEE
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