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Abstract. The use of Machine Learning (ML) approaches to design
anomaly-based network intrusion detection systems (A-NIDS) has been
attracting growing interest due to, first, the ability of an A-NIDS to
detect unpredictable and previously unseen network attacks, and second,
the efficiency and accuracy of ML techniques to classify normal and mali-
cious network traffic compared to other approaches. In this paper, we pro-
vide a comprehensive experimental evaluation of various ML approaches
including Logistic Regression (LR), Decision Tree (DT), Random Forest
(RF), and Artificial Neural Network (ANN), on a recently published
benchmark dataset called UNSW-NB15 considering both binary and
multi-class classification. Throughout the experiments, we show that
ANN is more accurate and has fewer false alarm rates (FARs) compared
to other classifiers, which makes Deep Learning (DL) approaches a good
candidate compared to shallow learning for future research. Moreover,
we conducted our experiments in a way to be served as a benchmark
results since our used approaches are trained and tested on the configu-
ration deliberately provided by the authors of UNSW-NB15 dataset for
the purpose of direct comparison.

Keywords: Intrusion detection system · Machine learning · Network
anomaly detection · Artificiel neural network · Cyber security

1 Introduction

An IDS is a proactive mechanism that monitors inbound and outbound traffic to
identify malicious traffic. An IDS could be categorized according to its placement
and its detection technique [5,27]. There are mainly two types of IDSs with respect
to its placement: Host-Based IDS (HIDS) and Network-Based IDS (NIDS). An
HIDS runs on a local host machine and uses system activities to identify mali-
cious behavior locally, whereas NIDS is located at the network entry to protect the
internal network from external cyber threats. IDSs can also be classified accord-
ing to the technique used to detect intrusions into two categories: signature-based
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and anomaly-based IDSs. Signature-based IDSs rely on a preexisting database
of well-known attack patterns, and any packet or flow that matches one of those
patterns is flagged as malicious [2,15]. This category has a major drawback as it
requires continuous manual update of the database of signatures by adding up-to-
date attacks and thus cannot detect unseen malicious patterns [2,15]. In contrast,
Anomaly-based NIDS (A-NIDS) is more efficient than Signature-based IDSs as
they can detect new unseen attacks by creating a profile or a model after observing
several examples of normal behavior [2,5]. As a result, there has been a plethora
of research attempting to design an A-NIDS using a variety of techniques [5,6,15].
However, A-NIDSs suffer from performance issues such as low accuracy and a high
false alarm rate compared to Signature-IDSs [5,14]. Therefore, designing an A-
NIDS with a low false alarm rate and high accuracy is a challenging task which
attracted extensive research in the literature [5].

In area of A-NIDS, various ML techniques have been used and can be catego-
rized into two categories: unsupervised (clustering [1,4]) and supervised (classifi-
cation [13,22,28]). Supervised techniques often show superior performance com-
pared to unsupervised approaches, since the latter are generally sensitive to the
initial parameters (e.g. number of clusters, distance metric) and the nature of
data at hand. The use of unsupervised learning was motivated by the lack of
hand-labeled data and the high cost of doing it manually, hence, the recourse to
semi-supervised learning [11,23] as it reduces the cost of manually labeling the
data. However, the obtained results remained below what supervised techniques
achieved.

In this work, we conduct an exprimental evaluation using the UNSW-NB15
benchmark dataset [16] leveraging both traditional ML approaches and DL such
as ANN. We have shown that the DL approach appears to be significantly supe-
rior to shallow learning because of its ability to learn a useful deep representation
of the data, which is demonstrated by projecting the last hidden layer of our ANN
architecture using the UMAP algorithm.

2 Related Work

The development of A-NIDS based on ML requires large and comprehensive
datasets. NSL-KDD, a refined version of KDDCUP’99 [24] is one of the most
widely used datasets in the literature for the evaluation of these systems. How-
ever, in [16,17], it has been stated that NSL-KDD suffers from several issues, such
as the lack of modern low-footprint attacks and the smaller number of attack
types compared to existing real-life attacks. To overcome these limitations, two
new benchmark datasets have been generated, UNSW-NB15 [16] and CSE-CIC-
IDS2018 [20]. In the latter, a train and test sets are not configured and provided
to the community to allow a direct comparison between proposals, as is the case
with UNSW-NB15. Furthermore, simple classifiers such as DT perform well in
CSE-CIC-IDS2018, which means that it is less difficult and complex compared
to the UNSW-NB15 dataset.

In [10], a performance analysis of the NSL-KDD benchmark data set has
been performed using ANN in binary and multiclass classification with 81.2%
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and 79.9% detection accuracies, respectively. More sophisticated deep learning
algorithms were explored in the literature, such as Autoencoder (AE), and Recur-
rent Neural Network (RNN). The authors of [28] and [22] proposed the use of
RNN by considering samples from the KDD dataset as a sequence. We know
from [24] that individual training samples such as bidirectionnel flows are not
necessarily related (i.e., they do not come from the same sequence). Therefore,
the use of a sequence model, in this case, is not justified. In [17], an evaluation
of the performance of A-NIDS using several classifiers such as DT, LR, Naive
Bayes (NB), ANN, and Expectation Maximization Clustering (EMC) has been
carried out using UNSW-NB15 dataset. The results show that the DT classifier
achieves the highest accuracy with 85.56% and the lowest false alarm rate with
15.78%.

In [3], in addition to the hand-crafted header and statistical features extracted
from the raw traffic, a new set of features has been computed using the proposed
supervised Adaptive Clustering (AC) that are identical to the data samples
(traffic flow) belonging to the same traffic class. Despite the good performance
claimed by the authors, it remains an expensive architecture because of its com-
plexity that rises exponentially as the number of classes increases (i.e. for n
classes n× 2 ANN architecture is used, each of which has its own set of weights
and biases). The performance of the proposed technique has been evaluated
using five synthetic data sets and three public benchmarks (KDD Cup’99 [9],
ISCX-IDS 2012 [21] and CSE-CIC-IDS 2018 [20]). The authors claimed a 100%
accuracy and 0% FAR in both binary and multiclass classification. However, the
reproducibility of the results has not been achieved using the same settings. Fur-
thermore, the authors did not test their solution on the UNSW-NB15 dataset,
as it is widely used in the literature.

In [11], the authors proposed a semi-supervised technique that requires only
10 labeled data per flow type and relies on Generative Adversarial Networks
(GANs) [7] to generate more data synthetically and reduce the cost manually
labeling the data. In their proposal, they used a semi-supervised GAN (SGAN)
[18,19] and achieved an accuracy of 88.7%.

In [13], the authors tried to address the problem of low performance of a stan-
dalone classification model by leveraging the use of Ensemble Learning (EL) in
CPS (Cyber-Physical Systems) IDS. They evaluated three known EL techniques,
such as aggregation, boosting, and stacking [29]. Throughout the experience,
they observed that the ensemble models performed much better than the stan-
dalone models. When it comes to EL techniques, they showed that the stacking
technique outperforms the others with an F1 score of 0.503 for the small imbal-
anced test set and a 0.996 for the large balanced test set. Although EL methods
achieve good results, they have several drawbacks caused by their higher cost of
creation, training, and deployment.

In [23], the authors proposed a semi-supervised approach using AEs to over-
come the problems of supervised learning techniques such as the difficulty of
detecting novel attack types and the need for large amount of labeled data (par-
ticularly the abnormal traffic) in the supervised training process. The learning
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process consists in training an AE to reconstruct only normal samples by mini-
mizing the reconstruction error of the model’s input samples. When an abnormal
sample is passed to the model, its reconstructed error would be higher compared
to normal samples because it has not been seen in the training phase. Although
the authors obtained encouraging results, their models cannot be generalized to
multi-class anomaly detection and have not been tested in recent databases.

In [8], the authors proposed an early detection approach to address the sup-
posed issues related to the detection of pos-tmortem attacks. Typically, the exist-
ing approaches for A-NIDS using ML take the full biflow packets (i.e. until the
biflow ends) to extract the handcrafted features to train and test ML models.
This approach is considered by the authors as weak defense strategy since it
can not detect the attack on its early stage. They have experimented with a
variable number of packets that first arrive in which belong to the same biflow
using different ML algorithms. In their results, they showed that the use of RF
classifier with as few as the first 10 packets allows to obtain a good performance-
complexity trade-off. However, it should be noted that no comparison has been
done with other existing A-NIDSs.

3 Dataset Description

The design of A-NIDS based on ML is heavily dependent on the availability
of datasets that represent a wide area of Internet traffic, including modern and
sophisticated attacks. There have been a lot of efforts in the literature to generate
datasets. One of the earliest dataset released publicly to the community is NSL-
KDD [24]. However, this dataset was collected more than decades ago and does
not represent current normal and traffic patterns in the real world.

Several datasets have been released since then [16,20] in order to provide a
modern and more inclusive view of Internet traffic.

In this work, we consider the UNSW-NB15 [16] in which lower performance
has been obtained in the community compared to other datasets (as there is
room for improvement) and the availability of training and testing sets that
have been defined by the authors of the dataset so our work can be compared
with other according to the same benchmarks defined by the authors.

The UNSW-NB15 dataset was created using the IXIA PerfectStorm tool [25]
using the testbed configuration described in [16] to generate a mixture of modern
real normal as well as synthetic attack traffic.

In this dataset, the packets belonging to the same bidirectional flow collected
from the original captured raw data are grouped together and used to handcraft
features about the biflow with the help of tools such as Argus, Bro-IDS, and
custom scripts. These features are categorized into five groups: Flow, Content,
Time, Basic Features, and Generated Features which contains other features.
These handcrafted features are used to form a record in the constructed dataset.

Every record in the dataset is labeled as normal, or malicious in the case of
binary labaling or into several types of malicious attacks in the case of multi-
class labeling as can be shown in Table 1 which lists 9 attack categories of
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malicious biflows (for more details about attack types, see the original paper
of the dataset [16]).

The entire UNSW-NB15 dataset has a little over 2.5 million records
(2,540,044 records). However, the authors deliberately configured a partition
of this dataset as a training and testing set for a fair apple-to-apple future com-
parison, which contains 175341 and 82332 records, respectively. In Table 1, we
show an illustration of the distribution of normal and malicious samples in the
train and test sets.

Table 1. The number of records and the percentage of each class category in the
USNW-NB15 train and test sets

(a) Classes

Category

Normal

Generic

Exploits

Fuzzers

DoS

Reconnaissance

Analysis

Backdoor

Shellcode

Worms

(b) Train set

Nbr of records Percentage

56000 31.93%

40000 22.8%

33393 19%

18184 10.3%

12264 7%

10491 6%

2000 1.14%

1746 1%

1133 0.6%

130 0.07%

(c) Test Set

Nbr of records Percentage

37000 44.93%

18871 22.92%

11132 13.52%

6062 7.36%

4089 4.96%

3496 4.26%

677 0.85%

583 0.70%

378 0.45%

44 0.05%

4 Experimental Design

4.1 Dataset Pre-processing

Features Transformation: Among the 49 features of the data set, there are
four categorical features such as protocol, service, state, and attack-category.
Thus, a conversion of categorical features to numerical ones is required using
one of the existing techniques such as the One-Hot-Encoding.

Features Scaling: It is a technique used to rescale the features of the data
within a particular range, often between 0 and 1 or between −1 and 1. It improves
the convergence speed of optimization algorithms such as gradient descent and
its variants [26]. In this work, the Min-Max scaling technique has been considered
to scale the data in the range of [0, 1]. Note that the feature scaling step is done
using the train and test set separately to prevent data leakage from the test to
the train set.
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4.2 Evaluation Metrics

Generally, in IDS literature, two primary metrics are used to measure and eval-
uate the performance of the proposed solutions, such as the Accuracy and the
False Alarm Rate (FAR). Accuracy is defined as the ratio of correctly classified
samples to the total number of instances. The FAR is the average ratio of erro-
neously misclassified samples to correctly classified ones, which are calculated
using the formula (1) and (2) respectively.

TP (True Positive): The number of malicious instances is correctly classified
as malicious. TN (True Negative): The number of normal instances is correctly
classified as normal. FP (False Positive): The number of normal instances is
incorrectly classified as malicious. FN (False Negative): The number of malicious
instances is incorrectly classified as normal.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

FNR =
FN

FN + TP
FPR =

FP

FP + TN
FAR =

FPR + FNR

2
(2)

In addition to the two important metrics mentioned above, there are two
other metrics that help further evaluate the proposed solutions, namely Precision
and Recall. Precision is the ratio of correctly classified malicious samples to all
samples classified as malicious, as illustrated in the formula (3). The recall as
shown in (4) is the ratio of correctly classified malicious samples to the number
of all malicious samples.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

5 Results and Discussion

This section is organized into two parts: in the first part we show the empiri-
cal results of binary classification, and in the second part we show the results
of multi-class classification experiments using classical ML techniques and the
ANN. All experiments were implemented using Python 3.7.0. Pandas and Numpy
libraries were used for data manipulation. Sklearn version 0.24 and Keras ver-
sion 2.4.3 with Tensorflow back-end version 2.4.0 for the implementation of the
classical ML algorithms (LR, DT, RF) and DL (ANN), respectively.

For each part, after the preprocessing phase (see Sect. 4.1), and performing
feature scaling in the interval [0,1] and feature transformation according to the
one-hot technique, we obtained a new dataset with 196 normalized numerical
features.
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Table 2. ANN configuration in binary and multi-class classification

Hyper-parameters Binary settings Multi-class settings

Hidden layers 2 1

Neurons on hidden layer 1 128 64

Neurons on hidden layer 2 64 None

Neurons on output layer 1 10

Activation function in the hidden layers Sigmoid ReLu

Activation function in the output layer Sigmoid Softmax

Optimizer RMSprop RMSprop

Learning rate 0.01 0.001

Batch size 140 250

Epochs 40 100

Loss Function Cross entropy Cross entropy

Regularizer L2= 0.001 None

Kernel-initializer Glorot uniform Variance scaling

For training and evaluation, we use the official UNSW-NB15 benchmark train
and test sets to allow a direct comparison with future research.

LCE =

⎧
⎪⎨

⎪⎩

− 1
M

∑M
i=1(yi log(ŷi) + (1 − yi) log(1 − ŷi)), for Binary

− 1
M

∑M
i=1

∑C
c=1 yic log(ŷic), for Multi-class

(5)

Table 3. Results of our models in the test set

(a) Binary results

classifier

metric
Accuracy Precision Recall FAR

LR 80.61% 74.94% 97.32% 21.21%

DT 86.13% 82.34% 95.22% 14.89%

RF 87.57% 84.74% 96.63% 12.33%

ANN 88.77% 84.88% 96.86% 12.13%

(b) Multi-class results

classifier

metric
Accuracy

LR 69.14%

DT 72.76%

RF 70.47%

ANN 73.13%

5.1 Binary Classification

In this work, the classical ML classifiers were trained using the default hyper-
parameters except for the LR which has been trained using the Limited-memory
BFGS solver and a maximum iteration number of 500, and RF with a number
of estimators (trees) equal to 200.

After experimenting with different hyper-parameters on the ANN classifier
using the grid search technique, we end up with the binary settings shown in
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Table 2. The network architecture has been selected to be 4 layers, including 2
hidden layers, each of which contains 128 and 64 artificial neurons, respectively.
In the hidden and output layer, the activation function sigmoid is used. The
optimization algorithm RMSprob has been chosen to minimize the Cross-Entropy
loss function shown in formula (5), which differs from binary classification to
multiclass.

The detailed results for binary classification indicate that ANN outperforms
the other classifiers with 88.77% accuracy and 12.13% FAR as shown in Table 3a,
while LR has the lowest performance in terms of accuracy and FAR with 80.61%
and 21.21%, respectively.

The performance supremacy of ANN compared to traditional ML techniques
is based on its ability to implicitly find other representations of data known as
deep representation learning. To show how the ANN learns deep representation
after the training phase, a UMAP 3-D projection has been used before training
(i.e., before representation learning) with the initial set of features (194 features)
and after training where the output of the second hidden layer neurons (64
features) is used as shown in Fig. 1a and 1b, respectively.

It is worth mentioning that almost all proposed ML techniques in the lit-
erature for A-NIDS have been trained and tested on randomly selected sets of
UNSW-NB15 datasets despite the availability of a configuration from the authors
to allow future research solutions to be compared in a fair manner (apple-to-
apple comparison). We have used the architecture and the hyper-parameters of
our best performing ANN model and we have trained and tested it by picking
random samples from both sets. Repetition of the experiments several times has
always shown an accuracy higher than 90% with a large variance (between [90%–
98%] accuracy). This means that the proposed solutions can not be compared
since their performance are directly affected by the chosen samples for train and
test sets. For the reasons mentioned above, we are only able to invoke the exper-
iments previously conducted on the same train and the test splits provided by
the authors of the UNSW-NB15 data set and compare them with our results. As
shown in Table 4, our ANN model clearly outperforms the performance of the
proposed methods with an accuracy of 88.77% and a FAR of 12.13%.

Table 4. A comparison of our proposed models with other previous works in binary
classification

Paper Technique Accuracy FAR

R. Vinayakumar et al. [27] ANN 76.5% //

T. Kim et al. [12] Encoding + 2D CNN 80% //

N. Moustafa et al. [17] ANN 81.34% 21.13%

N. Moustafa et al. [17] Decision Tree 85.56% 15.78%

Ours ANN 88.77% 12.13%
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5.2 Multi-class Classification

ML-based techniques have been implemented using the by default hyperparam-
eters except LR where the solver, maximum iteration, and multi-class hyper-
parameters have been set to Limited-memory BFGS solver, 1100 and multino-
mial, respectively. Moreover, the RF classifier has been implemented with 30
estimators.

The ANN classifier has been implemented with the multi-class settings shown
in Table 2 after experimenting with different hyper-parameters using the grid
search technique. The classifier have been trained using 1 hidden layer with 64
neurons and the ReLu as an activation function. In the output layer, the number
of neurons was set to 10 equally to the number of existing classes and the softmax
function as an activation function that normalizes the input into a probability
distribution.

The computation of the evaluation metrics on multi-label classification is a bit
different from that on binary classification. Accuracy is calculated by summing
the correctly classified samples for each class divided by the sum of all elements
of the confusion matrix. However, precision, recall, and false alarm rate can
not be computed regarding the performance of the overall model as in binary
classification. As a result, the confusion matrix (See Fig. 3) is given to assess the
classifier in depth.

The experimental results shown in Table 3b indicate that the accuracy of the
ANN classifier (73.13%) is better than that of the classical ML techniques. In
addition, the accuracy of the classifiers on multi-class classification has declined
compared to binary classification.

As the confusion matrix (see Fig. 3) indicates, our model performs much
better in some classes than in others. For instance, the proportion of correctly
predicted samples from the Generic class is 96% and 79% for the Normal class
while 2%, 19%, and 1% for Worms, Shellcode, and Backdoor, respectively.

The primary reason behind this phenomenon is the unbalanced nature of the
observations on the training set of UNSW-NB15 dataset. Normal and Generic
categories make 31.93% and 22.80% of trainig set, whereas Worms, Shellcode,
and Backdoor combined make only 1.67% as mentioned on the Table 1 which is a
huge difference on the distribution. Therefore, the unbalanced nature of the data
has led the model to learn well the patterns of more populated classes compared
to less populated in which has resulted to a decrease of the performance in
multi-class classification.

Finally, a 2-D projection of 1000 random samples from the training set is
conducted before and after training the ANN classifier (Fig. 2a, 2b respectively)
to show that the learned representation during the training process using ANN
classifier are much more helpful in distinguishing between biflow classes.
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Fig. 1. A 3-D projection of 10000 randomly selected samples before training (a) and
after training (b) by selecting the second layer output of our ANN architecutre in
binary classification using UMAP algorithm.

Fig. 2. A 3-D projection of 10000 randomly selected samples before training (a) and
after training (b) by selecting the second layer output of our ANN architecutre in
multi-class classification using UMAP algorithm.

Fig. 3. The Confusion Matrix of our ANN model in multi-class classification
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6 Conclusions

In this work, we evaluated different ML and DL techniques for the developpe-
ment of A-NIDS using the official public benchmark UNSW-NB15 data set. The
results show that the ANN model performs well on previously unseen biflow
attacks with high accuracy and low FAR compared to the traditional ML tech-
niques on both binary and multi-label classification. Furthermore, a visualization
technique named UMAP has been used to show the core advantage of ANN over
the traditional techniques in extracting useful representations from the data that
ultimately improve the performance of the model in the detection of malicious
biflows, which makes it eligible with its variants to improve the performance of
A-NIDS in future works. Moreover, we have empirically shown that the imbal-
anced nature of the data set greatly affects the performance of the model by
learning well on the populated classes compared to the less populated ones. In
future research, we believe that reformulating the problem of A-NIDS is required
to leverage some more sophisticated DL approaches. Moreover, we aim to apply
deep generative models techniques such as GANs (Generative Adversarial Net-
works) and VAEs (Varational Auto Encoders) to address the issue of data imbal-
ance by generating synthetic data samples for the classes that have insufficient
samples that would theoretically improve the performance of the classifier.
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