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Convergence analysis for the wave equation discretized with hybrid

methods in space (HHO, HDG and WG) and the leapfrog scheme in

time

Alexandre Ern∗ Morgane Steins†

September 8, 2023

Abstract

We prove the optimal convergence in space and time for the linear acoustic wave equation in its
second-order formulation in time, using the hybrid high-order method for space discretization and the
leapfrog (central finite difference) scheme for time discretization. The proof hinges on energy arguments
similar to those classically deployed in the context of continuous finite elements or discontinuous Galerkin
methods, but some novel ideas need to be introduced to handle the static coupling between cell and face
unknowns. Because of the close ties between the methods, the present proof can be readily extended
to cover space semi-disretization using the hybridizable discontinuous Galerkin method and the weak
Galerkin method.

1 Introduction

The wave equation is encountered in the modeling of various physical phenomena, such as seismic, sound or
water waves. We focus here on the linear acoustic wave equation written using the second-order formulation
in time. A vast literature is available on the numerical simulation of this equation. Concerning the semi-
discretization in space, we mention continuous Galerkin (cG) finite element methods with specific quadratures
to lump the mass matrix [3, 14, 25, 24], interior penalty discontinuous Galerkin (dG) methods in either
nonsymmetric [33] or symmetric [26] form, local discontinuous Galerkin (LDG) methods [9], hybridizable
discontinuous Galerkin (HDG) methods [11], and weak Galerkin (WG) methods [27].

In this work, we consider the hybrid high-order (HHO) method for space semi-discretization. The HHO
method was introduced in [20] for linear diffusion and in [19] for locking-free linear elasticity. It was developed
extensively over the past years; for brevity, we only mention the two textbooks [16, 10]. The HHO method
for the wave equation was developed in [4], and extended to unfitted meshes in [5]. The discrete unknowns in
the HHO method consist of a pair, namely piecewise polynomials of order l ≥ 0 approximating the solution in
the mesh cells and piecewise polynomials of order k ≥ 0 approximating the solution trace on the mesh faces.
The HHO method is formulated by means of a local (cellwise) gradient reconstruction and a stabilization
operator whose role is to ensure in a weak sense the matching of the trace of the cell unknowns with the
face unknowns. The HHO method offers numerous advantages: support of polyhedral meshes, optimal
convergence rates, local conservation principles, and computational efficiency. In particular, the support of
polyhedral meshes allows for a natural use of mesh refinement with hanging nodes.
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HHO and WG methods share the same devising principles. The reconstructed gradient in the HHO
method is called weak gradient in the WG method. The equal-order (l = k) HHO stabilization has not yet
been considered in the WG method, where the stabilization is either a plain least-squares penalty or, in the
mixed-order case (l = k+ 1), involves the L2-projection of the cell unknowns onto polynomials of order k on
the faces, as in the Lehrenfeld–Schöberl HDG stabilization [29, 30]. Notice that the latter indeed leads to
optimal error estimates, whereas one order of convergence is lost with the plain least-squares stabilization. A
detailed comparison of HHO and WG methods for the biharmonic problem can be found in [21]. Furthermore,
as shown in [12], the HHO and HDG methods are closely related. Indeed, the HDG method approximates
a triple which is composed of the pair of unknowns considered in the HHO method together with vector-
valued piecewise polynomials for the dual variable (typically, the gradient). In the HDG method, the discrete
dual variable can be expressed locally in terms of the other two variables, and this formula turns out to
correspond to the HHO gradient reconstruction. Moreover, the numerical flux trace, which is one of the
cornerstones in the devising of the HDG method, can be explicitly related to the normal component of the
HHO reconstructed gradient and the stabilization used in the HHO method. We also notice that, in the
equal-order case (l = k), the HHO stabilization has not yet been considered in the HDG method and that,
in the mixed-order case (l = k + 1), the HHO stabilization is the Lehrenfeld–Schöberl HDG stabilization.
One interesting difference concerns the convergence analysis since the HHO method solely relies on (local)
L2-orthogonal projections, whereas in the HDG method, one usually invokes a special projection operator.
Finally, as discussed in [12, 17, 10], the HHO method with the choice l = k − 1, k ≥ 1, is closely related to
the nonconforming virtual element method (ncVEM); see also [8] in the context of multiscale problems.

The goal of the present work is to derive optimal energy-error estimates for the wave equation discretized
by the HHO method in space and the leapfrog (central finite difference) scheme in time. Owing to the above
discussion, the present results are readily applicable to HDG or WG space semi-discretizations, and with
some adaptations to ncVEM. The leapfrog scheme is an explicit, conditionally stable, second-order scheme
that is very popular to discretize in time the wave equation combined with either cG or dG space semi-
discretization. To the best of our knowledge, a convergence analysis of the wave equation using the leapfrog
scheme has not yet been performed with either HDG, WG or HHO space semi-discretization. The space
convergence analysis in the time-continuous case is performed in [13] for the HDG method and in [6] for
the HHO method using different arguments. Fully discrete schemes have been so far considered only in the
context of implicit schemes in time, as the fourth-order Störmer–Numerov scheme combined with the HDG
method in [11] and the second-order backward differentiation formula with the WG scheme in [27]. Thus,
the convergence analysis of HHO, HDG or WG methods with an explicit time-marching scheme under a
CFL stability condition appears to be a novel contribution to the literature. One practical difficulty with the
leapfrog scheme combined with any hybrid method is the static coupling between cell and face unknowns at
each time step. This drawback has been recently lifted in [36], which proposes to handle the static coupling by
means of an iterative scheme. The key point is that weighting the stabilization by a large enough coefficient
ensures a fast convergence of the scheme while mildly impacting the accuracy and the CFL stability condition.
We refer the reader to [36] for the mathematical analysis in the linear case and for various numerical results
on linear and nonlinear wave equations.

Our main result is Theorem 5.1 below, stating the optimal convergence in space and in time of the
discrete wave equation approximated using the HHO method in space and the leapfrog scheme in time. The
convergence proof follows the general pattern that is already known for the analysis of the leapfrog scheme
combined with cG or dG space semi-discretization: derivation of error equations where the consistency errors
in space and time appear as source terms, derivation of an energy identity on the errors, and bound on the
consistency terms. There are, however, two nontrivial differences. The first one is that the naive expression
of the energy error fails to deliver a strongly convex functional on the time- and space-derivatives of the
error, because there is a nonzero consistency error related to the mesh faces. This difficulty is lifted by

2



introducing a modified energy which satisfies a time-discrete energy identity with an additional source term
(see Lemma 5.5 below). The second difference is the need to bound this additional source term. Fortunately,
this can be achieved by an additional control gained by the modified discrete energy on the face velocity
errors; see (69).

We close this discussion by a short literature review on the wave equation with the first-order formulation
in time. One can consider either the Hamiltonian-type formulation in which the unknowns are the primal
variable and its velocity or the mixed (or Friedrichs-type) formulation in which the unknowns are the velocity
and the dual variable (typically, the gradient of the primal variable). Both formulations lead, after space
semi-discretization, to a set of coupled first-order ODEs that can be discretized using, e.g., Runge–Kutta
(RK) methods in various flavors. The first formulation is considered in the context of dG methods in [2],
of HDG methods in [34], and of WG methods (with Crank–Nicolson time-stepping) in [28]. For the second
formulation, we mention HDG methods with either implicit [32, 31] or explicit [35] RK schemes and HHO
methods with either implicit or explicit RK schemes [4].

The rest of the paper is organized as follows. In Section 2, we present the continuous, the space semi-
discrete and the fully discrete wave equation. In Section 3, we collect from the literature various results
on the HHO method that are useful to perform the analysis. In Section 4, we address energy stability to
highlight how the static coupling between cell and face unknowns impacts the energy balance. In Section 5,
we perform the convergence analysis on the energy error. Finally, in Section 6, we present some numerical
experiments.

2 Continuous, semi-discrete and fully discrete wave equations

In this section, we present the continuous, the space semi-discrete, and the fully discrete wave equation. The
space discretization hinges on the HHO method and the time discretization on the leapfrog (central finite
difference) scheme.

2.1 Model problem

The acoustic wave equation is posed on the space domain Ω ⊂ Rd and the time interval J := [0,T], with
T > 0. Standard notation is used for Lebesgue, Sobolev and Bochner spaces. Let (·, ·)Ω denote the L2-inner
product on Ω and ‖ · ‖Ω the associated norm. Boldface notation is used for Rd-valued vectors and vector-
valued fields, as well as for Rd×d-valued matrices and matrix-valued fields. For dimensional consistency, we
consider a length scale `Ω representative of Ω, e.g. its diameter.

We consider a source term f ∈ C0(J̄ ;L2(Ω)) with J̄ = [0,T] and a coefficient µ ∈ L∞(Ω) representing the
speed of sound and taking values uniformly bounded from below away from zero. For simplicity, we enforce
homogeneous Dirichlet boundary conditions and we prescribe initial data u0, v0 ∈ H1

0 (Ω) satisfying these
conditions. Focusing on the strong solution, the acoustic wave equation consists of finding u ∈ C2(J̄ ;L2(Ω))∩
C1(J̄ ;H1

0 (Ω)) such that

(∂2
t u(t), w)Ω +

(
µ2∇u(t),∇w

)
Ω

= (f, w)Ω, ∀t ∈ J̄ , ∀w ∈ H1
0 (Ω), (1)

with the initial conditions
u(0) = u0, ∂tu(0) = v0. (2)

The notion of energy is central to the analysis of the paper. We set, for all t ∈ J̄ ,

E(t) :=
1

2
‖∂tu(t)‖2Ω +

1

2
‖∇u(t)‖2Ω. (3)
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This energy verifies

E(t) = E(0) +

∫ t

0

(f(s), ∂tu(s))Ω ds, (4)

as readily follows by testing (1) with w := ∂tu(t) for all t ∈ J̄ and integrating in time.

2.2 HHO space semi-discretization

The space semi-discretization of (1)-(2) is performed using the HHO method. To avoid technicalities, we
assume that Ω is a Lipschitz polyhedron and that µ is piecewise constant on a polyhedral partition of Ω.

Discrete setting Let (Th)h>0 be a sequence of polyhedral meshes of Ω, such that each mesh Th covers
exactly Ω. For all h > 0, let T denote a generic mesh cell in Th, hT its diameter and nT its unit outward
normal. We set h := maxT∈Th hT for the mesh size. We say that the (d−1)-dimensional set F is a mesh face
if there is a hyperplane HF such that either F = HF ∩ ∂T− ∩ T+ for two distinct mesh cells T− and T+ (and
F is called mesh interface) or F = HF ∩ ∂T− ∩ ∂Ω (and F is called mesh boundary face). The collection of
all the mesh faces is denoted Fh. For all T ∈ Th, we denote by FT the collection of the mesh faces composing
the boundary ∂T . The mesh sequence is assumed to be shape-regular; see, e.g., [18, 7, 16, 10]. Moreover,
each mesh Th is assumed to be compatible with the partition on which the coefficient µ is piecewise constant.
Hence, µ takes a constant value denoted by µT in each mesh cell T ∈ Th. Thus, there are 0 < µ[ ≤ µ] <∞
such that µ[ ≤ µT ≤ µ] for all T ∈ Th. We assume that the ratio

µ]

µ[
is not too large, so that it can be hidden

in the generic constants used in the error analysis.

Recall that the HHO method is formulated using face and cell unknowns which are polynomials attached
to the mesh faces and to the mesh cells, respectively. Let the integer k ≥ 0 be the polynomial order of
the face unknowns and let l ∈ {k, k + 1} be the order of the cell unknowns. The setting is said to be of
equal-order if l = k and of mixed-order if l = k + 1. Let Pld(T ) (resp. Pkd−1(F )) denote the set of d-variate
(resp. (d−1)-variate) polynomials of degree at most l (resp. k) restricted to the cell T ∈ Th (resp. to the face
F ∈ Fh). The linear space composed of all the cell degrees of freedom is denoted U lT , and the linear space
composed of all the face degrees of freedom is denoted UkF . These spaces are defined as Cartesian products
in the form

U lT := ×
T∈Th

Pld(T ), UkF := ×
F∈Fh

Pkd−1(F ), (5)

and we slightly abuse the notation by viewing an element wT = (wT )T∈Th ∈ U lT as a function defined a.e. over
Ω such that wT |T := wT for all T ∈ Th. The collection of all the cell and face degrees of freedom is the
hybrid space

Û l,kh := U lT × UkF . (6)

A generic element of Û l,kh is denoted ŵh := (wT , wF ) ∈ U lT × UkF and, in what follows, variables with hats
refer to hybrid variables. For a given cell T ∈ Th, we also define a local hybrid space of degrees of freedom

Û l,kT := Pld(T )× Uk∂T , Uk∂T := ×
F∈FT

Pkd−1(F ). (7)

Then ŵT := (wT , w∂T = (wF )F∈FT
) ∈ Û l,kT denotes a generic local hybrid unknown in T , composed of one

cell unknown and the collection of the face unknowns for all the faces in FT . As above, we slightly abuse
the notation by viewing an element w∂T = (wF )F∈FT

∈ Uk∂T as a function defined a.e. over ∂T such that
w∂T |F := wF for all F ∈ FT . Let UkF,0 := {vF ∈ UkF , s.t. vF = 0, ∀F ⊂ ∂Ω} be the subspace of face
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unknowns respecting the homogeneous Dirichlet conditions. The subspace of hybrid unknowns respecting
the homogeneous Dirichlet conditions is denoted

Û l,kh,0 := U lT × UkF,0. (8)

L2-orthogonal projections onto polynomial spaces are denoted with the symbol Π. For instance, for all
T ∈ Th, Πl

T is the projection onto Pld(T ), Πk
∂T the projection onto Uk∂T , and for all F ∈ Fh, Πk

F the projection
onto Pkd−1(F ). The L2-orthogonal projection onto the broken polynomial spaces U lT and UkF is denoted by

Πl
T and Πk

F respectively. Let (·, ·)T , (·, ·)∂T and (·, ·)F respectively denote the L2-inner product in the cell
T ∈ Th, its boundary ∂T and the face F ∈ Fh. Let ‖ · ‖T , ‖ · ‖∂T , ‖ · ‖F denote the norms associated
respectively with the L2-inner products (·, ·)T , (·, ·)∂T and (·, ·)F .

Gradient and potential reconstruction. The local gradient reconstruction operator builds a gradient
in the cell T ∈ Th from the local cell and face unknowns in Û l,kT . This operator Gk

T : Û l,kT → Pkd(T ;Rd) is

evaluated by solving the following problem: For all v̂T ∈ Û l,kT ,

(Gk
T (v̂T ), q)T = (∇vT , q)T + (v∂T − vT , q · nT )∂T , ∀q ∈ Pkd(T ;Rd), (9)

where Pkd(T ;Rd) denotes the space of Rd-valued d-variate polynomials of degree k in the cell T . In practice,
each component of the reconstructed gradient is found independently by inverting the mass matrix associated
with a chosen scalar-valued basis of Pkd(T ).

One can also build a potential reconstruction operator Rk+1
T : Û l,kT → Pk+1

d (T ) by solving, for all v̂T ∈ Û l,kT ,
the following Neumann problem:

(∇Rk+1
T (v̂T ),∇q)T = (∇vT ,∇q)T + (v∂T − vT ,∇q · nT )∂T , ∀q ∈ Pk+1

d,∗ (T ), (10)

with Pk+1
d,∗ (T ) := {q ∈ Pk+1

d (T ) | (q, 1)T = 0}, with the mean-value condition (Rk+1
T (v̂T ), 1)T = (vT , 1)T .

Remark 2.1 (Gradient reconstruction). Notice that we have ∇Rk+1
T (v̂T ) = Π∇Pk+1

d (T )G
k
T (v̂T ) for all v̂T ∈

Û l,kT . For nonlinear problems, it is preferable to consider the gradient reconstruction operator Gk
T rather than

∇Rk+1
T , as discussed in [15, 1]. In the present linear setting, the stiffness part of the semi-discrete problem

can be evaluated using ∇Rk+1
T . Notice though that even when working with the operator Gk

T , it is necessary

to evaluate the operator Rk+1
T to compute the stabilization in the equal-order setting (see (12) below).

Stabilization. The role of the stabilization is to weakly enforce the matching between the cell and the
face unknowns at each mesh face. Let T ∈ Th. For all ŵT ∈ Û l,kT , set δ∂T (ŵT ) := w∂T − wT |∂T . In the
mixed-order setting, the local stabilization operator S∂T is defined as

S∂T (ŵT ) := Πk
∂T (δ∂T (ŵT )), ∀ŵT ∈ Û l,kT , (11)

which corresponds to the Lehrenfeld–Schöberl HDG stabilization (see, e.g. [29, 30]). In the equal-order
setting, the definition of S∂T requires the computation of Rk+1

T and writes

S∂T (ŵT ) := Πk
∂T

(
δ∂T (ŵT ) + (I −Πk

T )Rk+1
T (0, δ∂T (ŵT ))|∂T

)
, ∀ŵT ∈ Ûk,kT =: ÛkT . (12)
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HHO space semi-discrete wave equation. The global bilinear form ah is defined, for all v̂h, ŵh ∈ Û l,kh ,
as

ah(v̂h, ŵh) :=
∑
T∈Th

µ2
T

{
(Gk

T (v̂T ),Gk
T (ŵT ))T + h−1

T (S∂T (v̂T ), S∂T (ŵT ))∂T

}
. (13)

The space semi-discrete wave equation consists of finding ûh := (uT , uF ) ∈ C2(J̄ ; Û l,kh,0) such that

(∂2
t uT (t), wT )Ω + ah(ûh(t), ŵh) = (f(t), wT )Ω, ∀t ∈ J̄ , ∀ŵh := (wT , wF ) ∈ Û l,kh,0. (14)

Notice that the homogeneous Dirichlet boundary condition is enforced by the fact that ûh(t) ∈ Û l,kh,0 at all

times t ∈ J̄ . The initial conditions are enforced on the cell degrees of freedom as follows (initial conditions
on the face degrees of freedom are not needed):

uT (0) := Πl
T (u0), ∂tuT (0) := Πl

T (v0). (15)

2.3 Time-discretization with the leapfrog scheme

Let N be the number of discrete time intervals such that (tn)n∈{0:N} are the discrete time nodes with t0 = 0
and tN := T. We set fn := f(tn) for all n ∈ {0:N}. For the sake of simplicity, we consider a fixed time step

∆t := T
N . The time discrete unknown ûnh = (unT , u

n
F ) ∈ Û l,kh,0 is meant to be an approximation of the space

semi-discrete HHO solution ûh(tn) ∈ Û l,kh,0.

The leapfrog scheme consists of solving

1

∆t2
(un+1
T − 2unT + un−1

T , wT )Ω + ah(ûnh, ŵh) = (fn, wT )Ω, ∀n ∈ {1:N − 1}, ∀ŵh ∈ Û l,kh,0, (16)

where the unknowns are un+1
T and unF , whereas unT and un−1

T are known from prior time steps or given by
the initial conditions as follows:

u0
T = Πl

T (u0), (17a)

ah(û0
h, (0, wF )) = 0, ∀wF ∈ UkF,0, (17b)(

u1
T , wT

)
Ω

=
(
u0
T + ∆tΠl

T (v0), wT
)

Ω
+

∆t2

2

{
(f0, wT )Ω − ah(û0

h, (wT , 0))
}
, ∀wT ∈ U lT . (17c)

Notice that we used the initial conditions (15) in (17a) and (17c). At each time step n ∈ {1:N − 1}, the
problem (16) is solved by first finding the face unknown unF ∈ UkF,0 from the cell unknown unT ∈ U lT by solving

ah((0, unF ), (0, wF )) = −ah((unT , 0), (0, wF )), ∀wF ∈ UkF,0, (18)

and then the cell unknown un+1
T ∈ U lT is computed by solving

1

∆t2
(
un+1
T − 2unT + un−1

T , wT
)

Ω
= (fn, wT )Ω − ah(ûnh, (wT , 0)), ∀wT ∈ U lT . (19)

Owing to the static coupling between face and cell unknowns implied by (18), the scheme is semi-implicit. A
computationally effective, iterative algorithm to solve this static coupling based on inverting block-diagonal
matrices is introduced and analyzed in [36].

Remark 2.2 (Final step). At the final step n = N − 1, we compute uN−1
F from (18) and uNT from (19).

Then uNF can be retrieved by solving (18) for n = N .
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3 Preliminary results for the error analysis

In this section, we collect from the literature various results that are useful to perform the error analysis. In
what follows, C denotes a generic positive constant whose value can change at each occurrence as long as it
is independent of the mesh size and the time step; the value of C can depend on the mesh shape-regularity
and the underlying polynomial degree, and, whenever relevant, on the ratio

µ]

µ[
related to the contrast in the

sound speed. In a few cases, we use a more specific symbol, e.g., for some discrete inverse inequalities, a
discrete Poincaré inequality, and the coercivity and boundedness constants of the discrete bilinear form ah.

Lemma 3.1 (Discrete inverse inequalities). Let the polynomial degree m ≥ 0 be fixed. There is Cdinv > 0
such that, for all h > 0, all T ∈ Th and all q ∈ Pmd (T ),

‖∇q‖T ≤ Cdinvh
−1
T ‖q‖T , (20a)

‖q‖∂T ≤ Cdinvh
− 1

2

T ‖q‖T . (20b)

Proof. See, e.g., [18, Lem. 1.44 & 1.46].

Stability and boundedness. A direct verification shows that the map ‖ · ‖hho : Û l,kh → R+ such that

‖v̂h‖2hho :=
∑
T∈Th

µ2
T

{
‖∇vT ‖2T + h−1

T ‖v∂T − vT ‖
2
∂T

}
, ∀v̂h ∈ Û l,kh , (21)

defines a norm on Û l,kh,0 (and a seminorm on Û l,kh ). We define the seminorm |v̂h|2s :=
∑
T∈Th µ

2
Th
−1
T ‖S∂T (v̂T )‖2∂T

and the global gradient reconstruction such that Gk
T (v̂h)|T := Gk

T (v̂T ) for all T ∈ Th.

Lemma 3.2 (Stability and boundedness). There are 0 < α ≤ $ < ∞ such that, for all h > 0 and all

v̂h ∈ Û l,kh,0,

α ‖v̂h‖2hho ≤ ah(v̂h, ŵh) = ‖µGk
T (v̂h)‖2Ω + |v̂h|2s ≤ $ ‖v̂h‖2hho. (22)

Proof. See [20, Lem. 4].

Lemma 3.3 (Discrete Poincaré inequality). There is CdP such that for all h > 0 and all v̂h ∈ Û l,kh,0,

‖vT ‖Ω ≤ CdPµ
−1
] `Ω‖v̂h‖hho. (23)

Proof. See, e.g., [5, Lem. 6.2].

Approximation. We first define the local projection operator Îk,lT : H1(T )→ Û l,kT for all T ∈ Th such that,
for all v ∈ H1(T ),

Îk,lT (v) :=
(
Πl
T (v),Πk

∂T (v)
)
. (24)

Then the global projection operator is defined as Îk,lh : H1(Ω)→ Û l,kh such that, for all v ∈ H1(Ω),

Îk,lh (v) :=
(
(Πl

T (v))T∈Th , (Π
k
F (v))F∈Fh

)
. (25)

Notice that Îk,lh maps functions from H1
0 (Ω) onto Û l,kh,0. Moreover, the definition of Îk,lh is meaningful since a

function v ∈ H1(Ω) does not jump across the mesh interfaces. Let Ek+1
T : H1(Ω)→ Uk+1

T denote the broken
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elliptic projection onto Uk+1
T , such that, for all v ∈ H1(Ω) and all T ∈ Th, Ek+1

T (v)|T := Ek+1
T ∈ Pk+1

d (T ) is
uniquely defined by the relations(

∇(Ek+1
T (v)− v),∇q

)
T

= 0 ∀q ∈ Pk+1
d,∗ (T ), and

(
Ek+1
T (v)− v, 1

)
T

= 0. (26)

Lemma 3.4 (Approximation property for Gk
T and Rk+1

T ). The following holds true for all h > 0 and all
T ∈ Th:

Gk
T (Îk,lT (v)) = Πk

T (∇v), ∇Rk+1
T (Îk,lT (v)) = ∇Ek+1

T (v), ∀v ∈ H1(T ). (27)

Moreover, there exists a real number C > 0 such that, for all h > 0, all T ∈ Th and all v ∈ Hk+2(T ), we have

||v −Rk+1
T (Îk,lT (v))||T + h

1
2

T ||v −R
k+1
T (Îk,lT (v))||∂T ≤ Chk+2

T |v|Hk+2(T ), (28)

and

||∇
(
v −Rk+1

T (Îk,lT (v))
)
||T + h

1
2

T ||∇
(
v −Rk+1

T (Îk,lT (v))
)
||∂T ≤ Chk+1

T |v|Hk+2(T ), (29a)

||∇v −Gk
T (Îk,lT (v))||T + h

1
2

T ||∇v −G
k
T (Îk,lT (v))||∂T ≤ Chk+1

T |v|Hk+2(T ). (29b)

Proof. See, e.g., [20, Lem. 3], [10, Lem. 3.1].

Lemma 3.5 (Approximation property for S∂T ). There is a constant C > 0 such that for all h > 0, all
T ∈ Th, and all v ∈ H1(T ), we have

‖S∂T (Îk,lT (v))‖∂T ≤ Ch
1
2

T ‖∇(v − P k+1
T (v))‖T , (30)

where P k+1
T := Ek+1

T if l = k and P k+1
T := Πk+1

T if l = k + 1.

Proof. See, e.g., [20, Eq. (45)], [10, Lem. 2.7].

Consistency. For any function v ∈ Y := {v ∈ H1
0 (Ω), B(v) := −∇ · (µ2∇v) ∈ L2(Ω)}, we consider the

linear form ψh(v; ·) ∈ (Û l,kh,0)′ such that

ψh(v; ŵh) := (B(v), wT )Ω − ah(Îk,lh (v), ŵh), ∀ŵh ∈ Û l,kh,0. (31)

For any function v ∈ H1+ν(Ω), ν ∈ ( 1
2 , 1], we consider the seminorm |v|∗,h defined by

|v|2∗,h :=
∑
T∈Th

µ2
T

{
hT ‖γ(v) · nT ‖2∂T + ‖∇η(v)‖2T

}
, (32)

with
γ(v) := ∇v −Gk

T (Îk,lh (v)), η(v) := v − P k+1
T (v), (33)

where P k+1
T is defined in Lemma 3.5 and P k+1

T denotes the broken version of P k+1
T defined elementwise. For

a linear form φ ∈ (Û l,kh,0)′, we set

‖φ‖(hho)′ := sup
q̂h∈Ûl,k

h,0

|φ(q̂h)|
‖q̂h‖hho

,

with the norm ‖ · ‖hho defined in (21).

Lemma 3.6 (Consistency). There is a constant c∗ such that, for all h > 0 and all v ∈ Y ∩ H1+ν(Ω), we
have

‖ψh(v, ·)‖(hho)′ ≤ c∗|v|∗,h. (34)

Proof. See, e.g., [20, Eq. (43)], [10, Lem. 2.8 & 3.4].
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4 Energy stability

The notion of discrete energy is central to the proof of convergence of the fully discrete scheme. Let us first
introduce the semi-discrete energy balance as in [4, Lem. 3.1]. Recalling that ûh ∈ C2(J̄ ; Û l,kh,0) solves the

space semi-discrete problem (14), we set, for all t ∈ J̄ ,

Eh(t) :=
1

2
‖∂tuT (t)‖2Ω +

1

2
âh(ûh(t), ûh(t)). (35)

This energy verifies

Eh(t) = Eh(0) +

∫ t

0

(f(s), ∂tuT (s))Ω ds, (36)

as readily follows by testing (14) with ŵh := ∂tûh(t) for all t ∈ J̄ and integrating in time.

The first important step is to derive the fully discrete counterpart of the semi-discrete energy identity (36).
It is convenient to set, for all n ∈ {0:N − 1},

û
n+ 1

2

h :=
1

2
(ûnh + ûn+1

h ), δû
n+ 1

2

h :=
1

∆t
(ûn+1
h − ûnh). (37)

The fully discrete counterpart of Eh(t) is the discrete energy E
n+ 1

2

h defined as

E
n+ 1

2

h :=
1

2
‖δun+ 1

2

T ‖2Ω −
∆t2

8
ah(δû

n+ 1
2

h , δû
n+ 1

2

h ) +
1

2
ah(û

n+ 1
2

h , û
n+ 1

2

h ). (38)

Lemma 4.1 (Energy balance). The fully discrete energy verifies, for all n ∈ {1:N − 1},

E
n+ 1

2

h = E
1
2

h +
1

2

n∑
m=1

(
fm, um+1

T − um−1
T

)
Ω
. (39)

Proof. Let n ∈ {1:N − 1}. For all m ∈ {1:n}, we test (16) with ŵh := 1
2 (ûm+1

h − ûm−1
h ). We use the identity

1

2

(
um+1
T − 2umT + um−1

T , um+1
T − um−1

T
)

Ω
=

1

2

(
(um+1
T − umT )− (umT − um−1

T ), (um+1
T − umT ) + (umT − um−1

T )
)

Ω

=
1

2
‖um+1
T − umT ‖2Ω −

1

2
‖umT − um−1

T ‖2Ω

=
∆t2

2
‖δum+ 1

2

T ‖2Ω −
∆t2

2
‖δum−

1
2

T ‖2Ω.

We also use the following computation which exploits the symmetry of ah:

ah(ûmh , û
m+1
h − ûm−1

h ) =
1

4
ah(ûm+1

h + 2ûmh + ûm−1
h , (ûm+1

h + ûmh )− (ûmh + ûm−1
h ))

− 1

4
ah(ûm+1

h − 2ûmh + ûm−1
h , (ûm+1

h − ûmh ) + (ûmh − ûm−1
h ))

= ah(û
m+ 1

2

h + û
m− 1

2

h , û
m+ 1

2

h − ûm−
1
2

h )− ∆t2

4
ah(δû

m+ 1
2

h + δû
m− 1

2

h , δû
m+ 1

2

h − δûm−
1
2

h )

= ah(û
m+ 1

2

h , û
m+ 1

2

h )− ah(û
m− 1

2

h , û
m− 1

2

h )

− ∆t2

4

(
ah(δû

m+ 1
2

h , δû
m+ 1

2

h )− ah(δû
m− 1

2

h , δû
m− 1

2

h )
)
.

This gives E
m+ 1

2

h − Em−
1
2

h = 1
2

(
fm, um+1

T − um−1
T

)
Ω

. Summing this identity for m = 1 to m = n yields the
claim.
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The second important question is whether E
n+ 1

2

h defines a strongly convex functional on δu
n+ 1

2

T and û
n+ 1

2

h .
This property can be achieved under a CFL restriction on the time step.

Lemma 4.2 (Strong convexity of E
n+ 1

2

h ). Under the following CFL restriction on the time step:

∆t ≤ ηµ−1
] h, η := C−1

dinv$
− 1

2 , (40)

E
n+ 1

2

h defines a strongly convex functional on δu
n+ 1

2

T and û
n+ 1

2

h .

Proof. Using the fact that ûnh satisfies (18) and the symmetry of ah, we infer that, for all n ∈ {1:N − 1},

∆t2ah(δû
n+ 1

2

h , δû
n+ 1

2

h ) = ah(ûn+1
h − ûnh, ûn+1

h − ûnh)

= ah(ûn+1
h − ûnh, (un+1

T − unT , 0))

= ah((un+1
T − unT , 0), (un+1

T − unT , 0)) + ah((0, un+1
F − unF ), (un+1

T − unT , 0))

= ah((un+1
T − unT , 0), (un+1

T − unT , 0)) + ah((un+1
T − unT , 0), (0, un+1

F − unF ))

= ah((un+1
T − unT , 0), (un+1

T − unT , 0))− ah((0, un+1
F − unF ), (0, un+1

F − unF ))

= ∆t2ah((δu
n+ 1

2

T , 0), (δu
n+ 1

2

T , 0))−∆t2ah((0, δu
n+ 1

2

F ), (0, δu
n+ 1

2

F ))

≤ ∆t2ah((δu
n+ 1

2

T , 0), (δu
n+ 1

2

T , 0)).

Combining this bound with the coercivity property from Lemma 3.2 gives

E
n+ 1

2

h ≥ 1

2
‖δun+ 1

2

T ‖2Ω −
∆t2

8
ah((δu

n+ 1
2

T , 0), (δu
n+ 1

2

T , 0)) + α‖ûn+ 1
2

h ‖2hho.

Recalling that ‖ · ‖hho defines a norm on Û l,kh,0 and û
n+ 1

2

h ∈ Û l,kh,0, the proof is complete if we show that, under

the CFL condition (40), we have, for all wT ∈ U lT ,

1

2
‖wT ‖2Ω −

∆t2

8
ah((wT , 0), (wT , 0)) ≥ 1

4
‖wT ‖2Ω. (41)

To this purpose, we observe using the inverse inequalities from Lemma 3.1 and the boundeness property from
Lemma 3.2 that

ah((wT , 0), (wT , 0)) ≤ $‖(wT , 0)‖2hho

≤ $µ2
]

{∑
T∈Th

‖∇wT ‖2T + h−1
T ‖wT ‖

2
∂T

}
≤ 2C2

dinv$µ
2
]h
−2‖wT ‖2Ω.

Using the CFL condition (40), we infer that

∆t2

8
ah((wT , 0), (wT , 0)) ≤ ∆t2

8
2C2

dinv$µ
2
]h
−2‖wT ‖2Ω ≤

1

4
‖wT ‖2Ω.

Re-arranging the terms establishes (41) and completes the proof.

5 Energy error analysis

In this section, we prove the convergence in energy-norm of the fully discrete wave equation. We start the
section by stating our main result, Theorem 5.1, and devote the rest of the section to its proof.
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5.1 Main result

Recall that u denotes the solution to the continuous wave equation (1) with the initial conditions (2) and
(ûnh)n∈{0:N} the solution to the fully discrete wave equation (16) with the initial conditions (17). We define
the discrete error

ênh := ûnh − Î
k,l
h (u(tn)), ∀n ∈ {0:N}, (42)

which represents the difference between the discrete hybrid solution at time step n and the projection of the
continuous solution at the discrete time tn onto the hybrid space. Recalling the seminorm | · |∗,h defined
in (32), we set, for all t ∈ J̄ ,

|u|C0(0,t;∗,h) := sup
s∈[0,t]

|u(s)|∗,h, |∂tu|L1(0,t;∗,h) :=

∫ t

0

|∂tu(s)|∗,h ds. (43)

Theorem 5.1 (Energy error estimate). Assume the CFL condition (40), that f ∈ C1(J̄ ;L2(Ω)), and that
u ∈ C4(J̄ ;L2(Ω)) ∩W 5,1(J ;L2(Ω)) and u ∈ C0(J̄ ;H1+ν(Ω)) ∩W 1,1(J ;H1+ν(Ω)), ν ∈ ( 1

2 , 1]. The following
holds:

max
n∈{0:N−1}

‖δen+ 1
2

T ‖Ω + max
n∈{0:N−1}

‖ên+ 1
2

h ‖hho ≤ C1

{
‖u‖C0([0;tN−1];∗,h) + ‖∂tu‖L1([0;tN−1];∗,h)

}
+ C2∆t2

{
‖∂3
t u‖C0([0;t1];L2(Ω)) + Θ

(
‖∂4
t u‖C0([0;tN ];L2(Ω)) + ‖∂5

t u‖L1([0;tN ];L2(Ω))

)}
,

(44)

with generic constants C1 and C2 and the time scale Θ := µ−1
] `Ω.

Remark 5.2 (Regularity assumption). The regularity assumption in space hinging on the shift ν ∈ ( 1
2 , 1] is

made to simplify the bound on the consistency error in space. The quasi-minimal setting with ν ∈ (0, 1] can
be handled by using the tools introduced in [23], see also [22, Sec. 41.5].

Remark 5.3 (Convergence order). Under the above regularity assumption on u, we can bound |u(t)|∗,h and
|∂tu(t)|∗,h, for all t ∈ J̄ , using the approximation results from Lemma 3.4. This gives

max
n∈{0:N−1}

‖δen+ 1
2

T ‖Ω + ‖ên+ 1
2

h ‖hho ≤ C1h
k+1
{
|u|C0([0;tN−1];Hk+2(Ω)) + |∂tu|L1([t0,tN−1];Hk+2(Ω))

}
+ C2∆t2

{
‖∂3
t u‖C0([0;t1];L2(Ω)) + Θ

(
‖∂4
t u‖C0([0;tN ];L2(Ω)) + ‖∂5

t u‖L1([0;tN ];L2(Ω))

)}
,

(45)

which is the optimal convergence order O(hk+1 + ∆t2) in the energy norm.

5.2 Consistency errors and error equation

We define the space consistency error, ψnh , at the discrete time tn, for all n ∈ {0:N}, as the linear form in

(Û l,kh,0)′ such that, for all ŵh ∈ Û l,kh,0,
ψnh(ŵh) := ψh(u(tn), ŵh), (46)

where the linear form ψh(v, ·) is defined in (31) for any function v ∈ Y ∩ H1+ν(Ω) (notice that u(tn) ∈
Y ∩ H1+ν(Ω) for all n ∈ {0:N} by assumption). We also define the time consistency error, κn, to be the
error between the centered difference scheme and the exact second-order derivative in time:

κn :=
u(tn+1)− 2u(tn) + u(tn−1)

∆t2
− ∂2

t u(tn), ∀n ∈ {1:N − 1}, (47)

and we set κ0 := 0.
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Lemma 5.4 (Discrete error equation). Let (ênh)n∈{0:N} be the collection of discrete errors defined in (42).
The following holds for all n ∈ {1:N − 1}:

1

∆t2
(
en+1
T − 2enT + en−1

T , wT
)

Ω
+ ah(ênh, ŵh) = ψnh(ŵh)− (κn, wT )Ω, ∀ŵh ∈ Û l,kh,0. (48)

Proof. Let us evaluate the left-hand-side of (48) for all n ∈ {1:N − 1}:
1

∆t2
(en+1
T −2enT + en−1

T , wT )Ω + ah(ênh, ŵh)

= (fn, wT )Ω −
(

Πl
T

[
u(tn+1)− 2u(tn) + u(tn−1)

∆t2

]
, wT

)
Ω

− ah(Îk,lh (u(tn)), ŵh)

= (fn, wT )Ω −
(
Πl
T (∂2

t u(tn) + κn), wT
)

Ω
− ah(Îk,lh (u(tn)), ŵh)

=
(
∂2
t u(tn), wT

)
Ω

+ (B(u(tn)), wT )Ω −
(
∂2
t u(tn) + κn, wT

)
Ω
− ah(Îk,lh (u(tn)), ŵh)

= ψnh(ŵh)− (κn, wT )Ω,

where we used the discrete scheme (16), the fact that the exact solution satisfies ∂2
t u(tn) + B(u(tn)) = fn,

the definition of the L2-projection onto U lT and the definition (46) of ψnh .

5.3 Energy-error identity

It is convenient to define, for all n ∈ {0:N − 1}, the error and velocity error at the half time-steps as follows:

ê
n+ 1

2

h :=
1

2
(ên+1
h + ênh), δê

n+ 1
2

h :=
1

∆t
(ên+1
h − ênh). (49)

Concerning the consistency errors, we set, for all n ∈ {0:N − 1},

δκn+ 1
2 :=

1

∆t
(κn+1 − κn), δψ

n+ 1
2

h (ŵh) :=
1

∆t
(ψn+1
h (ŵh)− ψnh(ŵh)), ∀ŵh ∈ Û l,kh,0. (50)

Let us consider the discrete energy (38) evaluated using the error. We set

En+ 1
2

h :=
1

2
‖δen+ 1

2

T ‖2Ω −
∆t2

8
ah(δê

n+ 1
2

h , δê
n+ 1

2

h ) +
1

2
ah(ê

n+ 1
2

h , ê
n+ 1

2

h ), ∀n ∈ {0:N − 1}. (51)

Unfortunately, even under a CFL condition, En+ 1
2

h does not define a strongly convex functional on δe
n+ 1

2

T and

ê
n+ 1

2

h . The reason is that we no longer have ah(ênh, (0, wF )) = 0 for all wF ∈ UkF,0, but only

ah(ênh, (0, wF )) = ψnh((0, wF )), (52)

as a consequence of (48). This leads to the following definition of discrete energy error: For all n ∈ {0:N−1},

Ěn+ 1
2

h := En+ 1
2

h +
∆t2

4
δψ

n+ 1
2

h ((0, δe
n+ 1

2

F )). (53)

Lemma 5.5 (Discrete energy error). For all n ∈ {0:N − 1}, we have

Ěn+ 1
2

h =
1

2
‖δen+ 1

2

T ‖2Ω +
∆t2

8
ah((0, δe

n+ 1
2

F ), (0, δe
n+ 1

2

F ))

− ∆t2

8
ah((δe

n+ 1
2

T , 0), (δe
n+ 1

2

T , 0)) +
1

2
ah(ê

n+ 1
2

h , ê
n+ 1

2

h ).

(54)

Moreover, under the CFL condition (40), Ěn+ 1
2

h defines a strongly convex functional on δe
n+ 1

2

T and ê
n+ 1

2

h .
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Proof. Proceeding as in Lemma 4.2, we obtain

∆t2ah(δê
n+ 1

2

h , δê
n+ 1

2

h ) = ah(ên+1
h − ênh, ên+1

h − ênh)

= ah(ên+1
h − ênh, (en+1

T − enT , 0)) + ah(ên+1
h − ênh, (0, en+1

F − enF ))

= ah(ên+1
h − ênh, (en+1

T − enT , 0)) + ∆t
{
ψn+1
h ((0, δe

n+ 1
2

F ))− ψnh((0, δe
n+ 1

2

F ))
}

= ah((en+1
T − enT , 0), (en+1

T − enT , 0)) + ah((0, en+1
F − enF ), (en+1

T − enT , 0))

+ ∆t2δψ
n+ 1

2

h ((0, δe
n+ 1

2

F )),

where we used (52) and the notation (49) for δψ
n+ 1

2

h . Owing to the symmetry of ah and again (52), we infer
that

ah((0, en+1
F − enF ), (en+1

T − enT , 0)) = ah((en+1
T − enT , 0), (0, en+1

F − enF ))

= − ah((0, en+1
F − enF ), (0, en+1

F − enF )) + ∆t2δψ
n+ 1

2

h ((0, δe
n+ 1

2

F )).

This gives

∆t2ah(δê
n+ 1

2

h , δê
n+ 1

2

h )

= ah((en+1
T − enT , 0), (en+1

T − enT , 0))− ah((0, en+1
F − enF ), (0, en+1

F − enF )) + 2∆t2δψ
n+ 1

2

h ((0, δe
n+ 1

2

F ))

= ∆t2ah((δe
n+ 1

2

T , 0), (δe
n+ 1

2

T , 0))−∆t2ah((0, δe
n+ 1

2

F ), (0, δe
n+ 1

2

F )) + 2∆t2δψ
n+ 1

2

h ((0, δe
n+ 1

2

F )).

This proves the identity (54). Finally, the strong convexity of Ěn+ 1
2

h under the CFL condition (40) is estab-
lished as in the proof of Lemma 4.2.

The next step is to write an energy identity mimicking the space semi-discrete case.

Lemma 5.6 (Energy identity). For all n ∈ {1:N − 1}, the discrete energy error Ěn+ 1
2

h verifies

Ěn+ 1
2

h = Znψ + Znκ + Z0
IC, (55)

with the space consistency error

Znψ := ψnh(ê
n+ 1

2

h )− ∆t2

4
δψ

n+ 1
2

h ((0, δe
n+ 1

2

F )) + ∆t

n−1∑
m=1

δψ
m+ 1

2

h (ê
m+ 1

2

h ), (56a)

the time consistency error

Znκ := −(κn, e
n+ 1

2

T )Ω + ∆t

n−1∑
m=1

(δκm+ 1
2 , e

m+ 1
2

T )Ω, (56b)

and the initial error

Z0
IC := E

1
2

h − ψ
1
h(ê

1
2

h ) + (κ1, e
1
2

T )Ω. (56c)

Proof. Let us start by remarking that, similarly to the computations in the proof of Lemma 4.1, we have, for
all m ∈ {1:N − 1},

Em+ 1
2

h − Em−
1
2

h =
1

∆t2
(
em+1
T − 2emT + em−1

T , em+1
T − em−1

T
)

Ω
+ ah(êmh , ê

m+1
h − êm−1

h ).
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Using Lemma 5.4 with the test function ŵh := 1
2 (êm+1

h − êm−1
h ) = ê

m+ 1
2

h − êm−
1
2

h yields

Em+ 1
2

h − Em−
1
2

h = ψmh (ê
m+ 1

2

h − êm−
1
2

h )− (κm, e
m+ 1

2

T − em−
1
2

T )Ω. (57)

Summing (57) from m = 1 to m = n yields

En+ 1
2

h = E
1
2

h +

n∑
m=1

{
ψmh (ê

m+ 1
2

h − êm−
1
2

h )− (κm, e
m+ 1

2

T − em−
1
2

T )Ω

}
. (58)

The sums on the right-hand side of (58) can be reordered using the notation (49) to obtain

n∑
m=1

ψmh (ê
m+ 1

2

h − êm−
1
2

h ) = ψnh(ê
n+ 1

2

h )− ψ1
h(ê

1
2

h )−∆t

n−1∑
m=1

δψ
m+ 1

2

h (ê
m+ 1

2

h ),

n∑
m=1

(κm, e
m+ 1

2

T − em−
1
2

T )Ω = (κn, e
n+ 1

2

T )Ω − (κ1, e
1
2

T )Ω −∆t

n−1∑
m=1

(δκm+ 1
2 , e

m+ 1
2

T )Ω.

This gives

En+ 1
2

h = E
1
2

h − ψ
1
h(ê

1
2

h ) + (κ1, e
1
2

T )Ω +
{
ψnh(ê

n+ 1
2

h )−∆t

n−1∑
m=1

δψ
m+ 1

2

h (ê
m+ 1

2

h )
}

− (κn, e
n+ 1

2

T )Ω + ∆t

n−1∑
m=1

(δκm+ 1
2 , e

m+ 1
2

T )Ω

= ψnh(ê
n+ 1

2

h )−∆t

n−1∑
m=1

δψ
m+ 1

2

h (ê
m+ 1

2

h ) + Znκ + Z0
IC,

owing to the definitions (56b) and (56c). It remains to go from En+ 1
2

h to Ěn+ 1
2

h . Using (53), we have

Ěn+ 1
2

h = ψnh(ê
n+ 1

2

h )−∆t

n−1∑
m=1

δψ
m+ 1

2

h (ê
m+ 1

2

h ) + Znκ + Z0
IC +

∆t2

4
δψ

n+ 1
2

h ((0, δe
n+ 1

2

F )).

Recalling the definition of Znψ proves the claim.

5.4 Bound on consistency and initial errors

We now bound the three terms on the right-hand side of (55). Each estimate is stated as a separate lemma.

Lemma 5.7 (Estimate on the space consistency error). Let Znψ be defined in (56a). For all n ∈ {1:N − 1},
the following holds:∣∣Znψ∣∣ ≤ c∗(|∂tu|L1([t1,tn];∗,h) + |u(tn)|∗,h

)
max

m∈{1:n}
‖êm+ 1

2

h ‖hho

+
1

4
c∗α
− 1

2 |∂tu|L1([tn;tn+1];∗,h)

[
∆t2ah((0, δe

m+ 1
2

F ), (0, δe
m+ 1

2

F ))
] 1

2

,

where c∗ results from (34) and α is the coercivity constant of the discrete bilinear form ah.
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Proof. Let n ∈ {1:N − 1} and let m ∈ {1:n}. We observe that

∆tδψ
m+ 1

2

h (ê
m+ 1

2

h ) = ψh(u(tm+1), ê
m+ 1

2

h )− ψh(u(tm), ê
m+ 1

2

h ) =

∫ tm+1

tm
ψh(∂tu(s); ê

m+ 1
2

h ) ds.

Since ∂tu(t) ∈ Y ∩ H1+ν(Ω) for all t ∈ J̄ by assumption (indeed, B(∂tu(t)) = ∂tf(t) − ∂3
t u(t), f ∈

C1(J̄ ;L2(Ω)), and u ∈ C4(J̄ ;L2(Ω))), we can invoke (34) to infer that

‖ψh(∂tu(t); ·)‖(hho)′ ≤ c∗|∂tu(t)|∗,h.

Thus, we obtain ∣∣∣∣∣∆t
n−1∑
m=1

δψ
m+ 1

2

h (ê
m+ 1

2

h )

∣∣∣∣∣ ≤ c∗
n−1∑
m=1

|∂tu|L1([tm,tm+1];∗,h)‖ê
m+ 1

2

h ‖hho.

The same reasoning is used for the second term on the right-hand-side of (56a) which is bounded as follows:∣∣∣∣∆t24
δψ

n+ 1
2

h ((0, δe
n+ 1

2

F ))

∣∣∣∣ ≤ 1

4
c∗α
− 1

2 |∂tu|L1([tn,tn+1];∗,h)

[
∆t2ah((0, δe

n+ 1
2

F ), (0, δe
n+ 1

2

F ))
] 1

2

,

where we used the coercivity of the discrete bilinear form ah. Finally, the same argument for the first term
on the right-hand side of (56a) yields∣∣∣ψnh(ê

n+ 1
2

h )
∣∣∣ ≤ c∗|u(tn)|∗,h‖ê

n+ 1
2

h ‖hho. (59)

This yields the claim.

Lemma 5.8 (Estimate on the time consistency error). Let Znκ be defined in (56b). For all n ∈ {1:N − 1},
the following holds:

|Znκ | ≤ CΘ∆t2
(
‖∂5
t u‖L1([0;tn+1];L2(Ω)) + ‖∂4

t u‖C0([tn−1;tn+1];L2(Ω))

)
max

m∈{1:n}
‖êm+ 1

2

h ‖hho.

Proof. Let n ∈ {1:N − 1}. A straightforward calculation using fourth-order Taylor expansions with integral
remainder shows that

κn =
1

6∆t2

{∫ tn+1

tn
(tn+1 − t)3∂4

t u(t) dt−
∫ tn

tn−1

(tn−1 − t)3∂4
t u(t) dt

}
.

Rewriting δκm+ 1
2 , for all m ∈ {1:n− 1}, using this identity gives

δκm+ 1
2 =

1

∆t
(κm+1 − κm)

=
1

6∆t3

(∫ tm+2

tm+1

(tm+2 − t)3∂4
t u(t) dt−

∫ tm+1

tm
(tm − t)3∂4

t u(t) dt

−
∫ tm+1

tm
(tm+1 − t)3∂4

t u(t) dt+

∫ tm

tm−1

(tm−1 − t)3∂4
t u(t) dt

)

=
1

6∆t3

(∫ tm+1

tm
(tm+1 − t)3

∫ t+∆t

t

∂5
t u(s) dsdt−

∫ tm

tm−1

(tm−1 − t)3

∫ t+∆t

t

∂5
t u(s) dsdt

)
.
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Let us now use the following estimate on the first integral:∥∥∥∥∥
∫ tm+1

tm
(tm+1 − t)3

∫ t+∆t

t

∂5
t u(s) dsdt

∥∥∥∥∥
Ω

≤ ∆t4‖∂5
t u‖L1([tm;tm+2];L2(Ω)), (60)

and a similar estimate on the second integral. Then, we invoke the discrete Poincaré inequality (23) to obtain∣∣∣∣∣∆t
n−1∑
m=1

(δκm+ 1
2 , e

m+ 1
2

T )Ω

∣∣∣∣∣ ≤ Cµ−1
] `Ω∆t2

n−1∑
m=1

‖∂5
t u‖L1([tm−1;tm+2];L2(Ω))‖ê

m+ 1
2

h ‖hho

= CΘ∆t2
n−1∑
m=1

‖∂5
t u‖L1([tm−1;tm+2];L2(Ω))‖ê

m+ 1
2

h ‖hho. (61)

The first term on the right-hand-side of (56b) can be bounded in the same way, yielding∣∣∣(κn, en+ 1
2

T )Ω

∣∣∣ ≤ CΘ∆t2‖∂4
t u‖C0([tn−1;tn+1];L2(Ω))‖ê

n+ 1
2

h ‖hho. (62)

Taking the maximum over m ∈ {1:n − 1} on the right-hand-side of (61) and summing to (62) yields the
expected result.

Lemma 5.9 (Estimate on the initial error). Let Z0
IC be defined in (56c). Assume the CFL condition (40).

There is a constant CIC such that∣∣Z0
IC

∣∣ ≤ CIC

{
|u0|2∗,h +

∣∣u(t1)
∣∣2
∗,h + ∆t4

(
‖∂3
t u‖2C0([0;t1];L2(Ω)) + Θ2‖∂4

t u‖2C0([t0;t2];L2(Ω))

)}
.

Proof. Recall that

Z0
IC = E

1
2

h − ψ
1
h(ê

1
2

h ) + (κ1, e
1
2

T )Ω

=
1

2∆t2
‖e1
T − e0

T ‖2Ω −
1

8
ah(ê1

h − ê0
h, ê

1
h − ê0

h) +
1

2
ah(ê

1
2

h , ê
1
2

h )− ψ1
h(ê

1
2

h ) + (κ1, e
1
2

T )Ω.
(63)

Since the second term is negative, we infer that Z0
IC ≤ A1 +A2 +A3 with

A1 :=
1

2∆t2
‖e1
T − e0

T ‖2Ω, A2 :=
1

2
ah(ê

1
2

h , ê
1
2

h ), A3 := (κ1, e
1
2

T )Ω − ψ1
h(ê

1
2

h ).

Step 1: Bound on A1. We use a first-order Taylor expansion of u(t1) with integral remainder to obtain

u(t1) = u0 + ∆tv0 +
∆t2

2
∂2
t u(0) +

1

2

∫ t1

0

(t1 − s)2∂3
t u(s) ds.

The definition of u1
T via the initial condition (17c) then gives, for all wT ∈ U lT ,

1

∆t
(e1
T , wT )Ω =

1

∆t
(u1
T − u(t1), wT )Ω

=
∆t

2
(f0 − ∂2

t u(0), wT )Ω −
1

2∆t

∫ t1

0

(t1 − s)2(∂3
t u(s), wT )Ω ds− ∆t

2
ah(û0

h, (wT , 0))

=
∆t

2

{
(B(u0), wT )Ω − ah(û0

h, (wT , 0))
}
− 1

2∆t

∫ t1

0

(t1 − s)2(∂3
t u(s), wT )Ω ds

=
∆t

2
ψ0
h((wT , 0))− 1

2∆t

∫ t1

0

(t1 − s)2(∂3
t u(s), wT )Ω ds.
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We use both discrete inverse inequalities from Lemma 3.1 to obtain

‖(wT , 0)‖hho =
( ∑
T∈Th

µ2
T

{
‖∇wT ‖2T + h−1

T ‖wT ‖
2
∂T

}) 1
2

≤ Cµ]h−1‖wT ‖Ω.

Using this inequality, the CFL condition (40) and the inequality from (34) to bound ‖ψ0
h‖(hho)′ , we obtain

1

∆t
|(e1
T , wT )Ω| ≤

∆t

2
‖ψ0

h‖(hho)′‖(wT , 0)‖hho +
∆t2

2
‖∂3
t u‖C0([0;t1];L2(Ω))‖wT ‖Ω

≤ C
(
|u0|∗,h + ∆t2‖∂3

t u‖C0([0;t1];L2(Ω))

)
‖wT ‖Ω.

Since ‖e1
T ‖Ω ≤ sup

wT ∈Ul
T

(e1T ,wT )
Ω

‖wT ‖Ω , we conclude that 1
∆t‖e

1
T ‖Ω ≤ C

(
|u0|∗,h + ∆t2‖∂3

t u‖C0([0;t1];L2(Ω))

)
. Since

e0
T = 0, this finally gives

A1 =
1

2∆t2
‖e1
T − e0

T ‖2Ω ≤ C
(
|u0|2∗,h + ∆t4‖∂3

t u‖2C0([0;t1];L2(Ω))

)
. (64)

Step 2: Bound on ‖(0, e0
F )‖hho and ‖(0, e1

F )‖hho. Since e0
T = 0, the coercivity of the discrete bilinear form

ah implies that
α‖ê0

h‖2hho = α‖(0, e0
F )‖2hho ≤ ah((0, e0

F ), (0, e0
F )),

with e0
F = u0

F −Πk
F (u0). Equation (17b) and the linearity of ah with respect to its first argument imply that

ah((0, u0
F ), (0, e0

F )) = −ah((u0
T , 0), (0, e0

F )) = −ah((Πl
T (u0), 0), (0, e0

F )).

where we used (15) in the second equality. Hence, we have

α‖ê0
h‖2hho = α‖(0, e0

F )‖2hho ≤ ah((0, u0
F −Πk

F (u0)), (0, e0
F ))

= − ah((Πl
T (u0), 0), (0, e0

F ))− ah((0,Πk
F (u0)), (0, e0

F ))

= − ah(Îk,lh (u0), (0, e0
F ))

= ψh(u0, (0, e
0
F )) ≤ c∗|u0|∗,h‖(0, e0

F )‖hho,

where we used the consistency bound (34) (notice that u0 ∈ Y ∩H1+ν(Ω) by assumption). This implies that
‖(0, e0

F )‖hho ≤ C|u0|∗,h.

Moreover, to bound e1
F , we use the following equality (see (52) for n = 1 and wF = e1

F ):

ah((0, e1
F ), (0, e1

F )) = ψ1
h((0, e1

F ))− ah((e1
T , 0), (0, e1

F )).

Using the coercivity and boundedness of the bilinear form ah, we obtain

‖(0, e1
F )‖2hho ≤

1

α
ah((0, e1

F ), (0, e1
F )) ≤ 1

α

(
‖ψ1

h‖(hho)′ +$‖(e1
T , 0)‖hho

)
‖(0, e1

F )‖hho,

so that
‖(0, e1

F )‖hho ≤ C
(
‖ψ1

h‖(hho)′ + ‖(e1
T , 0)‖hho

)
. (65)
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To bound the second term on the right-hand-side, we invoke again the coercivity and boundedness of ah
together with the discrete inverse inequality from Lemma 3.1 and the CFL condition (40), to obtain (since
e0
T = 0)

α‖(e1
T , 0)‖2hho ≤ ah((e1

T − e0
T , 0), (e1

T − e0
T , 0)) ≤ $‖(e1

T − e0
T , 0)‖2hho

≤ Cµ2
]h
−2‖e1

T − e0
T ‖2Ω

≤ C ′ 1

∆t2
‖e1
T − e0

T ‖2Ω,
(66)

which can be bounded using (64). Since ‖ψ1
h‖hho′ ≤ c∗|u(t1)|∗,h, this gives altogether

‖(0, e1
F )‖hho ≤ C

(
|u0|∗,h + |u(t1)|∗,h + ∆t2‖∂3

t u‖C0([0;t1];L2(Ω))

)
. (67)

Step 3: Bound on ‖ê
1
2

h ‖hho. The symmetry of ah, the fact that e0
T = 0 and the above arguments give

ah(ê1
h + ê0

h, ê
1
h + ê0

h) ≤ 2ah((e1
T + e0

T , 0), (e1
T + e0

T , 0)) + 2ah((0, e1
F + e0

F ), (0, e1
F + e0

F ))

≤ 2ah((e1
T , 0), (e1

T , 0)) + 4ah((0, e1
F ), (0, e1

F )) + 4ah((0, e0
F ), (0, e0

F ))

= 2ah((e1
T − e0

T , 0), (e1
T − e0

T , 0)) + 4ah((0, e1
F ), (0, e1

F )) + 4ah((0, e0
F ), (0, e0

F ))

≤ C
(
‖(e1
T − e0

T , 0)‖2hho + ‖(0, e1
F )‖2hho + ‖(0, e0

F )‖2hho
)

≤ C ′
( 1

∆t2
‖(e1
T − e0

T , 0)‖2Ω + ‖(0, e1
F )‖2hho + ‖(0, e0

F )‖2hho
)

≤ C ′′
(
|u0|2∗,h + |u(t1)|2∗,h + ∆t4‖∂3

t u‖2C0([0;t1];L2(Ω))

)
,

owing to (64), (65) and (67). Since ‖ê
1
2

h ‖2hho ≤
1
αah(ê

1
2

h , ê
1
2

h ), we conclude that

‖ê
1
2

h ‖hho ≤ C
(
|u0|∗,h + |u(t1)|∗,h + ∆t2‖∂3

t u‖C0([0;t1];L2(Ω))

)
. (68)

Step 4: Bound on A2 and A3. The bound (68) directly yields

|A2| ≤ C
(
|u0|2∗,h + |u(t1)|2∗,h + ∆t4‖∂3

t u‖2C0([0;t1];L2(Ω))

)
.

Finally, recalling the arguments from the proofs of Lemmas 5.7 and 5.8, we have∣∣∣(κ1, e
1
2

T )Ω

∣∣∣ ≤ CΘ∆t2‖∂4
t u‖C0([t0;t2];L2(Ω))‖ê

1
2

h ‖hho,∣∣∣ψ1
h(ê

1
2

h )
∣∣∣ ≤ C|u(t1)|∗,h‖ê

1
2

h ‖hho.

The above estimate of ‖ê
1
2

h ‖hho then gives

|A3| ≤
∣∣∣(κ1, e

1
2

T )Ω

∣∣∣+
∣∣∣ψ1
h(ê

1
2

h )
∣∣∣

≤ C
(
|u(t1)|∗,h + Θ∆t2‖∂4

t u‖C0([t0;t2];L2(Ω))

)(
|u0|∗,h + |u(t1)|∗,h + ∆t2‖∂3

t u‖C0([0;t1];L2(Ω))

)
≤ C ′

{
|u0|2∗,h + |u(t1)|2∗,h + ∆t4

(
Θ2‖∂4

t u‖2C0([t0;t2];L2(Ω)) + ‖∂3
t u‖2C0([0;t1];L2(Ω))

)}
,

where the last bound follows from Young’s inequality. Gathering the two estimates from Step 4 with the one
on A1 established in Step 1 proves the claim.
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5.5 Proof of Theorem 5.1

We are now ready to complete the proof of Theorem 5.1. On the one hand, using the convexity result of
Lemma 5.5, we have, for all n ∈ {1:N − 1},

1

4
‖δen+ 1

2

T ‖2Ω + α‖ên+ 1
2

h ‖2hho +
∆t2

8
ah((0, δe

n+ 1
2

F ), (0, δe
n+ 1

2

F )) ≤ Ěn+ 1
2

h . (69)

On the other hand, Lemma 5.6 gives, for all n ∈ {1:N − 1},

Ěn+ 1
2

h ≤ |Znψ |+ |Znκ |+ |Z0
IC|

≤ max
n∈{1:N−1}

|Znψ |+ max
n∈{1:N−1}

|Znκ |+ |Z0
IC|.

Combining the above two inequalities yields, for all n ∈ {1:N − 1},

1

4
‖δen+ 1

2

T ‖2Ω + α‖ên+ 1
2

h ‖2hho +
∆t2

8
ah((0, δe

n+ 1
2

F ), (0, δe
n+ 1

2

F )) ≤ max
n∈{1:N−1}

|Znψ |+ max
n∈{1:N−1}

|Znκ |+ |Z0
IC|.

Since the right-hand-side of this inequality does not depend on n and since each term on the left-hand-side
is positive, we infer that

1

4
max

n∈{1:N−1}
‖δen+ 1

2

T ‖2Ω ≤ max
n∈{1:N−1}

|Znψ |+ max
n∈{1:N−1}

|Znκ |+ |Z0
IC|,

α max
n∈{1:N−1}

‖ên+ 1
2

h ‖2hho ≤ max
n∈{1:N−1}

|Znψ |+ max
n∈{1:N−1}

|Znκ |+ |Z0
IC|,

∆t2

8
max

n∈{1:N−1}
ah((0, δe

n+ 1
2

F ), (0, δe
n+ 1

2

F )) ≤ max
n∈{1:N−1}

|Znψ |+ max
n∈{1:N−1}

|Znκ |+ |Z0
IC|.

This gives

1

4
max

n∈{1:N−1}
‖δen+ 1

2

T ‖2Ω + α max
n∈{1:N−1}

‖ên+ 1
2

h ‖2hho +
∆t2

8
max

n∈{1:N−1}
ah((0, δe

n+ 1
2

F ), (0, δe
n+ 1

2

F ))

≤ 3
{

max
n∈{1:N−1}

|Znψ |+ max
n∈{1:N−1}

|Znκ |+ |Z0
IC|
}
. (70)

Let us collect the results of Lemmas 5.7 and 5.8 and apply Young’s inequality to the upper bounds on Znψ
and Znκ . We obtain

max
n∈{1:N−1}

|Znψ | ≤ Cψ
(
|∂tu|2L1([t1,tN ];∗,h) + |u|2C0([t1;tN−1];∗,h)

)
+
α

8
max

n∈{1:N−1}
‖ên+ 1

2

h ‖2hho

+
∆t2

24
max

n∈{1:N−1}
ah((0, δe

n+ 1
2

F ), (0, δe
n+ 1

2

F )),

for the space consistency error, and

max
n∈{1:N−1}

|Znκ | ≤ CκΘ2∆t4
(
‖∂5
t u‖2L1([0;tN ];L2(Ω)) + ‖∂4

t u‖2C0([0;tN ];L2(Ω))

)
+
α

8
max

n∈{1:N−1}
‖ên+ 1

2

h ‖2hho,
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for the time consistency error, with constants Cψ and Cκ. Using these two bounds and the bound on Z0
IC

from Lemma 5.9 in (70) and rearranging the terms involving max
n∈{1:N−1}

‖ên+ 1
2

h ‖2hho, we obtain

1

4
max

n∈{1:N−1}
‖δen+ 1

2

T ‖2Ω +
1

4
α max
n∈{1:N−1}

‖ên+ 1
2

h ‖2hho ≤ Cψ
(
|∂tu|2L1([t1,tN ];∗,h) + |u|2C0([t1;tN−1];∗,h)

)
+CκΘ2∆t4

(
‖∂5
t u‖2L1([0;tN ];L2(Ω)) + ‖∂4

t u‖2C0([0;tN ];L2(Ω))

)
+CIC

(
|u0|2∗,h +

∣∣u(t1)
∣∣2
∗,h + ∆t4

(
‖∂3
t u‖2C0([0;t1];L2(Ω)) + Θ2‖∂4

t u‖2C0([t0;t2];L2(Ω))

))
Taking the square root and reorganizing the terms gives

max
n∈{1:N−1}

‖δen+ 1
2

T ‖Ω + max
n∈{1:N−1}

‖ên+ 1
2

h ‖hho ≤ C1

{
|∂tu|L1([t1,tN ];∗,h) + |u|C0([0;tN−1];∗,h)

}
+ C2∆t2

{
‖∂3
t u‖C0([0;t1];L2(Ω)) + Θ‖∂4

t u‖C0([0;tN ];L2(Ω)) + Θ‖∂5
t u‖L1([0;tN ];L2(Ω))

}
,

which yields the claim.

6 Numerical results

In this section, we present the algebraic formulation of the fully discrete scheme (16) together with the initial
conditions (17), and we discuss some numerical results illustrating the theoretical findings on a test case with
analytical solution.

6.1 Algebraic formulation

Let NT := dim(U lT ) and NF := dim(UkF,0) and let {φi}1≤i≤NT , {ψi}1≤i≤NF be chosen bases of U lT and UkF,0,

respectively. For all n ∈ {0:N}, let (UnT ,U
n
F ) ∈ RNT × RNF be the vector of degrees of freedom of the fully

discrete solution ûnh on the chosen bases of U lT and UkF,0, and FnT ∈ RNT the vector having components
((f(tn), φi)Ω)1≤i≤NT . The algebraic realization of (16) amounts to

1

∆t2

[
M 0
0 0

](
Un+1
T − 2UnT + Un−1

T
·

)
+

[
AT T AT F
AFT AFF

](
UnT
UnF

)
=

[
FnT
0

]
, (71)

with A the symmetric definite positive stiffness matrix associated with the bilinear form ah andM the (block-
diagonal) cell mass matrix. As the structure of the global mass matrix makes its definition irrelevant, UnF is
replaced by a “·” in the acceleration term. The resolution of (71) proceeds in two steps for all n ∈ {1:N −1}:

1. Compute UnF by solving the linear system AFFUnF = −AFT UnT , where UnT is the data and UnF the
unknown.

2. Compute Un+1
T by solving MUn+1

T =M(2UnT − Un−1
T + ∆t2FnT )−∆t2(AT T UnT +AT FUnF ). Since the

mass matrix M is block-diagonal, this linear system is very easy to solve.

We refer the reader to [36] for a computationally effective approach to perform the above two steps. The idea
is to perform an iterative process that converges rapidly while mildly affecting the CFL stability condition.
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For the first time step n = 0, the initial cell unknown U0
T is the vector of degrees of freedom of u0

T (see (17a)),
the initial face unknown U0

F is computed via the algebraic counterpart of (17b), i.e., by solving

AFFU0
F = −AFT U0

T , (72)

and the cell unknown at the first time step, U1
T , solves

MU1
T =M(U0

T + ∆tV0
T +

∆t2

2
F0
T )− ∆t2

2
(AT T U0

T +AT FU0
F ), (73)

with V0
T the vector of degrees of freedom of v0

T (see (15)).

6.2 Verification of the space-time convergence order

Let us set Ω := (0, 1)2, the source term f(x, y, t) := 0, the initial conditions u0(x, y) := 0 and v0(x, y) :=
sin(πx) sin(πy), and a constant speed of sound µ := 1. The solution to (1) is

u(x, y, t) =
1√
2π

sin(
√

2πt) sin(πx) sin(πy). (74)

The expected orders of convergence are ∆t2 in time, hk+1 in space for the H1-error, and hk+2 in space for the
L2-error (assuming that full elliptic regularity pickup is available). If the time step is taken so that it respects
the CFL condition, and the ratio ∆t

h remains constant, the time discretization error dominates over the space
discretization error on the finest meshes, except for the H1-error in the lowest-order settings (k ∈ {0, 1}) and
the L2-error for k = 0. This phenomenon is illustrated in Figure 1, where the time step verifies ∆t := 0.8ηµ−1h
(see the CFL condition (40)). The convergence rate of the L2-error for polynomial orders (k, l) = (0, 0) and
the H1-error for the polynomial orders (k, l) = (0, 0) and (k, l) = (1, 1) are unaffected. But for higher orders,
the optimal space convergence rate is observed on the coarse meshes, whereas a second-order decay rate
dictated by the time discretization error is observed on the finest meshes. The transition between the two
regimes is smooth.
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Figure 1: Convergence of the L2- and H1-errors at the final time as a function of the mesh size, polynomial
orders k ∈ {0, 1, 2, 3, 4}, equal-order setting, T = 0.2, ∆t = 0.8ηµ−1h.

If the time step is taken to be constant for all the meshes in the sequence, but much smaller than the
critical time step, the time discretization error becomes negligible w.r.t the space discretization error and
higher convergence rates in space are recovered, see Figure 2. This shows (as expected) that, to balance space
and time discretization errors, the time step is typically set at a (much) smaller value than the one imposed
by the CFL stability condition.
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Figure 2: Convergence of the L2- and H1-errors at the final time as a function of the mesh size, polynomial
orders k ∈ {0, 1, 2, 3, 4}, equal-order setting, T = 0.2, ∆t� h.
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