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Fast laser field reconstruction method based on a Gerchberg-Saxton algorithm with mode decomposition

Knowledge of the electric field of femtosecond, high intensity laser pulses is of paramount importance to study the interaction of this class of lasers with matter. A novel, hybrid method to reconstruct the laser field from fluence measurements in the transverse plane at multiple positions along the propagation axis is presented, combining a Hermite-Gauss modes decomposition and elements of the Gerchberg-Saxton algorithm. The proposed Gerchberg-Saxton algorithm with modes decomposition (GSA-MD) takes into account the pointing instabilities of high intensity laser systems by tuning the centers of the HG modes. Furthermore, it quickly builds a field description by progressively increasing the number of modes and thus the accuracy of the field reconstruction. The results of field reconstruction using the GSA-MD are shown to be in excellent agreement with experimental measurements from two different high-peak power laser facilities.

I. INTRODUCTION

High intensity femtosecond laser pulses generated through chirped pulse amplification [1] are frequently affected by intensity and wavefront aberrations and fluctuations originating from multiple causes, e.g. thermal effects or imperfections of optical systems, inhomogeneities in the amplifying crystals' doping [2], or air turbulence [3]. In addition, phase instabilities may result in pointing fluctuations and lack of symmetry of energy distribution in the focal volume [4,5].

An illustrative example of transverse asymmetry is shown in Fig. 1, where the measured fluence of a 23 TW, 38 fs laser pulse on the top row is compared to the calculated fluence of a cylindrically symmetric flattened Gaussian transverse laser field distribution [6] in the bottom row. Figure 1a) shows that even in the focal plane, the transverse fluence distribution is asymmetric. At a larger distance from the focal plane (Fig. 1b), the imperfections in the fluence distribution become even more pronounced.

In addition, spatio-temporal coupling (STC) of phase aberrations [7,8] reduce the quality of ultra-short high intensity laser pulses by increasing their duration and decreasing their peak intensity [8][9][10][11]. Due to the nonlinear nature of the interaction of high intensity lasers with plasmas, these imperfections can decrease the laser peak intensity in the focal plane [12] and degrade its symmetry [13], leading to lower performances e.g. for high harmonic generation [14] or laser wakefield acceleration (LWFA) [4,15,16]. These imperfections need to be mitigated in future applications of high intensity lasers like strong field quantum electrodynamics [START_REF] Piazza | Disclaimer : This manuscript is the accepted of the article with the same name[END_REF]18], where reaching ultra high intensities and stable focusing is crucial. The study (and correction [3,12]) of transverse aberrations requires intensity and wavefront measurements. However, measuring the wavefront of an intense, short laser pulse [19] is more difficult than measuring the transverse laser fluence. For this reason, numerical methods to reconstruct the laser pulse wavefronts from fluence measurements are of paramount importance.

An important class of algorithms to retrieve the laser field from fluence measurements in two (or more) transverse planes along the propagation axis originates from the Gerchberg-Saxton algorithm (GSA) [20][21][22][23][24]. In the basic formulation of the algorithm [20], the fluences measured at plane positions z 0 and z 1 (assuming a laser propagation along the z direction) are used to build a progressively more accurate estimate of the field phase at z 0 , starting from a random phase distribution at z 0 . The algorithm, which performs an alternating field reconstruction at the two planes, is repeated until a stopping criterion is met, e.g. reaching a certain number of iterations, or reaching a certain value of a chosen reconstruction error metric. In the original article presenting the GSA it is shown that this error will decrease with the number of iterations [20], however the rate of convergence Disclaimer : This manuscript is the accepted version of the article with the same name, published in JOSA B, Vol. 40, Issue 9, pp. 2450-2461 (2023). The published article is accessible at https://doi.org/10.1364/JOSAB.489884 is undefined. Modifications of the original algorithm can yield a quicker convergence [23]. Another important class of algorithms aims at reconstructing the field through an expansion with basis functions, e.g. the Nijboer-Zernike basis [25][26][27][28]. The algorithms in [29,30] use an expansion in Hermite-Gauss (HG) modes to reconstruct the HG modal content of a signal, under some assumptions (e.g. finite modal content, knowledge of the HG modes spot sizes). Since the analytical expression of the basis functions is known, these methods are often quicker than those derived from the GSA.

In this article, a hybrid field reconstruction method, called in the following Gerchberg-Saxton Algorithm with Modes Decomposition (GSA-MD), is presented. The GSA-MD combines field expansion in HG modes and some concepts of GSA algorithms, i.e. an iterative procedure, the phase extraction of the propagated field and the combination of this phase with the field amplitude measured at different planes. Whereas the original GSA [20] and e.g. the algorithm in [27] are limited to fluence measurements in only two planes, 3D GSA variants in multi-plane propagation problems have been demonstrated [24,31,32]. The GSA-MD can be used to reconstruct the electric field without any restriction on the number of planes. The GSA-MD addresses the uncertainty resulting from pointing instabilities affecting the fluence measurements by separating two problems: I) the field reconstruction, i.e. finding the coefficients in its HG modes decomposition, and II) the optimization of the choice of HG modes centers used in I) to reduce the reconstruction error.

Compared to previous versions of the GSA, the GSA-MD has several additional advantages. As discussed in the following section, the conceptual separation of the two problems I) and II) avoids a direct, computationally prohibitive field reconstruction procedure. It will be shown that, in cases of interest, the number of unknowns in the proposed method is considerably lower than the number of unknowns with a classic GSA. Other advantages of the GSA-MD are related to its flexibility. For example, depending on the type of field distributions, different techniques can be independently used to solve the two mentioned problems, e.g other analytically known paraxial basis functions instead of the Hermite-Gauss modes can be used to address problem I), and various optimization algorithms can be used to address problem II). Furthermore, using an expansion in HG modes in problem I) allows to choose the number of modes. It will be shown that this degree of freedom allows to perform a quick estimate of the HG modes coefficients with a low number of modes. This estimate can be subsequently refined using a higher number of modes, yielding an overall quicker field reconstruction. Finally, as it will be discussed in the following, the most computationally expensive steps of the GSA-MD can in principle be easily parallelized, since they act on independent HG modes. This is an advantage compared to the classic GSA, where the corresponding propagation steps are performed with Fourier transforms [20], which are not easily parallelized.

An example application of the GSA is LWFA [33,34], where it has been shown that including the GSAreconstructed laser field in Particle in Cell simulations [START_REF] Birdsall | Plasma Physics via Computer Simulation[END_REF] can greatly improve the agreement between simulations and measurements in the highly nonlinear regimes of laser-plasma interaction inherent to this field [15,16]. The application of the proposed GSA-MD to LWFA modeling has been first presented in [5]. In that reference it is shown that including a laser field reconstruction obtained with the GSA-MD in LWFA simulations considerably improves the agreement between simulated and measured energy-divergence electron spectra, compared to using simulations with ideal laser field distributions (as those in the bottom row in Fig. 1). Here, a more detailed description of the field reconstruction method used is reported. The GSA-MD in this article neglects the STC that may be present in the laser field. Future work may address the reconstruction of the laser field taking into account also these spatio-temporal imperfections.

The article is organised as follows. In the second section, an overview of the GSA-MD, including the description of the solutions to problems I) and II), is presented. In the third section, the results of the GSA-MD on two data-sets are shown. These two data-sets are made of fluence measurements at multiple planes performed at the Lund Laser Centre (LLC) and Apollon laser system in 2021. Disclaimer : This manuscript is the accepted version of the article with the same name, published in JOSA B, Vol. 40, Issue 9, pp. 2450Issue 9, pp. -2461Issue 9, pp. (2023)). The published article is accessible at https://doi.org/10.1364/JOSAB.489884

II. OVERVIEW OF THE FIELD RECONSTRUCTION METHOD

The proposed GSA-MD aims to reconstruct the laser field of an electromagnetic wave propagating in the z direction from experimentally obtained fluence images F exp (x, y, z k ), measured at different longitudinal distances z k from the focal plane and obtained from different shots of the same laser system, as illustrated in Fig. 2.

A laser pulse with carrier angular frequency ω 0 and with negligible STC, propagating in the z direction, can be described as a plane wave with transverse electric field E(x, y, z) and transverse complex envelope E(x, y, z) modulated by a temporal profile T t -z c :

E(x, y, z) = Re E(x, y, z)T t - z c exp iω 0 t - z c , (1) 
where c is the velocity of light in vacuum. Under the paraxial approximation, the laser field complex envelope can be decomposed as a sum of Hermite-Gauss (HG) modes:

E(x, y, z) = Nm,Nn m,n
C mn HG mn (x, x 0 , y, y 0 , z), (2) where the modes HG m,n (x, x 0 , y, y 0 , z) are orthonormal and N m and N n are the number of modes in the x and y directions respectively for the HG modes expansion. The centers of the HG modes in the x and y directions are respectively x 0 and y 0 . The values of these centers are not specified a priori, and are part of the unknowns for the GSA-MD.

The HG modes of Eq. ( 2) are defined as [START_REF] Siegman | Lasers[END_REF]: HG m,n (x, x 0 , y, y 0 , z) = HG m (x, x 0 , z) HG n (y, y 0 , z) exp [iΦ(z)]

HG m (x, x 0 , z) = A m h m √ 2 (x -x 0 ) w x (z) exp - (x -x 0 ) 2 w 2 x (z) × exp -ik 0 (x -x 0 ) 2 2R x (z) ; HG n (y, y 0 , z) = A n h n √ 2 (y -y 0 ) w y (z) exp - (y -y 0 ) 2 w 2 y (z) × exp -ik 0 (y -y 0 ) 2 2R y (z) ; w x (z) w 0,x = 1 + z Z x 2 ; w y (z) w 0,y = 1 + z Z y 2 ; A m = w x (z)2 m-1/2 m! √ π -1/2 ; A n = w y (z)2 n-1/2 n! √ π -1/2 ; R x (z) = z + Z 2 x z ; R y (z) = z + Z 2 y z ; Φ(z) = Φ x (z) + Φ y (z); Φ x (z) = m + 1 2 tan -1 z Z x ; Φ y (z) = n + 1 2 tan -1 z Z y , (3) 
where h k is the Hermite polynomial of order k. The waists w 0x = (2Z x /k 0 ) 1/2 , w 0y = (2Z y /k 0 ) 1/2 of the HG modes in the x, y directions are chosen small enough to let the mode field reach negligible values at the borders of the measured images, and large enough to have Rayleigh lengths Z x and Z y which allow propagation up to the measurement planes. They may not be equal to the waists of a Gaussian fit of the fluences. The plane z = 0 is chosen as the focal plane, i.e. where w x = w 0,x and w y = w 0,y . The uncertainty ∆ z on the focal plane position is taken into account in subsection 2 II A.

The real and imaginary parts of the HG coefficients C mn are the unknowns. Uncertainties in the laser fluence measurements arise from shot-to-shot fluctuations since transverse laser images taken at different positions with the same detector required different shots. The quality of the field reconstruction depends on the reproducibility of the laser properties from shot to shot. Therefore, the field reconstruction consists in fitting fluence images to infer the corresponding laser field's amplitude and phase, taking into account shot-to-shot wavefront and pointing fluctuations. In the following, this process is referred to as the reconstruction of the laser field.

The measured fluence images are preprocessed as follows: first the background value is subtracted, then fluence values below a fixed threshold are put to zero, and each image is smoothed by pre-projecting it on a high number of HG modes assuming a phase uniformly equal Disclaimer : This manuscript is the accepted version of the article with the same name, published in JOSA B, Vol. 40, Issue 9, pp. 2450-2461 (2023). The published article is accessible at https://doi.org/10.1364/JOSAB.489884 to zero. The energy distribution centroids in x, y are calculated for each position z k . Then, each measured image is recentered on its centroid. Finally, the fluence of the measured images is divided by a fixed normalizing energy value E norm .

The proposed GSA-MD aims at minimizing an error χ 2 associated to the field reconstruction, defined as:

χ 2 = Nimages-1 k=0 Npix x ,Npix y ix, iy (F exp (x, y, z k ) -F f it (x, y, z k )) 2 N images Npix x ,Npix y ix, iy F exp (x, y, z k ) , (4) 
where N pixx , N pixy are the number of pixels of the image in the x and y directions, F exp and F f it are the measured and reconstructed fluences, z k are the positions of the N images measured images used for the reconstruction. χ 2 in Eq. ( 4) quantifies the error between the measured fluence data and the reconstructed fluence images. Although other error metrics can be chosen, without loss of generality it is assumed in the following that the chosen error metric is the χ 2 in Eq. ( 4).

The evaluation of Eq. ( 4) is computationally expensive in typical conditions of interest, for example using 3 images with N pixx × N pixy = 1000 × 1000 pixels. Besides, the number of unknowns in Eq. ( 2), i.e. the real and imaginary parts of the reconstruction coefficients C mn , is 2 × N m × N n , with typical values of N m = N n of the order of 30, yielding 1800 unknowns. Furthermore, while the centers of the HG modes reconstruction of Eq. ( 2) in the plane z 0 can be fixed at the point of maximum fluence at z = z 0 , the error of the reconstruction depends also on the chosen HG modes centers (x 0,k , y 0,k ) in the other planes z k . Thus, the choice of these centers must be optimized as well. If they are counted as additional degrees of freedom in the field reconstruction, the total number of unknowns is 2 × (N images ) times larger. For the sake of comparison, it is worth noting that for a field reconstruction with a GSA, the number of unknowns (the phase values of each pixel) would be N pixx × N pixy , i.e. 10 6 in the previous example. Therefore, in these conditions a direct minimization of χ 2 , optimizing at the same time the HG coefficients C mn and the HG centers x 0,k , y 0,k would be too computationally expensive.

The GSA-MD proposed in this article separates the search of the HG coefficients C mn for given values of the HG modes centers (x 0,k , y 0,k ), and the search for the values of these centers that minimize the reconstruction error χ 2 . An additional advantage of this two-fold strategy is that the techniques used to address each of these two problems can be chosen independently. For example basis functions different from the HG modes could in principle be used to find the expansion coefficients, without changing the technique used to optimize mode centers.

This conceptual separation of the two mentioned problems is illustrated in Fig. 3, which gives an overview of the GSA-MD. The input of the GSA-MD is the fluence data F exp (x, y, z k ), measured in the transverse planes at position z k . After preprocessing the fluence data, an initialization step is performed, which consists in finding an initial approximation of the HG coefficients C mn starting from an initial phase ψ 0 (x, x 0,0 , y, y 0,0 ) and an initial value for the HG modes centers (x 0,k , y 0,k ).

Then, for fixed values of the HG modes centers (x 0,k , y 0,k ), the HG coefficients C mn estimates are improved iteratively. This update of the C mn coefficients is summarized in Algorithm 1 and detailed in the next section. The resulting reconstruction error χ 2 in Eq. ( 4) is then computed. Afterwards, the HG modes centers (x 0,k , y 0,k ) can be changed in order to reduce the error χ 2 , and the C mn are updated using these new centers. If the new χ 2 is lower than the minimum error χ 2 min found in this loop, the new χ 2 substitutes the minimum error χ 2 min . A stopping criterion for this loop is chosen, e.g. reaching a maximum number of loop iterations or when the minimum error χ 2 min is reduced below a desired value.

When the GSA-MD exits this loop, the resulting outputs will be values of the HG modes centers (x 0,k , y 0,k ) and of the HG coefficients C mn that can be used to reconstruct the electric field at the planes z k using Eqs.

(2), (3). centers (x0,k,y0,k) of the HG modes are kept fixed estimated Cmn coefficients are iteratively improved From initial phase and initial centers (x0,k, y0,k) of the HG modes, find initial estimate of the HG coefficients Cmn

ψ 0 -compute the fit error -if , then -stopping criterion is met? χ 2 χ 2 < χ 2 min χ 2 min = χ 2

Yes No

Center tuning with modes, search areas

N m × N n S k Change (x0,k, y0,k) to reduce the fit error χ 2

Initialisation

Outputs

Inputs

Measured fluence images at transverse planes In this section an iterative algorithm is presented, to find the HG coefficients C mn of Eq. ( 2) that fit the laser transverse electric field, once the HG modes centers (x 0,k , y 0,k ) and waists w 0,x , w 0,y are kept fixed, i.e. the algorithm in the yellow rectangle of Fig. 3.

F exp (x, y, z k ) z = z k -centers (x0,k, y0,k) of
Assuming that no STC are present in the laser field, once the temporal profile T (t -z/c) in Eq. ( 1) for the laser field is known (or a hypothesis on its shape is assumed), a linear relation between the experimentally measured fluence F exp (x, y, z) and local intensity I(x, y, z) can be easily obtained, i.e. F exp (x, y, z) = I(x, y, z) • τ , where τ is a characteristic duration of the laser pulse and the local intensity is defined as

I(x, y, z) = cε0 2 |E(x, y, z)| 2 .
A complex envelope E of the transverse electric field at position z can thus be defined from a phase map ψ(x, y) and an experimental fluence map F exp (x, y, z):

E(x, y, z) = 2 cτ ε 0 F exp (x, y, z 0 ) exp{[iψ(x, y)]}, (5) 
where ε 0 is the vacuum permittivity.

As in the classic GSA, this operation is performed at the available measurement planes combining the intensity I, expressed in this article in terms of measured fluence F exp after assuming a temporal profile, and the estimated phase map ψ(x, y).

Using this definition, the calculation of the HG coefficients C mn for the field reconstruction is summarized by the pseudocode in Algorithm 1, which is described in the following.

First, an initial estimate of the coefficients is computed (step 1). This first estimate can be obtained from a first projection of 2 cτ ε0 F exp (x, y, z 0 ) exp [ψ 0 (x, x 0,0 , y, y 0,0 )] over the HG modes with an initial choice of the modes centers x 0,k , y 0,k and initial phase ψ 0 (x, x 0,0 , y, y 0,0 ).

For the results presented in this article, to improve the convergence of the field reconstruction, an initial quadratic phase ψ 0 (x, x 0,0 , y, y 0,0 ) was used (similar to the initial phase proposed in [START_REF] Pang | [END_REF]):

ψ 0 (x, x 0,0 , y, y 0,0 ) = k 0 (x -x 0,0 ) 2 + (y -y 0,0 ) 2 2∆ z 1 + k0 2 w 2 0 ∆z 2 , (6) 
where w 0,Gauss is the estimated waist of a Gaussian fit of the measured fluence map F exp (x, y, z 0 ). This initial phase represents the phase of a Gaussian beam with waist w 0 and carrier frequency ω 0 , at a distance ∆ z , which is the uncertainty on the focal plane z position. After this initialization, at each iteration iter of the algorithm, the estimated expansion of E(x, y, z k ) in HG modes HG mn (x, x 0,k , y, y 0,k , z k ) is computed at each position from z 0 to z Nimages-1 , using the known expressions Algorithm1 Algorithm to find the coefficients C mn of the Hermite-Gauss modes HG mn from N images experimental fluence images F exp measured at planes z k , with k = 0, ..., N images -1. The HG modes centers (x 0,k , y 0,k ) are set at the start of the algorithm and kept fixed. Steps 6-9 are repeated for each of the mode indices m, n. This algorithm corresponds to the yellow rectangle of Fig. 3 .

procedure Field reconstruction 1) Find an initial estimate of Cmn; for (iter = 0; iter < Niter; iter + +) do of the HG modes [START_REF] Siegman | Lasers[END_REF] (Eq. ( 3)) and the estimated coefficients C mn , using Eq. (2) (step 2). The phase map ψ(x, y) is then found as arg [E(x, y, z k )] (step 3).

for (k = 0; k < Nimages; k + +) do 2) E(x, y, z k ) = = m,n CmnHGmn(x, x 0,k , y, y 0,k , z k ); 3) ψ(x, y) = arg [E(x, y, z k )]; 4) Enew(x, y, z k ) = = 2 cτ ε 0 Fexp(x, y, z k ) exp{[iψ(x, y)]}; 5) δ(x, y, z k ) = = 2 cτ ε 0 Fexp(x, y, z k ) -|E(x, y, z k )| max 2 cτ ε 0 Fexp(x, y, z k ) ; Enew(x, y, z k ) = Enew(x, y, z k ) exp{[δ(x, y, z k )]}; 6) C mn,k = Proj[Enew(x, y, z k ) , HGmn(x, x 0,k , y, y 0,k , z k )]; 7) C mn,k = C mn,k Ftot k |C mn,k | 2 ; 8) Cmn = 1 2 (Cmn + C mn,k ); 9) Cmn = Cmn Ftot k |Cmn| 2 ; end for if (iter%5 == 0) and (iter ≥ 5) then 10) χ 2 grad = χ 2 (iter) -χ 2 (iter -5) χ 2 (iter -5) ; if (χ
In step 4, an updated value of the complex electric field E new can be estimated using the measured fluence F (x, y, z k ) and the phase ψ(x, y), using Eq. ( 5).

The exponent δ(x, y, z k ) of an exponential correction factor exp [δ(x, y, z k )] is calculated on each point of the grid. The resulting correction factor is equal to one at the points where the measured and reconstructed field Disclaimer : This manuscript is the accepted version of the article with the same name, published in JOSA B, Vol. 40, Issue 9, pp. 2450-2461 (2023). The published article is accessible at https://doi.org/10.1364/JOSAB.489884 amplitude are equal and its value is higher where the two amplitudes differ. The field E new is multiplied by this correction factor (step 5). In [38] it has been shown that this correction improves the convergence of a GSA as well as the signal to noise ratio of its reconstruction.

The projection of the corrected E new on the HG modes at z k gives a new estimate C mn,k for the HG coefficients (step 6), which is combined with the previous estimate of C mn (step 8).

The projection of a function f (x, y, z k ) on the HG modes at z k mentioned in step 6 is defined as:

Proj[f (x, y, z k ), HG mn (x, x 0,k , y, y 0,k , z k )] = = Lx/2 -Lx/2 Ly/2 -Ly/2 f (x, y, z k )HG * mn (x, x 0,k , y, y 0,k , z k )dx dy,( 7 
)
where (L x , L y ) are the data grid length along each axis.

Normalizations are performed on the estimated coefficients in the intermediate steps 7 and 9 to ensure that the total fluence F tot remains constant.

Steps 6-9 are repeated for each index m, n of the modes used in the field reconstruction.

In step 10), starting from iter = 0 and every 5 iterations, the χ 2 error is evaluated. If at a given iteration iter, the error gradient χ 2 grad is less than 2%, then Algorithm 1 loop is stopped and the last iteration is recorded as iter break .

It is worth noting that the most computationally expensive operations of the algorithm are step 2, i.e. the reconstruction of the field with propagated HG modes, and step 6, i.e. the projection over the HG modes. This consideration highlights an advantage of the GSA-MD compared to the classic GSA: these two steps can be easily parallelized, since the treatment of each mode can be performed in parallel, with step 2 only requiring a final summation of the contribution of each mode.

The use of mode expansion yields two additional advantages compared to a classic GSA. First, in principle another set of basis function can be used instead of the HG modes, depending on the application. Second, the number of modes can be chosen in order to find the desired compromise between reconstruction accuracy and computation time. This latter flexibility will be illustrated in section 2II B.

As stated at the start of this subsection, in the algorithm it was assumed that the HG modes centers (x 0,k , y 0,k ) were set. The next subsection describes how the choice of these centers can be improved to reduce the reconstruction error.

B. Tuning the centers of the Hermite-Gauss modes

The error of the reconstruction algorithm of the section 2II A is sensitive to the choice of the HG mode centers (x 0,k , y 0,k ). Thus, as shown in Fig. 3, the field reconstruction in Algorithm 1 can be repeated with different (x 0,k , y 0,k ) chosen within a search area S k at each plane z k (see Fig. 2) in order find their values which minimize (or at least reduce) the reconstruction error.

The separation of the HG coefficient estimation in Algorithm 1 from this tuning of the HG mode centers (x 0,k , y 0,k ) allows to choose among many optimization algorithms to minimize the error χ 2 . For example, Bayesian optimization [START_REF] Frazier | A tutorial on bayesian optimization[END_REF] was used for the results presented in section III. In the following, this general minimization process is referred to as the center tuning, which is stopped when a chosen criterion is met, e.g. when a certain target value of χ 2 is reached, or when a total number of iterations N tuning is completed.

In general the quality of the field reconstruction is sensitive to the combination of the main parameters of the GSA-MD, namely N m , N n , N iter , N tuning and the size of the projection grid. Increasing these parameters yields a longer computing time for the field reconstruction in Algorithm 1 and the center tuning. They can be set depending on the quality of the available fluence data (e.g. degree of asymmetry) in order to find a compromise between reconstruction accuracy and computing time required by the minimization of the error χ 2 .

As previously mentioned, decomposing the field with HG modes introduces a flexibility in the choice of the number of modes N m , N n (along the x and y directions respectively) used for the reconstruction in Algorithm 1. This flexibility can be used to speed-up the center tuning, as explained in the next section.

III. RESULTS

In this section the results of the GSA-MD, applied on laser data collected at the LLC (peak power in the data 23 TW, pulse duration 38 fs), and on the Apollon laser system in the commissioning phase (peak power in the data 400 TW, pulse duration 25 fs), are presented.

For both campaigns, fluence measurements were performed using a CCD camera equipped with a microscope objective, which was translated along the laser axis in the focal volume in vacuum. For these measurements, the laser beam was fully amplified to nominal energy, then attenuated by several reflections from glass surfaces before compression, in order to characterize the quality of the high intensity beam. At every position of the camera along the laser axis, multiple measurements were made in order to evaluate the shot-to-shot fluctuations of the laser.

The pointing stability for both data-sets is characterised by the shot-to-shot fluctuations of the fluence centroids normalized by the estimated laser waist δx/w 0,Gauss , δy/w 0,Gauss , where w 0,Gauss is the estimated Gaussian fit's waist. For the LLC data-set, δx/w 0,Gauss = 16 % and δy/w 0,Gauss = 8 %, with w 0,Gauss = 15 µm. For the Apollon data-set, the shot-toshot pointing instability is higher: δx/w 0,Gauss = 100 % and δy/w 0,Gauss = 40 %, with w 0,Gauss = 16 µm. It will be shown that the GSA-MD can reconstruct the laser Disclaimer : This manuscript is the accepted version of the article with the same name, published in JOSA B, Vol. 40, Issue 9, pp. 2450-2461 (2023). The published article is accessible at https://doi.org/10.1364/JOSAB.489884 field from the fluence data of both these two different laser systems.

Figure 4 describes the procedure used to obtain the results presented in this section, for the LLC and Apollon data-sets. This procedure exploits the GSA-MD's flexibility in choosing the number of modes for the field reconstruction. Performing the the center tuning intro-

Educated Guess: center tuning with low number of HG modes

Initialisation of Educated Guess

Output of Educated Guess
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Measured fluence images at transverse planes

F exp (x, y, z k ) z = z k
Initial estimate for the centers (x0,k, y0,k) of the HG modes

Refined Search: center tuning with high number of HG modes

Initialisation of Refined Search

Outputs of Refined Search

From initial phase and centers (x0,k, y0,k) of the HG modes, find initial estimate of the HG coefficients Cmn

ψ 0
From initial phase and initial centers (x0,k, y0,k) of the HG modes, find initial estimate of the HG coefficients Cmn ψ 0 centers (x0,k, y0,k) of the HG modes, estimate of the HG modes coefficients Cmn Electric field at positions can be reconstructed z = z k FIG. 4 : Schematic description of the tuning of HG mode centers that was used to reduce the minimum field reconstruction error χ 2 min for the LLC and Apollon data-sets.

duced in Fig. 3 with a high number of HG modes would have been computationally expensive. Thus, the center tuning has been separated in two successive phases (blue dashed rectangles of Fig. 4) that share the same Algorithm 1 and minimization method for the error χ 2 (Bayesian Optimization in this case), but with a different number of HG modes N m , N n . The first phase, referred to as the Educated Guess (EG), consists of a center tuning with N tuning,EG iterations, each using N m,EG and N n,EG modes set low enough to quickly execute Algorithm 1. This EG phase can be initialized setting x 0,k = y 0,k = 0 as initial centers and Eq. 6 as initial phase ψ 0 (x, 0, y, 0). This EG phase yields an initial estimate of the HG centers x 0,k and y 0,k . The phase ψ 0 (x, x 0,0 , y, y 0,0 ) of Eq. ( 6) is reinitialized with the optimized centers (x 0,0 , y 0,0 ) tuned in the EG. Using these centers, the phase and F exp (x, y, z 0 ), a projection of 2 cτ ε0 F exp (x, y, z 0 ) exp [iψ 0 (x, x 0,0 , y, y 0,0 )] over the HG modes yields a more accurate estimate of the C mn coefficients, even with a different number of modes. This estimate is used to initialize a second center tuning phase, called Refined Search (RS), which is performed with a higher number of HG modes N m,RS and N tuning,RS cen-ter tuning iterations, using a narrower search area for the HG centers.

For the results with the LLC data-set, in Eq. ( 6), w 0 = 15 µm and ∆ z = 0.25 mm. For the Apollon dataset, w 0 = 16 µm and ∆ z = 0.3 mm. For both data-sets, w 0,x = w 0,y = 20 µm has been used for the HG modes waists.

The implementation of the GSA-MD used for this article is written in Python. The most time consuming steps of Algorithm 1, steps 2) and 6), are compiled and parallelized with Numba.

To obtain the presented results, the HG mode center tuning in both EG and RS phases was performed through Bayesian Optimization [START_REF] Frazier | A tutorial on bayesian optimization[END_REF] of the function χ 2 defined in Eq. ( 4). At each iteration of the Bayesian Optimization, multiple values of the HG centers are chosen in parallel to execute Algorithm 1 and compute the corresponding values of χ 2 . Each parallel execution of Algorithm 1, corresponding to different values of the HG centers, is distributed between the available computing threads. In the Bayesian Optimization algorithm, these new values of the HG centers are chosen within the search areas S EG , and S RS , for the Educated Guess and Refined Search, respectively. Each evaluation of χ 2 corresponding to different values of the HG centers is used by the Bayesian Optimization algorithm to build a surrogate model for the function χ 2 . The probability distribution of possible χ 2 values is modeled by a Gaussian Process with mean and standard deviation. The covariance matrix of the process, or kernel, defines the correlation between the evaluated points χ 2 score and the estimated values for non-evaluated points. The minimum error χ 2 min is updated each time a new minimum for the error χ 2 is found during the iterations of the error minimization process.

In both EG and RS phases, the Bayesian Optimization uses an implementation of the standard linear regression model with Gaussian noise introduced in Algorithm 2.1 of [START_REF] Williams | Gaussian processes for machine learning[END_REF]. The "1.0 * RBF(1.0)" kernel, present in the Python library scikit -optimize [START_REF] Head | [END_REF], was used, with RBF being the radial basis function kernel. To choose the next candidate centers to evaluate, an acquisition function is used, which calculates the point with the optimum combination of the mean and uncertainty values from the Gaussian process via a combination of the Expected Improvement, Negative Probability of Improvement and Lower Confidence Bound acquisition functions described in [START_REF] Shahriari | Proceedings of the IEEE[END_REF]. Based on a scoring value of these functions, one of the proposed centers is chosen for the evaluation. The Bayesian Optimization is initiated with skopt.Optimizer, ξ = 0, which skews heavily the Expected Improvement towards exploitation of previous evaluated points. The other parameters are fixed to their default values in the scikit -optimize library. Table I summarizes the parameters of the two data-sets and the parameters used for the reconstruction, described also in the following subsections. The results of the GSA-MD applied on the two data-sets will be presented.
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A. Field reconstruction for the LLC data-set With the LLC system, the average energy per shot collected in 2021 for the data used in this article is 872 mJ, for an average laser pulse duration of 38 fs, which represents a peak power P 0 = 23 TW. The central wavelength is λ 0 = 0.8 µm, and the waist of a Gaussian fit of the data measured in the focal plane is estimated at w 0,Gauss = 15 µm, which sets the Rayleigh length of the Gaussian fit to z R ≃ 0.9 mm. TABLE I : Data-sets and reconstruction parameters: carrier wavelength λ0, peak power P0, mean energy per laser shot, shot-to-shot relative pulse centroid position fluctuations δ x/w0,Gauss and δ ȳ/w0,Gauss, position z of the fluence measurement planes (z = 0 is the focal plane), number of pixels in the fluence images, pixel size, estimated Gaussian fit's waist w0,Gauss, uncertainty of the focal plane position ∆z, waists w0,x = w0,y for the HG modes, number of modes Nm and Nn in the x and y direction for the EG (RS) phase Nm,EG, Nn,EG (Nm,RS, Nn,RS), search area SEG (SRS) for the centers of the EG (RS) phase, number of iterations Niter for Algorithm The LLC data-set used for the algorithm is a set of 4 transverse fluence profiles F exp (x, y, z k ) at z 0,1,2,3 = 0, 500, 1000 and 1500 µm. For a given position z k , the fluence profile F exp (x, y, z k ) is randomly selected among 15 individual shot measurements for k ̸ = 2 and 17 shots for k = 2.

For each individual shot, the average background over a 100 × 100 pixels region far from the transverse focal spot energy has been subtracted. Then, for each averaged image, the fluence has been filtered setting values below 1 % of the absolute maximum to zero. Each measured distribution has then been smoothed by projecting them onto HG modes with N m = N n = 40. The projecting box over which the HG modes are fitted is a square grid of 351 × 351 pixels (397 µm ×397 µm) centered on the centroid of the fluence map in the focal plane (z = z 0 ). The size of the box is determined to ensure that the HG modes, whose characteristic transverse extension scales with w 0,x √ m, w 0,y √ n in the transverse directions, decay to 0 before reaching the grid boundaries in the plane further from focus.

For the Educated Guess, N tuning,EG = 300, N m,EG = N n,EG = 10 and a search area S EG = ( 20 µm× 20 µm), centered around the centroid of the fluence distribution at z = z 0 was chosen.

For the Refined Search, N tuning,RS = 300, N m,RS = N n,RS = 30 and a search area S RS = ( 10 µm× 10 µm) centered around the calibrated centers found by the Educated Guess were chosen.

The final results of the GSA-MD calculation for the LLC data-set are shown in Figs. 5 and6.

Figure 5 In Figure 6 the measured fluences in the z k planes and the corresponding reconstructed fluences are compared on 1D plots, for the data shown in Fig. 5. For each z k position, the fluence is plotted along the axis x (top panel) and axis y (bottom panel) directions, where the maximum measured fluence lie. Each line plot in the x (resp. y) direction is an average over 3 pixels in the y (resp. x) direction. The maximum relative differences on the measured fluence's amplitude in x and y are 2.4% at z 0 , 10% at z 1 , 9.2% at z 2 and 2.7% at z 3 , which shows a good agreement in high intensity areas.

The evolution of the minimum error χ during the center tuning is plotted for the EG and RS phases successively in Figure 7. The tuning of the HG centers leads to a reduction of χ 2 min from 2.26 × 10 -3 to 2.05 × 10 -3 during the EG phase, which corresponds to a 9% reduction. Using the optimized centers (x 0,k , y 0,k ) obtained with the EG as input of the RS yields χ 2 min = 2.02 × 10 -3 at the start of RS the phase. This sudden reduction of χ 2 min between the end of the EG phase and the start of the RS phase is due to the higher number of HG modes used in the RS, which yields a more accurate field reconstruction and thus a lower χ 2 min . The calculated HG coefficients at the end of the Refined Search can be used to quantify the degree of asymmetry of the data-set. For N m = N n = 10, the partial sum During the RS, χ 2 min decreases from χ 2 min = 2.02 × 10 -3 to χ 2 min = 1.89 × 10 -3 , which corresponds to a 6% reduction. This shows that for this data-set, the EG alone is sufficient to find HG centers yielding a minimized error.

It is important to use a high number of modes for a better reconstruction, as shown by the gap between the end of EG and start of RS. To find the optimum centers with an RS phase, it may be necessary to adjust the parameters of the Bayesian Optimization itself to minimize the computational cost of the RS. For the LLC data-set, both the EG and RS phases to obtain the results presented in Figs. 5, 6, 7 were performed on a laptop with CPU Intel i7-12700h, 64 GB RAM. The Bayesian Optimization phases were performed with 3 concurrent working threads. In the EG phase, the required computing time was 19 minutes, and 42 minutes during the RS phase. 

B. Field reconstruction for the Apollon data-set

For the Apollon data-set, the average shot energy is 4.8 J, for an average laser pulse duration of 25 fs, which represents a peak power P 0 = 400 TW. The central wavelength is λ 0 = 0.8 µm, and the waist of a Gaussian fit of the data measured in the focal plane is estimated at w 0,Gauss = 16 µm, which sets the Rayleigh length of the Gaussian fit to z R ≃ 1 mm. The Apollon data-set to reconstruct is a set of 3 individual transverse fluence distributions F exp (x, y, z k ) at z 0,1,2 = 0, -1800, 1200 µm. Note that with this data-set the z 0 is the focal plane position, which is not the first position available on the propagation axis. Due to high shot to shot fluctuations, for a given position z k , the fluence profile F exp (x, y, z k ) has been picked randomly among 4 images for k = 0, and among 2 images for k ̸ = 0. The set of images over which the GSA-MD was performed is the same as in [5]. The same process as the one used for the LLC data-set has been performed.

The same GSA-MD with Bayesian Optimization of the HG centers used for the LLC data-set was applied to the data of the Apollon Commissioning phase. The size of the projecting grid was set at 301×301 pixels, and number of modes in the RS phase to N n = N m = 40.

Compared to the LLC data-set, the relative pointing instability of the Apollon data-set is of the order of seven times larger (see Table I). Thus, the search areas for the center tuning were chosen to be broader intervals compared to the search areas with the LLC data-set: S EG = ( 100 µm× 100 µm) centered around the centroid of the fluence distribution at z = z 0 , and S RS = ( 20 µm× 20 µm) centered around the calibrated centers found by the Educated Guess. In both EG and RS phases, the number of iterations for the center tuning was set to N tuning,EG = N tuning,RS = 300.

The results of the GSA-MD with HG centers optimization as well as the convergence of χ 2 for the Apollon data-set are displayed in Figs. 8, 9, 10 respectively. For this application of the GSA-MD, again parallelized over 3 threads on the same laptop used with the LLC data-set, the EG phase took 18 minutes and the RS phase took 57 minutes.

In Figure 8, the 2D comparison between the measured and reconstructed fluences shows a good agreement in the energy distribution of measurements and reconstructions.

In Figure 9, the comparison between measured 1D profiles and reconstructed profiles at the measured fluence's maximum shows a good agreement in the amplitude. The maximum relative differences on the measured fluence's amplitude in x and y are 2.7% at z 0 , 2.9% at z 1 and 0.8% at z 2 .

In Figure 10, the evolution of the minimum error χ 2 min over the center tuning process is reported. The relative χ 2 min gap when going from the EG to RS phase at n tuning = 300 is larger than for the results with the LLC data-set (see Fig. 2 reaches only 90% of the sum obtained using all HG coefficients, while for the LLC data-set this number reaches 97%. This highlights the importance of using a high number of HG modes used for the GSA-MD calculation, especially in the RS. In this later phase, χ 2 min is decreased by 18%, which is on par with the decrease of the EG (23%). In comparison to the LLC data-set, the Refined Search phase of the Apollon Disclaimer : This manuscript is the accepted of the article with the same name, published in JOSA B, Vol. 40, Issue 9, pp. 2450-2461 (2023). The published article is accessible at https://doi.org/10.1364/JOSAB.489884 data-set GSA-MD has a quicker convergence of the reconstruction error. The difference stems from a higher sum share when fixing N m , N n = 10 for the LLC data-set.

C. Comparison with a version of the Gerchberg-Saxton algorithm without modes decomposition

In this section the performances of the GSA-MD are compared to those of a version of the GSA that uses the Fresnel Transform for the propagation of the electric field [START_REF] Zalevsky | [END_REF]. The flowchart of this implementation is the same as in the 3D Gerchberg-Saxton variant of [24], except for the amplitude constraint which here is Step 5) of Algorithm 1. To compare the results of the GSA-MD with this GSA version (for brevity referred to as "GSA" in the following), the Apollon data-set was used. The GSA has been performed with z 0 defined as the reference plane, and z 1,2 as the image planes. The GSA-MD has been performed with N m = N n = 40 and without origin tuning, and with N m = N n = 40 and origin tuning. The same maximum number of iterations, i.e. N iter = 50 was set for the GSA and for the Algorithm 1 for the GSA-MD.

The results for the GSA and the 2 runs of GSA-MD (without and with origin tuning) are displayed in Fig. 11. k was measured for each plane. It is defined as :

Although the reconstructions displayed in

χ 2 k = Npix x ,Npix y ix, iy (F exp (x, y, z k ) -F f it (x, y, z k )) 2 Npix x ,Npix y ix, iy F exp (x, y, z k ) . (8) 
By definition χ 2 defined in Eq. 4 is the average of the errors χ 2 k of all planes, i.e.

χ 2 = 1 N images Nimages-1 k=0 χ 2
k . The performances of the GSA and of the GSA-MD without and with origin tuning are reported in Table II. Note that some of the data reported in the third column of Table II appear in the third column of Table I.

The GSA-MD with N m = N n = 40 and no origin tuning yields a χ 2 error 9% lower than the GSA variant. With the origin tuning, the χ 2 error of the GSA-MD becomes 35% lower. Furthermore, the reconstructed profiles in z 1 and z 2 of Fig. 11.(b) are noisier than their GSA-MD counterparts. This difference results into higher values of χ 2 1 and χ 2 2 . The difference between the maximum χ 2 k and the minimum χ 2 k across the planes is equal to 89%, 51%, 39% of the average error χ 2 for the GSA, GSA-MD without and with origin tuning respectively. To summarize, the GSA-MD without origin tuning and N m = N n = 40 has an execution time of the order of ten seconds, while the GSA has an execution time of 3.8 s. With N m = N n = 10, the GSA-MD without origin tuning performs in a shorter execution time of 2.7 s and χ 2 = 3.2 × 10 -3 (this case is not included in Table II and Fig. 11). Additionally, the considered GSA-MD results with N m = N n = 40 yield a lower reconstruction error, a more uniform distribution of the reconstruction errors χ 2 k across the planes, and smoother distributions in z 1,2 . Using the origin tuning in GSA-MD makes the distribution of the reconstruction errors χ 2 k even more uniform across the planes.

IV. CONCLUSIONS

A fast, flexible Gerchberg-Saxton algorithm with Hermite-Gauss mode decomposition to reconstruct the laser field was presented. In this algorithm, as in a 3D Gerchberg-Saxton Algorithm, the fluence data from multiple planes is used to iteratively build a description of the laser pulse (amplitude and phase). This knowledge can be used to study, and possibly correct, the imperfections of high intensity laser pulses and their effect in laser-plasma interaction.

Compared to a Gerchberg-Saxton algorithm using propagators of Fourier transforms, the use of modes in the proposed algorithm introduces some flexibility. Since the measured fluences come from different shots, often with wavefront and pointing instabilities, tuning the centers of the modes allows to reduce the error associated to the field reconstruction. Changing the number of modes allows to reach the desired compromise between reconstruction error and required computation time for the reconstruction.

These features of the algorithm have been demonstrated showing the reconstruction of the laser field of two very different high intensity lasers, the Lund Laser Centre (LLC) system and the Apollon facility in the com- missioning phase. The results of the presented algorithm with the two data-sets display a good agreement between measured and reconstructed fluences. The reconstruction of the electric field needed approximately 1 hour and 1 hour 15 minutes on a laptop for the LLC, and Apollon data-sets, respectively. It has been shown that with the Apollon data-set and using 40 HG modes in both directions, the GSA-MD can yield a field reconstruction less noisy than a Gerchberg-Saxton algorithm without modes decomposition. In this comparison, a smaller reconstruction error and a more uniform distribution of this error across the planes were obtained, both with and without origin tuning. Without origin tuning, the GSA-MD with 40 HG modes can have an execution time of the order of ten seconds, and of a few seconds with a lower number of modes.

The presented algorithm can thus become a valuable tool for the study, and possibly the correction in the long term, of the transverse imperfections of high intensity laser systems with femtosecond pulses.

FIG. 1 :

 1 FIG. 1 : Top row: an example of high intensity laser fluence map measured in an experiment : (a) at focus -(b) at 1500 µm from the focal plane. Bottom row: fluence corresponding to a 10th order Flattened Gaussian laser field distribution with the same energy : (c) at focus -(d) at 1500 µm from the focal plane. At each position, the maximum fluence has been normalized to 1.

FIG. 2 :

 2 FIG. 2 : Example of set of 3 fluence images Fexp(x, y, z k ) and notations used for the GSA-MD calculation: z axis is the propagation axis originating from the center of energy of an image chosen as a reference (here k = 0). White dashed line are the search areas S k defined for the mode center tuning described in subsection 2 II B. The mode centers in plane k, (x 0,k ,y 0,k ), are searched within S k and do not necessarily lie on the same z axis. The fluence images come from different laser shots. The plane at z = z0 is the focal plane. In this case it is the position of the first available measurement along the propagation axis, but in the general case the position z = z0 may lie between the positions z k of other measurement planes.

FIG. 3 :

 3 FIG.3: Schematic overview of the proposed GSA-MD to reconstruct the laser field. The yellow rectangle contains Algorithm 1, detailed in Section 2II A. The tuning of the HG mode centers (blue dashed rectangle), performed to reduce the reconstruction error χ 2 , is described in Section 2II B.

  shows the measured fluence images and the reconstructed fluence distributions at four positions along the propagation axis. Comparison of the images shows that the main features of the LLC data-set are well reconstructed by the GSA-MD calculation, in particular the asymmetries of the distribution at z 2 = 1.1 z R [Figs. 5 e), f)] and z 3 = 1.7 z R [Figs. 5 g), h)].

FIG. 5 :

 5 FIG. 5 : Measured fluence distribution of the LLC data-set (upper row) and corresponding reconstructed distributions after center tuning (lower row). From left to right, the positions of the image planes along the propagation axis are : a, b) z0 = 0 µm; c, d) z1 = 500 µm (0.6 zR); e, f) z2 = 1000 µm (1.1 zR); g, h) z3 = 1500 µm (1.7 zR). For each position z k , the fluence has been normalized to the maximum of the corresponding measured fluence.

2 FIG. 6 :

 26 FIG. 6 : Fluence profiles along the x (upper row) and y (lower row) directions, averaged over 3 pixels (3.39 µm) centered around the measured fluence maximum's position in y and x. Each profile has been normalized to the measured fluence maximum at z k . For a given position z k , the blue dashed line is the measured fluence from the LLC data-set and the red dashed line is the reconstructed fluence profile. From left to right, relative positions to the focal plane are : a, b) z0 = 0 µm; c, d) z1 = 500 µm (0.6 zR); e, f) z2 = 1000 µm (1.1 zR); g, h) z3 = 1500 µm (1.7 zR)

  the sum obtained using all HG coefficients.

FIG. 7 :

 7 FIG. 7 : Evolution of the minimum error χ 2 min obtained during the center tuning of the GSA-MD applied to the LLC data-set as a function of the tuning iteration ntuning, with Niter = 50 in Algorithm 1 for both the EG and RS phase. The blue curve is the evolution of χ 2 min in the EG phase with Nm = Nn = 10 and the red curve is the evolution of χ 2 min in the RS phase with Nm = Nn = 30.

FIG. 8 :FIG. 9 :

 89 FIG. 8 : Measured fluence distribution of the Apollon dataset (upper row) and corresponding reconstructed distributions after the center tuning (lower row). From left to right, the positions of the image planes along the propagation axis are : a, b) z1 = -1800 µm (-1.8 zR); c, d) z0 = 0 µm; e, f) z1 = 1200 µm (1.2 zR). For each position z k , the fluence has been normalized to the maximum of the corresponding measured fluence.

  7), due to the greater difference in the number of HG modes used in the EG and RS phase. For the Apollon data-set, setting N m = N n = 10, the partial sum Nm m=0 Nn n=0 |C m,n |

  Figs. 11.(b)-(d) are qualitatively similar, the reconstructed fluence distributions obtained with the GSA in z 1 and z 2 of Fig. 11.(b) are noisier than the ones from Figs. 11.(c) and (d) obtained with the GSA-MD. To quantify this noise across the planes z k , the error χ 2

Disclaimer:

  FIG. 11 : Reconstructed distributions for the Apollon dataset. a) measured fluence distributions; b) fluence distributions reconstructed with the GSA; c) fluence distributions reconstructed with the GSA-MD and Nm = Nn = 40, without origin tuning; d) fluence distributions reconstructed with the GSA-MD, Nm = Nn = 40 and origin tuning. From left to right, the positions of the image planes along the propagation axis are : z1 = -1800 µm (-1.8 zR), left column; z0 = 0 µm, middle column; z1 = 1200 µm (1.2 zR), right column.

TABLE II :

 II Performances on the Apollon data-set of the GSA and of the GSA-MD without and with origin tuning. The value χ 2 k is the value of the reconstruction error in the plane z k . Note that the reported total times for the GSA-MD were obtained using the stopping criterion on the error gradient in Algorithm 1. For the GSA-MD without origin tuning, iter break = 45. With origin tuning, this value varies at each origin tuning iteration.

	Parameter GSA	GSA-MD	GSA-MD
			(Nm,n = 40,	(Nm,n = 40,
			without origin tuning) with origin tuning)
	Niter	50	50	50
	Total time 3.8 s	13.6 s	1h15 min
	χ 2 (×10 -3 ) 2.50	2.28	1.61
	χ 2 0 (×10 -3 ) 1.94	2.76	1.98
	χ 2 1 (×10 -3 ) 3.89	2.48	1.52
	χ 2 2 (×10 -3 ) 1.67	1.60	1.35
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