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We discuss transformations on matrices that preserve

1. E f f e c t i v e s p e c t r a l r a d i u s o f a m at r i x

Let n ∈ N * = {n > 0 : n ∈ Z}. For K a square matrix of size n, let spec(K) and ρ(K) = max{|λ| : λ ∈ spec(K)} denote the spectrum and spectral radius of K. By the Perron-Frobenius theorem, if K has nonnegative entries, then ρ(K) is an eigenvalue and thus belongs to Spec(K). For η ∈ R n + , let Diag(η) denote the diagonal matrix with entries given by η and let Kη denote the square matrix K Diag(η), defined by:

(Kη) ij = K ij η j for 1 ≤ i, j ≤ n.
Similarly, we denote ηK the square matrix Diag(η)K. We now define the effective spectrum and effective spectral radius functions associated to K. Definition 1. Let K be a square matrix of size n ∈ N * . The effective spectrum Spec[K] and effective spectral radius R e [K] functions are defined on R n + by: Spec

[K](η) = spec(Kη) and R e [K](η) = ρ(Kη) for η ∈ R n + .
Trivially, two matrices with the same effective spectrum have the same effective spectral radius.

Motivated by the quantitative effect of vaccination strategies on the reproduction number in epidemic models, see [START_REF] Cairns | Epidemics in Heterogeneous Populations: Aspects of Optimal Vaccination Policies[END_REF]Theorem 7.4] or [START_REF] Delmas | An infinite-dimensional metapopulation SIS model[END_REF] in a more general framework, we give in [START_REF] Delmas | Effective reproduction number: convexity, concavity and invariance[END_REF] examples of transformations on positive compact operators that leave the effective spectral radius and effective spectrum functions invariant (mainly transposition and diagonal similarity, see below). The aim of this note is to explore further this invariance property in a finite dimensional setting, that is, for matrices.

Our main result is a characterization of the equality between effective spectrum, shown in Section 2. Building in particular on results from [START_REF] Hartfiel | On matrices having equal corresponding principal minors[END_REF][START_REF] Loewy | Principal minors and diagonal similarity of matrices[END_REF], we then give in Section 3 sufficient conditions for two matrices to have the same effective spectral radius, and show that they are necessary under various additional assumptions.

E q u i va l e n t c o n d i t i o n s f o r e q u a l i t y

Let us first define some notation. For α and β non-empty subsets of {1, ..., n} we denote by K[α, β] the sub-matrix of K obtained by keeping the lines in α and the columns in β, and let

K[α] = K[α, α]. The determinant of K[α] is called a principal minor of K, its size is the cardinal of α.
It is elementary to check that the characteristic polynomial of K may be written as:

(1) χ K (t) = n k=0 (-1) k c n-k t k ,
where c 0 = 1 and, for j ≥ 1, c j is the sum of all principal minors of size j of K.

We now give equivalent conditions for the effective spectrum and effective spectral radius for two matrices to be equal. For simplicity, we write

E (n) = {0, 1} n . Proof. Clearly (iii) =⇒ (i) =⇒ (ii), and (iii) =⇒ (iv) =⇒ (ii).
Let us check that (v) implies (iii). Assume that all principal minors of K and K coincide. Recall that any vector η, Kη denotes the square matrix K • Diag(η). For any vector η ∈ R n and any set of indices α, by multi-linearity of the determinant,

det (Kη)[α] = i∈α η i det (K[α]) .
Consequently, all principal minors of (Kη) and ( Kη) coincide. By [START_REF] Boussaïri | A transformation that preserves principal minors of skewsymmetric matrices[END_REF] this implies that Kη and Kη have the same spectrum. Thus, Point (iii) holds.

Therefore, it is enough to prove that (ii) implies (v). The proof is an induction on the dimension. The result is clear in dimension 1. Assume that it holds for any square matrix with nonnegative entries of dimension smaller than or equal to n. Let K and K be two square matrices of dimension n + 1 with nonnegative entries, and assume that R e [K] and R e [ K] coincide on E (n + 1). For any non-empty α ⊂ {1, ..., n + 1}, let η α be the column vector (1 α (i), 1 ≤ i ≤ n + 1). Recall that Kη = K • Diag(η) for η a vector. Notice that for any matrix K :

R e [K ](η α ) = ρ(K η α ) = ρ(K [α]).
Fix α ⊂ {1, ..., n + 1} nonempty, with α = {1, ..., n + 1}. Let β ⊂ α and set ηβ = (1 β (i), i ∈ α). We have:

(2) R e [K [α]](η β ) = ρ(K [α]η β ) = ρ(K η α η β ) = ρ(K η β ) = R e [K ](η β ). Since η β ∈ E (n + 1), we get R e [K](η β ) = R e [ K](η β ) for all β ⊂ α. We deduce from (2) that R e [K[α]] = R e [ K[α]
] on E (Card α). By the induction hypothesis the principal minors of K[α] and K[α] are equal, that is all principal minors of size less than or equal to n of K and K coincide. It remains to check that the determinants are the same. Since all principal minors of size less than or equal to n coincide, we deduce from (1) that:

(3)

χ K (t) -det(K) = χ K (t) -det( K).
Since K and K have nonnegative entries, by Perron-Frobenius theorem, their spectral radius 1) is also an eigenvalue, and thus a root of their characteristic polynomial. As R e [K](1) = R e [K ](1), we deduce from (3) that det(K) = det( K). This ends the proof of the induction step.

ρ(K) = R e [K](1) and ρ(K ) = R e [K ](
According to the proof of Theorem 2.1, we have that (v) implies (iii) and thus (i), (ii) and (iv) without assuming that the entries are nonnegative. We first investigate whether (i) from Theorem 2.1 implies (v) when the entries of the matrices have generals signs. Notice that R e [K] = R e [ K] automatically implies K and K have the same entries on the diagonal up to their sign (evaluate the effective spectral radii on η with only one non-zero component). So in order for the equality of the effective spectral radii of K and K to imply the equality of all principal minors, it is necessary to assume that the two matrices have the same sign on their diagonal, that is, sign(K ii ) = sign( Kii ) for all indices i. It is however not enough, see next example and lemma.

Example 2 (Same effective spectral radii do not imply same principal minors in general). Consider the following two matrices:

K = 0 1 1 0 and K = 0 -1 1 0 . We have R e [K] = R e [ K] on R 2
+ , but, even if all the principal minors of size 1 coincide, the principal minor of size two is different.

The key point is in fact the number of zeroes on the diagonal. Lemma 3. Let K and K be square matrices of the same size n ∈ N * with the same sign on their diagonal and having at most one zero term in their diagonal. If R e [K] = R e [ K] (on R n + ), then all principal minors of K and K coincide.

Proof. Mimicking the proof by induction of (ii) =⇒ (v) from Theorem 2.1 and assuming (i), we get by induction that (3) holds for K and K as well as for Kη and Kη with η ∈ R n+1 + (this amounts to multiply all terms in (3) by n+1 i=1 η i ): χ Kη (t) -det(Kη) = χ Kη (t) -det( Kη).

As there is at most one zero on the diagonal, without loss of generality (multiplying K and K by -1 and using a permutation of the canonical bassis of R n+1 if necessary), we can assume that K 11 = K11 = a > 0. Taking η = (1, ε, . . . , ε) for ε > 0 small enough, we deduce that the spectral radius of Kη (resp. Kη) is also a simple eigenvalue of Kη (resp. Kη). As R e [K](η) = R e [ K](η), we deduce that det(Kη) = det( Kη) and thus det(K) = det( K). Thus, by induction, all the minors of K and K coincide.

We now check that (ii) from Theorem 2.1 does not imply (i) or (v) when the entries of the matrices have generals signs (even with positive entries on the diagonal).

Example 4 (Same effective spectral radii on Boolean vectors do not imply same effective spectral radius). Consider the following two matrices:

K = 1 β β 1 and K = 1 -γ γ 1 ,
where γ > 0 and β = 1 + γ 2 -1. The eigenvalues of K are 1 + γ 2 and 2 -1 + γ 2 ; the eigenvalues of K are 1 ± γi. In particular, the two matrices have the same spectral radius 1 + γ 2 . The functions R e [K] and R e [ K] clearly coincide on E (2). Since det(K) = det( K), we deduce that all the principal minors of K and K do not coincide, and thus R e [K] = R e [ K] on R 2 + thanks to Lemma 3.

M at r i c e s w i t h t h e s a m e e f f e c t i v e s p e c t r a l r a d i u s

Let us first recall a few notions. The matrix K is irreducible if K[α, α c ] = 0 for all subsets α such that α and α c are non-empty. The non-empty subset α is irreducible for

K if K[α] is

Theorem 2 . 1 (

 21 Effective spectrum and principal minors). Let K and K be square matrices of the same size n ∈ N * with nonnegative entries. The following are equivalent: (i) The functions R e [K] and R e [ K] coincide on R n + . (ii) The functions R e [K] and R e [ K] coincide on {0, 1} n . (iii) The functions Spec[K] and Spec[ K] coincide on R n + . (iv) The functions Spec[K] and Spec[ K] coincide on {0, 1} n . (v) All principal minors of K and K coincide.

irreducible. Let A (K) be the family of maximal irreducible sets for the inclusion, and consider the matrix K A given by:

∈ α for some α ∈ A (K), and K A ij = 0 otherwise. The elements of A (K) corresponds to the atoms of K in [START_REF] Delmas | Effective reproduction number: convexity, concavity and invariance[END_REF]. The map K → K A is not linear.

The matrix K is completely reducible if K[α, α c ] = 0 implies K[α c , α] = 0 whenever α and α c are non-empty, or equivalently if K = K A . We have the following graph interpretation: consider the oriented graph G = (V, E) with V = {1, . . . , n} and ij ∈ E, that is ij is an oriented edge of G, if and only if K ij = 0. Then the matrix K is irreducible if for any choice of vertices i, j ∈ V there is an oriented path from i to j; the matrix K is completely reducible if for any vertices i, j ∈ V there is an oriented path from i to j if and only if there is an oriented path from j to i.

Recall the matrix K is diagonally similar to a matrix K if there exists a non singular real diagonal matrix D such that K = D KD -1 . Notice that if K and K have nonnegative entries one can assume without loss of generality that D is also nonnegative. We recall the following well known result (see [START_REF] Delmas | Effective reproduction number: convexity, concavity and invariance[END_REF]Lemma 3.1 and Corrolary 5.4] in the infinite dimensional setting). For η ∈ R n + , we denote 1 {η>0} the vector whose i-th component is

Lemma 5 (Sufficient conditions for equality of effective spectrum). Let K and K be square matrices of the same size n ∈ N * with nonnegative entries. We have:

]. We now try to find necessary conditions for equality of effective spectra. In other words, we would like to see if there are others transformations of matrices that leave the effective spectrum invariant. Following [START_REF] Boussaïri | A transformation that preserves principal minors of skewsymmetric matrices[END_REF] we introduce the notion of clan. Definition 6 (Clans and clan-free matrix). Let K be a square matrix of size n. A subset α of {1, ..., n} is a clan if it satisfies 2 ≤ Card(α) ≤ n -2, and the submatrices K[α, α c ] and K[α c , α] have rank at most 1. The matrix K is clan-free if there exists no clan. Remark 7. A square matrix of size n ∈ {1, 2, 3} is automatically clan-free.

The following proposition gathers known results on necessary conditions for equality of principal minors, and therefore of effective spectrum. Proposition 8. Let K and K be square matrices of the same size with nonnegative entries, and the same effective spectrum, that is, R e

If K is irreducible and clan-free, then K is diagonally similar to K or to K .

Proof. Thanks to Theorem 2.1, the principal minors of K and K coincide. The results then follow directly from [5, Theorem 3.5], for the symmetric case, [6, Theorem 3] for the irreducible case when n ≤ 3 (by Remark 7, there can be no clan in this case), and [7, Theorem 1] for the clan-free case when n ≥ 4.

Finally, as a corollary of Theorem 2.1, we show that the clan-free assumption is needed and get an additional sufficient condition for equality. Assume that α = {1, ..., m} is a clan for K (and thus 2 ≤ m ≤ n -2). Then, there exists vectors v, w of size m, and b, c of size n -m such that K may be written in block form as:

The choice of v, w, b, c is not unique in general. We say that:

(5)

is a partial transpose of K (note that the partial transpose is not unique in general).

Remark 9. Such transformations have been considered in the special case where v = w in [7, Lemma 5]; see also [START_REF] Boussaïri | A transformation that preserves principal minors of skewsymmetric matrices[END_REF] where a similar transformation called clan reversal is introduced for skew symmetric matrices.

Proposition 10. If K is not clan-free, then we have R e [K] = R e [ K] for any partial transpose K of K.

Proof. To prove Point 10, suppose that K has a clan α, and let K be a partial transpose of K, so that K and K may be given by ( 4) and [START_REF] Engel | Matrices diagonally similar to a symmetric matrix[END_REF]. For any λ / ∈ Spec(B), using a classical formula for determinants of block matrices, we get:

Since b (B -λI) -1 c is a one-dimensional matrix, it is equal to its transpose, so that det(K -λI) = det( K -λI) are equal for all λ / ∈ Spec(B), and thus for all λ ∈ C by continuity. Consequently, the matrices K and K have the same spectrum. For any β, it is easily seen that K[β] and K[β] are partial transposes of each other, so that K[β] and K[β] also have the same spectrum, and in particular the same spectral radius. Therefore R e [K] and R e [ K] coincide as (i) and (ii) are equivalent in Theorem 2.1.

R e f e r e n c e s