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Abstract Numerous components of the Arctic freshwater system (atmosphere, ocean, cryosphere, and
terrestrial hydrology) have experienced large changes over the past few decades, and these
changes are projected to amplify further in the future. Observations are particularly sparse, in both
time and space, in the polar regions. Hence, modeling systems have been widely used and are a
powerful tool to gain understanding on the functioning of the Arctic freshwater system and its
integration within the global Earth system and climate. Here we present a review of modeling studies
addressing some aspect of the Arctic freshwater system. Through illustrative examples, we point out
the value of using a hierarchy of models with increasing complexity and component interactions, in
order to dismantle the important processes at play for the variability and changes of the different
components of the Arctic freshwater system and the interplay between them. We discuss past and
projected changes for the Arctic freshwater system and explore the sources of uncertainty associated
with these model results. We further elaborate on some missing processes that should be included in
future generations of Earth system models and highlight the importance of better quantification and
understanding of natural variability, among other factors, for improved predictions of Arctic
freshwater system change.

1. Introduction

The Arctic climate is undergoing unprecedented and drastic changes, affecting all the components of
the Arctic system [e.g., Serreze et al., 2006; Rowland et al., 2010; Bhatt et al., 2014; Wu et al., 2005].
Many of these changes affect the hydrological cycle and the freshwater budget of the Arctic region
[e.g., White et al., 2007, Prowse et al., 2015a]. Changes of the Arctic freshwater system have gained
considerable interest, since they have the potential to strongly influence the terrestrial carbon cycle
[Wrona et al., 2016], the global ocean circulation [Jahn and Holland, 2013], and future sea level rise
[Rignot et al., 2011]. The transformations currently underway are expected to intensify in the future in
response to rising greenhouse gas emissions in the atmosphere [Intergovernmental Panel on Climate
Change (IPCC), 2013].

Over the last decade, there has been an increasing effort within the scientific community to better
observe the different components of the Arctic freshwater system. For instance, oceanic gateways to
the Arctic have been monitored, so that the freshwater flux to the Arctic can be reasonably quantified
[Beszczynska-Moller et al., 2011; Tsubouchi et al., 2012]. Satellite observations and satellite-derived pro-
ducts provide us with a description of the sea ice pack, including concentration [e.g., Comiso et al.,
1997], thickness [Laxon et al., 2003; Kwok et al., 2009], ice age, and ice motion [e.g., Emery et al., 1995].
The number of stations to measure precipitation has increased [Cullather and Bosilovich, 20121, improv-
ing the quality of the atmospheric reanalysis products in which the observations are assimilated [Lindsay
et al., 2014] although considerable deficiencies still exist (see discussion in Vihma et al. [2016]). Efforts to
monitor the pan-Arctic river discharges to the Arctic oceanic basin are ongoing through international
programs such as the United Nations Global Environment Monitoring System Water Program or the
US-funded Arctic Great Rivers Observatory project (http://www.arcticgreatrivers.org). Yet the current
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monitoring system does not comprehensively cover all areas draining to the ocean, and the number of
stations has decreased [Bring and Destouni, 2009, 2014; Bring et al., 2016].

Despite these recent advances in observations, it still remains challenging to estimate a closed fresh-
water budget for the Arctic region from observations, and the observational time series span too short
a period to reliably estimate the interannual-to-decadal variability of the different terms of the
freshwater budget. As a result, modeling tools have been widely used to investigate the Arctic fresh-
water system. Indeed, the first purpose of using models has often been to fill some of the gaps in
observations. This is most notably the case for reanalysis products in which observations are assimilated
[e.g., Dee et al., 2011; Kalnay et al., 1996]. The lack of observations often does not allow for a proper
evaluation of the model realism or constraint of the model solutions for reanalysis efforts. As such,
model results need to be considered in light of this uncertainty regarding model performance.
Models have also been widely used to inform the understanding of mechanisms of variability and
change affecting the different components of the Arctic freshwater system, and to attribute some
changes to human influence.

The goal of the current paper is to review the progress made in our understanding of the Arctic freshwater
system using modeling tools. This does not include a comprehensive review of all the modeling studies in
which one component or the full Arctic freshwater budget has been investigated but rather provides
relevant examples to illustrate how different types of models can be used to study the Arctic freshwater
system. This paper is a contribution to the “Arctic Freshwater Synthesis” (http://www.climate-cryosphere.
org/activities/targeted/afs), which is a joint effort to review our current knowledge on the functioning of
the Arctic freshwater system. Hence, the reader should refer to the other papers in this special issue for
more details regarding the historical and predicted future changes affecting the different components
of the freshwater system [see Prowse et al., 2015a, 2015b; Carmack et al., 2015; Bring et al., 2016; Vihma
et al., 2016; Instanes et al., 2016; Wrona et al., 2016].

The remainder of this paper is organized as follows. In section 2, we address the question of how models from
different categories have been used to investigate different aspects of the Arctic freshwater system. In
section 3, we present a review of modeling studies investigating historical and projected changes of the
Arctic freshwater system, and the mechanisms and drivers of these changes. Section 4 is dedicated to the
integration of the Arctic freshwater system within the global climate system. We then discuss the gaps of
our current knowledge and the need of future model developments to better understand the Arctic
freshwater system (section 5), followed by conclusions in section 6.

2, Using Models as a Tool to Understand the Arctic Freshwater System
2.1. The Importance of a Hierarchy of Modeling Approaches

Scientific models used to understand the Earth system (Figure 1) take many forms, from conceptual models
that illustrate the logic behind a particular hypothesis, to complex numerical models that solve systems of
equations that together depict system functioning. Models are an integral and necessary part of the scientific
process and provide a powerful tool for developing and testing hypotheses. They allow for controlled
experiments to diagnose mechanisms and interactions that influence system functioning and provide
predictive capability, allowing us to assess the system response to forcing perturbations. While powerful
tools, models are always simplifications of the real system, a fact that must be considered when evaluating
and generalizing their results.

The use of a hierarchy of models is necessary to gain improved understanding of the Arctic freshwater system
(or climate system more generally), its interworkings, and the implications of those workings [e.g. Held, 2005].
This hierarchy can be defined in many different ways but essentially includes models of different levels of
complexity and component interactions. Studies of the Arctic freshwater system, or elements thereof, have
benefitted from the use of many different types of models to gain understanding. For example, conceptual
models [e.g. Francis et al.,, 2009] have been designed to illustrate how previously diagnosed linkages across
the Arctic hydrologic system give rise to potential feedbacks. While a model of this sort is unable to quantify
feedback strength, it does provide insight on where important interactions occur and can identify key gaps
and uncertainties in our current knowledge. This knowledge can then inform experimentation with other
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Figure 1. A schematic illustrating processes represented in an Earth system model. Process models may focus on single
elements of this schematic (such as clouds or sea ice thermodynamics), component models isolate a particular component
of the system subject to specified boundary conditions (such as ocean-only models or atmosphere-only models), and fully
coupled Earth system models include interactions across multiple components and may also incorporate interactions and
simulations with biogeochemical cycles, among others. Copyright UCAR. lllustration courtesy of Warren Washington, NCAR.

types of models, motivate field measurements to better quantify climate interactions or highlight testable
hypotheses in need of further research.

Process models, which we define as models that are isolated to the simulation of a specific element of
the system, also play a critical role in advancing our understanding on key aspects of the Arctic fresh-
water system. This includes work to better understand sea ice processes [e.g., Feltham et al., 2006;
Notz and Worster, 2009; Turner et al., 2013], permafrost dynamics [e.g., Lawrence et al., 2008; Frampton
et al, 2013], high-latitude lakes [Dibike et al., 2011], snow cover evolution [e.g., Liston and Elder, 2006],
ocean shelf plume mixing [e.g., Anderson et al, 1999], Arctic cloud processes [e.g., Morrison and
Gettelman, 2008], and terrestrial Arctic ecosystem dynamics [e.g., Euskirchen et al., 2006; McGuire et al.,
2012], among others. Process modeling enables an enhanced understanding of factors that determine
the evolution of an isolated piece of the system, which is useful in its own right. Additionally, depending
on their level of detail, these process models can be incorporated directly into large-scale component
models or can inform parameterization development for large-scale models. As one example,
Polashenski et al. [2012] developed a process model of meltwater percolation through sea ice that pro-
vided new insight on mechanisms of sea ice melt pond formation and evolution. This has ultimately
informed more physically based parameterizations of ponds within large-scale models [e.g., Flocco
et al., 2012; Hunke et al., 2013].

Component models, which are large-scale models isolated to a single Earth system component (e.g., atmosphere,
ocean, land, sea ice, or ice sheet), have been used to investigate mechanisms of variability and change in the
Arctic freshwater system. These models can be global or regional (e.g., Arctic only) in scope, can have

LIQUE ET AL.

MODELING THE ARCTIC FRESHWATER SYSTEM 542

85UB01 7 SUOWILLOD AIIER 1D 3deot[dde aup Aq pauenob ae ssoiie VO ‘SN JOS8|nJ o} AreIq1T8UlUO AB|IM UO (SUONIPUD-PUB-SWLIBYW0D A8 1M AeIq Ul UO//SANY) SUONIPUOD pue SWie 1 841 89S *[£202/0T/90] Uo ARiqi 8ulluo A8|1M ‘80ueld aueiyod Ag 0ZTE009DrST0Z/Z00T OT/I0p/woo 8| im Areidul|uo'sgndnfey/sdny wouy pspeojumod ‘€ ‘9T0Z ‘TIES69TZ



@AGU Journal of Geophysical Research: Biogeosciences  10.1002/2015JG003120

different levels of complexity, and can have vastly different resolutions. In many component studies, includ-
ing the ones primarily discussed here, the models used are equivalent to uncoupled components of global
coupled climate models. These models are driven by specified boundary information, often from the histor-
ical record. For example, the Arctic Ocean Model Intercomparison Project (AOMIP) [Proshutinsky et al., 2001]
utilized simulations from ocean-sea ice coupled models that were forced by prescribed atmospheric reana-
lysis conditions over the historical record. Similarly, land models can be run off-line, forced with historic
surface reanalysis data, to study how the terrestrial ecohydrological system responds to climate and climate
change [Lettenmaier and Su, 2012]. The use of observationally based forcing has the advantage that the time
evolution of simulated conditions will have a similar trajectory to the observed state, thereby permitting
more direct comparisons to observational data. However, the outcomes of these simulations can be strongly
dependent on the specified observed forcing, which for some fields such as precipitation are highly uncertain
in high latitudes [Su et al., 2005]. The resolution of the forcing data sets used to drive component model
simulations is also potentially problematic. For example, Whitefield et al.[2015] showed that Arctic shelf fresh-
water content in high-resolution ocean-ice simulations was strongly dependent on the resolution of the river
discharge forcing data set.

Component models have also been used for regional downscaling, often driven by boundary forcing from
global climate model projections [e.g., Dibike et al., 2008]. Although the results from the regional down-
scaling are highly sensitive to both the method used for the downscaling [e.g., Fowler et al., 2007] and
the model used [e.g., Benestad et al., 2002], these methods can provide much higher resolution and more
detailed information for isolated regions, which can be useful for determining resource needs and risks
(for more discussion, see Instanes et al. [2016]). Component models of this type do not include interactions
and feedbacks between other system components (e.g., air-sea or surface turbulent heat fluxes will not
affect the prescribed atmospheric boundary conditions in an ocean- or land component-only model
simulation). This can modify simulated variability characteristics [e.g., Blanchard-Wrigglesworth and Bitz,
2015, for sea ice thickness variability] and affect the relative importance of different flux terms. As such,
given that these interactions can strongly modify system behavior, results need to be carefully considered.

Coupled climate models explicitly consider coupled interactions and generally include atmosphere,
ocean, sea ice, and terrestrial components. More recently, these coupled systems have evolved into
Earth system models (ESMs), which can also incorporate biogeochemical cycles, atmospheric chemistry,
and land ice components [e.g., Collins et al., 2011; Dunne et al., 2012; Giorgetta et al., 2013; Hurrell et al.,
2013]. This allows for additional coupled interactions, and the simulation of carbon cycle and ice sheet
dynamics. Coupled models can be regional or global in scope. Regional models [e.g., Maslowski et al.,
2012; Roberts et al., 2015] require specified lateral boundary information and have no feedbacks to
the global system. However, regional models can generally be run at considerably higher resolution
because of the reduced spatial domain. For global models, the Coupled Model Intercomparison
Project (CMIP) has coordinated sets of coupled experiments for historical and projected future condi-
tions for different scenarios (or representative concentration pathways (RCPs)). Analysis of the results
from the third [Meehl et al., 2005] and fifth [Taylor et al., 2012] phases of CMIP (referred to as CMIP3
and CMIP5) has allowed for a more consistent comparison across different models. Coupled models
allow us to examine mechanisms that give rise to coupled feedbacks and through the design of indivi-
dual experiments can be used for hypothesis testing. They also are used to detect and attribute long-
term observed change to different external forcings. For example, Min et al. [2008] used coupled model
information to assess a detectable influence of anthropogenic forcing on Arctic sea ice since the
early 1990s.

While coupled models are powerful tools, the downside to their use is that simulations can exhibit consider-
able biases when compared to observations. As one example, the mean Arctic sea ice thickness over the
period 2003-2008 ranges from 0.5m to 3 m in CMIP3 models, compared to the 2 m estimated by Ice Cloud
and Land Elevation Satellite (ICEsat) over the same period [Rampal et al., 2011]. These biases also tend to
propagate to the estimates obtained from downscaling methods based on climate model outputs. This is
for instance visible in the study of Koenigk et al. [2015], in which results from different CMIP5 models are
downscaled over the Arctic region, using a regional Arctic atmospheric model. They found that the results
from the downscaling mostly reflect the biases found in the representation of the Arctic present-day condi-
tions by the different global climate models.
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Advancing our understanding of the Arctic freshwater system requires the use of models across the hierarchy
discussed above. This can often take an iterative approach. For example, conceptual and process models can
identify important factors that may influence system functioning. Component and coupled models can then
be used to further investigate these factors subject to additional climate system interactions. Below, we
illustrate how models have been used to understand historical and projected changes within the Arctic
freshwater system. This primarily relies on results from component and coupled model systems. However,
these models and their simulation fidelity have clearly benefitted from knowledge gained in process and
simpler modeling studies. Avenues to promote the integration of scientists working across this hierarchy,
and to more efficiently share the knowledge gained across the different modeling types and with the obser-
vational community, are needed for continued enhancements in our understanding of Arctic freshwater
change and its implications.

2.2. Model Limitations

All models are by necessity simplifications of a complex system and can omit processes of relevance to a
specific problem. In the case of the Arctic freshwater system, large-scale climate models have generally
excluded ice sheet models and glacier systems. As such, they cannot simulate changes in land ice
characteristics, although they do often include changes in the snow cover on top of ice sheets. Some ESMs
have incorporated Greenland ice sheet (GIS) models [e.g., Yoshimori et al., 2001; Ridley et al., 2005; Vizcaino
et al., 2013; Lipscomb et al., 2013], but this is quite recent and not very widespread. Additionally, large-scale
models typically exclude lake processes or treat them simplistically as a one-dimensional column of water
and exclude many aspects of river networks, such as their capacity to freeze and transport heat, carbon, nutri-
ents, and sediment. This has implications for the simulation of feedbacks and cross-component interactions
associated with these processes. For example, changes in the timing of river discharge can influence the
seasonality of riverine nutrient transport with potential impacts on marine ecosystems phenology, or the
heat flux associated with the riverine input to the ocean can reduce significantly the sea ice extent (by up
to 10% [Whitefield et al., 2015]). This is not included in current-generation ESMs.

Model biases need to be understood and considered in all model analyses of the Arctic freshwater system.
One well-known weakness of the latest atmospheric models, such as those used in the CMIP3/CMIP5, is their
inability to accurately simulate Arctic cloud cover. The Arctic maritime environment is dominated by low-
level cloud, with 60-80% annual mean low-level cloud cover according to the estimate from satellite lidar
[Cesana and Chepfer, 2012]. The CMIP5 models generally underestimate this low-level cloud cover, but with
large intermodel spread (40-70% [Cesana and Chepfer, 2012]). Furthermore, whereas observations show two
annual maximum in low-level cloud cover, in spring and autumn, models generally depict a single summer
maximum [Cesana and Chepfer, 2012]. The seasonal cycle of total cloud cover is better simulated, but again
with large spread [Karlsson and Svensson, 2013]. Documented model biases in the near-surface temperature
inversion, which is typically too strong [Medeiros et al., 2011], may be related to these cloud deficiencies. Such
biases in the mean state may be partly responsible for the large model spread in future projections [e.g.,
Vihma et al., 2016]. More details on atmospheric model biases are discussed in Vihma et al. [2016].

Large-scale atmospheric model components of ESMs are run at a quite coarse resolution (~100 km) and do not
resolve some processes of importance to Arctic hydrology. For example, topographic controls on precipitation
are often not well simulated, leading to biases in the regional characterization of rain and snowfall [e.g., Finnis
et al.,, 2009]. There is evidence that models with a higher horizontal resolution have a more realistic depiction of
cyclone track and polar lows [Zappa et al., 2013]. Some studies suggest that current-generation atmospheric
models have insufficient vertical resolution. Improved vertical resolution may be necessary to better simulate
boundary layer processes [Byrkjedal et al., 2008] and stratospheric variability [Charlton-Perez et al.,, 2013] and,
therefore, the simulated Arctic atmosphere. Note that atmospheric models, combined with observations, are
also used to produce atmospheric reanalyses, which are further used as atmospheric forcing for ocean or
terrestrial models [e.g., Lindsay et al., 2014]. When using these forcing fields, one cannot expect to reproduce
the effects of some of the processes operating at smaller scales than the resolution of the atmospheric models,
even in case when the ocean or terrestrial model is run at a higher resolution.

In the terrestrial realm, cold region hydrological processes such as sublimation and redistribution of blowing
snow [Bowling et al., 2004], the role of surface water storage in lakes and wetlands on the seasonal river
hydrographs [Bowling et al., 2000, 2003], the unique hydrological impact of organic soils [Lawrence and
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Slater, 2008], infiltration limitation by frozen soils [Swenson et al, 2012], and even some general snow
processes such as snow insulation [Koven et al., 2013] are still not well represented in some land surface
models (LSMs). Permafrost dynamics, which exerts strong controls on Arctic hydrology as discussed by
Bring et al. [2016], has only recently received explicit attention in large-scale LSMs, leading to significant
improvements [Riseborough et al., 2008; Lawrence et al., 2008, 2012; Dankers et al., 2011; Ekici et al., 2013].
Most LSMs now include freeze-thaw processes and are advancing with more targeted development efforts
to improve cold region soil hydrology by incorporating concepts such as a perched or suprapermafrost water
table [Swenson et al., 2012]. However, Koven et al. [2013] and Slater and Lawrence [2013] assessed CMIP5 out-
put and found that the majority of current-generation ESMs do not reasonably simulate present-day perma-
frost conditions. The poor simulation of permafrost can be attributed to several factors, including climate
biases in the Arctic in many of the models as well as structural deficiencies in the LSMs including parameter-
ization of land snow processes, too shallow soil columns [Alexeev et al., 2007; Nicolsky et al., 2007], poor cou-
pling between soil temperature and hydrology, or the lack of some important dynamic processes such as
those involved in thermokarst development, including thaw, ponding, surface and subsurface drainage, sur-
face subsidence, and related erosion. Finer-scale features such as permafrost-controlled variations in hydro-
logic connectivity and the influence of subgrid-scale permafrost distribution on surface and groundwater
systems are also not represented [Woo et al., 2008]. Massive ground ice, also referred to as excess ice, is
another feature of permafrost systems that is not typically represented and which may both delay and alter
the hydrologic response to permafrost thaw [Lee et al., 2014]. While there has been substantial progress from
an observational and experimental perspective in understanding cold region hydrological processes, chal-
lenges remain to incorporate the latest process understanding in ESMs. There is also increasing emphasis,
through projects such as Next-Generation Ecosystem Experiments Arctic (http://ngee-arctic.ornl.gov/), to
employ a nested hierarchy of models at fine, intermediate, and climate scales through which increased pro-
cess understanding can be incorporated into models of appropriate scale and through which upscaling and
downscaling can be evaluated [e.g., Painter et al., 2013; Riley and Shen, 2014].

Focusing on hydrology, the deficiencies discussed above have related effects on the simulation of seasonal
variations in freshwater discharge to the Arctic. Using the Variable Infiltration Capacity (VIC) LSM, Su et al.
[2005] found that model performance is highly sensitive to the precipitation forcing, which as noted
previously is highly uncertain due to sparse measurements in the Arctic. Results from multimodel simulations
of pan-Arctic hydrology by Slater et al. [2007] found up to a 30% difference across models in the annual
partitioning of precipitation into evaporation and runoff over major Arctic watersheds. The models, on average,
did not accurately represent base flow of the major rivers, and the model hydrographs tended to peak too early
relative to observed river flow [Slater et al., 2007]. Finally, due to limitations in LSMs (i.e., poorly represented
permafrost dynamics and permafrost hydrology), virtually all large-scale modeling studies of the Arctic runoff
response to historic and future climate change have not realistically incorporated any potential impact of
permafrost thaw and soil ice melt on soil water drainage and runoff. Consequently, the hypothesis put forth
by St Jacques and Sauchyn [2009] that historic observed increases in winter base flow can be attributed to
enhanced infiltration and deeper flow paths resulting from permafrost thaw can neither be corroborated nor
discredited by existing models. Efforts to assess this hypothesis with next-generation models should be
a priority.

Spatial scaling issues are problematic across different component systems and present challenges for trans-
lating observationally based process information that is site specific to a generalized model representation
that works across climate regimes. Because of computational limitations, a relatively coarse resolution
(of ~1° or so) is required for climate-scale integrations with fully coupled models. While these scaling issues
are true globally, unique aspects of the Arctic system, including the permafrost hydrology interactions
mentioned above and the presence of sea ice, provide additional challenges for this region. High spatial
heterogeneity within the sea ice system or its overlying snowpack is not explicitly resolved in climate-
scale models. This strongly influences simulated sea ice mass budgets [e.g., Maykut, 1982]. Some models
do now incorporate subgrid-scale ice thickness distribution to better simulate these factors, which has
been shown to influence not only the mean climate state but also the response to forcing perturbations
and simulated feedbacks [e.g., Holland et al., 2006]. Sea ice models also have numerous missing pro-
cesses, many of which are subgrid scale. For example, most large-scale models disregard many factors
that influence the snow on sea ice, including the metamorphism of snow and its redistribution due to
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winds. These influence the sea ice thermal and radiative properties, and biases in snow on sea ice also
impact the surface albedo evolution with consequences for climate feedbacks [e.g., Holland and
Landrum, 2015]. Notably, sea ice model developments are addressing some of these processes, including
improved sea ice hydrology and prognostic salinity [e.g., Hunke et al., 2011; Turner and Hunke, 2015],
improved sea ice rheology [e.g., Tsamados et al., 2013], improved snow processes [Lecomte et al.,
2013], and improved melt pond schemes [e.g., Flocco et al., 2012; Hunke et al., 2013]. These developments
impact large-scale climate simulations, including the freshwater system, since they affect sea ice mass
budgets and ice-ocean freshwater exchange.

For the ocean component, the necessary coarse resolution for climate integrations means that the climate
models do not resolve any eddy activity in the Arctic region [Nurser and Bacon, 2014]. Additionally, complex
channels, such as those through the Canadian Arctic Archipelago (CAA), are not well resolved (or nor
resolved at all). Similarly, modeling the flow through Bering Strait is challenging because the strait is narrow
(~85 km) and the observed water mass structure through the strait is complex [e.g., Woodgate et al., 2012]
and thus requires a fine resolution to be properly represented. A proper representation of the flow through
these different narrow pathways is crucial as it has implications for freshwater transport pathways [e.g.,
Goosse et al., 1997; Gerdes et al., 2008] as well as the Arctic circulation and the downstream controls on
the Atlantic Meridional Overturning Circulation (AMOC) [Wadley and Bigg, 2002; Lietaer et al., 2008].
Within the ocean component models, processes of potential climate importance such as tides [e.g.,
Holloway and Proshutinsky, 2007], shelf plume dynamics [e.g., Anderson et al., 1999], near-coastal narrow
boundary currents [Carmack et al., 2015], and the dense overflows through narrow or unresolved channels
[e.g., Danabasoglu et al., 2010] are not generally represented in large-scale models. This can influence
simulated water mass properties and variability, and many climate models have significant biases in their
simulated temperature and salinity structure (Figure 2) [Holland et al., 2007]. As discussed by Holloway et al.
[2007], ocean models also simulate considerably different Arctic circulations, even when driven by
prescribed atmospheric conditions.

While models have limitations and existing biases, they remain a powerful tool to investigate the climate
system functioning, including the functioning of the Arctic freshwater system. Models encapsulate our
current system understanding and so can provide insight on where knowledge is insufficient, motivating
future research needs. Models also provide a tractable means to test hypotheses. Observations and theory
can suggest explanations for the occurrence of a specific phenomenon. However, testing these hypotheses
within the climate system domain is challenging. Models provide us with a virtual laboratory where, through
appropriate experimental design, controlled experiments are possible.

3. Using Models to Understand Historical and Projected Change in Arctic
Freshwater Budgets

In this section, we review modeling studies investigating historical or future changes of one or several terms
of the Arctic freshwater budget. The reader should refer to Prowse et al. [2015a] and Carmack et al. [2015] for
more details on the various definitions of the Arctic domain. As we do not aim to present a closed budget for
the Arctic, we adopt a loose definition of the Arctic domain, which might differ between the terrestrial and
marine components of the Arctic system.

3.1. Past Changes and Key Drivers

The Arctic Ocean freshwater budget (Figure 3) consists of a net source of water from river runoff, the inflow
of relatively fresh water from the Pacific through Bering Strait, and precipitation minus evaporation. This is
largely balanced by a net export of water to the North Atlantic through ocean and sea ice transport via
the CAA and Fram Strait. Relatively saline waters enter the Arctic through the Barents Sea Opening, repre-
senting a sink of freshwater for the Arctic. Freshwater is stored within the Arctic Ocean in the form of rela-
tively fresh ocean waters in the surface layer and sea ice, which has a low salinity of about 4. Studies have
generally assessed ocean freshwater storage and transports relative to a specified reference salinity, which
is often 34.8 as it is thought to be the average salinity of the Arctic Ocean [Aagaard and Carmack, 1989],
although different studies use different values. More information on issues involved in using a specific refer-
ence salinity is available in Carmack et al. [2015].
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Figure 2. The 1990-1999 mean salinity profiles for different CMIP3 models averaged over (a) the deep Eurasian and (b) deep
Canadian basins. The thick black line shows the Polar Science Center Hydrographic Climatology (PHC) observations [Steele
et al., 2001b]. The figure illustrates the deficiency of the state-of-the-art climate models in the representation of the ocean
salinity, leading in important biases for the simulated Arctic freshwater content. Figure reprinted from Holland et al. [2007].
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Figure 3. A schematic of the Arctic freshwater budget. The different arrows
indicate the different terms contributing to the budget. Additionally, fresh-
water is stored within the Arctic region, in the forms of low-salinity water and
sea ice in the ocean and snow, glaciers, groundwater, and permafrost ice
over land. The blue background indicates the average March sea ice con-
centration for 1980-1989 from the Special Sensor Microwave Imager data.

Data scarcity, in both time and space, is a
common problem for the Arctic sciences,
and the study of the freshwater system is
no exception. Variability and historical
changes affecting the Arctic freshwater
budget have thus been examined in
numerous modeling studies, using differ-
ent types of models ranging from single-
component models to coupled climate
models. Mechanisms driving the variabil-
ity of some terms of the budget have also
been examined using process models or
idealized experiments [e.g., Proshutinsky
and Johnson, 1997; Stewart and Haine,
2013; Davis et al., 2014].

One valuable application of models has
been in the production of atmospheric
reanalysis data sets, which combine
available observations with model-
derived, but observationally con-
strained, estimates of unobserved quan-
tities. Atmospheric reanalyses have
been used to examine the time-mean
Arctic freshwater budget [Serreze et al.,
2006] and variability and change in, for
example, Arctic humidity [Serreze et al,
2012] and precipitation [Screen and
Simmonds, 2012]. They have also been
harnessed to gain insight into driving
mechanisms, for example, the contribu-
tion of atmospheric moisture transport
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Figure 4. Multimodel averaged atmospheric freshwater flux terms for ~Models to simulate the Arctic atmo-
70-90°N from CMIP5 models using the RCP8.5 forcing scenario. Shown spheric conditions (e.g., CCSM4 [de
are the annual cycle of (a) precipitation, (b) evaporation, and (c) net Boer et al., 2011]). Overall, CMIP3 mod-
precipitation (P — E). The red line represents.values from the early 21st els reproduce reasonably well the cli-
century (2006-2015 average) and the black line from the late 21st century . . S
(2085-2095). Forty-one models are used in the analysis, and the vertical matological spatial  distribution  of
bars represent the standard deviation across the different models. precipitation, although Kattsov et al.

[2007] report a general overestimate
of precipitation throughout much of the Arctic by CMIP3 models when compared with observed precipita-
tion data sets. They attribute this mismatch between the simulated and observed precipitation to insuffi-
ciently resolve orography and biases in the large-scale atmospheric circulation and sea ice distribution.
CMIP3 and CMIP5 models also reproduce qualitatively well the observed seasonal cycle in precipitation
(Figure 4) as well as the observed positive trend in precipitation over the 20th century, with a larger trend
in winter than summer [Kattsov et al., 2007]. The seasonality of the trend has been linked to the seasonality
of the greenhouse warming, resulting in an increase of the surface atmospheric temperature [e.g., Gillett
et al., 2008].

Precipitation minus evapotranspiration over the Arctic terrestrial drainage system yields the amount of water
available for runoff into the river networks that input to the Arctic Basin, excluding long-term soil moisture or
groundwater storage. River discharge, and its time variations, remains poorly constrained from observations
[e.g., Bring et al., 2016], although efforts are ongoing to build climatological data sets of river runoff, which are,

LIQUE ET AL.

MODELING THE ARCTIC FRESHWATER SYSTEM 548

35RO | SUOWILLOD dAIIER1D) a(qedl|dde ayy Aq pausenob ae sapiie YO ‘8sn Jo SajnJ Joy AiqiT auliuQ 431/ UO (SUO N IPUOD-pUe-SLLLIBY WD AB | IM Afeiq 1 BUIUO//:SANY) SUORIPUOD pUe SWB | 83U} 88S *[€202/0T/90] Uo ARiqi]auluQ 48| ‘soueld auelyoo) Aq 0ZTE009rST0Z/Z00T OT/I0p/wo0 A 1m ARiqiputiuosgndnBe//sdny wouy papeojumod ‘€ ‘9T0Z ‘T96869TZ



@AGU Journal of Geophysical Research: Biogeosciences  10.1002/2015JG003120

for instance, required as boundary forcing for ocean models [see Whitefield et al., 2015, and references therein
for a review of the different existing data sets]. Therefore, models are essential to achieve a consistent and
representative estimate of the magnitude and spatial distribution of the ever-changing Arctic terrestrial
water budget for both the contemporary and future time periods. Holland et al. [2007] found a reasonable
agreement between the CMIP3 multimodel mean and observational estimates of the total runoff to the basin.
Moreover, Wu et al. [2005] have used coupled climate models to detect and attribute an anthropogenic influ-
ence (via climate change) on increased Arctic river discharge over the 20th century. Using an intermediate
complexity model (University of Victoria (UVic) ESM), Nugent and Matthews [2012] found that historic and
projected high-latitude runoff increases (+32% between 1800 and 2100 in that model) can be attributed to
both climate change (including increasing precipitation) and increased plant water use efficiency due to
higher CO, levels. Their results highlight the role of vegetation and its response to both climate change
and increases in Arctic terrestrial hydrologic change. Improved understanding and modeling of the
amplitude of the water use efficiency effect and the vegetation community response to climate change
are required to increase our confidence in terrestrial hydrologic projections (see further discussion in
Wrona et al. [2016]).

In addition to net precipitation and river runoff, freshwater is also supplied to the Arctic Ocean from oceanic
inflow. The largest oceanic source of freshwater is the flow through Bering Strait, which accounts for
2500-3500 km?/yr (with respect to a reference salinity of 34.8 [Serreze et al., 2006; Woodgate et al., 2012]).
The challenges associated with a proper representation of the flow through this narrow strait result in large
discrepancies in the mean flow and its variability simulated by the different CMIP3 models [Holland et al.,
2007] as well as AOMIP ocean-sea ice models [Clement-Kinney et al., 2014], despite their typical higher
resolution than the climate models.

Loss of freshwater for the Arctic region occurs mostly through the export of sea ice and relatively fresh water
masses along both sides of Greenland, through the CAA and Fram Strait. AOMIP hindcast sea ice-ocean
models [Jahn et al, 2012] and CMIP5 models [Langehaug et al., 2013] have been shown to reproduce
qualitatively well the observed mean sea ice export through Fram Strait, as well as the seasonal cycle and
the interannual variability of this term. A model’s performance at reproducing the sea ice export is mostly
set by their ability to reproduce realistic sea ice thickness near Fram Strait and more generally in the Arctic
Basin [Wang et al., 2016]. Models have also been used to elucidate the mechanisms explaining the variability
of the sea ice export. For instance, Koeberle and Gerdes [2003] have explored the sensitivity to atmospheric
forcing (with an ocean-sea ice model) and shown that the year-to-year variability of the Fram Strait sea ice
export is triggered by the variability of the wind over the eastern Arctic.

AOMIP hindcast sea ice-ocean models [Jahn et al., 2012] as well as CMIP3 models [Holland et al., 2007] show
large discrepancies in their mean values of liquid freshwater export to the North Atlantic. Although the
different AOMIP hindcasts exhibit large differences in their mean state, they are in better agreement
regarding the seasonal cycle and the interannual variations of the freshwater export through the CAA and
Fram Strait. The mechanisms driving the variability of the freshwater export are also consistent among most
of the models: the variability of the liquid freshwater export through the CAA is driven by the volume flux
anomalies, while both the salinity and velocity anomalies play a role for the variation of the freshwater export
through Fram Strait [Jahn et al., 2012; Lique et al., 2009]. A better representation of the salinity field in the
Arctic Basin appears to be crucial to improve robustness among models [Jahn et al., 2012; Wang et al., 2016].

Within the Arctic region, freshwater is stored in the forms of low-salinity water and sea ice in the ocean and
snow, glaciers, groundwater [Frappart et al., 2011], and permafrost ice [Bosson et al., 2013; Lee et al., 2014] over
land. The computation of sea ice volume requires the knowledge of the sea ice thickness and concentration.
Stroeve et al. [2012] have shown that CMIP3 and CMIP5 climate models are mostly consistent with sea ice
extent observations, yet they tend to underestimate the trend observed over the past 30years (although
CMIP5 models present some improvement compared to CMIP3 models). The sea ice thickness and its varia-
bility, on the other hand, are less well constrained by observations and generally less well reproduced by
coupled [Kwok, 2011; Langehaug et al., 2013; Stroeve et al., 2014] and forced models [Jahn et al.,, 2012;
Gerdes and Koeberle, 2007; Johnson et al., 2012; Wang et al., 2016]. The model deficiency regarding the repre-
sentation of sea ice thickness has been related to biased sea ice drift [Martin and Gerdes, 2007; Rampal et al.,
2011] and related atmospheric circulation [Stroeve et al., 2014], biased oceanic heat inflow from the North

LIQUE ET AL.

MODELING THE ARCTIC FRESHWATER SYSTEM 549

35RO | SUOWILLOD dAIIER1D) a(qedl|dde ayy Aq pausenob ae sapiie YO ‘8sn Jo SajnJ Joy AiqiT auliuQ 431/ UO (SUO N IPUOD-pUe-SLLLIBY WD AB | IM Afeiq 1 BUIUO//:SANY) SUORIPUOD pUe SWB | 83U} 88S *[€202/0T/90] Uo ARiqi]auluQ 48| ‘soueld auelyoo) Aq 0ZTE009rST0Z/Z00T OT/I0p/wo0 A 1m ARiqiputiuosgndnBe//sdny wouy papeojumod ‘€ ‘9T0Z ‘T96869TZ



@AGU Journal of Geophysical Research: Biogeosciences  10.1002/2015JG003120

Atlantic [Gerdes and Koeberle, 20071, and the lack of a representation of land fast ice [Johnson et al., 2012],
among other factors.

The liquid freshwater content of the Arctic Ocean is often defined as the depth-integrated salinity referenced
to 34.8 [Aagaard and Carmack, 1989], although the use of an arbitrary reference salinity may have negative
attributes (see Bacon et al. [2016] and Carmack et al. [2015], for a discussion of problems related to this
approach). The vertical stratification in the Arctic Basin, with a fresh halocline surface layer on top of the layer
of water masses with roughly constant salinity, is often a difficult feature to simulate. Hence, the mean salinity
profiles simulated in CMIP3 models (Figure 2) [Holland et al., 2007], as well as AOMIP ocean-sea ice hindcasts
[Holloway et al., 2007; Steiner et al., 2004], are largely biased when compared to observation, resulting in large
model-to-model and model-to-observation differences in the spatial pattern and the magnitude of the
freshwater storage [Jahn et al., 2012; Holland et al., 2007]. Simulating a realistic stratification is challenging,
as the model salinity structure of the water column has been shown to be sensitive to the level of background
vertical mixing [Zhang and Steele, 2007], the implementation of parameterizations for example associated
with highly localized sea ice-associated brine rejection [Nguyen et al.,, 2009], or the use of sea surface salinity
restoring [Steele et al.,, 2001a], among other factors.

Although the mean freshwater content differs widely among the AOMIP models analyzed by Jahn et al.
[2012], the time variability exhibits some robust features in the different models, with consistent decadal
variability. This is not surprising as studies using simple barotropic models [e.g., Proshutinsky and Johnson,
1997] or forcing sensitivity experiments with ocean-sea ice models [Zhang et al., 2003; Condron et al., 2009;
Stewart and Haine, 2013] have revealed that the phases of accumulation and release of liquid freshwater
within the Beaufort Gyre in the Canadian Basin are driven by the variability of the large-scale atmospheric
circulation (as discussed further by Vihma et al. [2016], and Carmack et al. [2015]). Hence, models forced with
a prescribed atmosphere exhibit similar variability of the liquid freshwater storage [Jahn et al., 2012].

Seasonal Arctic terrestrial snow cover is another major component of the terrestrial cryosphere (see discussion
in Bring et al. [2016]). It has important effects on climate due to its high albedo [e.g., Lemke et al., 2007]. Brutel-
Vuilmet et al. [2013] found that, on average, CMIP5 models reproduce the observed Northern Hemisphere (NH)
snow cover extent (SCE) quite well though there is a fairly large intermodel spread and the ensemble mean
trend toward a reduced spring snow cover extent over the 1979-2005 period is underestimated. Derksen
and Brown [2012] have also shown that late spring—early summer (May-June) NH snow cover, which is predo-
minantly restricted to the high Arctic, decreased significantly over the last four decades and that the decrease in
June SCE was greater than that simulated by an ensemble of eight CMIP5 models. Using the VIC model forced
with gridded climatic observations, Shi et al. [2013] reproduced reasonably well the satellite-observed spatial
and temporal variations of SCE and they found that both observed and modeled North American and
Eurasian snow cover in the pan-Arctic have statistically significant negative trends from April through June over
the period 1972-2006. Using an optimal fingerprinting technique to look for consistency in the temporal
pattern of spring NH SCE between observations and simulations from 15 CMIP5 models, Rupp et al. [2013] con-
cluded that the decline in observed NH SCE cannot be explained by natural forcing alone.

Over the past decades, mass loss of the GIS and Arctic glaciers [Bamber et al., 2012; see also Bring et al., 2016]
and, to a limited extent, permafrost degradation [Serreze et al., 2002] have likely resulted in additional fresh-
water discharge to the Arctic Ocean. Better implementation of ice sheet and permafrost models into global
climate models is required to quantify these contributions to the Arctic freshwater budget and their asso-
ciated past and future changes.

3.2. Projected Changes and Key Drivers

Freshwater budgets for the Arctic Ocean have been analyzed for historical and projected conditions in a
number of studies [e.g., Miller and Russell, 2000; Holland et al., 2006, 2007; Arzel et al., 2008; Rawlins et al.,
2010; Haine et al., 2015]. These studies indicate an acceleration of the Arctic freshwater cycle, in that there
is an increase in the flux of water passing through the hydrological elements. In particular, CMIP3 models
simulate an increase in the net freshwater flux to the Arctic Ocean from enhanced river runoff, net precipita-
tion, and net ice melt, which is in part compensated by an increase in liquid ocean freshwater transport to
lower latitudes. This is consistent with analyses of simulated precipitation and evaporation over the Arctic
Ocean and its terrestrial watershed [Kattsov et al., 2007; Bengtsson et al., 2011].
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Table 1. Mean Annual Values in Millimeters From 41 Models Participating in CMIP5®

Term Early 21st Century Late 21st Century Change
Net Precipitation (P — E) 211 259 48
Precipitation 332 451 119
Evaporation 121 191 70
Snowfall 216 205 —11

Simulations using the RCP8.5 forcing scenario are used. Values are averaged over 70-90°N.

CMIP5 simulations also exhibit increases in net precipitation (Figure 4c) over the Arctic region north of 70°N
(Table 1), with increases in precipitation (Figure 4a) being larger than those in evaporation or evapotranspira-
tion (Figure 4b; see also discussion in Vihma et al. [2016]). CMIP5 models have been used to explore the rela-
tive role of local evaporation changes versus poleward moisture transport changes in driving a projected
intensification of the Arctic water cycle and shown that over 50% of the projected Arctic precipitation
increase by the late 21st century is related to local evaporation changes, closely tied to the retreat of sea
ice [Bintanja and Selten, 2014]. Seasonally, the contribution due to local evaporation is largest in winter
and the moisture transport largest in late summer and autumn.

Climate models robustly simulate an increase in poleward atmospheric moisture transport to the Arctic with
future rising greenhouse gases [e.g., Held and Soden, 2006]. Changes in moisture transport can be driven by
thermodynamical or dynamical influences. Thermodynamic effects are caused by increased atmospheric
moisture content and a larger poleward moisture gradient, both of which lead to a larger poleward transport
of moisture. As the climate warms, the poleward moisture gradient increases as humidity increases more
rapidly at lower latitudes for a given temperature increase. Dynamical factors relate to changes in atmo-
spheric circulation, for example, the number and strength of storms and associated frontal features (including
atmospheric rivers). As discussed further in Vihma et al. [2016] and the references therein, model studies indi-
cate that the majority of changes in polar moisture transport are thermodynamically driven with a smaller
contribution from dynamical processes.

While Arctic precipitation increases in the 21st century, CMIP5 models simulate an overall reduction in
snowfall for the Arctic region (Table 1). However, the annual mean masks large and nearly compensating
seasonal changes (Figure 5) [see also Hezel et al.,, 2012], with reductions simulated in June-October, but
increases during the winter months. Regardless of the wintertime increases in snowfall, snow depths on
sea ice decline considerably over the 21st century in part because snow accumulation starts later due to
the prolonged summer open water season [Hezel et al., 2012]. This has implications for insulation and albedo
properties of the sea ice and relevant polar feedbacks.

Climate models predict that terrestrial Arctic snow conditions will change substantially over the 21st century
[Bring et al., 2016]. Most models suggest that poleward of 75°N, winter snowfall, and precipitation more gener-
ally, will increase [e.g., Brutel-Vuilmet et al, 2013] with some regional variations. However, increased winter
snowfall does not necessarily equate to more snow on the ground, as climate models project that the snow sea-
son will also shorten from both ends across most of the northern midlatitude and high latitude [Rdiscnen, 2008].
Due to these competing processes of more snowfall, a shorter snow accumulation season, and midwinter snow-
melt, the March snow water equivalent signal exhibits a regionally mixed response, with projected increases in
colder regions such as Siberia, northern Alaska, and northern Canada and decreases elsewhere.

Snow conditions strongly affect soil temperatures and consequently permafrost conditions due to the insula-
tive properties of snow. Through a series of prescribed snow experiments, Lawrence and Slater [2010] showed
that a shortening snow season enhances soil warming due to increased solar absorption. Meanwhile, a
shallowing snowpack reduces soil warming due to weaker winter insulation from cold atmospheric air, as snow
deepening has comparatively less impact due to saturation of snow insulative capacity at deeper snow depths.
Snow depth and snow season length trends tend to be positively correlated, but their effects on soil tempera-
ture are opposing. Consequently, on the century timescale, the net change in snow state can amplify or
mitigate soil warming (see also discussion in Bring et al. [2016], and effects on resources in Instanes et al. [2016]).

In terms of modeling runoff from the terrestrial Arctic drainage systems, most models project a stronger
increase in precipitation than evapotranspiration, which results in increases in runoff in high-latitude basins
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70-90N Snowfall le.g., Holland et al,, 2006, 2007; Mokhov et al.,

T T T T T

2003]. The latest results from CMIP5 ensemble
experiments have also shown that runoff
increases are likely under most emission sce-
narios, consistent with the projected precipita-
tion increases [Collins et al., 2013]. Using future
climate projections and a macroscale hydrolo-
gical model, Arnell [2005] calculated increases
of up to 31% in river inflows to the Arctic by
the 2080s under high emissions and up to
24% under lower emissions, with large differ-
ences between climate models. He also demon-
strated that future runoff projections using
such an uncoupled model are more sensitive
to the input data used to drive the models than
to the terrestrial hydrologic model form and
parameterization.

Figure 5. Multimodel averaged 70-90°N snowfall from CMIP5 . .
models using the RCP8.5 forcing scenario. The red line represents  As noted previously, all of these estimates of
values from the early 21st century (2006-2015 average) and the increased river discharge to the Arctic Ocean

black line from the late 21st century (2085-2095). Forty-one mod-  derive from models that do not adequately
els are used i.n t.he analysis, and.the vertical bars represent the represent permafrost dynamics and therefore
standard deviation across the different models. . . .

are missing or incorrectly representing the
impacts of permafrost state changes on soil hydrology and runoff. Permafrost dynamics in most of the
CMIP5 models show large deficiencies which limit the value of direct diagnosis of present and future perma-
frost conditions [Koven et al., 2012; Slater and Lawrence, 2013]. Projections of permafrost thaw in CCSM4, one
of the better performing CMIP5 models with respect to permafrost processes, indicate the potential for
severe reductions in near-surface permafrost extent by 2100 under RCP8.5 (9 million km?, or 72% of the mean
present-day conditions; [Lawrence et al., 2012]). However, Lawrence et al. [2012] also note that the projected
near-surface permafrost loss is only 43% relative to the present-day conditions when the contribution of
biases in the simulated climate is accounted for (CCSM4 simulates too much snowfall across much of the
Arctic leading to warm soil temperature biases). Most CMIP5 models do not accurately simulate permafrost
conditions due to either climate biases or land model deficiencies or limitations [Koven et al, 2013].
Consequently, Slater and Lawrence [2013] instead utilized indirect methods to diagnose current and future
conditions suitable for permafrost and calculated the sensitivity of future permafrost extent to temperature
change as —1.67 + 0.7 million km?/°C of terrestrial Arctic warming (Figure 6). The loss of permafrost, which as
noted previously acts as a barrier to vertical flow and supports moist soil conditions near the surface, could
open up deeper flow paths to the regional groundwater system. Bense et al. [2009, 2012], using a coupled
hydrothermal model, found an increased groundwater contribution to streamflow after permafrost thaw.
In the Community Land Model, permafrost thaw is followed by increased base flow and soil drying, even
in the face of projected increases in precipitation minus evaporation. This Arctic soil drying trend is the largest
simulated soil moisture trend found anywhere on the planet [Lawrence et al., 2015].

Projections of Arctic land conditions from a large-scale climate model have also been used to inform other
aspects of potential changes in the terrestrial hydrologic cycle. For example, Prowse et al. [2010], using air
temperature change projections, suggested that Arctic rivers will experience a decrease in spring flooding
because of lessening in the severity of ice jamming although changes in snowmelt may complicate the
picture (see also Bring et al. [2016]). Additionally, Dibike et al. [2011] using a one-dimensional lake simulation
model driven by output from a climate model indicated that future warming will result in an overall increase
in lake water temperature, with summer stratification starting earlier and extending later into the year. This
led to changes in the seasonal timing of lake freeze-up and breakup, with a resulting decrease in lake ice
duration. Maximum lake ice thickness was also modeled to decrease by up to 25%.

Projected increases in Arctic Ocean freshwater from rivers and precipitation minus evaporation over the 21st
century contribute to an increase in the net storage of freshwater within the Arctic Ocean. The rate of change
is projected to grow over the 21st century, with a general freshening of the upper ocean layers, and a smaller
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Figure 6. Projected change in a sustainable permafrost area. As most of the CMIP5 models do not include a representation
of the permafrost, the projections are based on climate change from the present day via the surface frost index [Nelson and
Outcalt, 1987] calculated with the model outputs. Shaded areas represent one standard deviation across the 13 CMIP5
models used in the analysis, and the dashed black line is the model equivalent present-day total area of permafrost.
Figure reprinted from Slater and Lawrence [2013] (©American Meteorological Society. Used with permission).

but partially compensating decline in sea ice freshwater storage through ice volume reductions [Haine et al.,
2015; Carmack et al., 2015]. Increasing ocean freshwater content is projected to increase sea surface height,
particularly in the Canadian Basin [Long and Perrie, 2013].

The increasing sources of water to the Arctic are in part compensated by increases in freshwater export to the
North Atlantic [e.g., Holland et al., 2007; Vavrus et al., 2012]. Oceanic export changes include contributions of
both liquid water and sea ice across a number of straits, including the Bering Strait, Fram Strait, the Barents
Sea Opening, and the complex channels of the CAA (Figure 3). The liquid flux changes have a contribution
from both changing salinity and changing volume transport. The change in ice export flux is caused by
changes in both ice velocity and ice thickness. In general, 21st-century simulations exhibit reductions in
sea ice transport to the North Atlantic, which are more than compensated by increases in the liquid ocean
transport [e.g., Holland et al., 2007; Jahn and Holland, 2013]. This change in the phase (liquid or solid) of
the transport can have downstream implications as the ultimate fate of the water and its proximity to poten-
tially sensitive deep-water formation regions can be affected. We return to this in section 4.

3.3. Uncertainty in Projections of Change

Models generally agree on the sign of many changes in the Arctic freshwater system and an overall accelera-
tion of the Arctic hydrological cycle. However, they disagree considerably in the magnitude of simulated
change. There are also appreciable model discrepancies and biases in the simulated mean state conditions
[e.g., Kattsov et al., 2007, for precipitation; Jahn et al., 2012, for ocean salinity; Brutel-Vuilmet et al., 2013, for
SCE]. The importance of mean climate biases for potential errors in the projected change in freshwater
budget terms for the Arctic is uncertain. There is evidence that projected change in some quantities (e.g.,
precipitation, sea ice, and permafrost) is affected by the late 20th-century climatological conditions in
coupled climate models [Holland et al., 2010; Mahlstein and Knutti, 2010; Massonnet et al., 2012; Hodson
et al, 2013; Lawrence et al., 2012]. A better understanding of this for Arctic freshwater terms is needed to
further understand uncertainty in future projections, provide guidance for model development needs, and
constrain the likelihood of potential future change. This also has implications for resources in the region
and the availability of reliable climate services.

As discussed by Hawkins and Sutton [2009], there are a number of sources of uncertainty in climate change
projections. These include uncertainty arising from the models themselves (model structure), uncertainty
from the influence of chaotic internal variability, and uncertainty associated with the future of greenhouse
gas and other emissions. By comparing across a group of models that are run with consistent external forcing
scenarios, the magnitude of these different sources of uncertainty for climate variables at different regional
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a Sources of uncertainty in decadal mean Arctic temperature projections

I —— Observations (NASA GISS)
[ Internal variability

- I Model uncertainty
I Scenario uncertainty

- ] Historical GCM uncertainty
All 90% uncertainty ranges

N W A~ 01 OO N 0 ©

—_

-2 1960 1980 2000 2020 2040 2060 2080 2100
Year

Projected change in Arctic mean temperature [K]

b Sources of uncertainty in decadal mean Arctic precipitation projections
35 T T T T T T T T T T T
30| [ Internal variability

I Model uncertainty

I Scenario uncertainty
25 | 1 Historical GCM uncertainty
All 90% uncertainty ranges

20

15

10

1960 1980 2000 2020 2040 2060 2080 2100
Year

Projected change in Arctic mean precipitation [%]

Figure 7. Sources of uncertainty in projections of Arctic (a) surface temperature and (b) precipitation change. Results are
from CMIP3 models, using the method described in Hawkins and Sutton [2009]. Figure reprinted from Hodson et al. [2013].

domains can be estimated [Hawkins and Sutton, 2009]. As shown in Figure 7, taken from Hodson et al. [2013],
Arctic temperature and precipitation projections exhibit changes in the relative importance of various sources
of uncertainty over time. In the near term, the dominant uncertainty is associated with internal variability and
there is a growing importance of the forcing (scenario) uncertainty in the longer term. Model uncertainty is
important for all timescales. Similar general characteristics are found for other climate variables, such as pro-
jected Arctic sea ice extent change (Figure 8). Perturbed physics ensembles [e.g., Murphy et al, 2004;
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Uncertainty JAS Ice Extent Stainforth et al,, 2005; Collins et al., 2006;
e Hodson et al., 2013] can provide further
information on the importance of differ-
ent parameterizations and parameter
uncertainty for projected change.

Large ensemble simulations with a sin-
gle climate model can provide addi-
tional insight on the uncertainty that
arises from internal variability [e.g.
-6+ Deser et al.,, 2012; Wettstein and Deser,
2014; Kay et al., 2015]. Internal variability
F is a fundamental property of the climate

S S U R B due to its chaotic system dynamics. An

1960 1980 2000 2020 2040 2060 2080 estimate of the uncertainty associated
Year with internal variability is necessary in
order to put time series from a short

10° km’

Figure 8. Magnitude of uncertainty as a function of time in projected . .
change in July-August-September Northern Hemisphere sea ice extent observational record into a broader con-
from internal variability (blue), model structure (green), and forcing text, for example, for questions of detec-
scenario (black). The change is relative to 2000 values, and results are tion and attribution. Uncertainty
from CMIP3 models. The method of Hawkins and Sutton [2009] is used to  estimates also provide useful insights
diagnose the uncertainty contributions. on the limits of prediction that are inher-
ent to the system and as such cannot be
overcome through model improvements or improved observing networks and forecast initialization. This in
turn can inform research and model development needs. Anillustration of results from ensemble simulations
is shown in Figure 9, where projections of the Fram Strait ice flux from the Community Earth System Model
(CESM)-Community Atmosphere Model, Version 5 (CAM5) large ensemble [Kay et al., 2015] are shown. This
large ensemble includes 30 integrations from a single and identical climate model that are subject to the
same external forcing for 1920-2100. The only difference in the simulations is a very small perturbation in
their initial (1920) state. As such, differences across the ensemble members are solely due to internal variabil-
ity within the simulated climate. Figure 9 indicates that while general projected declines occur in the trans-
port of ice to the North Atlantic, even on a 20 year timescale in the 2000-2040 period, simulated increases are
possible due to natural variability overwhelming the anthropogenically greenhouse gas forced trend. This
illustrates the difficulty in using short observational records or single-model ensemble members to investi-
gate changes in the Arctic system because it is subject to considerable natural variability. Quantifying the
influence of natural variability, as is made possible through large ensemble simulations, is necessary if we
are to better understand observed Arctic change.

Understanding the factors responsible for multimodel scatter in simulated Arctic change is important for
refining projections and improving models. Simpler models can aid in this mechanistic understanding by
allowing for the isolation of important processes of interest and providing a simpler framework for interpretation.
As one example, Hwang and Frierson [2010] used an energy balance model to assess processes affecting
uncertainty in moist static energy transport to the Arctic in CMIP3 models. This indicated that increases in
atmospheric moisture were primarily responsible for projected moist static energy transport increases and
that the spread in the models was associated with cloud-related radiation changes. This points to uncertainties
in the models that are in need of further developments.

4. Using Models to Investigate the Impacts of Arctic Freshwater Change

The Arctic region, and its freshwater system, is one among other components of the Earth system. As such,
changes affecting the Arctic freshwater system are likely to have significant impacts on the other compo-
nents of the Earth system, at both regional and global scales [e.g., Prowse et al., 2015a]. Global ESMs have
been used to examine the consequences of changes affecting one component of the Arctic freshwater sys-
tem on the global climate or the biochemistry within the Arctic region and beyond. As one example, climate
models have been used to evaluate the potential impact of the decrease in Arctic sea ice extent for the
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(a) - L L midlatitude climate and weather [e.g.,

0.207 Deser et al., 2010]. In the following, we

‘7 ] focus on two aspects of the Arctic fresh-

0.15 ] water system integration within the

1 Earth system: the downstream impact

of the change in Arctic freshwater

export to lower latitudes and the impli-

cation of the Arctic freshwater changes
for the global carbon cycle.
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0.15 T T e export to the North Atlantic could modify
I the salinity of the surface layer in the sub-
polar region, including that in the con-
| vective region [Aagaard and Carmack,
B 1989; Haak et al, 2003; Karcher et al.,
1 2005; Carmack et al, 2015], and
hence influence the dense water forma-
| tion. This in turn could modulate the
- intensity of the AMOC [Holland et al.,
1 2001; Rennermalm et al, 2007; Arzel
et al., 2008; Jahn and Holland, 2013] and
associated oceanic heat transport.
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Figure 9. The Fram Strait ice transport simulated in the CESM-CAMS5 large have been used as test cases to under-

ensembile. (a) The ensemble mean (black) and 30 ensemble members stand the downstream impact of the
(grey) time series from 1920 to 2100 in sievert. (b) The distribution of 20 year  Arctic freshwater exports. Modeling stu-
trends in sievert per decade during the 2000-2040 time period computed  dies of Koeberle and Gerdes [2003] and

for all possible 20 year segments from the 30 ensemble members. Haak et al. [2003] have for instance

shown that positive anomalies of sea
ice export through Fram Strait propagate along the East Greenland Current and eventually drive a negative
anomaly of the sea surface salinity in the Labrador Sea a year later. However, the effect of the salinity decrease
or lack thereof on the intensity of the AMOC appears to be model dependent [Hdkkinen, 1999; Haak et al.,
2003; Olsen and Schmith, 2007; Jahn et al., 2010a].

As explained in section 3, the Arctic hydrological cycle is expected to amplify in a warming climate [Bintanja
and Selten, 2014], which, combined with the seasonal disappearance of the sea ice, is projected to result in a
modification of the Arctic freshwater export in the future. One might expect both an intensification of the
exports [Holland et al., 2007; Jahn and Holland, 2013] and a modification of the contribution of liquid fresh-
water versus sea ice and East versus West of Greenland [Koenigk et al., 20071.

Rennermalm et al. [2007] used the low-resolution (3.6° longitude x 1.8° latitude) UVic intermediate complexity
climate model to explore the response of the AMOC to a change of river runoff input in the Arctic Basin. They
found a negative linear relationship between changes of the intensity of the AMOC and the river runoff input,
the latter driving changes of the freshwater export to the North Atlantic. However, the low resolution of the
model and its subsequent biases in the representation of the dense water formation prevented the authors from
a detailed description of the mechanisms at play to link the changes of river input and the AMOC intensity.
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Using a climate model with higher resolution (about 1° longitude x 0.5° latitude for the ocean component)
forced with a different greenhouse gas emission scenario, Jahn and Holland [2013] have been able to
investigate in detail the potential future impact of the freshwater export on the AMOC and in particular
to examine separately the contributions of the different dense water formation sites. They found that
the only significant correlation between the sea surface salinity in a convective basin and the freshwater
outflow is between the Labrador Sea and the liquid freshwater export through Fram Strait, which confirms
the finding of Hdkkinen [1999]. They also found that, despite the geographical vicinity, the changes of
freshwater export through the CAA have little effect on the deep convection in the Labrador Sea, as most
of the freshwater stays in the boundary current and does not reach the interior where convection occurs.
This is consistent with the observational study of Vage et al. [2009], who found that a period of intensified
deep convection in the Labrador Sea coincided with a period of increased freshwater export through Davis
Strait. The study of Jahn and Holland [2013] thus underlines the importance of simulating realistically the
different regions of deep convection (and their relative contribution to the deeper limb of the AMOC) to
obtain a credible projection on the effect of increased Arctic freshwater outflow on the intensity of
the AMOC.

Under a warming climate, an additional freshwater input to the North Atlantic might come from the GIS.
Future projections suggest that this additional source of freshwater could alter the deep convection, resulting
in a weakening of the AMOC [e.g., Swingedouw et al., 2014]. However, modeling and analytical studies have
also suggested that enhanced GIS discharge might modify the dynamics of the outflow through the CAA
(through a modification of the sea surface height gradient) and hence limit the export of freshwater on
the western side of Greenland [Rudels, 2011].

4.2, Arctic Freshwater Influences on Biogeochemistry and the Carbon Cycle

Changes in the Arctic freshwater system have implications for biogeochemistry both on land [Wrona et al.,
2016], where large and potentially vulnerable carbon stocks are currently frozen in permafrost, and in the
ocean [Carmack et al., 2015]. With the transition to ESMs, biogeochemical processes and interactions are
increasingly being incorporated into large-scale models. As discussed by Vancoppenolle et al. [2013], while
ESMs agree on mechanisms of change in Arctic marine primary productivity over the 21st century, they
disagree on the overall sign of change. This disagreement is due to different levels of compensation within
the models of the effects of increased light availability, associated with sea ice cover decline, and increased
nutrient limitation, associated with a more stable surface ocean and shoaling mixed layers. Reducing the
uncertainty in projections of Arctic marine productivity requires improved biogeochemistry processes within
the models. As one example, current models generally neglect nutrient fluxes from rivers. Model improve-
ments also require enhanced observations to further constrain the simulations and inform model process
development. The spatial scales of interest are also problematic as biological productivity often occurs at
scales that are subgrid scale within large-scale climate models. Efforts to better account for spatial heteroge-
neity in simulated flux fields should also be pursued, as for instance regarding shortwave radiation in ice-
covered waters [Long et al., 2015].

For the terrestrial system, vast quantities of carbon are currently frozen in permafrost soils (see discussion in
Wrona et al. [2016]). Experimental studies suggest that as permafrost thaws, the newly unfrozen carbon may
start to decompose, releasing potentially large amounts of CO, and methane to the atmosphere. Based on
terrestrial carbon cycle models, initial projections of the amplitude of what is known as the permafrost-
carbon feedback are beginning to emerge [Schaefer et al., 2014; Koven et al., 2015]. Yet the uncertainty asso-
ciated with the estimates of carbon loss are large, with values ranging between 162 and 288 Pg C lost to the
atmosphere by 2100 under RCP8.5 in the different CMIP5 models [Schuur et al., 2013]. This reflects the rela-
tively poor level of both process understanding in these systems and cold region process representation in
terrestrial carbon models [Schuur et al., 2015]. Carbon emissions due to permafrost thaw remain one of the
least constrained biospheric feedbacks to climate [/PCC, 2013]. Soil hydrological conditions play a strong role
in the decomposition process with drier soils generally leading to enhanced decomposition and CO, emis-
sions while the thawing of saturated soils can enhance methane emissions. Methane emission processes
are being incorporated into global LSMs [e.g., Riley et al., 2011; Wania et al., 2010] but are difficult to constrain.
A critical additional question is whether the terrestrial Arctic landscape will become wetter or drier under cli-
mate change (see discussion in Bring et al. [2016]). Lastly, new methods to represent abrupt permafrost thaw
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and thermokarst need to be developed. Many of these abrupt thaw processes are directly related to and
affect local hydrological conditions [Jorgenson et al., 2013] with implications for terrestrial biogeochemistry.

5. Major Knowledge Gaps and Future Research Directions

Climate models have some significant biases in representing the state of the Arctic, and in particular its fresh-
water system. Historically, the scarcity and the uncertainties of the observations in the Arctic region have made
difficult any validation and calibration of the modeled state of the Arctic. The lack of observations has also ham-
pered our ability to understand and quantify all the processes at play that need to be included in models. For
instance, as discussed further in Vihma et al. [2016], large uncertainties remain associated with snowfall and rain-
fall measurements due to the gauge undercatch of solid precipitation, the low precipitation amounts, and the
sparsely distributed observation stations, mostly biased toward low elevations and coastal regions among other
factors. These uncertainties make it difficult to obtain a pan-Arctic estimate of the net precipitation, and even
more difficult to estimate the temporal variations of this term [Serreze and Hurst, 2000; Adam and Lettenmaier,
2003; Yang et al., 2005]. One consequence is that the development and validation of LSMs that rely on precipita-
tion as a critical input remain extremely challenging. More generally, building better observational data sets is
crucial to improve the representation of all the aspects of the Arctic freshwater system in models. Indeed, it is
necessary to obtain more accurate initial conditions for model predictions, to enhance the number of available
data that can be assimilated for reliable reanalysis products, and to inform the validation of the different com-
ponents of the climate models. It is also crucial to increase the spatial resolution of these observational data sets
(or observation-based data sets like the atmospheric reanalyses), as such fields are used as boundary conditions
for component models, which can be run at much higher resolutions than the existing data sets.

There have been some recent improvements following the impulse given by the International Polar Year
(2007-2009) during which intensive measurement campaigns have been conducted. Additional valuable
information is provided by satellite remote sensing, with the launch of several satellites that provide pan-
Arctic estimates of different key parameters to quantify the different terms of the Arctic freshwater budget.
As one example, observations from the Gravity Recovery and Climate Experiment satellite mission have been
used to estimate the liquid freshwater content of the Arctic Ocean [Morison et al., 2012], the sea ice thickness
[Forsberg and Skourup, 2005], the terrestrial water budget in the Eurasian Arctic [Landerer et al., 2010], and the
mass loss of the GIS [Chen et al., 2006]. Such efforts will need to be maintained over long time periods in order
to quantify the time variability of the observed parameters. Intense and coordinated observational activities
will be carried out in the near future (2017-2019) as part of the Year of Polar Prediction (http://www.polarpre-
diction.net/yopp.html).

Specific observations are also required for the development of improved numerical models. There is a strong
need for process-oriented observations, which would help to better understand the interactions and
feedbacks between the different components of the Arctic freshwater system. Two multidisciplinary
observational programs (Surface Heat Budget of the Arctic Ocean (SHEBA) in the 1990s [Uttal et al., 2002]
and the planned future Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAIC) field
campaign—nhttp://www.mosaicobservatory.org) have been designed to understand the interactions
between the atmosphere, the ocean, and the sea ice in the Arctic region. SHEBA resulted in a better under-
standing of the dynamic and thermodynamic interplays between the atmosphere, ocean, and sea ice condi-
tions. Findings from SHEBA have also been very influential on the treatment of sea ice and both the
atmospheric and oceanic boundary layers in climate models [e.g., Tjernstrém et al., 2005]. Similar initiatives
need to be undertaken in the future to better understand and quantify the cross-component interactions that
need to be included in the climate models.

Conversely, model simulation can be used to help the design of future observing systems of the Arctic
freshwater system. As one example, Lindsay and Zhang [2006] have used statistical methods applied to model
outputs to determine the optimal location where a mooring should be deployed in the Arctic Basin, in order
to monitor as best as possible the basin-wide mean ice thickness as well as the spatial and temporal patterns
of variability. Advanced techniques like Observing System Simulation Experiments [Biancamaria et al., 2011]
or adjoint-based systems [Kauker et al., 2009; Heimbach et al., 2010] are powerful tools to assess added value
of planned or hypothetical observing systems and should be used more extensively in the future to best plan
the future observing systems in the Arctic.
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Besides building on the improving observational coverage in the Arctic region, a better evaluation of models
is also needed. Innovative strategies are required to facilitate the comparisons between model and observa-
tions. There are difficulties with these comparisons in part due to discrepancies in the spatial scales of in situ
observations relative to model fields and in part due to inconsistent definitions of remotely sensed and
model-derived fields. The development of satellite simulators for climate models (where model output
mimics exactly the information provided by satellite algorithms) is a promising development for more robust
observational comparisons. This method has been used to better understand a climate model bias regarding
the simulation of clouds in the Arctic region [Cesana et al., 2012]. As noted in Carmack et al. [2015],
geochemical tracers provide an effective way to investigate the disposition and storage of freshwater in
the Arctic. As such, the use of tracer-enabled ocean simulations, which for example incorporate tracers for
different ocean freshwater sources [e.g., Newton et al.,, 2008; Jahn et al., 2010b] or for geochemical constituents,
can provide a novel means to compare modeled and observed fields.

Model intercomparisons provide a method to better understand common biases within the simulated Arctic
freshwater system and help inform model development needs. A full assessment of the Arctic freshwater
budget in the CMIP5 simulations still needs to be carried out (similar to the analysis made by Holland et al.
[2007] for the CMIP3 models), and a better understanding of the model deficiencies and biases regarding
the mean state and the variability is required to gain confidence in the future projections of the Arctic
freshwater system. Moreover, internal variability seen in model simulations needs to be better quantified
and understood, as it might explain a significant part of the CMIP model spread and the discrepancy of indi-
vidual model simulations with observations [Kay et al., 2015]. One way forward is the realization of a large
ensemble of simulations such as that completed for the Community Earth System model [Kay et al., 2015].
Similar large ensembles should be performed with different climate models to better determine the role of
internal variability within the context of forced anthropogenic change across numerous modeling systems.

Significant knowledge gaps remain regarding our understanding of the important processes explaining the
variability of the different terms of the Arctic freshwater budget, or the feedbacks between the different
components of the Arctic system. However, many important processes have been observed, quantified, or
understood through process model studies, and more effort needs to be done to include these processes
in climate models, through a direct representation or the development of parameterizations. For instance,
while there is substantial progress in understanding important cold region terrestrial processes (e.g., sublima-
tion from blowing snow, permafrost degradation and surface storage in lakes and wetlands, and infiltration in
frozen soils), there is a lag in upscaling and incorporating the latest process understanding into the land
surface components of global and regional climate models. The long-term impact of permafrost thaw on
local and regional hydrology remains poorly understood but is absolutely critical in terms of predicting future
Arctic soil moisture states and river discharge and associated changes in biogeochemical cycling. It is known
that fine-scale processes such as thermokarst and thermal erosion affect local hydrologic conditions, but the
ability to both predict when and where thermokarst and thermal erosion will occur and understand the large-
scale hydrologic impact of these landscape geomorphic processes is poor. Other factors, such as the heat flux
associated with riverine input to the Arctic Basin, have been shown to have large effects on the sea ice pack
and the oceanic conditions [Whitefield et al., 2015]. However, ESMs do not yet simulate river runoff heat
content. Most of the current state-of-the-art climate models also still lack an explicit representation of ice
sheets and glaciers (and thus of the interactions and feedbacks between the GIS or other Arctic glaciers
and the atmosphere, ocean, and sea ice), although predicting Greenland and other glaciers mass loss is cru-
cial for sea level rise projections. Modeling the Arctic freshwater system is challenging in part due to the
important feedbacks between the different components. Future model development toward increased com-
plexity should allow a better understanding and quantification of these feedbacks.

6. Conclusion

The functioning of the Arctic freshwater system involves processes within numerous Earth system compo-
nents and the interactions among those components. Variability and change in the Arctic hydrological
system can have far-reaching effects on ocean circulation, sea level rise, and biogeochemical cycles with
considerable climate implications. This motivates the need for a deeper understanding of the factors that
determine system behavior and the impacts of that behavior.
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Modeling systems are a powerful tool that, through appropriate experimental design and analysis, can be
used to better understand many aspects of the Arctic freshwater system. As discussed here, a hierarchy of
models that include different levels of complexity and coupled interactions allows us to investigate relevant
processes and the large-scale effects of those processes on the water system. By designing appropriate
experiments, numerical models can serve as a “virtual laboratory” and allow for hypothesis testing relevant
to the freshwater system. Studies of this type have resulted in new insights into the processes and interac-
tions of importance for the Arctic freshwater system. As more coupled interactions are incorporated into
large-scale Earth system models, such as those related to biogeochemical cycles and ice sheet components,
model experiments will provide a means to investigate the new feedbacks that arise.

Models also provide us with a predictive capability to determine how the system will evolve in the future, for
example, in response to rising greenhouse gases. Model projections suggest a warmer and wetter Arctic in
the future with a more vigorous hydrological cycle. Further work is needed to more clearly understand the
factors that contribute to this change on various spatial and temporal scales and to investigate the climate
system implications. Also, while the sign of the large-scale long-term change is quite consistent across
models, there remains considerable uncertainty in the projected magnitude of change. In the near term
(about a decade), this uncertainty is dominated by internal variability of the climate system, whereas in the
longer term, model structure becomes the dominant uncertainty source.

The prediction uncertainty associated with model structure indicates a need to further improve model
processes. Model development work is ongoing and has led to improvements that influence the Arctic
freshwater cycle, such as those associated with cold region hydrology [e.g., Swenson et al., 2012]. Model
development work is also targeting the incorporation of new processes within global Earth system models.
This includes the incorporation of new components, such as interactive ice sheet models [e.g., Lipscomb
et al, 2013], and the inclusion of new feedbacks and interactions within existing components, such as
work to incorporate enhanced biogeochemical cycles in the land [e.g., Koven et al, 2015] and ocean
[e.g., Vancoppenolle et al., 2013]. These new model capabilities have the potential to increase projection
uncertainty by introducing new feedbacks and interactions that may not be very well constrained.
However, they also allow for the investigation of the role of these new processes in Arctic freshwater varia-
bility and change and ultimately provide a means to better understand the complex and interactive
Arctic system.

For continued progress in the use of models to understand the Arctic freshwater system, model validation,
model development, and model experimental design activities are needed. This includes the use of innova-
tive strategies, such as the incorporation of satellite simulators within climate models [e.g., Bodas-Salcedo
et al, 2011], to better compare remotely sensed and simulated fields. It also requires further model develop-
ment efforts and the more efficient transfer of knowledge gained in the observational and process modeling
community into parameterization developments for large-scale models. Finally, the design of community
experiments, such as those undertaken by the Coupled Model Intercomparison Project, has been an impor-
tant resource to better understand the sources of projection uncertainty and common biases within models.
This can in turn provide guidance on future model development needs. Model intercomparison studies
designed to address feedbacks associated with the Arctic freshwater system should be considered for
future activities.
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