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Convergence analysis for the wave equation discretized with hybrid
methods in space (HHO, HDG and WG) and the leapfrog scheme in
time

Alexandre Ern* Morgane Steins'

September 8, 2023

Abstract

We prove the optimal convergence in space and time for the linear acoustic wave equation in its
second-order formulation in time, using the hybrid high-order method for space discretization and the
leapfrog (central finite difference) scheme for time discretization. The proof hinges on energy arguments
similar to those classically deployed in the context of continuous finite elements or discontinuous Galerkin
methods, but some novel ideas need to be introduced to handle the static coupling between cell and face
unknowns. Because of the close ties between the methods, the present proof can be readily extended
to cover space semi-disretization using the hybridizable discontinuous Galerkin method and the weak
Galerkin method.

1 Introduction

The wave equation is encountered in the modeling of various physical phenomena, such as seismic, sound or
water waves. We focus here on the linear acoustic wave equation written using the second-order formulation
in time. A vast literature is available on the numerical simulation of this equation. Concerning the semi-
discretization in space, we mention continuous Galerkin (c¢G) finite element methods with specific quadratures
to lump the mass matrix [3, 14, 25, 24|, interior penalty discontinuous Galerkin (dG) methods in either
nonsymmetric [33] or symmetric [26] form, local discontinuous Galerkin (LDG) methods [9], hybridizable
discontinuous Galerkin (HDG) methods [11], and weak Galerkin (WG) methods [27].

In this work, we consider the hybrid high-order (HHO) method for space semi-discretization. The HHO
method was introduced in [20] for linear diffusion and in [19] for locking-free linear elasticity. It was developed
extensively over the past years; for brevity, we only mention the two textbooks [16, 10]. The HHO method
for the wave equation was developed in [4], and extended to unfitted meshes in [5]. The discrete unknowns in
the HHO method consist of a pair, namely piecewise polynomials of order [ > 0 approximating the solution in
the mesh cells and piecewise polynomials of order £ > 0 approximating the solution trace on the mesh faces.
The HHO method is formulated by means of a local (cellwise) gradient reconstruction and a stabilization
operator whose role is to ensure in a weak sense the matching of the trace of the cell unknowns with the
face unknowns. The HHO method offers numerous advantages: support of polyhedral meshes, optimal
convergence rates, local conservation principles, and computational efficiency. In particular, the support of
polyhedral meshes allows for a natural use of mesh refinement with hanging nodes.

*CERMICS, Ecole des Ponts, 77455 Marne-la-Vallee Cedex 2, France; INRIA Paris, 75589 Paris, France
TUniversité Paris-Saclay, CEA, Service d’études mécaniques et thermiques, 91191, Gif-sur-Yvette, France; CERMICS, Ecole
des Ponts, 77455 Marne-la-Vallee Cedex 2, France; INRIA Paris, 75589 Paris, France



HHO and WG methods share the same devising principles. The reconstructed gradient in the HHO
method is called weak gradient in the WG method. The equal-order (I = k) HHO stabilization has not yet
been considered in the WG method, where the stabilization is either a plain least-squares penalty or, in the
mixed-order case (I = k + 1), involves the L2-projection of the cell unknowns onto polynomials of order k£ on
the faces, as in the Lehrenfeld-Schéberl HDG stabilization [29, 30]. Notice that the latter indeed leads to
optimal error estimates, whereas one order of convergence is lost with the plain least-squares stabilization. A
detailed comparison of HHO and WG methods for the biharmonic problem can be found in [21]. Furthermore,
as shown in [12], the HHO and HDG methods are closely related. Indeed, the HDG method approximates
a triple which is composed of the pair of unknowns considered in the HHO method together with vector-
valued piecewise polynomials for the dual variable (typically, the gradient). In the HDG method, the discrete
dual variable can be expressed locally in terms of the other two variables, and this formula turns out to
correspond to the HHO gradient reconstruction. Moreover, the numerical flux trace, which is one of the
cornerstones in the devising of the HDG method, can be explicitly related to the normal component of the
HHO reconstructed gradient and the stabilization used in the HHO method. We also notice that, in the
equal-order case (I = k), the HHO stabilization has not yet been considered in the HDG method and that,
in the mixed-order case (I = k + 1), the HHO stabilization is the Lehrenfeld-Schéberl HDG stabilization.
One interesting difference concerns the convergence analysis since the HHO method solely relies on (local)
L2-orthogonal projections, whereas in the HDG method, one usually invokes a special projection operator.
Finally, as discussed in [12, 17, 10], the HHO method with the choice I = k — 1, k > 1, is closely related to
the nonconforming virtual element method (ncVEM); see also [8] in the context of multiscale problems.

The goal of the present work is to derive optimal energy-error estimates for the wave equation discretized
by the HHO method in space and the leapfrog (central finite difference) scheme in time. Owing to the above
discussion, the present results are readily applicable to HDG or WG space semi-discretizations, and with
some adaptations to ncVEM. The leapfrog scheme is an explicit, conditionally stable, second-order scheme
that is very popular to discretize in time the wave equation combined with either ¢G or dG space semi-
discretization. To the best of our knowledge, a convergence analysis of the wave equation using the leapfrog
scheme has not yet been performed with either HDG, WG or HHO space semi-discretization. The space
convergence analysis in the time-continuous case is performed in [13] for the HDG method and in [6] for
the HHO method using different arguments. Fully discrete schemes have been so far considered only in the
context of implicit schemes in time, as the fourth-order Stormer—Numerov scheme combined with the HDG
method in [11] and the second-order backward differentiation formula with the WG scheme in [27]. Thus,
the convergence analysis of HHO, HDG or WG methods with an explicit time-marching scheme under a
CFL stability condition appears to be a novel contribution to the literature. One practical difficulty with the
leapfrog scheme combined with any hybrid method is the static coupling between cell and face unknowns at
each time step. This drawback has been recently lifted in [36], which proposes to handle the static coupling by
means of an iterative scheme. The key point is that weighting the stabilization by a large enough coefficient
ensures a fast convergence of the scheme while mildly impacting the accuracy and the CFL stability condition.
We refer the reader to [36] for the mathematical analysis in the linear case and for various numerical results
on linear and nonlinear wave equations.

Our main result is Theorem 5.1 below, stating the optimal convergence in space and in time of the
discrete wave equation approximated using the HHO method in space and the leapfrog scheme in time. The
convergence proof follows the general pattern that is already known for the analysis of the leapfrog scheme
combined with ¢G or dG space semi-discretization: derivation of error equations where the consistency errors
in space and time appear as source terms, derivation of an energy identity on the errors, and bound on the
consistency terms. There are, however, two nontrivial differences. The first one is that the naive expression
of the energy error fails to deliver a strongly convex functional on the time- and space-derivatives of the
error, because there is a nonzero consistency error related to the mesh faces. This difficulty is lifted by



introducing a modified energy which satisfies a time-discrete energy identity with an additional source term
(see Lemma 5.5 below). The second difference is the need to bound this additional source term. Fortunately,
this can be achieved by an additional control gained by the modified discrete energy on the face velocity
errors; see (69).

We close this discussion by a short literature review on the wave equation with the first-order formulation
in time. One can consider either the Hamiltonian-type formulation in which the unknowns are the primal
variable and its velocity or the mixed (or Friedrichs-type) formulation in which the unknowns are the velocity
and the dual variable (typically, the gradient of the primal variable). Both formulations lead, after space
semi-discretization, to a set of coupled first-order ODEs that can be discretized using, e.g., Runge-Kutta
(RK) methods in various flavors. The first formulation is considered in the context of dG methods in [2],
of HDG methods in [34], and of WG methods (with Crank-Nicolson time-stepping) in [28]. For the second
formulation, we mention HDG methods with either implicit [32, 31] or explicit [35] RK schemes and HHO
methods with either implicit or explicit RK schemes [4].

The rest of the paper is organized as follows. In Section 2, we present the continuous, the space semi-
discrete and the fully discrete wave equation. In Section 3, we collect from the literature various results
on the HHO method that are useful to perform the analysis. In Section 4, we address energy stability to
highlight how the static coupling between cell and face unknowns impacts the energy balance. In Section 5,
we perform the convergence analysis on the energy error. Finally, in Section 6, we present some numerical
experiments.

2 Continuous, semi-discrete and fully discrete wave equations

In this section, we present the continuous, the space semi-discrete, and the fully discrete wave equation. The
space discretization hinges on the HHO method and the time discretization on the leapfrog (central finite
difference) scheme.

2.1 Model problem

The acoustic wave equation is posed on the space domain Q@ C R? and the time interval .J := [0,T], with
¥ > 0. Standard notation is used for Lebesgue, Sobolev and Bochner spaces. Let (-, ), denote the L?*-inner
product on Q and || - |lo the associated norm. Boldface notation is used for R%-valued vectors and vector-
valued fields, as well as for R¥*?-valued matrices and matrix-valued fields. For dimensional consistency, we
consider a length scale {q representative of (), e.g. its diameter.

We consider a source term f € C°(J; L?(2)) with J = [0, %] and a coefficient u € L () representing the
speed of sound and taking values uniformly bounded from below away from zero. For simplicity, we enforce
homogeneous Dirichlet boundary conditions and we prescribe initial data ug,vg € HE(Q) satisfying these
conditions. Focusing on the strong solution, the acoustic wave equation consists of finding u € C?(J; L?(Q))N
C1(J; H}(2)) such that

(OFu(t), w)q + (uQVu(t),Vw)Q = (f,w)q, VteJ,Ywe H)Q), (1)

with the initial conditions
w(0) = ug, Gpu(0) = vy. (2)

The notion of energy is central to the analysis of the paper. We set, for all t € J,

B(t) = glow(e)3 + 3 Vu(t). 3)



This energy verifies .
B() = BO)+ [ (7(5).00u(s))q ds. (4)

as readily follows by testing (1) with w := d;u(t) for all ¢ € J and integrating in time.

2.2 HHO space semi-discretization

The space semi-discretization of (1)-(2) is performed using the HHO method. To avoid technicalities, we
assume that  is a Lipschitz polyhedron and that p is piecewise constant on a polyhedral partition of 2.

Discrete setting Let (7,)n>0 be a sequence of polyhedral meshes of 2, such that each mesh 7, covers
exactly . For all h > 0, let T" denote a generic mesh cell in Ty, hr its diameter and np its unit outward
normal. We set h := maxre7;, hr for the mesh size. We say that the (d — 1)-dimensional set F' is a mesh face
if there is a hyperplane Hp such that either F' = Hp N 0T NT, for two distinct mesh cells T_ and T} (and
F is called mesh interface) or F' = Hp N9T_ N 0N (and F is called mesh boundary face). The collection of
all the mesh faces is denoted F},. For all T € Tj,, we denote by Fr the collection of the mesh faces composing
the boundary 0T. The mesh sequence is assumed to be shape-regular; see, e.g., [18, 7, 16, 10]. Moreover,
each mesh 7}, is assumed to be compatible with the partition on which the coefficient p is piecewise constant.
Hence, p takes a constant value denoted by pr in each mesh cell T € Tj,. Thus, there are 0 < g, < py < 00
such that p, < pp < pg for all T € T,. We assume that the ratio Z—: is not too large, so that it can be hidden
in the generic constants used in the error analysis.

Recall that the HHO method is formulated using face and cell unknowns which are polynomials attached
to the mesh faces and to the mesh cells, respectively. Let the integer £ > 0 be the polynomial order of
the face unknowns and let [ € {k,k + 1} be the order of the cell unknowns. The setting is said to be of
equal-order if | = k and of mixed-order if I = k + 1. Let P4(T) (resp. Pk | (F)) denote the set of d-variate
(resp. (d—1)-variate) polynomials of degree at most [ (resp. k) restricted to the cell T' € Ty, (resp. to the face
F € Fj). The linear space composed of all the cell degrees of freedom is denoted L{é—, and the linear space
composed of all the face degrees of freedom is denoted Z/l}?—. These spaces are defined as Cartesian products
in the form

U= X YD), k= X Bh(F), (5)
TETh FeFy

and we slightly abuse the notation by viewing an element wyr = (wr)reT;, € Ué— as a function defined a.e. over
Q such that wy|r := wr for all T € T;,. The collection of all the cell and face degrees of freedom is the
hybrid space R

Uk = ub xuk. (6)

A generic element of Z/A{,ll’k is denoted wy, = (wy,wr) € Z/lé— X Z/{.’{— and, in what follows, variables with hats
refer to hybrid variables. For a given cell T' € T}, we also define a local hybrid space of degrees of freedom

Ut =PY(T) x Uy,  Uby:= X Ph_(F). (7)
FeFr

Then Wy = (wr,wor = (Wr)Fery) € Z:{\é«k denotes a generic local hybrid unknown in 7', composed of one
cell unknown and the collection of the face unknowns for all the faces in Fr. As above, we slightly abuse
the notation by viewing an element wor = (wp)per, € Uk as a function defined a.e. over 0T such that
wor|p := wp for all F € Fp. Let L{J’%O = {vr € Uﬁ, st.vp = 0, VF C 9Q} be the subspace of face



unknowns respecting the homogeneous Dirichlet conditions. The subspace of hybrid unknowns respecting
the homogeneous Dirichlet conditions is denoted

Uy = Uy x U . (8)

L?-orthogonal projections onto polynomial spaces are denoted with the symbol II. For instance, for all
T e Ty, HlT is the projection onto ]P’il(T), HgT the projection onto U§T7 and for all F' € Fy, H’} the projection
onto P’j_l(F ). The L2-orthogonal projection onto the broken polynomial spaces Mé— and L{ﬁ- is denoted by
T} and IT% respectively. Let (-,-)r, (-,-)or and (-,-)p respectively denote the L?-inner product in the cell
T € Ty, its boundary 0T and the face F' € Fp. Let || - |7, || - llor, || - ||F denote the norms associated
respectively with the L2-inner products (-,-)r, (-,-)ar and (-, ).

Gradient and potential reconstruction. The local gradient reconstruction operator builds a gradient
in the cell T € 7, from the local cell and face unknowns in Z/{%k. This operator G% : L{%k — PE(T;R?) is
evaluated by solving the following problem: For all o7 € L{élk,

(Gh.(io7),@)r = (Vor, @)y + (vor —vr,q-nr)sp, Vg € PH(T;RY), 9)

where PX(T; R?) denotes the space of R¥-valued d-variate polynomials of degree k in the cell T'. In practice,
each component of the reconstructed gradient is found independently by inverting the mass matrix associated
with a chosen scalar-valued basis of P%(T).

One can also build a potential reconstruction operator R?H : Z:{\é«k — IP”:ZH(T) by solving, for all op € Z:[\lTk,
the following Neumann problem:
(VR (61), Va)r = (Vor, V) + (vor — vr, Vg - np) oy, Vg € PiHH(T), (10)
with Pgil(T) = {q € P""(T) | (¢,1); = 0}, with the mean-value condition (R5™ (47), 1) = (vr, 1),

Remark 2.1 (Gradient reconstruction). Notice that we have VRA™ (i7) = HV]PkJrl(T)G!%(ﬁT) for all o €
d

LA{r}k For nonlinear problems, it is preferable to consider the gradient reconstruction operator G’% rather than
VR?H, as discussed in [15, 1]. In the present linear setting, the stiffness part of the semi-discrete problem
can be evaluated using VR;H. Notice though that even when working with the operator G%., it is necessary
to evaluate the operator R to compute the stabilization in the equal-order setting (see (12) below).

Stabilization. The role of the stabilization is to weakly enforce the matching between the cell and the
face unknowns at each mesh face. Let T € T,. For all wr € Z/lr}’k, set dgr(wr) := wor — wrlor. In the
mixed-order setting, the local stabilization operator Sgr is defined as

Sor(ir) == W (Sor (7)), Vip € ULF, (11)

which corresponds to the Lehrenfeld-Schoberl HDG stabilization (see, e.g. [29, 30]). In the equal-order
setting, the definition of Sy requires the computation of R’;fl and writes

Sor(r) := sy (dar (0r) + (I — TEYREFL(0, or (i) o), Wiy € URY =: UL (12)



HHO space semi-discrete wave equation. The global bilinear form ay, is defined, for all 0y, Wy, € Z:[\,llk,
as

i) = 3 pd{(Gh(or), G or))r + b (Sor(ir). Sor(ior) o | (13)
TETh

The space semi-discrete wave equation consists of finding @y, := (ur,ur) € C?(J; Z/A{,ZLIB) such that
(Our(t), wr)a + an(in(t),dn) = (f(t),wr)g, VtEJ, iy, = (wr,wr) € Uy, (14)

Notice that the homogeneous Dirichlet boundary condition is enforced by the fact that @, (t) € Z;{\,lllg at all

times ¢ € J. The initial conditions are enforced on the cell degrees of freedom as follows (initial conditions
on the face degrees of freedom are not needed):

ur(0) == T (ug), Dy (0) == Tr(vp). (15)

2.3 Time-discretization with the leapfrog scheme

Let N be the number of discrete time intervals such that (t"),co.n} are the discrete time nodes with t'=0
and tV :=T. We set f" := f(t") for all n € {0:N}. For the sake of simplicity, we consider a fixed time step
At = % The time discrete unknownA ay = (u,u’y) € U,ll’,lg is meant to be an approximation of the space
semi-discrete HHO solution 4y, (™) € U}ZL’%.

The leapfrog scheme consists of solving

1 _ U . ~
NE (u?frl —2u +uly wr)a + ap(ay, bn) = (" wr)g,  Vn € {L:N — 1}, Vi, € u}l{z, (16)

where the unknowns are u?-“ and u’, whereas u%- and u?‘l are known from prior time steps or given by

the initial conditions as follows:

uOT = HZT(’U,O), (17a)

an(if, (0,wr)) =0, Vwr €Uk, (17b)
2

7{(f0 wr)a — an(f, (wr,0))}, Vwr € UL (17¢)

Notice that we used the initial conditions (15) in (17a) and (17c¢). At each time step n € {1:N — 1}, the
problem (16) is solved by first finding the face unknown u% € U 5%70 from the cell unknown % € U by solving

(urwr) g = (uf + AtI(v0), wr) , +

an((0,u%), (0,wr)) = —an((u},0), (0,wx)), Ywr €Uk, (18)
and then the cell unknown u"+1 € L{T is computed by solving

1 _ "

AP (u?‘”‘l —2ug +ug 1,w7)Q = (f" wr)g —an(ty, (wr,0)), Ywre le%—. (19)
Owing to the static coupling between face and cell unknowns implied by (18), the scheme is semi-implicit. A
computationally effective, iterative algorithm to solve this static coupling based on inverting block-diagonal
matrices is introduced and analyzed in [36].

Remark 2.2 (Final step). At the final step n = N — 1, we compute vy ' from (18) and u¥¥ from (19).
Then u¥ can be retrieved by solving (18) for n = N.



3 Preliminary results for the error analysis

In this section, we collect from the literature various results that are useful to perform the error analysis. In
what follows, C' denotes a generic positive constant whose value can change at each occurrence as long as it
is independent of the mesh size and the time step; the value of C' can depend on the mesh shape-regularity
and the underlying polynomial degree, and, whenever relevant, on the ratio ££ related to the contrast in the
sound speed. In a few cases, we use a more specific symbol, e.g., for some discrete inverse inequalities, a
discrete Poincaré inequality, and the coercivity and boundedness constants of the discrete bilinear form ay,.

Lemma 3.1 (Discrete inverse inequalities). Let the polynomial degree m > 0 be fized. There is Cainy > 0
such that, for all h >0, all T € T}, and all g € P7(T),

IVallr < Cainvhz'llallr, (20a)
lallor < Cainvhy* llqlr- (20b)
Proof. See, e.g., [18, Lem. 1.44 & 1.46]. O

Stability and boundedness. A direct verification shows that the map || - ||umo : Z:l\}llk — R4 such that

. - LTk
[onllhwo = D 13 {IVvrlF + bz lvor —vrl3r},  Von €Uy”, (21)
TeTh

defines a norm on Z}fllg (and a seminorm on LA{;Lk) We define the seminorm [05[3 := 37 pa b | Sor (o) |30
and the global gradient reconstruction such that GA-(9,)|7 := G%.(or) for all T € Tj,.

Lemma 3.2 (Stability and boundedness). There are 0 < o < w < oo such that, for all h > 0 and all
Uy, € L{,l;f),
allonlZuo < an(on, wn) =[0G (0n) 1% + 0n]3 < @ |10n][Fuo- (22)

Proof. See [20, Lem. 4]. O

Lemma 3.3 (Discrete Poincaré inequality). There is Cqp such that for all h > 0 and all 0y, € Z:l\flt’z,
lorlla < Cappy allonlso- (23)
Proof. See, e.g., [5, Lem. 6.2]. O

Approximation. We first define the local projection operator IAqlfl HYT) — Z:{}k for all T' € T}, such that,
for all v € HY(T),

17! (v) = (Wr(0), hy (v)). (24)

Then the global projection operator is defined as IA,’I” :HY Q) — LAI,llk such that, for all v € H*(Q),

IF () = (0 () re, . (s (0) rer, ). (25)

Notice that I ,’f’l maps functions from Hg () onto Z:{\}lllf) Moreover, the definition of ,’:’l is meaningful since a
function v € H'(Q2) does not jump across the mesh interfaces. Let 54“-“ cHY(Q) — U;ﬁl denote the broken



elliptic projection onto U5, such that, for all v € HY(Q) and all T € T, EFF1(v)|r := 5T € PEYH(T) is
uniquely defined by the relations

(V(Eéffl(v) — ), Vq)T =0Vqe PZ:l(T), and (&fffl(v) — v, 1)T =0. (26)

Lemma 3.4 (Approximation property for G% and R?H). The following holds true for all h > 0 and all
TeTy:

Gh(I1'(v) =TH(Vv),  VRF(Ip'(v) = VEF (v), Vo HY(T). (27)
Moreover, there exists a real number C > 0 such that, for allh > 0, all T € T;, and all v € H*2(T), we have
llo = REF (IF ())llr + hillo — REF I3 (0))llor < ChE2 (0] gosa oy, (28)

and
IV (0 = REFHIE (0))) [z + 3|V (v = REFHIE (0))) lor < CRE o] sy (29a)
Vo = GE(I7 (0)]|r + h2|IVo = G513 (v))llor < CHE 0] grasa - (29b)
Proof. See, e.g., [20, Lem. 3], [10, Lem. 3.1]. O

Lemma 3.5 (Approximation property for Sgr). There is a constant C > 0 such that for all h > 0, all
T € Th, and all v € HY(T), we have

2k, 3 k41
[Sor (I (v)lor < Chp||V (v — Pr™ " (v)) 7, (30)
where P;?H = 5{,?“ ifl="Fk and Pﬁ“ = H}:ffl ifl=Fk+1.

Proof. See, e.g., [20, Eq. (45)], [10, Lem. 2.7]. O
Consistency. For any function v € Y := {v € H}(Q), B(v) := —V - (u®*Vv) € L*(Q)}, we consider the
linear form )y, (v;-) € (Z/l,ll’,%)’ such that
Un(vin) = (B),wr)a — an(Iy' (v),%r), iy, € Upk. (31)
For any function v € H'™ (), v € (1,1], we consider the seminorm [vl, j, defined by
2 n =Y wp{hrlv() a3 + | Va()7}, (32)
T€7-h
with .
Y(v) := Vv — GE(I7 (v)), n(v) = v — PEtl(v), (33)

where Pﬁ“ is defined in Lemma 3.5 and P;“—‘*'1 denotes the broken version of Pﬁ“ defined elementwise. For
. Lk
a linear form ¢ € (U),)’, we set

||¢||(HHO)/ = sup |¢(qh)‘

anelll® Gnlumo
with the norm || - ||uuo defined in (21).

Lemma 3.6 (Consistency). There is a constant c. such that, for all h > 0 and all v € Y N H(Q), we
have

1n (v, )l oy < v n- (34)

Proof. See, e.g., [20, Eq. (43)], [10, Lem. 2.8 & 3.4]. O



4 Energy stability

The notion of discrete energy is central to the proof of convergence of the fully discrete scheme. Let us first
introduce the semi-discrete energy balance as in [4, Lem. 3.1]. Recalling that @, € C?(J ;U,ll’,’é) solves the
space semi-discrete problem (14), we set, for all ¢t € J,

Fult) = 31007 (Ol + 3n(an (0, 0 (1), (3)
This energy verifies .
Bu(0) = Bu(0)+ [ (7). Bpur(s))g s (36)

as readily follows by testing (14) with by, := 0,0y (t) for all t € J and integrating in time.

The first important step is to derive the fully discrete counterpart of the semi-discrete energy identity (36).
It is convenient to set, for all n € {0:N — 1},

n 1 ~m ~m N+ AT AT
i = St aa e @t - ). (37)
The fully discrete counterpart of E}, (t) is the discrete energy EZJrZ defined as

At? n+3

nel 1 opgl oty L gl gl
E, " * 1:§||5UT 2”%77 (0t *, 01y, 2)+§ah( hooaty, ?). (38)

Lemma 4.1 (Energy balance). The fully discrete energy verifies, for all n € {1:N — 1},

JoRREI of R Z Froutt — iy (39)

Proof. Let n € {1:N —1}. For all m € {1:n}, we test (16) with 1y, := L(a}"*" — @}~ "). We use the identity

1 1
o (W = 2up Tt 1)9=2<<u¢“ uf) - <uT—u”% D ) + (=),
= Hum“ ulIg ~ Hu’” u G
+1 At2 _1
7|I6 TR - S euy T A

2
We also use the following computation which exploits the symmetry of ap:

1
ap (@, —ap ) = —ap(aptt + 205 + ap (At +ap) — (@ +ap )

4
— (= 20 A @ = A + - )
—an(@ AT At ) - Athah(a”"“ +oarTE st — s ?)
= a3 At — et A )
- %ﬁ(ah(aa;"ﬂ et ) — an (802 60l ?)).
This gives E;nJr% — E;n P %(fm mtl u’}“l)ﬂ. Summing this identity for m = 1 to m = n yields the
claim. -



1 1 1
The second important question is whether EZJF 2 defines a strongly convex functional on 5u;+ 2 and fLZ+ 2,

This property can be achieved under a CFL restriction on the time step.
1
Lemma 4.2 (Strong convexity of EZ+2). Under the following CFL restriction on the time step:

At < nu;lh, n:=Cy} w3, (40)

inv
1 1 1
EZ+2 defines a strongly conver functional on 6u77l-+2 and ﬂz+2.
Proof. Using the fact that 4} satisfies (18) and the symmetry of aj,, we infer that, for all n € {1:N — 1},

cntg contg . ‘n o .
At?ay (8, 2,60, ) = ap(ap Tt —ag, aptt — ap)

Z T Up, U T Up
n =g (urt = 0)
ur —ug,0),

( urtt —ul,0)) + ap (0w — uwl), (Wit — ul, 0))
(Wt = w0, "
(

u77l’+1 - u?? 0))
ur —ug,0), u?-“ —uF,0)) —ap

= Afay((Suy2,0), (Suly"#,0)) — Ay ((0,8uly %), (0,605 *))

< Atay((0u?,0), (5u 2 0)).

\
S
>
—_~ o~
=
*I%
+
=
N
NS
:ﬂ
=
"'1:3
+
=
|
£
W3

—~

Combining this bound with the coercivity property from Lemma 3.2 gives

77,+l ]_ n+l AtQ T‘H—l n+l An_i_l
5 > Lo - a0, 605 0) + a2,
=5 n+1 - . .
Recalling that || - ||uno defines a norm on U,ZL”% and ﬁh+2 € Z/{,ll’g, the proof is complete if we show that, under
the CFL condition (40), we have, for all wr € UL,
1 At? 1
5 llwrlle = =g-an((wr, 0), (wr, 0)) = 7 Jewr s, (41)

To this purpose, we observe using the inverse inequalities from Lemma 3.1 and the boundeness property from
Lemma 3.2 that )
an((wr,0), (wr,0)) < @|| (w7, 0)|[fo

< wuf{ Y IVwr)F + h;lan”%T}

T€ETh
< QCginvwﬂghizanH%'
Using the CFL condition (40), we infer that

At? At? _ 1
?ah((wTao)a (wTaO)) < ?2Cd2mvw/’bgh 2”’11)7’”(2) < Z”wT”?Z

Re-arranging the terms establishes (41) and completes the proof. O

5 Energy error analysis

In this section, we prove the convergence in energy-norm of the fully discrete wave equation. We start the
section by stating our main result, Theorem 5.1, and devote the rest of the section to its proof.
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5.1 Main result

Recall that v denotes the solution to the continuous wave equation (1) with the initial conditions (2) and
(4} )nefo:ny the solution to the fully discrete wave equation (16) with the initial conditions (17). We define

the discrete error
n

e =ap — I (u(t™)), ¥n e {0:N}, (42)
which represents the difference between the discrete hybrid solution at time step n and the projection of the
continuous solution at the discrete time ¢" onto the hybrid space. Recalling the seminorm | - |, defined
in (32), we set, for all t € J,

t
[u|co(0,455,0) = SUD |u(8)|s,ns 10| L1 (0,455,1) ::/ [Oyu(s)|«,n ds. (43)
s€[0,¢] 0
Theorem 5.1 (Energy error estimate). Assume the CFL condition (40), that f € C*(J;L*(Q)), and that
u e CHJ; LA(Q) N W>L(J; LA(Q)) and u € CO(J; HY(Q)) N WHL(J; H(Q)), v € (5,1]. The following

holds:

n+3 JURE
e 10 o+ max 165 o < Cof lullon o1y + 19l s o1y ) »

+ CgAtQ{||8§UHCO([0¢1];L2(Q)) +0([107ullcoqoeny;za () + 107 ull Lt o~ 1iz2 ) }
with generic constants Cy and Cy and the time scale © := u;lﬂg.

1] is

Remark 5.2 (Regularity assumption). The regularity assumption in space hinging on the shift v € (3,
] can

made to simplify the bound on the consistency error in space. The quasi-minimal setting with v € (0,
be handled by using the tools introduced in [23], see also [22, Sec. 41.5].

1
2
1

Remark 5.3 (Convergence order). Under the above regularity assumption on u, we can bound |u(t)|.,» and
|Ogu(t) |« n, for all ¢ € J, using the approximation results from Lemma 3.4. This gives

n+3 nti
max ||5e7- 2 ||Q + Heh 2 HHHO < Clhk+1{|U|CO([0;tN—1];Hk+2(Q)) + |8tU|L1([t07tN—1];Hk+2(Q))}
ne{0:N—-1} (45)

+ Col {107l oo oy @ + O (10 ulleo oz + 107 ull i qoamyizcan) }-

which is the optimal convergence order O(h¥*! + At?) in the energy norm.

5.2 Consistency errors and error equation

We define the space consistency error, ¥, at the discrete time ¢, for all n € {0:N}, as the linear form in
(Z:l\;,]f))’ such that, for all wy, € Z:l\,ll’,]g,

Vi (Wr) = Yp(u(t"), n), (46)
where the linear form (v, -) is defined in (31) for any function v € Y N H*(Q) (notice that u(t") €

Y N HTY(Q) for all n € {0:N} by assumption). We also define the time consistency error, k™, to be the
error between the centered difference scheme and the exact second-order derivative in time:

no o u() = 2u(t) +u(t" )
" At?

— Jtu(t™), Vne{l:N -1}, (47)

and we set k0 := 0.

11



Lemma 5.4 (Discrete error equation). Let (€}),cq0:ny be the collection of discrete errors defined in (42).
The following holds for all n € {1:N — 1}:

1 _ R . . . o~
e (eft! —2el + el l,w7—)Q + ap(én,wp) = Yp (W) — (K™, wr)a, YV, € U,ll”]g. (48)

Proof. Let us evaluate the left-hand-side of (48) for all n € {1:N — 1}:
1

NEI et =2el + e wr)a + an(ef, )
ntl) w(t™) + w(t"1 .
- ( { & QA(;) ol )],wfr)g — an (I} (u(t"™)), p)
= (/" wr)g — (MHQFu(t™) + £™), wr) g — an( Ty (u(t™)), )
= (OFu(t"), wr) g, + (Bu(t™), wr)g — (Bfu(t™) + K™ wr) g — an(L (u(t™)), i)

=y (wh) - (H 7wT)Q»

where we used the discrete scheme (16), the fact that the exact solution satisfies 2u(t™) + B(u(t")) = f",
the definition of the L2-projection onto Z/lé— and the definition (46) of ¥} O

5.3 Energy-error identity

It is convenient to define, for all n € {0:N — 1}, the error and velocity error at the half time-steps as follows:

nt g 1 en N An—&- 1 AT N
e, 2= 5( tpem), e, 2= At(eh“ én). (49)
Concerning the consistency errors, we set, for all n € {0:N — 1},
1 n 1 ~ 77
SRR = (= k), oy () = e (P (n) — O (), Vi € LK (50)
At At '
Let us consider the discrete energy (38) evaluated using the error. We set
n 1 1 n 1 AtQ AT 1 AT 1 1 n N
U §\|5e;2 13 — =—an(de, 72,06, 72) + 2%(@;2, &), Vne {0:N - 1}. (51)

1 nal
Unfortunately, even under a CFL condition, 5: *2 does not define a strongly convex functional on 567—+2 and
1
éZ+§. The reason is that we no longer have ap (€}, (0,wr)) =0 for all wr € L{}f-,o, but only
an(€y, (0, wr)) = ¥y (0, wr)), (52)
as a consequence of (48). This leads to the following definition of discrete energy error: For all n € {0:N —1},
n n A n nitl
gt grts —(m T2 ((0,5e77)). (53)
Lemma 5.5 (Discrete energy error). For alln € {0:N — 1}, we have
vn+l 1 n+l AtQ nJr n+l
En " = Sloer *llg + —g-an((0,9€5 %), (0, 0e"*))
At? +1 +1 1 +1 ntl (59
- ?ah((éeT 2,0), (de 2,0)) + iah(eh e 7).
1
Moreover, under the CFL condition (40), 8 nt3 defines a strongly convex functional on (5eT 2 and eh+2.

12



Proof. Proceeding as in Lemma 4.2, we obtain
1 1

At?ap (36,72 660 T2) = ap(entt — e, entt — ey
éZJrl - é27 (6771_+1 - en’T7 0)) + ah(éZJrl - é;zlv (07 6‘771—‘+1 - 6}))
O N n n+g n n+g
et — e (e — e, 0)) + AU (0,0657%)) — v ((0,5¢57)) }

= Qp (677L’+1 - 6?, O)a (6’7’4_1 - eT’IL_) O)) + ah((oa e?—i_l - 67.7':—)7 (6g’+1 - 67’;'7 O))
1 nal
+ A5, T2 ((0,0¢52)),
1

where we used (52) and the notation (49) for 5¢Z+2. Owing to the symmetry of a5 and again (52), we infer
that

an((0, 5 — &), (e — e,0)) = an((ef — e7,0), (0,5 — ef))

— —an((0,e — ), (0, — ) + Aoy ((0,5e5 ),
This gives
1 1
At?ay (56,7266, 7))
1 nal
= (5™ — e, 0), (5 — €, 0)) —an((0, €5 — ), (0,5 — ) + 2886072 (0,6 7))
1 nal nal nal nal nal
— At2a((8e52,0), (5e52,0)) — At2an((0,6¢ %), (0,8e %)) + 2882607 72 ((0,6¢’y"2)).

ST 1 o . .
This proves the identity (54). Finally, the strong convexity of Sh+2 under the CFL condition (40) is estab-
lished as in the proof of Lemma 4.2. O

The next step is to write an energy identity mimicking the space semi-discrete case.

cntl )
Lemma 5.6 (Energy identity). For alln € {1:N — 1}, the discrete energy error 5h+2 verifies

ntl
& =2} + 2 + Zic, (55)
with the space consistency error
n—1
n n An+l At2 n+l n+l mJ’,l Am+l
Zh=wh(e, 7)== 0y P((0,0ex 1) + ALY 0wy (e, (56a)
m=1
the time consistency error
n—1
ntl mal
Zr= (k" e Do+ ALY (0TE e ), (56b)
m=1
and the initial error ) ) )
2l =EF —p(67) + (k' e2)q. (56¢)

Proof. Let us start by remarking that, similarly to the computations in the proof of Lemma 4.1, we have, for
all m € {1:N — 1},

m+i  om—t 1 m—1 _m+1 _ _m—1 sm amAl _ am—1
&g 2_A—t2(eT =27 et e —ef )Q—l—ah(e?ﬁeh —ér).
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Summing (51) fromm=1tom=n Ylelds
1 _1
n+2 52 j : {wh Am+2 A;ln 2) (I{m7 m+3 m 2) }

The sums on the right-hand side of (58) can be reordered using the notation (49) to obtain

m=1

n N a1 1 n—1 L1
P N T N I eT)Q*AtZ(Mm+§ er o
m=1 m=1

This gives
n 1 1 Al ATL m Am
5h+2:5}f7¢}11(62)+(’11 67’)9+{¢h +2 AtZ(Sﬂ} +2 +2)}
n+i = I
— (k" er o+ At Z (Ok™ 27" 7)o
m=1
w A’I’L‘Fg At Z 5¢m+2 Am+2)+zn+zlc,
owing to the definitions (56b) and (56¢). It remains to go from &, " 4o &, i . Using (53), we have
G = et - & Z st et 2+ 2 + Aaurt (0.0 ),

Recalling the definition of Z proves the claim.

5.4 Bound on consistency and initial errors

We now bound the three terms on the right-hand side of (55). Each estimate is stated as a separate lemma.

Lemma 5.7 (Estimate on the space consistency error). Let Z} be defined in (56a). For alln € {1:N — 1},

the following holds:

‘Z{H < C*(|8tu|L1([t1’tn];*,h) + ‘u(tn)l*,h) HI{%X Heh ||HHO

1 1 " 1 qd
+ Zc*a_% ‘8tu‘L1([tn;tn+1];*7h) {AtQCLh((Oa 66}‘+2)’ (076€f+2 ))] 27

where ¢, results from (34) and « is the coercivity constant of the discrete bilinear form ay,.
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Proof. Let n € {1:N — 1} and let m € {1:n}. We observe that
gl

Aty e ) = wnu ) ) — v, e ) = / Un(@ruls); ) ds.

Since du(t) € Y N HV(Q

e () for all t € J by assumption (indeed, B(du(t)) = 0:f(t) — du(t), f €
CY(J; L*(Q)), and u € C4(J; L*(

2))), we can invoke (34) to infer that

||"/Jh(atu(t)§ )H(HHO)’ < C*|8tu(t) *,h-

Thus, we obtain

n—1
m+i
< e Z |5tU|L1 [t e+ 1]5x, h) || 5 ? |lssmo-

At Z ARG
m=1

The same reasoning is used for the second term on the right-hand-side of (56a) which is bounded as follows:

SIS

n n+4 1 1 n+l n+i
‘cw (0,065 ))‘ < 3007 10l (o 110 | AR (0,065, (0,e579)]
where we used the coercivity of the discrete bilinear form aj. Finally, the same argument for the first term
on the right-hand side of (56a) yields

n+i n 43
D] < ealut)lenllén ™ o (59)

This yields the claim. O

Lemma 5.8 (Estimate on the time consistency error). Let Z be defined in (56b). For alln € {1:N — 1},
the following holds:

|27 < COAL? (1|07 ull L1 (osn+1):L2(0)) + 1108wl co(en-1:m+11,22(02))) . }||€h Hnno-

Proof. Let n € {1:N — 1}. A straightforward calculation using fourth-order Taylor expansions with integral
remainder shows that

tn+l tn

1 / _
K' = —— t"H —1)30tu(t dt—/ t"t — )30 u(t)dt p.
W{ e 0Pt ar— | fu(t)

Rewriting 5/{7”‘*‘%, for all m € {1:n — 1}, using this identity gives

1
SEMTE = E(mmﬂ — k™)
1 2 [
= eAR (/ (™2 — £)30%u(t) dt — / (t™ — )30} u(t) dt
tm+1 tm
t'm,+1 tm

(™t — £)30tu(t) dt)

tm

t+AL t+AL
(- t)3/ APu(s)dsdt — / (tm=t — t)3/ dPu(s)dsdt |.
¢ tnzfl t

(™ — )30t (t) dt + /

tm—1

_ /tm
1 gm+l
NE /t

15



Let us now use the following estimate on the first integral:

t7n+1

J.

and a similar estimate on the second integral. Then, we invoke the discrete Poincaré inequality (23) to obtain

< AP ul| L1 (jpmsem2sr2 (). (60)

t+At
(Tt — )3 / dPu(s)dsdt
¢
Q

n—1 n—1
mtl m+3 — m41
At Z((sl‘{ l+2,€7— 2)Q < Cﬂﬁ IEQAtQ Z ||8t5u||L1([tm71;tm+2];L2(Q))||€h 2 ||HHO
m=1 m=1
n—1 41
= COAL? Y [[07ull L (gem—rime2pr2p l1En 2 [limo- (61)
m=1

The first term on the right-hand-side of (56b) can be bounded in the same way, yielding
n 774"!‘1 An_;'_l
(57,5 )a| < COAR O ull oo gonr w2 I o (62)

Taking the maximum over m € {l:n — 1} on the right-hand-side of (61) and summing to (62) yields the
expected result. O

Lemma 5.9 (Estimate on the initial error). Let Z{ be defined in (56¢). Assume the CFL condition (40).
There is a constant Cig such that

2
| 2] < CIC{|UO|i,h + |U(t1)|*7h + At4(Hafu||200([o;t1];m(fz)) + 62”a;luH%‘O([tO;tz];LQ(Q))) }
Proof. Recall that

20 g3 _lpe 1.3
ic =& —vp(e) + (r,e5)a

1 1 o2 1 A1 40 41 40 1 R 1,41 1 2 (63)
= I ||€T - €T||Q - gah(eh —épn, 6, —én) + §ah(eh,eh) — wh(eh) + (K ’67’)9'
Since the second term is negative, we infer that 2, < A; + Ay + A3 with
Lo o2 [P e L1 11
Ay = IAL2 ler —e7lla, Ap = §a‘h(ehaeh)a Az = (K, e3)a — Py(éf).

Step 1: Bound on A;. We use a first-order Taylor expansion of u(t!) with integral remainder to obtain

. AL, 1
u(t ) = ug + Atvg + 7@ U(O) + 5 (t - 3) 81& U(S) ds.
0

The definition of u}- via the initial condition (17c) then gives, for all wy € Z/{%-,
1 1

Kt(e%’,wT)ﬂ = E(UIT —u(th), wr)e
At 1t At
= 7(f0 — 97u(0), wr)q — AL / (t' — 5)*(0fu(s), wr)ads — 7%(@2, (wr,0))
0

1

- g{(B(uO)ﬂUT)Q - ah(ﬁg, (wT,O))} — TAt/O (tl _ 8)2(3E’U(s),w7—)9 ds

2

At

= 7¢2((w7—, 0)) — ﬁ/o (tl - 5)2(8?u(8), wr)q ds.
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We use both discrete inverse inequalities from Lemma 3.1 to obtain

1
_ 2
17, 0)llwo = (- w3 {IVwrl + bz lwrl3})
TETh

< Cpgh™ Jwr |-
Using this inequality, the CFL condition (40) and the inequality from (34) to bound ||4}]| (o), we obtain

1, At At o
e wr)al < — Ul gmoy | (w7, 0) 1o + ——110; ull o (jo:e1);22 (@) lwT e
At 2 2

< C([uole,n + AL(|0Full coo):L2 () [lwr |-

el W .
l %, we conclude that < |lek-|lo < C(Juolsn + At?||07ul|co(o.0]:12(0)))- Since

I
e = 0, this finally gives

Since [leX-|lo < sup
wT eU.

1 2
A = srller — 7l < Clluoli p + A0 ulEo o112 () (64)

Step 2: Bound on [|(0,€%)|luno and ||(0,ek)|luo- Since €% = 0, the coercivity of the discrete bilinear form
ap implies that
allé e = all(0, eF) 7m0 < an((0,e%), (0,€5)),
with €% = u% —TI% (ug). Equation (17b) and the linearity of a;, with respect to its first argument imply that
an((0, u0]—'>7 (07 60}_)) = _ah((ug’a 0), (07 69_-)) = —ah((HlT(uo), 0), (0, 69’:))
where we used (15) in the second equality. Hence, we have
alléq i = all(0, eF) o < an((0, uf — M (uo)), (0, e%))
= — an((IT7(u0),0), (0, %)) — an((0,15(uo)), (0, %))
2,1
= — an(l" (uo), (0, €5))

= wh(u(% (Oa 60]-‘)) S c*|u0|*,h|l(0a 60]-‘)||HH07

where we used the consistency bound (34) (notice that ug € Y N H'*¥(Q) by assumption). This implies that
1€0, %) lluo < Cluols.n-
Moreover, to bound ek, we use the following equality (see (52) for n =1 and wr = ek):

an((0,¢x), (0, ex)) = ¥4 ((0, ex)) — an((ef, 0), (0, eF)).-
Using the coercivity and boundedness of the bilinear form ay, we obtain
1 1
10 €5 o < ~an((0,€), (0. 5)) < = (11l oy + Il(eF 0)llro ) (0 €l

so that
1100, €3) lumo < C(Hwilz”(HHO)’ + ||(€11’70)||HHO)~ (65)
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To bound the second term on the right-hand-side, we invoke again the coercivity and boundedness of ay,
together with the discrete inverse inequality from Lemma 3.1 and the CFL condition (40), to obtain (since
ey =0)
O‘H(e'lTa O)HEIHO < ah((e%’ - eg’a 0)7 (6’17’ - eg" 0)) < w”(e%’ - eg" 0)||}21H0
< Cugh™?|ler — 5l (66)

< C’@He# — el
which can be bounded using (64). Since ||} |lunor < cxlu(t!)]s n, this gives altogether

10, €5 lhmo < € ([l + [t + LS ullco o2 ) (67)

1
Step 3: Bound on ||€} ||uuo. The symmetry of aj, the fact that eg— = 0 and the above arguments give

an (&, + éh. ey, + &) < 2ap((e + €7,0), (e + €7,0)) + 2an((0, e + €5), (0, e + €5))
< 2ax((e,0), (e, 0)) + 4an((0, ), (0, e%)) + 4an((0, ex), (0, %))
= 2an((e — €7,0), (e — €3, 0)) + 4a((0, %), (0, %)) + 4a((0, %), (0, %))
< C(Iler = €5, 0) 7m0 + 1100, €3) 7o + 110, €%) o)

1
< O (gl ek — O3 + 10,5 o + 110, 5 200)
< C"(fuol? p + a2 + AP ulZo (o) 12 (92)))

owing to (64), (65) and (67). Since ||é%||§HO < éah(é%,é%), we conclude that

1 .

16 o < € (luolon + ()] + AP ullen oo ) (68)

Step 4: Bound on As and As. The bound (68) directly yields

|Aa| < C(|U0|z,h + u(th)2,, + At4Hat?)u”%")([o;tl];L?(Q)))‘
Finally, recalling the arguments from the proofs of Lemmas 5.7 and 5.8, we have

1 3 2194 A%
‘(Ii 76%)9‘ < COAt Hat U”CD([tO;t?];LQ(Q))Heﬁ ||111107

A ER)

1
< Clu(th) e nllef limo-

1
The above estimate of ||é7 ||uno then gives

13 143
4] < |6, eb)a| + [vhied)
1 211 94 1 21193
< C([ut) ] n + OAE |0 ull o (0,62);12()) ) ([uols,n + [t ) + A0 ullcoo1); 22 (02)))
< O {luol?  + [u(E)[2 p + At ©2110F ullZo o sz 2y + 10l 20 oz ce)
where the last bound follows from Young’s inequality. Gathering the two estimates from Step 4 with the one

on A; established in Step 1 proves the claim. O
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5.5 Proof of Theorem 5.1
We are now ready to complete the proof of Theorem 5.1. On the one hand, using the convexity result of
Lemma 5.5, we have, for all n € {1:N — 1},

2

n N 3 At n 3 n 3 =1 %
f||6 P2 4 alen T2 + o an((0,0¢ T2, (0,6¢0T)) < €572 (69)

8
On the other hand, Lemma 5.6 gives, for all n € {1:N — 1},

ErFr < |zn|+ |20 + |20
h — P K 1C

< max |Z]|+ max }|Z£|+|Z{)C|.

T ne{l:N-1} ne{l:N—-1

Combining the above two inequalities yields, for all n € {1:N — 1},

n+g sty At? ntg n+g n n
*||5€ 18+ alley, o + ——an((0,0ex"?), (0,8ex *)) < max [Z}]+ e |Z|+|31c|

8 ne{l:N—1} {

Since the right-hand-side of this inequality does not depend on n and since each term on the left-hand-side
is positive, we infer that

1 1
= max  0er PR < max |2+ max |27+ |2,

dne{l:N—1} T ne{1:N—1} ne{l:N—1}
n+3 n n 0
@ max 1}||€h *|Ino < egrl{?vxﬂ}lzm+n€{r§{§vxil}\3~|+|21cl7
A—tz max ah((0,56n+§),(0,5en+%))< max |27+ max |27 +|2%.
8 ne{1:N—-1} F 7 “ne{lin—13 ¥ nefun—1) K
This gives
S max 6 ER+a max 632 +At2 max  an((0,8¢'52), (0,8¢52))
dneftn—1y T T N o o TR etiN—1} " £ ERE
<3{ zn 221+ |20l |- 70
<3 pax anef“l?vX_l}‘ w1+ 121l (70)

Let us collect the results of Lemmas 5.7 and 5.8 and apply Young’s inequality to the upper bounds on Zj
and Z. We obtain

max |27 < Cy (|8yul? +[u)? + 9 max et
ne il 1 2ol = Co 10U e v ) CO([t1;tN 1], h) 8 nciiaqyl€h o
At?

n+2 n+2
ﬂne{lﬁ?vx—l}ah((o’ der ), (0,0ex %)),

for the space consistency error, and

n & 1
ne{mf}vx—u‘ZA < Cﬁ@2At4(Hagu”QLl([O;tN];LQ(Q)) + Hafu||200([o;t1v];L2(Q))) + gne{r?f]i\fx—l}lleh ? |l
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for the time consistency error, with constants C'y and C,. Using these two bounds and the bound on ZIOC

i

from Lemma 5.9 in (70) and rearranging the terms involving FI?VX }||éh 210s We obtain
ne{l: 1

1
—  max H66?+2

1 R +l
Ineli¥n 6+ g max }”eZ Mo < Cw(‘at“‘iwul,w];*,h> + |u|é0([t1;tN*1];*,h)>

4 ne{1:N-1
+ CHQQAt4(HatSuH%l([O;tN];L?(Q)) + ||3§1UH200([0;W];L2(Q)))
2
+Cic (|Uo|:h + }U(t1)|*7h + At4(Hafu||%:0([o;t1];L2(Q)) + @2||afu\%0([t0;t2];m(m)))

Taking the square root and reorganizing the terms gives

+1 n+i
pelax e *llo+  max 16" o < O {100l o)y + ulooos -1y }

+ CoaAP{ 19 ull e oz + ©l10Fullcogoamtizaay + Ol07ul L oy }-

which yields the claim.

6 Numerical results

In this section, we present the algebraic formulation of the fully discrete scheme (16) together with the initial
conditions (17), and we discuss some numerical results illustrating the theoretical findings on a test case with
analytical solution.

6.1 Algebraic formulation

Let Nt := dim(U}) and N := dim(l/l_’{-p) and let {¢;}1<i<n, {ti}1<i<n, be chosen bases of U4 and Z/{%O,
respectively. For all n € {0:N}, let (U%, U%) € RNT x RM7 be the vector of degrees of freedom of the fully
discrete solution %) on the chosen bases of Z/l%— and L{%O, and FT € RN7 the vector having components
((f(t™), di)q)1<i<n, . The algebraic realization of (16) amounts to

L[ MO0 UFT =20+ U L[ Arr Ars [ (UR) _[FR (1)
AZ| 0 0 - Arr Arr [\UZ) = 0 |

with A the symmetric definite positive stiffness matrix associated with the bilinear form a;, and M the (block-
diagonal) cell mass matrix. As the structure of the global mass matrix makes its definition irrelevant, U’ is
replaced by a “” in the acceleration term. The resolution of (71) proceeds in two steps for all n € {1:N —1}:

1. Compute U% by solving the linear system ArrU% = —Ar7U%, where U% is the data and U the
unknown.

2. Compute U?-H by solving /\/lU?Jrl = M((2U%} — U?fl + At?F2) — At?*(A77U% + A77U%). Since the
mass matrix M is block-diagonal, this linear system is very easy to solve.

We refer the reader to [36] for a computationally effective approach to perform the above two steps. The idea
is to perform an iterative process that converges rapidly while mildly affecting the CFL stability condition.
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For the first time step n = 0, the initial cell unknown UY- is the vector of degrees of freedom of uY- (see (17a)),
the initial face unknown Ug- is computed via the algebraic counterpart of (17b), i.e., by solving

ArrUs = —Ar7rUT, (72)
and the cell unknown at the first time step, U%—, solves
1 0 A At? 0 0

with VY- the vector of degrees of freedom of v (see (15)).

6.2 Verification of the space-time convergence order

Let us set Q := (0,1)2, the source term f(x,y,t) := 0, the initial conditions ug(z,y) := 0 and vo(z,y) =
sin(mz) sin(my), and a constant speed of sound p := 1. The solution to (1) is

1

The expected orders of convergence are At? in time, h**1 in space for the H'-error, and h**2 in space for the
L2-error (assuming that full elliptic regularity pickup is available). If the time step is taken so that it respects
the CFL condition, and the ratio % remains constant, the time discretization error dominates over the space
discretization error on the finest meshes, except for the H!-error in the lowest-order settings (k € {0,1}) and
the L2-error for k = 0. This phenomenon is illustrated in Figure 1, where the time step verifies At := 0.8nu~'h
(see the CFL condition (40)). The convergence rate of the L?-error for polynomial orders (k,1) = (0,0) and
the H!'-error for the polynomial orders (k,1) = (0,0) and (k,[) = (1,1) are unaffected. But for higher orders,
the optimal space convergence rate is observed on the coarse meshes, whereas a second-order decay rate
dictated by the time discretization error is observed on the finest meshes. The transition between the two
regimes is smooth.

sin(v/27t) sin(7z) sin(7y). (74)

-1
1073 - 10 l\.\.\.\.\.\-
5 —3
1075 10
1077 107°
10774 10-7 4
-8 (0,0), 2.0 -8 (0,0), 1.0
-1 Ea, 28 10-9 4 B (L1, 20
- (2,2), 19 -8 (2,2), 2.1
10-13 4 =(33),18 o-11 ] = (33),20
-8 (4,4), 1.7 —B- (4,), 1.8
T T T T
10! 102 10! 10?
(a) L*-error w.r.t the mesh size (b) H'-error w.r.t the mesh size

Figure 1: Convergence of the L?- and H!-errors at the final time as a function of the mesh size, polynomial
orders k € {0, 1,2, 3,4}, equal-order setting, T = 0.2, At = 0.8nu~"1h.

If the time step is taken to be constant for all the meshes in the sequence, but much smaller than the
critical time step, the time discretization error becomes negligible w.r.t the space discretization error and
higher convergence rates in space are recovered, see Figure 2. This shows (as expected) that, to balance space
and time discretization errors, the time step is typically set at a (much) smaller value than the one imposed
by the CFL stability condition.
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Figure 2: Convergence of the L?- and H!-errors at the final time as a function of the mesh size, polynomial
orders k € {0, 1,2,3,4}, equal-order setting, T = 0.2, At < h.
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