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A B S T R A C T

Global waste production is anticipated reach to 2.59 billion tons in 2030, thus accentuating issues of environ-
mental pollution and health security. 37 % of waste is landfilled, 33 % is discharged or burned in open areas, and 
only 13.5 % is recycled, which makes waste management poorly efficient in the context of the circular economy. 
There is, therefore, a need for methods to recycle waste into valuable materials through the resource recovery 
process. Progress in the field of recycling is strongly dependent on the development of efficient, stable, and 
reusable yet inexpensive catalysts. In this case, growing attention has been paid to the development and 
application of nanobiocatalysts with promising features. The main purpose of this review paper is to: (i) intro-
duce nanobiomaterials and describe their effective role in the preparation of functional nanobiocatalysts for the 
recourse recovery aims; (ii) provide production methods and the efficiency improvement of nanobaiocatalysts; 
(iii) give a comprehensive description of valued resource recovery for reducing toxic chemicals from the
contaminated environment; (iv) describe various technologies for the valued resource recovery; (v) state the
limitation of the valued resource recovery; (vi) and finally economic importance and current scenario of
nanobiocatalysts strategies applicable for the resource recovery processes.

1. Introduction

One of the serious problems of the present age is the massive and
unfortunately growing amount of waste generation and its disposal. 
Global waste production is anticipated reach to 2.59 billion tons in 
2030, thus accentuating issues of environmental pollution and health 

security [1]. Unfortunately, not all begotten waste is gathered. Estimates 
show that developed countries collect about 96 % of waste, compared to 
<40 % in poor countries. 37 % of waste is landfilled, 33 % is discharged 
or burned in open areas, and only 13.5 % is recycled, which makes waste 
management poorly efficient in the context of the circular economy [2]. 

There are four general operations for municipal waste treatment: 
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recovery are illustrated. Finally, economical aspects of the use of various 
biological macromolecules including polysaccharides and proteins for 
resource recovery are highlighted. In collecting required information 
and data for writing the present review, the focus was on the nano-
biocatalyst word, resource recovery statement of toxic metals, phos-
phorus, and ammonia. 

2. Types of nanobiocatalysts

Nanotechnology is an interdisciplinary field based on structures with
1.0 nm to several hundred nanometers dimensions, which has led to an 
explosive revolution in research activities [10,11]. Thanks to the recent 
advances in nanomaterial science, state-of-art advances in catalyst en-
gineering [12,13], energy [14,15], biotechnology and biomedical ap-
plications [16–21], genetic engineering [22], mechanical and petroleum 
engineering [23], optics and electronics [24], food safety, hydrogen 
production and storage [25–27], and environmental applications 
[28–31], sensors [32–34], etc. have been accelerated substantially. 
Among developed nanostructures with unique properties and excep-
tional performance, nanobiomaterials have received much attention due 
to the synergistic role of their extraordinary small size and biological 
properties [35]. Biomaterials are defined as following statements 
[36–38]: 

(I) Natural materials synthesized from a biomolecule or conven-
tional substance, which are encapsulated or immobilized using a
biomolecule that can enhance or replace a biological part of the
body such as tissue, organ, or specific function.

(II) Synthetic structures fabricated from one material or a combina-
tion of several materials, such as metals, polymers, alloys, and
ceramics, which can replace part of a living organ or operate in
contact with living tissues.

Nanobiomaterials are nanostructures composed either wholly or 
partially of biological molecules such as proteins, nucleic acids, en-
zymes, poly/oligosaccharides, and antibodies. Biological resources are 
known as one of the primary sources for the synthesis of nano-
biomaterials [38]:  

➢ Plant extracts

The extracted active chemical compounds by removing plant tissue
are generally known as plant extracts. These compounds have become 
viable due to their availability, abundance, and eco-friendly qualities. 
Plant functional groups, proteins and amino acids, polysaccharides, 
ketones, and carbonyls, play a reductive role in the environment. 
Therefore, plant extracts are the perfect option for reducing metal ions 
in facilitating the biosynthetic process of metal nanostructures [39].  

➢ Microbes

Microbes, bacteria, fungi, microalgae, and in general, microorgan-
isms are a perfect choice for the biosynthesis of nanostructures. This 
method has attracted much attention due to achieving the desired 
morphology, size, chemical composition, ease of maintenance, cultiva-
tion and scale-up of cells, scale control, and excellent adaptation to 
various environmental conditions [40].  

➢ Virus

Viruses, as natural nanoparticles with a diameter of 20 to 500 nm, in
the role of non-cellular parasites, can infect their host cells by trans-
mitting their genetic material, double-stranded or single-stranded frag-
ments. Animals, bacteria, and plants can act as host cells for viruses. 
Depending on the host cell type, viruses fall into three general cate-
gories: mycophages, bacteriophages, and phytophages [41]. Meanwhile, 

landfilling, recycling, incineration (with and without energy recovery), 
and composting and digestion [3]. About 45 % of municipal solid waste 
is composed of organic compounds that contain important elements 
such as nitrogen and phosphorus [4]. Municipal solid waste treatment is 
mainly done by anaerobic digestion, which leads to the production of 
sludge-like material. Unfortunately, in the costly digestion process, not 
only nutrients and useful wastes cannot be extracted, but also requires 
further treatment steps such as composting before disposing of in 
designated areas. The sludge from the digestion process contains 
different contaminants that make dangerous and risky its use in agri-
culture. Even though agricultural waste has been used in the past to feed 
livestock, the probable animal intolerance and health risks prevent this 
type of use without proper pre-treatment. Moreover, due to the potential 
effects of waste compounds such as polyphenols on the germination and 
growth of plants, the composting process is not a problem-free option 
[5]. 

Typical waste management approaches focus on the elimination of 
pollution sources and greenhouse gas emissions that have not yet yiel-
ded satisfactory results. An integrated waste management strategy with 
waste recycling and resource recovery can be a more effective solution. 
One of the major problems right now is the sustainable management of 
the huge amounts of waste generated, which must be done efficiently to 
avoid damaging the environment and creating environmental conse-
quences in the future. The vision of effective and sustainable waste 
management is the development of technologies in line with the concept 
of “trash to cash” with the production and replacement of renewable 
materials, fuels and chemical compounds in industries. The interna-
tional community is moving toward the use of renewable biological 
resources and the production of recoverable bio-based products [6]. 
Economic sustainability, significant waste consumption, great product 
efficiency, biocompatibility, and residual waste handling should be 
considered in the production process and waste management. There is 
therefore a need for methods to recycle waste into valuable materials. By 
managing different waste sources and applying sustainable development 
strategies, it is possible to maintain a balance between the economy, 
society and the environment, and to promote the integration of tech-
nology and industry with the sustainability and preservation of envi-
ronmental health. 

In 2016, Rostro-Alanis et al. reviewed the diverse developed nano-
carriers for nanobiocatalysts production with emphasis on polymers- 
based carriers [7]. They described the application of nanobiocatalysts 
in bioconversion systems, bioelectronics, and proteomic investigation. 
In 2015, Misson et al. reviewed the developed nanocarriers and applied 
strategies for enzyme stabilization [8]. They illustrated that immobi-
lizing enzyme by nanocarriers or nanocontainers leads to the enhance-
ment of the catalytic performance and the stability of enzymes. They 
indicated that proper conformation change upon immobilizing enzymes 
in nanobiocatalysts structures plays an effective role on their catalytic 
performance enhancement because provides a more facile interaction of 
the active site of the enzyme with the target analyte. Moreover, the 
usage of magnetic nanomaterials in nanobiocatalysts structures facili-
tates their recovery and reutilization, which causes effective economic 
savings. In a chapter book published in 2022, Balan Et al. reviewed the 
diverse immobilization methods developed for enzymes and the appli-
cation of prepared enzyme-based nanobiocatalysts for bioconversion 
[9]. However, a comprehensive review paper focusing on engineering 
and application of polysaccharides and proteins-based nanobiocatalysts 
in resource recovery from wastewater has not been published. 

In the present review, nanobiocatalysts are introduced along with a 
comprehensive description of biomaterials resources used for their 
preparation. The nanomaterials employed for fabrication of nano-
biocatalysts including metal-organic frameworks, metal oxides, mag-
netic compounds, and inorganic nanoscaffolds are reviewed. The 
production methods of nanobiocatalysts and technologies for resource 
recovery based on nanobiocatalysts are discussed. The advantages and 
limitation of application of nanobiocatalysts for valued resource 



➢ Polysaccharides

Carbohydrates are one of the most abundant biomolecules known in
nature. These structures are found in various forms, mono-, oligo-, and 
polysaccharides. Algae, plants, and wood are significant sources of 
polysaccharides. High biocompatibility and good biodegradability are 
some of the fantastic features of these structures. Cellulose and starch as 
derivative polysaccharides, with ease of processing, abundance, and 
high tensile strength, have attracted much attention [44,45].  

➢ Proteins

Proteins are defined as vital parts of biological systems. In addition to
animal sources, creatine, collagen, elastin, and silk are plant sources of 
protein structures. These structures are used as biological patterns to 
synthesize nanostructures. Synthesized nanofibers and nanoparticles are 
used in many medical, textile, and chemical applications [46,47]. 

In the dimensions of nanostructures, the created quantum effects 
play an influential role in determining their optical, chemical, electrical, 
and magnetic properties [48,49]. The features of grain boundary sliding 
and short-range diffusion healing have improved nanobiomaterials 
strength and flexibility. Biological sources-based nanomaterials have 
better mechanical stability and adhesion than other nanostructures 
[50,51]. Due to their unique physical, chemical, electrical, and biolog-
ical properties, nanobiomaterials have found a variety of applications in 
medicine [52], catalysts and photocatalysts [53–55], and agriculture 
[56]. 

The nature of the structural atomic bonds determines the chemical 
properties of nanobiomaterials. Unsaturated atoms on the surface have 
higher surface energy and reactivity than saturated ones. The presence 
of incomplete bonds on the nanobiomaterials surface facilitates their 
interaction with other nanomaterials or nanocomposites. Solubility as 
an essential determinant of performance is influenced by the source of 
nanobiomaterials’ synthesis. The presence of hydroxyl functional groups 
increases aquatic solubility due to the possibility of forming strong 
hydrogen bonds with water molecules. Bioreactivity, biocompatibility, 
and biodegradability are prominent features of nanobiomaterials [38]. 
Nanobiomaterials have a variety of applications in different areas: 

Tissue engineering is one of the most comprehensive nanobiomaterials 
applications. Tissue engineering is a multidisciplinary field in sur-
gical and therapeutic methods to regenerate defected and damaged 
tissues and restore their general or partial function. This technology 
uses a scaffold capable of carrying biologically active molecules. The 
advent of nanobiostructures with the ability to connect and interact 
directly with tissue surface receptors and the possibility of design in 
various structures of nano-particles, -fibers, -tubes, -and films have 
created a dramatic change in tissue regeneration [57,58]. 
Nanomedicine reduces the dose of the drugs and subsequently mini-
mizes the side effects, improving targeting and the possibility of 
controlling site-specific drug release. Nanobiostructures, with their 
very high specific surface area and unique characteristics, have made 
possible the achievement of these goals [59,60]. 
Drug delivery accounts as one of the most widely used applications of 
nanobiostructures. These structures have high potential in designing 
drug delivery systems with appropriate pharmacological effects, the 
possibility of controlling solubility in different environments, suc-
cessful and controlled drug release, increasing drug delivery rate, 
and having minor side effects [61,62]. 

Nanobiosensor consists of a nanobiological-based probe to identify an 
analyte, biomolecule, or combination of various biological elements 
and a transducer to convert electrical, physicochemical, electro-
chemical, optical, or thermal signals. Nano bioelectrochemical sen-
sors, with their very high specific surface area, electrocatalytic 
activity, unique electronic properties, and excellent biocompati-
bility, have created a massive revolution in acquiring super-sensitive 
biosensors [63,64]. 
Bio-imaging is a molecular imaging method to study biochemical and 
molecular changes during the disease process. Nanobiomaterials are 
a perfect choice to improve the performance of molecular imaging. 
These structures, with the possibility of controlled and selective 
binding to the receptor of the desired biological molecule, very high 
specific surface area, and environmental compatibility, have a spe-
cial place in molecular imaging methods such as ultrasound, 
computed tomography, and magnetic resonance imaging [51]. 
Nanobiocatalyst has created new horizons for highly efficient cata-
lysts in large-scale industrial applications. In nanobiocatalysts, the 
high surface-to-volume ratio and the ability of the structure to bind 
or be exposed to biomolecules reduce diffuse limitations, leading to 
the achievement of very high catalytic activity [65]. 

The encounter between biotechnology and nanotechnology led to 
the emergence of innovative ideas and the introduction of nano-
biocatalysts, which could significantly enhance catalytic activity by 
constraining biomolecules at the nanoscale and at the least conforma-
tional cost [65]. A nanobiocatalyst is formed by biomolecule stabiliza-
tion in the presence of nanostructured carriers. The company of 
nanocarriers with specific functional groups allows biomolecules to act 
as information storage and processing systems in ordered nanoscale 
structures. Nanobiocatalysts promise a more stable designed system that 
achieves maximum efficiency by providing a huge surface area for 
loading biomolecules and reducing mass transfer resistance [66]. The 
advantages of nanobiocatalysts are summarized in the synergistic role of 
their nano- and bio-structures [8,67]. The cost effectiveness, biode-
gradability, recyclability, huge surface area, regio- and stereo- 
selectivity, high catalytic activity, and working under mild conditions 
with low energy consumption and producing less byproduct are the 
main benefits of nanobiocatalysts. Meanwhile, they encounter some 
drawbacks such as nanotoxicity which is dangerous for humans and the 
environment and inactivation at high temperatures, alkaline conditions, 
and in polar organic solvents. 

The main constituents of nanobiocatalysts used in transesterification 
processes are nanoparticles and biological components. Nano-
biocatalysts can be classified according to the type of nanoparticles or 
the enzyme immobilization strategy. Metal-organic frameworks, metal 
oxide nanoparticles, magnetic nanoparticles, also carbon-based and 
inorganic nanostructures are five crucial classes of nanoparticles 
employed in the development of nanobiocatalysts utilized in energy 
production through transesterification for resource recovery. Table 1 
describes research on resource recovery through biodiesel production 
from diverse natural oils using nanobiocatalysts. Here, the nano-
materials and biomaterial used for nanobiocatalyst synthesis, feedstock 
and experimental conditions for biodiesel production, and the method of 
enzyme recovery are briefly described. In general, the process of bio-
diesel production using nanobiocatalysts is similar to the methodology 
used in the presence of simple nanocatalysts. These steps involve 
combining specific amounts of water, alcohol, and feedstock such as 
biomass, vegetable oils, edible oils, and nanobiocatalysts in the reaction 
conical flask. The mixture is stirred for a particular time at a specific 
temperature. The resulting products, including biodiesel mixture and 
glycerol, are separated and purified in a rotary evaporator. The 
remaining nanobiocatalysts are separated by centrifugation or magnetic 
field application, depending on their nature [68,69]. 

phytophages (plant viruses) are a unique biomaterial synthesis platform. 
The inability of phytophages in human contamination, ease of design, no 
need for an envelope, the ability to control the size and formation of 
various morphologies (helix: rigid rod, quasi-spherical: icosahedral), 
stability under harsh environmental conditions make these structures a 
good choice for the synthesis of nanobiomaterials [42,43].  



2.1. Metal-organic frameworks-based nanobiocatalysts 

Metal-organic frameworks (MOFs) are a subclass of organometallic 
polymers that result from the coordination of metal ions or clusters with 
organic ligands in the form of one-, two- or three-dimensional structures. 
The interesting feature of most members of MOFs is the unique structure 
porosity. Recently, the application of this group of advanced nano-
particles in the synthesis of nanobiocatalysts has been reported [70]. 
The presence of high surface area, open pores, and ideal pore size make 
these crystalline and highly porous compounds suitable for hosting 
different species, especially enzymes. Three different immobilization 
strategies have been used to stabilize enzymes in MOFs. In the first 
strategy, which is called the surface immobilization method, the outer 
surface of MOFs is used to stabilize enzymes. The second strategy, in situ 
encapsulation or bottle-around-a-ship strategy, involves forming an 
array of MOFs around the enzyme. The third strategy, or ship-in-a-bottle 
method, involves trapping enzymes in the pores of prefabricated MOFs 
[71]. In all of these approaches, the stabilized enzyme can be recycled 
and reused. However, to minimize the enzyme leakage issues and 
maximize resistance to degradation, the bottle-around-a-ship is consid-
ered the most appropriate way to reduce the cost of biodiesel produc-
tion. Lee et al. [72] applied the biomimetic mineralization strategy to 
engineer L@Zr-MOFs nanobiocatalysts applicable for the 

transesterification of sunflower oil. The manufactured nanobiocatalyst 
was stable during three consecutive cycles with no significant change 
observed in its structure. Hu et al. [73] used lipase enzyme immobili-
zation on the surface of zirconium-based MOFs to fabricate a new 
nanobiocatalyst for the soybean oil transesterification process. The 
surface of the synthesized nanobiocatalyst was hydrophobically modi-
fied before enzyme stabilization by coating with polydimethylsiloxane 
using the chemical vapor deposition (CVD) method, and then hydro-
phobic interactions were used for enzyme immobilization. The use of the 
chemical vapor deposition method can create hydrophobic properties on 
the MOF surface and, at the same time, preserve the intrinsic properties 
of MOFs. 

2.2. Metal oxide-based nanobiocatalysts 

Metal oxides have been used successfully in the development of 
nanobiocatalysts for organic dye photocatalytic degradation [91], 
wastewater treatment [92], and upgrading recalcitrant lignocellulosic 
biomass hydrolysis [93–96]. However, their application in the energy 
recovery process is still a relatively rare investigated issue that requires 
the attention of researchers, and further detailed studies should be 
performed in this field. Fatima et al. [83] used covalent stabilization of 
the lipase enzyme on the surface of polydopamine-modified cerium 

Table 1 
Nanobiocatalysts developed for biodiesel production as resource recovery. The nanomaterials and biomaterial used for nanobiocatalyst synthesis, feedstock and 
conditions for biodiesel production, and the method of enzyme recovery are described.  

Nanomaterial Biomaterial Feedstock Yield Time/ 
temperature 

Retaining 
activity after 

Enzyme recovery by References 

GA-Fe3O4 Candida rugose lipase Waste cooking oil 93.58 % 1.5 h/40 ◦C 3 runs – [74] 
GA-AP-Fe3O4 Rhizopus oryzae lipase Chlorella vulgaris micro 

algae bio-oil 
69.8 wt 
% 

24 h/45 ◦C – – [75] 

AP-Fe3O4 CLEAS of Candida Antarctica 
lipase B 

Waste cooking oil 71 % 36 h/35 ◦C 6 runs – [76] 

GA-AP-Fe3O4 Candida antarctic lipase Rapeseed oil 89.4 % 24 h/45 ◦C ≥70 %, 5 runs Magnetic field [77] 
AP-GO-Fe3O4 – Non-edible R. communis 

oil 
78 % 48 h 5 runs Magnetic field [78] 

PDA-Fe3O4 Aspergillusterreus AH-F2 

lipase 
Waste cooking oil 92 % 30 h/37 ◦C 4 runs Magnetic field [79] 

P(GMA-coMAA)- 
Fe3O4 

Candida rugosa lipase Soybean oil 92.8 % 40 ◦C 79.4 %, 5 runs Magnetic field [80] 

Fe3O4@PDA Pseudomonas cepacia lipase Soybean oil 90 % 12 h/37 ◦C 3 run≥ Magnetic field [81] 
GA-Fe3O4 Candida antarctica lipase B Chlorella vulgaris lipids ≥90 % 3 h/30 ◦C 90 %, 10 runs Magnetic field [82] 
CeO2 nanorods/ 

PDA 
A. terreus Lipase Non-edible Eruca sativa 

Seed oil 
89.3 % 30 h/35 ◦C 5 runs Centrifugation [83] 

PEI-Fe3O4 

cluster@SiO2 

Pseudomonas cepacia lipase Palm oil 88.9 % 24 h/50 ◦C ~65 %, 5 runs Magnetic field [84] 

MGO-Fe3O4-AP- 
GA 

Rhizopus oryzae lipase Chlorella vulgaris bio-oil ~70 % 24 h/45 ◦C 58.8 %, 5 runs Magnetic field [85] 

mCNTs-Fe3O4- 
PAMAM 

Burkholderias cepacia lipase Soybean oil 92.8 % 35 ◦C 90 %, 20 runs Magnetic field [86] 

Fe3O4@SiO2-AP- 
GA 

Lipase NS81006 of the 
Aspergillus niger 

– 71 % 12 h/45 ◦C 5 runs Strong Magnetic field [87] 

Fe3O4 NPs-GO Candida rugose lipase Soybean oil 92.8 % 60 h/40 ◦C 75.8 %, 5 runs Magnetic field [88] 
ZIF-8 Rhizomucor miehei lipase Soybean oil 95.6 % 24 h/45 ◦C 84.7 %, 10 runs – [89] 
Cu-MOF Porcine pancreas lipase Sunflower oil 96.5 % 45 ◦C 72.5 %, 5 runs – [90] 
Co-MOF Candida rugose lipase Soybean oil 78.5 % 60 h/45 ◦C 56.0 %, 6 runs Centrifugation (6000 

rpm, 5 min) 
[71] 

UiO-66-PDMS Aspergillus niger lipase Soybean oil 88 % 24 h/45 ◦C 83.0 %, 10 runs Centrifugation (10,000 
rpm, 12 h) 

[73] 

Bio-Zn-MOF Thermophilic lipase QLM Sunflower oil >60 % 50 ◦C 80.0 %, 5 runs – [72] 

GA: glutaraldehyde, AP: 3-aminopropyl triethoxysilane, GO: graphene oxide. 
NPs: nanoparticles, PDA: polydopamine, PDMS: polydimethylsiloxane. 
MGO: superparamagnetic few-layer GO, PEI: polyethyleneimine, MOF: metal organic framework. 
GO-Fe3O4: hybrid of few-layer graphene oxide and Fe3O4. 
mCNTs-Fe3O4-PAMAM: carbon nanotubes filled with magnetic iron oxide and modified with polyamidoamine dendrimers. 
Fe3O4 NPs-GO: magnetic Fe3O4 NPs encapsulated in GO. 
P(GMA-coMAA): poly(glycidyl methacrylate-co-methacrylic acid). 
ZIF-8: X-shaped zeolitic imidazolate frameworks. 
CLEAS: cross-linked enzyme aggregates. 
Lipase QLM: an extracellular enzyme from Alcaligenes sp. 



nanoparticles. The composition of GO with mineral oxide nanoparticles 
strengthens its structural resistance through the placing of nano-
materials between the empty spaces of a two-dimensional GO network, 
which in turn increases the resilience of the prepared composited 
nanobiocatalysts under process conditions. Zee et al. [88] used the 
composite of Fe3O4 nanoparticles and GO to covalently immobilize 
Candida rugosa lipase and prepare nanobiocatalyst used in soybean oil 
transesterification reaction. This nanobiocatalyst is able to support a 
maximum performance of 92.8 % under optimal conditions. Lee et al. 
[102] also investigated the effect of lipase immobilization on the GO
surface and compared the results of the immobilized and free enzymes in
terms of enzyme activity. The results showed that the activity of GO- 
immobilized lipase was much higher than that of free enzyme. This
study identifies GO as exceptional support for lipase immobilization.
GO, with its two-dimensional plates and honeycomb arrangement of
carbon atoms, is able to provide a very high surface area for enzyme
immobilization. In addition, the high mechanical strength and avail-
ability of two-dimensional surfaces, as well as the presence of epoxy,
hydroxyl, and carboxylic acid functional groups, provide suitable con-
ditions for surface chemistry engineering and successful immobilization
of lipase enzyme without the need for complex surface modification
through expensive reagents and multi-steps process [78]. So far, various
immobilization methods, such as entrapment in GO structure, physical
adsorption, and covalent bonding for the development of GO-based
nanobiocatalysts have been reported [102].

CNTs are also among the most widely used mineral nanostructures 
used for nanobiocatalysts synthesis. The inertness, biocompatibility, 
excellent thermal stability, high surface area, high mechanical stability, 
and high enzyme loading capacity are benefits of CNTs [103–105]. 
Enzymes can be stabilized on the surface of CNTs through a variety of 
physical binding and covalent bonding methods. CNTs can also be used 
to stabilize enzymes with or without surface modification [85,106–114]. 
For example, enzyme immobilization by physical adsorption mechanism 
on single-walled carbon nanotubes does not require surface chemical 
modification strategies [114]. The lipase immobilization on CNTs via 
hydrophobic interactions produced a nanobiocatalyst with outstanding 
stability and efficiency for biodiesel production [113]. Das et al. [108] 
chemically modified the surface of a GO-CNT composite employed for 
cross-linking of glutaraldehyde and then immobilization of β-amylase 
enzyme. The fabricated nanobiocatalysts showed improved biocatalytic 
stability and performance. 

Al2O3 and SiO2 are two examples of mineral nano oxides used to 
synthesize nanobiocatalysts. To the best of our knowledge, there are a 
considerable number of studies using SiO2 to prepare nanobiocatalysts 
in biodiesel synthesis. Nevertheless, similar studies on the use of Al2O3 
are limited and investigation in this field needs significant expansion. 
Guardi et al. [115] prepared and evaluated the efficiency of SO4/Fe3O4- 
Al2O3-TiO2 nanocatalyst for biodiesel production by transesterification 
of cooking oil waste. They achieved 96 % production efficiency for the 
fatty acid methyl ester. Ashjari et al. [116] investigated the application 
of multicomponent reaction for covalent stabilization of two lipases 
(Thermomyces lanuginosa and Rhizomucor miehei) on aldehyde- 
functionalized Fe3O4@SiO2 magnetic nanoparticles under mild condi-
tions. The produced nanobiocatalyst was used to produce biodiesel from 
cooking oil wastes by the transesterification method. By optimizing the 
reaction conditions, the efficiency of biodiesel production reached 93.1 
% with the possible reuse of the nanobiocatalyst in five reaction cycles. 
Fathi et al. [117] used silica nanoparticles modified with (3-amino-
propyl) triethoxysilane (APTES) for non-covalent stabilization of Yar-
rowia lipolytica lipase without adding any binders or precipitating 
agents. The longer stability resulted from their nanobiocatalyst at higher 
temperatures and neutral pHs compared to the one prepared by metal 
chelates immobilization strategy. 

Nanobiomaterials are composed either of natural or synthetic 
nanomaterials containing wholly or partially of biological molecules 
such as plant extracts, microbes, virus, polysaccharides, or proteins. 

oxide nanoparticles to develop a new nanobiocatalyst for the trans-
esterification reaction of Eruca sativa oil. Response surface methodology 
and gas chromatography–mass spectrometry techniques were used to 
optimize the reaction parameters such as catalyst mass percentage, oil to 
methanol ratio, water content, temperature, and time. They successfully 
produced biodiesel from non-edible Eruca sativa seed oil with 89.3 % 
yield after 30 h reaction at 35 ◦C. The developed nanobiocatalyst 
retained its stability for more than five reaction cycles. The enzyme was 
recovered by centrifugation. 

2.3. Magnetic-based nanobiocatalysts 

Maghemite (γ-Fe2O3) [97] and magnetite (Fe3O4) [98] are two 
common types of colloidal ferrite that are known for their magnetic 
properties. The use of magnetic nanoparticles in the development of 
nanobiocatalysts used in energy recovery from resources has been more 
extensively considered and studied compared to other nanomaterials. 
The magnetic properties of the nanoparticles, the available synthesis, 
preparation and separation methods, the cost-effectiveness, the presence 
of suitable pores, porosity, and the high active surface area for enzyme 
immobilization make them eligible candidates for the nanobiocatalysts 
preparation. There are more reports on the development of nano-
biocatalysts based on magnetite than maghemite. Magnetite nano-
particles require additional functionalization steps to modify their 
surface to prevent the loss of their exceptional properties on exposure to 
air oxidative reactions. In addition, magnetite nanoparticles are sensi-
tive to acidic environments and have a mineral hydrophobic nature, 
which makes their interaction with biological components complicated 
[99]. Hence, various surface engineering techniques have been used to 
adapt the surface chemistry of these nanomaterials for the loading of 
biological materials. 

The hydrophilicity of the surface of magnetite nanoparticles was 
boosted through functionalizing with carboxylic acid or amine groups 
that provided strong covalent bonds with the biological component and 
facilitated enzyme immobilization on their surface [100]. The most 
common process used in magnetic nanoparticle surface engineering is 
the surface functionalization process using amino silanes, especially 3- 
aminopropyl triethoxysilane (AP) and glutaraldehyde. Amino silanes 
have a hydrophobic end with a silicon‑oxygen backbone and a flexible 
hydrophobic carbon tail. The hydrophobic part of silanes facilitates their 
binding to magnetic nanoparticles with the same nature. The good 
binding affinity of the amine group of amino silanes to the carboxylic 
acid groups leads to the amide bond formation and anchoring glutar-
aldehyde on the surface of magnetic nanoparticle. Glutaraldehyde cre-
ates a hydrophilic environment by creating free carboxylic acid heads 
that facilitates the absorption of biological structures [101]. Touqeer 
et al. [79] utilized the solvothermal method to synthesize 
polydopamine-modified magnetic nanoparticles. Then, lipase enzyme 
immobilization of the Aspergillus terreus AH-F2 on the surface of syn-
thesized nanoparticles was done. The prepared nanobiocatalyst was 
catalyzed the transesterifying the waste cooking oil for biodiesel pro-
duction. Costa et al. [101] stabilized the Candida antarctica lipase B 
enzyme on the surface of Fe3O4 nanoparticles modified with AP and 
glutaraldehyde to synthesize nanobiocatalysts effective in isoniazid 
synthesis. 

2.4. Inorganic nanoscaffolds-based nanobiocatalysts 

Nanomaterials based on carbon structures such as carbon nanotubes 
(CNTs) and graphene oxide (GO) as well as nanomaterials based on 
mineral nano-oxides such as alumina (Al2O3) and silica (SiO2) are 
recognized as a class of widely used nanomaterials for production of 
nanobiocatalysts used in the recovery of energy resources. These rigid 
inorganic nanostructures offer numerous advantages over other nano-
materials for stabilizing biocatalytic components. These nanomaterials 
are commonly used with other nanomaterials, for example, magnetic 



3. Advantages of nanobiocatalysts

There are restrictions on the use of the enzyme separately and freely.
For example, high production cost, reduced stability toward a wide 
range of temperatures and pH, poor recovery, limited activity range, 
scant stability in industrial scale and conditions, and prone to deterio-
ration are some of the problems with using free enzymes. Enzyme fix-
ation on suitable carriers can lead to outstanding benefits. While the 
price of a final stabilized enzyme-based catalyst is cheaper, the enzyme 
stability is improved after immobilizing and can be easily employed in 
various reaction and production conditions [118]. Easy recovery of the 
enzyme and thus reusability in subsequent processes is possible. Enzyme 
activity is regulated and enhanced. By easily recovering the enzyme 
from the reaction medium, a purer, enzyme-free product can be simply 
acquired. The kinetic variables of the enzymatic reaction are 
accelerated. 

The field of nanotechnology is expanding rapidly. The nanomaterial 
dimensions provide outstanding advantages, such as a very large active 
surface area and huge surface-to-volume ratio as a substrate for enzyme 
stabilization. With the help of porous nanomaterials, as a stabilizing 
substrate for biocatalysts, the synthesis method becomes easier. More-
over, with small amounts of enzymes, more active and permanent 
nanobiocatalysts can be prepared. The nano-property helps the active 
sites of the enzyme to be more exposed to the desired reaction, while the 
active part remains stable and prevents the denaturation of the biolog-
ical components and the degradation of the enzyme structure. 

The magnetic CNTs with the necklace-shape nanostructures were 
hydrothermally synthesized [119]. Then, the various functional moi-
eties were attached on the s CNTs surface by the hyperbranched poly 
(amidoamine) through the Michael addition reaction. The final func-
tionalized magnetic CNTs were utilized as proper support for the 
conjugation of the glucoamylase enzyme via multi-interaction processes 
of the adsorption, covalent attachment, and metal-ion affinity. This 
enzyme fixation process on the CNTs is reversible and recyclable, which 
dramatically reduces the amount of enzyme required and the prepara-
tion cost of the nanobiocatalyst. The developed immobilizing strategy 
provided superior thermal and pH stability and reusability, without 
compromising the substrate specificity of free glucoamylase. High 
enzyme stabilization capacity, enzyme recovery and reuse, and support 
regeneration are the prominent advantages of the produced 
nanobiocatalyst. 

The poly(amidoamine) dendrimer is a potential carrier for enzyme 
stabilization in nanobiocatalyst structure [120]. Perfect molecular 
framework, supreme geometric symmetry, large number of available 
functional groups at the end of dendrimer branches, biocompatibility 
and lucrative chemical affinity are attractive features of poly(amido-
amine) dendrimer. The poly(amidoamine) grafted onto the silica surface 
(G3 PAMAM-grafted silica) via microwave irradiation using glutaral-
dehyde as the cross-linking agent was utilized as a proper support for 
cellulase fixation. The enzymolysis performance of the carboxymethyl 
cellulose by immobilized cellulase onto G3 PAMAM-grafted silica was 
boosted as it showed higher stability and activity under a wide range of 
thermal and pH conditions. In 2016, a solvothermal reduction procedure 
was applied for grafting the poly(amidoamine) onto the Fe3O4 micro-
spheres, which utilized as a strong support for candida rugosa lipase 

immobilization [121]. This immobilizing strategy was eco-friendly and 
facile. The synthesized nanobiocatalyst had the advantage of reac-
tivation of inactivated immobilized lipase via glutaraldehyde and cop-
per ion addition, respectively, Fig. 1. The catalytic activity and 
reusability of this nanobiocatalyst were evaluated in 10 cycles, which 
achieved elevated catalytic performance with the enzymatic activity 
retention >90 % besides longtime storage stability. 

Nanomaterials provide a wide active surface area, high stability, 
resistance and increased catalytic activity for the biocatalyst. Integrating 
magnetic nanomaterials with nanocatalysts has made nanobiocatalysts 
recoverable and reusable. Therefore, the high operating costs associated 
with the production of enzymes and the synthesis of nanocarriers are 
offset and bring economic benefits. The application of nanobiocatalysts 
has provided the benefits of long-term stability, greater catalytic activity 
and efficiency, greater selectivity, easier operating conditions, and cost- 
effectiveness. In the following, the developed strategies for the prepa-
ration of nanobiocatalysts will be reviewed. 

4. Processes of nanobiocatalysts production

Enzymes or biocatalysts are highly effective compounds that allow a
reaction that does not occur simply under normal conditions to occur 
and increase the process rate. They are natural-based compounds that 
are not consumed in the reaction but provide a lower energy path for the 
reaction to take place. Biocatalysts are active in different conditions of 
temperature and pH range and can act at atmospheric pressure under 
various heat and acidity situations. Most of their optimum performance 
is at a temperature of 37–70 ◦C and a pH close to neutral. Today, special 
biocatalysts have been developed that operate at higher temperatures 
and in particular applications. These biocatalysts are produced using 
genetic engineering and protein engineering methods. They are made 
from natural systems that can be easily absorbed into nature if they are 
broken down into the components from which they are made with no 
risk to the environment. Enzyme stability is needed to expand their use 
in laboratories and industries, as well as to ensure their reuse in pro-
duction. Short life, low stability, high cost, difficult recovery, and 
laborious purification process are the main limitations of enzymes. In 
addition, a significant problem in the industrial use of enzymes is the 
difficulty of their separation from the reaction medium and inactivation 
in organic solutions at unusual temperatures and pHs. 

Enzymes engineering is actually the modification of enzymes in a 
way that improves their performance. In recent years, various materials 
such as metal nanoparticles, polymeric materials, silicate, and carbon- 
based materials have been used to engineer enzymes and increase 
their efficiency. Newer designs use stabilized enzymes to facilitate 
segregation and allow them to be used in continuous bioreactors to 
reduce process costs. The enhancement of the enzyme stability by the 
immobilization process has been practically observed and theoretically 
confirmed. Interestingly, the enhancement of the enzymatic activity has 
been observed in some cases after immobilization. Immobilization 
methods include adsorption, covalent bonding with a substrate, enzyme- 
enzyme crosslinking, trapping, and encapsulation. 

One of the capable approaches for enhancing enzyme performances 
is the immobilization of the enzymes on nanostructured materials that 
led to the production of the nanobiocatalyst. A nanobiocatalyst is an 
emergent invention that generally blends nanotechnology and biotech-
nology breakthroughs. The organization of nanobiocatalyst involves the 
collecting of enzyme molecules onto nanostructured carriers to create 
selectivity for substrates and errand eligible chemical kinetics. The 
functionalization of nanostructures assembles enzymes into stable 
structures, which can work as a processing machine and nanoscale in-
formation storage. According to studies, large surface areas of nano-
structured materials in the nanobiocatalysts decrease mass transfer 
insistence and provide a higher enzyme loading for substrates. Variant 
nanomaterials are used for the expansion of nanobiocatalyst, such as 
nanofiber scaffolds [122], nanoparticles [123], nanotubes [124], 

They are applicable in diverse fields, namely tissue engineering, nano-
medicine, drug delivery, bio-imaging, and nanobiocatalyst. Metal- 
organic frameworks, metal oxide nanoparticles, magnetic nano-
particles, carbon-based and inorganic nanostructures are five crucial 
classes of nanoparticles employed in the development of nano-
biocatalysts utilized in energy production through transesterification for 
resource recovery. 

In the next section, we will discuss the advantages of nano-
biocatalysts and how their stabilization in the nanostructures improves 
their efficiency and stability. 



nanosheets [125], and nanocomposites [126]. 
Immobilization methods of nanostructured biocatalysts are classified 

into three groups based on applied synthetic methods: self-assembly, 
grafting onto, and grafting from. In the grafting onto procedure, en-
zymes are immobilized on nanoparticles or nanofibers. In the grafting 
from approach, grafting is done from enzymatic macromonomers or 
enzyme macroinitiators. The self-assembly method is based on the direct 
enzyme-polymer amphiphilic interactions or enzyme grabbing onto 
polymer aggregates. The preference of these methods is determined 
based on their ability to enhance the stability of the enzyme in reverse 
conditions, their potential for large-scale enzyme preparation, and their 
application as nanostructured biocatalysts. Immobilization mechanisms 
are based on the volume and size of the holes, load interactions, hy-
drophobic interactions, and multi-point connections based on the re-
striction and confinement of enzymes. Nowadays, special attention is 
paid to new methods for designing and synthesizing nanostructured 
biocatalysts, including molecular imitation and molecular insight into 
the construction and application of nanostructured biocatalysts. 
Commonly, a molecular template is required for the design and appli-
cation of nanostructured biocatalysts. 

The metal, polymer, carbon, or silica-based substrates are employed 
for the synthesis of enzyme based-nanobiocatalysts. Polymers are usu-
ally suitable for enzyme immobilization because their surface can be 
modified. Due to the usability of these materials in a nanoform, excellent 
surface area are exposed for enzyme immobilizing [127]. The vast and 
adjustable surface of polymers enables the enzyme loading for various 
applications [127–129]. Carbon-based biocatalysts, including carbon 
nanotubes, graphene, and nanodiamonds, have been widely used for 
enzyme immobilization due to their high thermal stability, ineffective-
ness and biocompatibility [8]. Silicon-based substrates are very inter-
esting because enzymes can be physically adsorbed on them through 
electrostatic and hydrophilic/hydrophobic interactions. The attributes 
of silicate substrates, such as surface charge density, pore geometry and 
functional groups in mesoporous silicates, are variable and this ability 
helps to adsorb a variety of enzymes [130–132]. 

There are some exciting competencies in metal-based nanocarriers of 
enzymes. By creating functional groups, such as carboxylates, amino 

acids, thiolates, or phosphates on the surfaces of metal nanoparticles, 
these substances can react vigorously with enzymes. Such strong 
immobilizing of the enzyme on metal substrates improves the bio-
catalytic performance and stability [133]. It used hydrophobic in-
teractions, electrostatic interactions, hydrogen bonding, van der Waals 
forces, chemical bonds, such as covalent bonding, enzyme crosslinking, 
or physical entrapment or encapsulation. Fig. 2 shows the synthesis 
approaches of nanocarriers and the immobilization strategy of enzymes 
to perform a specific function of the nanobiocatalyst. The right strategy 
for enzyme immobilization depends on several factors. These factors 
include the molecular structure of the enzyme, the site of application, 
functional groups of nanocarriers, the required activity and stability, 
and selectivity. 

In general, there are three strategies for the development of new 
nanocarriers and the improvement of enzyme immobilizing process. (i) 
Introduction of functional groups on the surface of nanomaterials, (ii) 
utilization of the structures effective in the surface area enhancement, 
substrate dispersion, recovery of nanocarriers or encapsulated enzymes 
entrant nanocages, (iii) improve the thermal and mechanical stability of 
nanocarriers. Accordingly, different types of progressive nanocarriers 
have been reported and developed in recent research, such as nano-
particles, nanospheres, nanogels, nanocages, nanowires, nanocubes, 
nanorods, nanofibers, nanotubes, nanofilms and nanosheets [134]. 

Three main methods employed to immobilize biocatalysts in the 
nanostructured materials are grafting onto, grafting from, and self- 
assembly. The metal, polymer, carbon, or silica-based substrates are 
mainly utilized for the synthesis of enzyme based-nanobiocatalysts. 
Here, the diverse attachment forces applicable for enzyme immobiliza-
tion are reviewed. 

4.1. Physical interactions 

The most common method of enzyme immobilization onto the 
nanostructures is the physical adsorption via weak van der Waals forces. 
A severe problem of the physical adsorption-based prepared nano-
biocatalysts in biological applications is enzyme leaching that prevents 
its implementation on an industrial scale [114,135]. The immobilization 

Fig. 1. The strategies for regeneration of the magnetic PAMAM carrier. PAMAM: Poly(amidoamine), CRL: Candida rugose lipase. The enzymatic activity may be 
reduced during successive use due to not attachment of some particles to the support and the lipase dissever from the support. The nanobiocatalyst regeneration can 
be performed through the attachment of CRL to the PAMAM with the help of glutadialdehyde or copper ions. 
Reprinted from Ref. [121] with permission from Journal of Nanoparticle Research. 



strategies are deeply dependent on the chemical and physical properties 
of nanocarriers and enzymes and their surface interactions. Some ex-
amples of physical adsorption methods, including hydrophobic, hydro-
philic, π-π, and electrostatic interactions for the nanobicatalysts 
preparation, are summarized in follow. 

Enzyme molecules bind to the CNT surface through hydrophobic or 
π-π interactions. The horseradish peroxidase was set on a modified CNT 
with 1-pyrene butanoic acid succinimidyl ester [136]. The perhydrolase 
S54V was fixed on a modified CNT by a polyethylene glycol-based 
interceptor [137]. The electrostatic adsorption of lipase on the CNTs 
surface as well as the hydrophobic interactions, led to a more vital 
enzyme immobilization [113]. In this case, the duration of complete 
absorption of the enzyme depends on the average ionic strength. Hy-
drophobic amino acids in lipase caused the enzymes to be located in the 
open positions [138], which is a driving force to initiate the adsorption 
procedure. Graphene is another promising carbon carrier, which is 
physically adsorbed similarly. The glucose oxidase and glucoamylase 
have been physically immobilized on the chemically reduced graphene 
oxide carriers [139]. The enzymes can be physically adsorbed on porous 
silica carriers. For example, electrostatic adsorption of urease and 
α-amylase on bilayer alumina silicate nanotubes has demonstrated 
promising reusability and stability. After seven continuous cycles, re-
action and isolation, both enzymes hold >55 % of their original activity. 
They retained >90 % of their activity even after 15 days of storage 
[130–132]. 

Another enzyme carrier used in the enzyme encapsulation process is 
organic-inorganic composite. This material has successfully immobi-
lized enzymes such as alpha-lactalbumin, lactase, carbonic anhydrase, 

and lipase. Enzymes showed higher enzymatic activity and stability 
within hybrid nanogels than in their free state. The porous structures of 
nanoparticles can provide a high surface area to enclose a large amount 
of enzyme. The pore size of nanoparticles is a critical parameter in the 
enzyme load, so the closer these pores are to the enzyme size, the greater 
the thermal stability of the enzyme. Smaller pores reduce enzyme 
loading, and larger pores reduce enzyme stability in cavities and leaks. 
Notably, the immobility in nanoparticles is physical and there is no link 
between the enzyme and the carrier surface. Recently, Du et al. [130] 
developed hierarchical porosity-like silica nanoparticles with a variety 
of controllable pores applicable for enclosing molecules of various sizes 
(Fig. 3). 

Nanostructures containing pores and porosity can be combined with 
other materials as composites leading to a synergistic effect in their 
performance. For example, the hybridization of mesoporous silica 
nanomaterials with magnetic nanoparticles makes their recovery more 
feasible from the aqueous medium. Physical modification has low sta-
bility due to weak interaction between enzymes and nanostructures, 
which makes it necessary to modify the surface of substrate, enzyme, or 
both. In the following, the non-physical interactions are discussed. 

4.2. Chemical bonding 

The covalent attachment among the bonding mechanisms is excep-
tionally dependable for specific bonding places and circumventing 
enzyme leaching. Jiang et al. [140] chemically bonded lipase enzyme on 
magnetic nanoparticles. After 30 cycles of retention and separation re-
action, nanobiocatalyst save 85 % of their original activity. The 

Fig. 2. Demostrates nanobiocatalists types, 
materials, and immobilization methods. The 
synthesis approaches of nanocarriers and the 
immobilization strategy of enzymes are 
important effective on the nanobiocatalyst 
performance for as a specific function. The 
right strategy for enzyme immobilization 
depends on several factors, including the 
molecular structure of the enzyme, site of 
application, functional groups of nano-
carriers, the required activity and stability, 
and the selectivity. Immobilization methods 
of nanostructured biocatalysts based on used 
synthetic methods are classified into three 
groups: self-assembly, grafting onto and 
grafting from.   



chemical nature of dendritic polymers with high thermal stability is 
ideal for the stabilization of high-density enzymes. Ge et al. [141] have 
bound lipase to the aromatic polyamide made of trimesic acid & phe-
nylenediamine with a high molar ratio of enzyme to polymer up to 5–6. 
The superior stability has been achieved at high temperatures in the 
presence of organic solvents for lipase immobilized on the dendritic 
polymer. The existence of hydrophilic carboxylic groups on the polymer 
can create suitable microenvironments for lipases. 

Wang et al. [142] immobilized α-chymotrypsin enzyme on poly-
styrene nanofibers. They reported that the enzyme maintained its hy-
drolytic activity up to 65 %. The half-life, an indicator of enzyme 
stability, was amplified about 18 times for the stabilized enzyme in 
methanol anhydrosis. The immobilized enzyme showed a trans-
esterification activity 5670 times higher than the natural enzyme sus-
pended in isooctane at 18 ◦C. These enhancements originated from the 
porous structure and the hydrophobicity nature of nanofibers, which 
facilitate the transfer of hydrophobic substrates to hydrophobic solvent. 
Another study about covalently cross-linked chymotrypsin aggregation 
on the polystyrene showed a 9-fold increase in enzyme activity. Here, 
the chemical composition of the protective carrier surface was well 
established by the design of polystyrene fixed on the nanofiber. How-
ever, to exploit the full potential of nanocarriers, it is necessary to un-
derstand the molecular level of the interactions between the enzyme and 
its microenvironments and their impact on the catalysis of a particular 
substrate [143–145]. 

Covalent binding of enzymes to CNTs carriers requires introducing 
functional groups such as amines or carboxylic acids to the carrier sur-
face [146]. Lipase [103], organophosphate hydrolase [147], and other 
enzymes have been successfully immobilized on covalently functional-
ized CNTs. The other carbon-based nanostructures display similar 
physical and chemical properties to CNTs. Trypsin was immobilized by 
covalent bonding on blown nanodiamonds (3 to 10 nm) [148]. 

Metal nanoparticles are also good options for the covalent immobi-
lization of enzymes. Fe3O4-chitosan magnetic nanoparticles were used 
to fix the lipase, utilizing the EDC/NHS (N-ethyl-N′-(3-(dimethylamino) 
propyl)carbodiimide/N-hydroxysuccinimide) coupling agents. Mah-
moud et al. reported [149] similar binding techniques for the immobi-
lization of cyclodextrin glucan transferase on cellulose nanocrystals. 

Carbohydrates or polyethylene glycol can be used as a binding agent for 
the surface of the enzyme, in which case, in addition to covalent 
bonding, the presence of hydrogen bonding helps to immobilize the 
enzyme better [150]. In this case, Stoilova et al. [151] used a copolymer 
to bind acetylcholinesterase. They optimized various conditions, 
including the weight ratio of the two polymers, to obtain a significant 
amount of active anhydride moieties and obtained satisfactory results 
from enzyme stabilization. One advantage of using polymers as bonding 
intermediates is that the reaction with polymers such as polyether cre-
ates a gap that allows the enzyme to move and minimizes spatial 
interference. This contributes significantly to the storage and thermal 
stability of the enzyme at the site. 

To increase their biocompatibility, the polymer surfaces can be 
modified. Polyacrylonitrile is a nitrile-rich polymer that can be modified 
by imidoesterification and then efficiently bind to amino groups of en-
zymes. This conjugation was not efficient enough because its initial 
activity was reduced after 10 repeated cycles to <30 %. Li et al. [152] 
developed a solution for growing the efficiency of the mentioned 
conjugation. They used an epichlorohydrin-coupling agent for conju-
gating catalase onto polyacrylonitrile nanofibrous, which improved the 
immobilization of enzymes. It was a non-toxic and more effective cross- 
linking agent. 

Nanogels are cross-linked nanoporous particles produced from hy-
drophilic polymers. Nanogels are also a good option for covalent 
immobilization of enzymes. The enzyme α-chymotrypsin was immobi-
lized on porous magnetic nanogels by photochemical in situ polymeri-
zation [153]. This enzyme was ligated to the carboxyl group by 
activating 1-ethyl-3- (3-dimethyl aminopropyl) carbodiimide. More-
over, the simultaneous immobilization of two or more enzymes on the 
surface of nanogels is possible. Alternatively, in situ polymerization can 
be performed in the presence of enzymes to create a porous polymer 
network. So, the enzyme can quickly attach on the surface of the sub-
strate with less permeability [154]. The polymers surface modification 
not only provides proper bonding sites for the enzyme, but also expands 
its surface area. Treatment with oxidizing agents like sulfuric acid and 
nitric acid has been reported in this case. The fine-tuning of the porous 
structure of the polymer for facile diffusion of biomolecules and their 
uniform distribution deeply depends on the chemical modification. 

Fig. 3. The possible formation mechanism of dendrimer-like amino-functionalized silica nanoparticles with hierarchical pores particles and by-products. 
Reprinted from Ref. [130] with permission from Advanced Materials. 



nanoparticles. Another example is the catalase immobilization on gold- 
coated nanoparticles [162] and glucose oxidase on apoferritin nano-
particles [163]. Peptides can also be used to modify metal nanoparticles 
surface. One example of a metal-binding peptide is the gold-binding 
peptide [164]. Moreover, ligands can be utilized to bind peptides to 
metal nanoparticles better. Metal nanoparticles can be composited with 
CNTs, mesoporous silicas, and polymer nanogels, or nanofibers. 

4.3. Grafting 

The “grafting onto” method is performed in two reaction steps. 
Synthesis of nanocarriers is the first step, for example, polymer nano-
crafts and nanowires, magnetic nanoparticles, and nanoparticles of 
cadmium sulfide, silver, alumina, and silica. Immobilization of the 
enzyme on the surface of the nanocarriers using a suitable strategy is the 
second step. Enzymes immobilized by this method include chymo-
trypsin, beta-lactamase, lysozyme, fungal protease, pepsin and catalase 
[86,165–167]. “Grafting from” is the in-situ growth of polymer chains 
on the enzyme surface. In most cases, enzymes are modified to produce 
the reactive groups needed for subsequent polymerization. Its main 
difference with “grafting onto” is the combination of all reactions 
involving the formation of nanostructures and the binding of the enzyme 
in a step. Compared with the “grafting onto” method, in which the 
bonding reaction between the enzyme and the carrier often results in 
spatial inhibition and leads to low enzymatic bonding efficiency, the 
“grafting from” method ensures high efficiency of the enzymatic 
encapsulation for high bonding efficiency of the enzyme and small 
molecular monomers. Some of the enzymes that have been stabilized by 
this method are alpha-chymotrypsin, peroxidase, lysozyme, and bovine 
serum albumin [142,168–170]. 

4.4. Bonding of enzymatic macromonomers 

Wang et al. [171] worked on the in-situ polymerization of the en-
zymes, which is the first stage in the formation of a double bond on the 
surface of the enzymes. The formation of enzyme macromonomers and 
then polymerization by enzyme transfer were progressed in the organic 
phase followed by pairs of surfactant ions. The prepared biocatalysts 
were stable in both organic and aqueous media. Kim & Grate [172] 
prepared enzyme-nanoparticles with different nanometer diameters 
while their stability was greatly enhanced. 

4.5. Self-assembly 

Biological and environmental applications of nanobiocatalysts 
require enzymes applicability in structures without additives and 
changes in performance. By applying modern engineering methods and 
the development of modification procedures, nanobiocatalysts with 
biochemical functions should be justified with the aim of increasing the 

Fig. 4. Single proteins encapsulated into nanogels with uniform size and controllable shell thickness were prepared by surface acryloylation of a protein molecule 
followed by aqueous in situ polymerization [155] with permission from Journal of American Chemical Society. 

Another way is the encapsulation of enzymes in the nanogel. The porous 
structures of nanogels are commonly used to overcome poor mass 
transfer in nanogels (Fig. 4) [155]. 

Another way to immobilize the enzyme is by utilizing an interme-
diate, called the spacer arm, between the enzyme and the activated 
substrate. For example, such a spacer arm is created by activating an 
amine using glutaraldehyde as a coupling agent or carbide imid de-
rivatives. Although these bridge molecules or binding arms significantly 
reduce the leaching rate of the enzyme, they may also reduce the bio-
logical activity of the enzyme due to the strong binding. Zhang et al. 
[131] functionalized silica nanoparticles with aldehyde, cyanogen, 
epoxy, or carbide imide groups and studied their enzyme immobiliza-
tion. The results show that aldehyde and epoxy-activated silica particles 
can react with the -COOH and -NH2 functional groups in the lysine 
residue of the enzyme. Such changes were applied to immobilize 
Rhizobium etli CFN42 xylitol dehydrogenase to synthesize numerous rare 
sugars. In another study, researchers experimentally proved that laccase 
immobilization improved by available functional groups such as oxirane 
rings, -OH and, -NH2 [156].

Affinity binding is also used for bioconjugation onto supports. For 
example, grafted ferric silica nanoparticles by alkyl groups were con-
jugated with lipase with a binding efficiency of up to 97.9 %. Therefore, 
the enzyme stability is enhanced by conjugation without significant loss 
of its transesterification action. The enzyme binding via affinity grafting 
can occur by adding metal ions onto the substrate surfaces. One example 
is the improvement of attachment of lactase onto mesoporous silica 
containing Cu2+ [135]. Copper and nickel were utilized to modify silica 
for lipase protease inhibitors [157] and bind His-tagged [158]. 

Among metal-based nanocarriers, magnetic nanoparticles are an 
extraordinary example owing to their great reusability and ease of 
separation. These nanomaterials can be functionalized by amino, 
carboxylate, thiolate, or phosphate to create strong interfacial reactions 
with enzymes. These composites increase both biocatalytic performance 
and enzyme stability [133]. Cofactors or multi-enzymes may be attached 
to nanoparticles, because multi-functional groups can be loaded on 
single-metal nanoparticles. These multi-enzyme structures facilitate 
multi-reaction in a one-pot medium by shortening long reaction path-
ways [159]. Modified Iron (II, III) oxide nanoparticles by robust silane 
linkages [160], enzyme horseradish peroxidase, mediator thionine, and 
secondary anti-human IgG antibody are examples of multi-enzyme 
nanobiocatalyste. 

It is also possible to coat the surface of metal nanoparticles with a 
thin layer of polymers and then use functional groups for the stable 
immobilization of enzymes. Polyvinyl alcohol, chitosan, polyethylene 
glycol, and polyethyleneimine have been used so far [161]. Targeted 
immobilization on metal nanoparticles by the polymer coating (such as 
antibody-antigen) can also be achieved through affinity interactions. In 
one operation with this strategy, at first, biotin groups were attached to 
metal nanoparticles, and then streptavidin was attached to biotin-coated 



5. Resource recovery

Toxic pollutants that come from industries, domestic, and agricul-
tural wastewater, such as nitrogen and phosphor-based fertilizer and 
pesticides, constantly affect the environment and human health. Both 
traditional and advanced methods are employed for the treatment of 
environmental pollutants [179]. Nevertheless, resource constraints 
change current social production systems and replace wastewater 
treatment with resource recovery. Biotechnological processes provide 
an economical way to concentrate and convert resources from waste or 
wastewater to valuable products. Biogas (biomethane) and biohydrogen 
as bioenergy sources have been classic goals, according to which the 
direct conversion of waste biomass as a carbon source to biodiesel has 
been considered. Another way for carbon recovery is the use of methane, 
hydrogen, and organic acids for manufacturing worthwhile bio-
polymers. In addition to the inherent human and environmental con-
cerns about toxic metals, nitrates, pesticides, and plastics 
contamination, there is an expanding opportunity to recover and reuse 
these resources [180]. In the following, the recovery of these toxic 

substances is described. 

5.1. Recovery of toxic metals 

Metals play a very important role in nature, human life, and industry. 
There is a wide range of diverse applications for all types of metals 
[181–183]. Meantime, indiscriminate harvesting of natural resources 
and non-recycling of waste is a serious risk for both industry and human 
health, and in total biological balance in ecosystems and human welfare. 
Therefore, along with the development of various metals-based tech-
nologies, it is necessary to develop high-performance and efficient 
processes for the metal recovery and return to the production cycle 
[184,185]. 

Based on the toxicity and physiological impact, different types of 
metals are divided as low (iron, molybdenum, and manganese), medium 
(zinc, nickel, vanadium, copper, cobalt, chromium, and tungsten), and 
high (arsenic, antimony, silver, mercury, cadmium, mercury and ura-
nium) impact, which are harmful to humans and the environment 
[186–190]. The treatment of wastewater is drawing special attention as 
the accumulation of pollutants in the ecosystem affects the food chain 
[191]. In the meantime, toxic metals have a major impact on human 
health once they enter the human body through the food chain. Metal 
recovery has been studied by various techniques, including physical 
(adsorption, coagulation, and flocculation) [182,183,190], chemical 
(ion-exchange, photocatalysis), and biological (biosorption, bio-
accumulation, oxidation/reduction, leaching, precipitation, volatiliza-
tion, degradation, and phytoremediation). Physical and chemical 
methods of removing toxic metals have disadvantages such as high 
operating costs, production of large volumes of metal-rich sludge, and 
difficulty in treating large volumes of wastewater containing low con-
centrations of toxic metal [192]. Biological methods, in comparison with 
physical and chemical methods, are one of the most effective environ-
mentally friendly tools for the treatment of industrial effluents 
contaminated with toxic metals [193]. Table 2 shows the studies per-
formed on the recovery of metals from waste and wastewater sources 
using various biological technologies. The whole cells of lead-resistant 
bacterium Acinetobacter junii L. Pb1 isolated from a coal mine dump 
when loosely associated with exopolysaccharide showed high binding 
affinity to Pb ion. Notably, each g of this absorbent effectively removed 
1071 mg Pb ion [194]. 

5.2. Recovery of phosphorous from wastewater 

For the past 60 years, the use of synthetic phosphorus (P) fertilizers 
has been multiplied, constantly harming the environment. Phosphorus 
contamination routes are numerous, including the discharge of waste-
water treatment plants (urban and industrial), agricultural fertilizer 
losses (as a result of erosion, water runoff, and surface drainage), surface 
runoff of rainwater, leaching of phosphorus fertilizers including calcium 
phosphate derived from phosphate rock [202]. Accumulation of phos-
phate in water causes more growth of algae and aquatic plants and, as a 
result, decreases the oxygen content of water. Therefore, it disturbs the 
biological balance of water [203]. Despite efficient methods such as 
biodegradation or membrane separation, due to their costly process, the 
cheaper method based on ion-exchange adsorption is often used [204]. 
Rabiul Awual prepared a mesoporous silica-based composite embedded 
with a selective ligand for phosphate ion adsorption from wastewater 
[203]. The hydrogen bonding and electrostatic interaction, along with 
ion-exchange process, helped to reach an adsorption capacity of ~159 
mg/g. Shahat et al. modified the surface of UiO-66 (a well-known Zr- 
based MOF) with cationic surfactant N-Dodecylpyridinium chloride. 
Then, they impregnated the modified MOF surface with ammonium 
molybdate to prepare a selective phosphate adsorbent with ~70.5 mg/g 
adsorption capacity [205]. 

In this regard, technologies that provide the possibility of elimi-
nating, recycling, and reusing phosphorus from polluted streams are 

activity and stability of the enzyme, as well as reusability and process-
ability. One of the exciting materials for immobilizing enzymes with the 
mentioned conditions is the employment of nanostructured fiber. These 
materials provide homogeneous dispersion and high enzymatic loading 
in the liquid phase, significant porosity, and cross-linking, known as 
barriers to mass transfer. Nanofibers with discrete nanostructures, spe-
cific surface properties, and self-assembly behaviors give exciting op-
portunities for nanobiocatalyst development in biological processes as 
bioreactor systems. Electrospinning is a common technique for inte-
grating enzymes into nanofiber structures due to its simplicity. In 
addition to single-fiber configurations, composite structures such as 
laterals, core shells, and hollow nanofibers can be fabricated and used to 
immobilize enzymes [173]. The electrospinning technique can also be 
used to make inorganic/organic hybrids. Hybridization of minerals with 
desired features improves the strength of the structure and allows these 
nanobiocatalysts to be used repeatedly. For example, silica nano-
particles inside hollow polymer fibers were used to synthesize nano-
composites [174,175]. The hybrid nanocomposite can tolerate shear 
strain through bioprocessing without great deformation. Huang et al. 
[176] found out that the uniform distribution of quantum dots on 
polymer nanofibers results in a higher degree of compaction and stiff-
ness, which leads to efficient enzyme immobilization.

4.6. Encapsulation 

In addition to the fact that enzymes can be immobilized on the sur-
face of substrates, they can be trapped inside the pores of nano-
structures. Similar to surface immobilization in the encapsulation 
method, enzyme leaching can be a major issue, especially when the 
enzymes are tightly bonded by physical adsorption. However, chemical 
adsorption also raises problems. The non-physical adsorption of the 
enzyme can be affected by structural changes, or enzymes activity can be 
reduced by exposure to cross-linking reagents. Electrospinning can be 
used to encapsulate enzyme molecules. In this method, encapsulation of 
enzymes is attained by cross-linking the polymer or co-electrospinning 
with an aqueous enzyme in the core and the formation of a water- 
insoluble shell by the polymer [177]. Mesoporous silica with spherical 
mesocellular cages can also be used for this purpose. These nanoshells 
can be made up of biological molecules such as DNA through the self- 
assembly process of DNA. Numerous cage structures can be formed by 
DNA molecules, including quadrilaterals, cubes, octagons, duodenums, 
and icosahedral shapes [178]. 

The application of technologies based on nanobiocatalysts is still in 
the early stages of entering the resource recovery industry. The mech-
anisms of nanobiocatalysts action and required properties to enter the 
field of industrial processes will be discussed in the next part. 



essential. Hybrid ion exchange nanotechnology (HIX-Nano) produces a 
valuable nutrient solution after removing phosphorus from contami-
nated media. Using the design of experiments approach, Ownby et al. 
[202] studied the phosphorus desorption from a commercial HIX-Nano
resin hybridized with Fe2O3 nanoparticles. A mixture solution of KOH/
K2SO4 and recycled alkaline NH4OH and tap water was employed
instead of synthetic acid. They used KOH and H2SO4 solutions as control
samples. The efficiency of 75 % resulted for phosphorus recovery uti-
lizing a mixture solution of NH4OH and tap water. The hybrid of HIX- 
Nano resin/Fe2O3 nanoparticles showed high stability after five
consecutive adsorption and disposal process.

Pengyi Yuan and Younggy Kim investigated phosphorus recovery 
from a local wastewater treatment plant by microbial electrolysis cells. 
Fig. 5 shows the schematic diagram of the microbial electrolysis cells 
constructed of stainless steel foil cathode and an exoelectrogenic bac-
teria supported on a graphite fiber brush in the role of bioanode [206]. 
They evaluated different cathode arrangements in a laboratory-scale cell 
for optimal precipitation of struvite crystals (NH4MgPO4⋅6H2O). Under 
an electric current of 2 A/m2, a thick layer of struvite is deposited on the 
cathode surface. The fabricated microbial cell achieved 96 % phos-
phorus recovery during 7 days of operation. 

Okano et al. [207] used the amorphous calcium silicate hydrates (A- 
CSHs) to recover phosphorus from aqueous solutions. Fig. 6 shows the 

mechanism of phosphorus recovery with calcium silicate hydrates. The 
69 % phosphorus removal from an anaerobic sludge digestion liquor 
including 89 mg PO4

− 3/L by 1.5 g/L A-CSHs reveal the high efficiency of 
the developed procedure. The phosphorus removal was improved up to 
82 % following the A-CSHs washing with deionized water by which free 
calcium hydroxides are omitted from A-CSHs. Moreover, sedimentation, 
filtering, and dewatering for eliminated phosphorus by A-CSHs is done 
better than the sample obtained by CaCl2 and Ca(OH)2. 

5.3. Recovery and reuse of ammonia and nitrogen from wastewater 

Demand for phosphorus and nitrogen has increased due to the 
development of food production. The Haber-Bosch procedure produces 
fertilizers based on nitrogen through the industrial stabilization of ni-
trogen to ammonia. The wastewater treatment is a high-energy con-
sumption process in which nitrogen is mainly converted to N2 gas that is 
lost to the atmosphere. Several technologies are available today for 
recycling nitrogen from wastewater [208–211], Fig. 7: (1) direct nitro-
gen recovery from wastewater or rejected water originates from the 
dewatering of digested sludge, 2) concentrating nitrogen content in 
wastewater or rejected water, 3) treatment of sewage sludge and urine, 
4) nitrogen recovery in form of biomass [212].

Nitrogen-containing pollutants enter the environment due to the
combustion of solid fuels from sludge. He and coworkers [213] designed 
a hydrothermal-based deamination and deaeration system to recover 
and reuse nitrogen from sewage sludge (Fig. 8). Four hydrothermal 
procedures were applied for amine elimination. At a temperature below 
300 ◦C and a pressure of 9.3 MPa (inorganic nitrogen, labile protein 
nitrogen), and by increasing the temperature and pressure to 340 ◦C and 
15.5 MPa, deamination processes were performed. Protein‑nitrogen 
deamination occurred significantly at 380 ◦C and 22 MPa, which 
resulted in the removal of NH4

+-N (7980 mg/L) and nitrogen (76.9 %) 
from the sewage sludge. Deamination of stable protein, pyridine, and 
pyrrole was accelerated by adding calcium oxide for fracturing and 
catalytic hydrolysis processes, and the conversion of quaternary pro-
tein‑nitrogen to nitrile and pyridine was desired. In this process, the 
total nitrogen removal efficiency and recovery rate reached 86 % and 62 
%, respectively. In addition, ammonium sulfate was used to remove and 
recover ammonia from the liquid portion. 

Metal Sample Reaction/ 
microorganism 

Recovery (mg/g) Refs. 

Ni (II) Ni- 
containing 
industrial 
wastewater 

Modified biochar by 
KMnO4/KOH (MBC)/ 
Ni (II) 

87.15 [195] 

Pb (II) Synthetic 
wastewater 

Biosorption onto 
exopolysaccharides, 
extracted from 
bacterial strain coded 
TS7 

277.54 [196] 

Au Au- 
containing 
industrial 
wastewater 

Direct biosorption 
onto 
exopolysaccharide 
(Cyanothece sp., 
Nostoc sp., 
Rhodopseudomonas 
palustris, Rhodobacter 
sphaeroides) micro 
organisms 

Cyanothece (318), 
Nostoc (64), 
R. palustris (80), 
R. sphaeroides (45) 

[197] 

Cu 
(II), 
Ni 
(II) 

Synthetic 
wastewater 

Bioaccumulation 
inside the cells 
(candida sp.) 

Cu (36,9), Ni (46.8) [198] 

Pb (II) Pb(NO3)2 

solution 
Adsorption/ 
accumulation by 
exopolysaccharide 
and acinetobacter junii 
Pb1 

Loosely associated 
(1071) and bound 
(321.5) to 
exopolysaccharide, 
whole cells (165) 

[194] 

Cd, 
Cu, 
Mn, 
Zn 

Synthetic 
wastewater 

Direct 
bioaccumulation 
inside the cells 
(Chlorella minutissima) 

33.7 (Zn), 21.2 (Mn), 
35.4 (Cd), 3.3 (Cu) 

[199] 

As 
(III), 
Fe 
(II) 

Synthetic 
wastewater 

Fe (II) + O2 ➔ Fe 
(III)(aq) ➔ jarosite: ((K, 
Na,NH4) 
Fe3(SO4)2(OH)6), As 
(III)(aq) + biogenic 
jarosite➔ As-Jarosite 

99.5 [200] 

Pt, Pd, 
Rh 

Spent 
automotive 
catalysts 

Glycine converted to 
NaCN 
2Pt + 8NaCN + O2 +

2H2O ➔ 2Na2(Pt 
(CN)4) + 4NaOH 
(Chromobacterium 
violaceum) 

92.1 (Pt), 99.5 (Pd), 
96.5 (Rh) 

[201]  

Fig. 5. Schematic of microbial electrolysis cells fabricated with a stainless steel 
foil cathode and a bioanode. A graphite fiber brush supporting the exoelec-
trogenic bacteria played the role of bioanode. 
Reprinted from Ref. [206]. 

Table 2 
Toxic metal recovery from wastewaters using various biological technologies.  



6. Technologies for resource recovery

Recovering valuable resources is of great importance for completing
the sustainability circle of new urban societies. Accordingly, current 
studies focus on recovering nutrients, organic carbon, precious metals, 
and energy from various resources [214,215]. Developed technologies 
for substances and energy recovery are based on biorefinery, biological 
treatment, thermal-chemical process, biosorption, and hydrothermal 
conversion. Researchers have focused on the recovery of organic con-
stituents, mainly carbon, heat, and nutrients from a variety of wastes 

and effluents. 
The combustion of fossil fuels leads to the production of flue gas that 

is rich in sulfur and nitrogen oxides. The harmful effects of these gases, 
whith the most obvious of them beeing global warming due to the 
greenhouse effect and acid rains, have made it necessary to recover and 
prevent them from entering the atmosphere [216]. For example, the SOx 
or NOx pollutants are traditionally removed from flue gas via liquid- 
based adsorbent through a wet scrubbing process. However, investiga-
tion indicated that heterogeneous adsorbents performance is better and 
in term of recycling and economic efficiency are superior to liquid-based 

Fig. 6. Process of phosphorus removal from contaminated solutions utilizing amorphous calcium silicate hydrates. The recovery is performed via a three-step 
procedure. This method benefits from cheapness, abundance and easy access to amorphous calcium silicate hydrates. High performance recovery of phosphorus 
from synthetic model liquor (s-ASDL), anaerobic sludge digestion liquor (ASDL) containing 89 mg PO4

− 3/L, was performed by the amorphous calcium silicate hy-
drates (A-CSHs). After 20 min of stirring, CSH hydrates have removed 73 % and 69 % of phosphorus from s-ASDL and ASDL, respectively. However, under the same 
experimental conditions, particles of lightweight concrete containing A-CSHs were able to eliminate only 6 % and 10 % of phosphorus from s-ASDL and ASDL, 
respectively. 

Fig. 7. Outline of strategies with related techniques to recover and reuse nitrogen. Categorized technologies used to recover and reuse nitrogen from wastewater. 1) 
Recovering nitrogen directly from wastewater or reject water originating from the dewatering of digested sludge, 2) recovery through nitrogen concentrating in 
wastewater, 3) purification of sewage sludge and urine, 4) incorporating nitrogen in biomass. 
Reprinted from Ref. [212]. 



adsorbents. 
Thermal energy recovery from municipal wastewater, wastewater 

treatment plants, and even domestic water can be done with the help of 
a thermal converter with a heat pump [217]. Not only heat but also 
nutrients and valuable materials can be recovered from industrial and 
agricultural wastewater and even sewage. For example, phosphorus is 
converted to struvite and recovered. Extracting valuable materials such 
as methane containing biogas and ethanol from remaining wastes is an 
effective way to recover renewable energy. Conversion of various waste 
components into valuable products is a sustainable solution in 
resumption of the renewable energy. Phosphorus extraction from 
sewage sludge, food, animal and agricultural waste and recovery of 
precious metals and transition metals from mining waste, municipal and 
industrial waste, and electronic waste such as silver and gold recovery 
from printed circular boards are examples of the valued recourse re-
covery [217]. 

Among these fields, nanobiocatalysts play an important role in en-
ergy recovery from oils. Biodiesel is well-known as the most essential 
form of recovered valuable energy resource. Biodiesel is a biodegradable 
and renewable fuel consisting a mixture of long-chain fatty acid esters. 
Commonly, biodiesel is produced through the chemical or enzymatic 
transesterifying of vegetable oils, animal fats, or recycled greases in the 
presence of monohydric alcohols. Diverse technologies are carried out to 
convert the oil into biodiesel, such as pyrolysis, microemulsion, and 
transesterification. Among the various traditional methodologies for 
resource recovery aimed at biodiesel production, transesterification has 
appeared as one of the best methods because the physicochemical 
properties of the obtained biodiesel are comparable with petroleum 

diesel and do not require any adjustment before use in vehicle engines. 
The transesterification process could be improved by utilizing distinc-
tive types of catalysts. Considering the catalyst type, transesterification 
may be categorized into five classes, including acid, alkaline, lipase, 
transition metal compound, and silicates catalyzed transesterification 
[218,219]. Transesterification is a 3-step process that calls for a tem-
perature around 60 to 70◦ centigrade related to the activation/boiling 
point of the used alcohol. This process is irreversible and requires a 
catalyst to enhance the efficacy of the reaction. Typically, the starting 
materials of this reaction are triglycerides (oils and fat) and alcohol. As 
aforementioned, it is a multi-step reaction. Diglycerides are first formed 
by the reaction of methanol with triglycerides. Then, the as produced 
diglycerides react with the residual methanol to form monoglyceride. 
Finally, glycerol is formed from the reaction of monoglycerides with 
methanol. Fig. 9 shows a summary of the transesterification process. 
Generally, primary catalysts are used in this process, and the reactants 
are heated in the presence of a catalyst [220,221]. 

7. Limitations

Recovering valuable resources from waste faces various drawbacks,
including uneconomic raw materials, several long steps, and low con-
version rates. The scientific community is always looking for new ideas 
to develop a process to address these issues. In this regard, the enzymatic 
method has been considered due to the higher conversion rate, lack of 
soap formation in the reaction chamber and the pervasive recovery/ 
purity properties of the synthesized products. The use of lipase enzymes 
also makes it possible to work with a wide range of raw materials. For 

Fig. 8. Nitrogen recovery amount and ammonium removal capability under four typical techniques. Hydrothermal technique was applied for amine elimination. At a 
temperature below 300 ◦C and a pressure of 9.3 MPa (inorganic nitrogen, labile protein nitrogen), and by increasing the temperature and pressure to 340 ◦C and 15.5 
MPa, deamination processes were performed. Protein‑nitrogen deamination occurred significantly at 380 ◦C and 22 MPa, which resulted in the removal of NH4

+-N 
(7980 mg/L) and nitrogen (76.9 %) from the sewage sludge. Deamination of stable protein, pyridine, and pyrrole was accelerated by adding calcium oxide for 
fracturing and catalytic hydrolysis processes, and the conversion of quaternary protein‑nitrogen to nitrile and pyridine was desired. The ammonia was eliminated and 
recovered from the liquid portion as ammonium sulfate in an efficient air removal process. In this process, the total nitrogen removal efficiency and recovery rate 
reached 86 % and 62 %, respectively. (S1: Scenario 1 (340 ◦C, 15.5 MPa), S2: Scenario 1 (380 ◦C, 22.0 MPa), S3: Scenario 3 (380 ◦C, 22.0 MPa, Ca/C = 0.05), S4: 
Scenario 4 (380 ◦C, 22.0 MPa, Ca/C = 0.2), R: Recovery rate of N as (NH4)2SO4, E: NH4

+-N removal efficiency after 24 h). 
Reprinted from Ref. [213] with permission from Environmental science & technology. 



example, in the usual methods used when working with animal fats and 
frying oils, the problems of free fatty acids and moisture must be over-
come. However, the lipase enzyme can be effective even in these prob-
lematic cases [223]. Despite the mentioned advantages, the use of lipase 
enzyme also has disadvantages. We can point to the low stability, low 
recovery rate, and low effectiveness of free enzymes at high tempera-
tures and pH, which limit the industrial application of this process 
[224,225]. 

To overcome the problems of using lipase as a catalyst in the trans-
esterification process, the application of lipase stabilization techniques 
on solid substrates has been widely used in the production of biodiesel in 
recent years. In this regard, the application of nanotechnology in the 
development of lipase stabilization substrates has achieved remarkable 
success. These nano-substrates provide a suitable microenvironment for 
enzyme stabilization by introducing nano-dimension pores and a larger 
active surface available for enzyme stabilization. In addition, 

nanoparticles support fewer structural constraints and more brown 
motions, which improves enzymatic performance. Various nano-
biocatalysts with different nanoparticle sizes, shapes, and compositions 
have been introduced for biodiesel production. The capability of enzyme 
recovery and reuse, along with reducing the associated costs, has made 
nanobiocatalysts a promising solution in the production of biodiesel 
using enzymatic reactions. Fig. 10 provides an overview of recent de-
velopments and conventional methods in biodiesel production. 

Disadvantages like the low stability, low recovery rate, and low 
effectiveness of free enzymes at high temperatures and pH limit the 
industrial application of enzyme-based catalysts. The nanobiocatalysts 
have shown well that they are capable of solvingtemperatures these 
restrictions and successfully catalyze many reactions. 

Fig. 9. Three-step transesterification process. The 
process starts with diglycerides production by the 
reaction of methanol and triglycerides. The produced 
diglycerides react with remaining methanol for 
monoglycerides formation. Finally, the mono-
glycerides react with excess methanol to form glyc-
erol production as final product. Basic catalysts are 
required for the enhancement of the process effi-
ciency. The application of nanobiocatalysts has 
improved the transesterification efficiency. 
Reprinted from Ref. [222].   

Fig. 10. Renewable energy plays an important role in the field of resource recovery. Various nanobiocatalysts have been developed for the production of biodiesels 
as an on demand renewable energy. The capability of enzyme recovery and reuse, along with reducing the associated costs, are attractive benefits that nano-
biocatalysts can afford. This schematic represents recent developments and conventional methods in biodiesel production. 
Reprinted from Ref. [226]. 



8. Economic aspects

To cope with the economic crisis and the scarcity of natural re-
sources, the international community must move toward replacing the 
linear economy with a circular economy [227,228]. Unlike linear eco-
nomics, which is based on production, consumption, and disposal, cir-
cular economics emphasizes use and recycling. Given the unprecedented 
growth of the world’s population, sustainable growth based on the cir-
cular economy model must be considered and implemented to ensure 
the provision of food, water, and energy for future generations 
[229,230]. More efficient management of raw materials and minimi-
zation of waste is very important. A circular economy can guarantee less 
waste generation and a sustainable way of producing chemicals and 
energy. 

Switching to biodiesel is an economically feasible and sustainable 
option to replace petroleum-based diesel. The ability to use biodiesel, 
produced from renewable and recyclable sources, as fuel for existing 
diesel engines without further modification is an additional advantage 
[231]. Fungal biosystems and oily yeasts utilize organic waste as an 
energy source for lipid bioaccumulation [232]. Lipomyces sp., Rhodo-
torula sp., and Rhodosporidium sp. are known strains of yeasts that can 
produce intracellular lipids. In fact, 70 % of the biomass of these yeast 
strains is composed of lipids, which makes it possible to use them as a 
source of biodiesel production [232]. Used cooking oil, wheat straw, rice 
husk, and carbon from glycerol can be utilized as resources for fat pro-
duction by oily fungi [115,233]. The esterification process is the next 
major step for biodiesel production, where the biomacromolecule-based 
nanobiocatalysts plays crucial economic role. 

It is important to note that free enzymes are readily inactivated in the 
presence of short-chain alcohols, especially methanol, which is used in 
the esterification process at high temperatures and pHs [79]. Mean-
while, the stabilization of the enzyme on the surface of nanoparticles 
and the production of nanobiocatalysts increase the resilience and 
maintain the function of the enzyme against environmental conditions 
by creating a suitable microenvironment. On the other hand, most of the 
nanobiocatalysts utilized in the transesterification process have the 
capability of reuse up to five times, unless the enzyme activity is 
significantly reduced. Hence, nanobiocatalysts can help reduce the cost 
of the biodiesel production process. In this regard, lipase stabilization on 
the surface of nanoparticles and the production of effective nano-
biocatalysts for the transesterification process is vital for the economics 
of the biodiesel production process. 

Currently, the immobilization of bio-macromolecules onto different 
types of nanomaterials has been videly applied to economically improve 
the overall process by making nanobiocatalysts reusable many times 
[234–236]. The immobilized bio-macromolecules is found in numerous 
implementations in chemical industries, pharmaceutical, food, and 
biofuels [234,237]. For the resource recovery approach to be imple-
mented with the help of nano-biocatalysts, long-term stability, the 
possibility of recovery as well as the possibility of commercialization of 
nano-biocatalysts must be considered. Cooperation between govern-
ments, scientists, and companies in developing and developed countries 
is needed according to a coordinated framework and strategy to ensure a 
global sustainable market for the usage of resource recovery technolo-
gies. Strict legal frameworks should also be provided for wastewater and 
waste disposal and resource recovery to diminish environmental pollu-
tion and improve resource recovery and reuse [238]. 

9. Conclusion

Nanobiocatalysts are a new generation of catalysts that benefit from
outstanding properties of both biocatalysts and nanomaterials. The 
combination of nanomaterials with biocatalysts is considered an effi-
cient engineering strategy to overcome the disadvantages like the low 
stability, low recovery rate, and low effectiveness of free enzymes at 
high temperatures and pHs. On the other hand, the prominent 

nanoproperties in nanobiocatalysts provide a wide active surface area, 
long-term stability, resistance, increased catalytic activity, greater 
selectivity, easier operating conditions, and cost-effectiveness for the 
biocatalysts. Integrating magnetic nanomaterials with nanocatalysts has 
made nanobiocatalysts recoverable and reusable. Therefore, the high 
operating costs associated with the production of enzymes and the 
synthesis of nanocarriers are offset and bring economic benefits. 

The application of technologies based on nanobiocatalysts is still in 
the early stages of entering the valuable resource recovery industry. The 
mechanisms of nanobiocatalysts action and their related properties are 
not yet well understood. Nanobiocatalysts must have four key charac-
teristics to sucesfully enter the field of industrial processes : (i) high 
stability in harsh environments, including organic solvents and changes 
in temperature and pH, (ii) the ability to recover and reuse biocatalysts 
in successive reaction cycles, which has great importance from an eco-
nomicaland technical point of view, (iii) maintaining the activity and 
efficiency of the enzyme at the desired level of process conditions, as 
well as reducing enzyme leakage, (iv) high-yield for large-scale 
processes. 
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[3] J. Castillo-Giménez, A. Montañés, A.J. Picazo-Tadeo, Performance and 
convergence in municipal waste treatment in the European Union, Waste Manag. 
85 (2019) 222–231. 

[4] V. Oliveira, C. Dias-Ferreira, I. González-García, J. Labrincha, C. Horta, M. 
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