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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Food waste (FW) contains potential nu-
trients and compounds for circular
bioeconomy.

• Efficient management and valorization
of FW is the most sustainable method.

• Artificial Intelligence (AI) application
could help in optimizing FW supply
chain.

• Machine learning (ML) can predict quite
exactly the quantity and composition of
FW.

• Combination of AI and ML could
monitor and manage well FW-based
bioprocess.
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A B S T R A C T

Food waste (FW) is a severe environmental and social concern that today’s civilization is facing. Therefore, it is 
necessary to have an efficient and sustainable solution for managing FW bioprocessing. Emerging technologies 
like the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning (ML) are critical to achieving 
this, in which IoT sensors’ data is analyzed using AI and ML techniques, enabling real-time decision-making and 
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Circular bioenergy 
Sustainability 

process optimization. This work describes recent developments in valorizing FW using novel tactics such as the 
IoT, AI, and ML. It could be concluded that combining IoT, AI, and ML approaches could enhance bioprocess 
monitoring and management for generating value-added products and chemicals from FW, contributing to 
improving environmental sustainability and food security. Generally, a comprehensive strategy of applying 
intelligent techniques in conjunction with government backing can minimize FW and maximize the role of FW in 
the circular economy toward a more sustainable future.   

1. Introduction

As per the Waste Index Report, 931 MTs of food wastage were
observed in 2019, with households responsible for almost 61 %, food 
services responsible for almost 26 %, and retail responsible for almost 
13 % (UNEP, 2021). Indeed, FW is largely created from households and 
connected to consumer purchasing power, which is determined by na-
tional income levels (Dutta et al., 2021). In high-income nations, FW per 
person per day is around 307 g, which is more than double that 
compared to lower-placed affluent nations (Zhang et al., 2021). How-
ever, in underdeveloped nations, the majority of waste is generated at 
the beginning of the food supply chain due to a lack of financial and 
technological resources during harvesting, storage, and chilling (Chen 
et al., 2020)(Pinpatthanapong et al., 2022). Due to this reason, the 
United Nations (UN) member nations have adopted the Sustainable 
Development Goals 12.3 aiming to halve global per capita food waste at the 
retail and consumer level by 2030, and significantly decrease food losses 
throughout the production and supply chains, including post-harvest losses 
(Beretta and Hellweg, 2019). Furthermore, to quantify food waste and 
loss, the UN Environment Programme is presently developing the food 
waste index, which will build over the Food Loss and Waste Accounting 
and Reporting Standard (Ananno et al., 2021; Dalke et al., 2021). The 
Food Waste Initiative will calculate the amount of food waste per capita, 

considering a wide range of items from preparation to consumption. The 
Food Loss Index, developed by the UN Food and Agricultural Organi-
zation, analyses food loss across the supply chain, including production, 
storage, handling, and processing (Leverenz et al., 2019). 

Food waste (FW) and food loss are substantial global issues due to 
their negative consequences on the environment, society, and economy 
(Ojha et al., 2020). Food loss can be defined as a diminution in food 
availability and quality caused by the food chain’s suppliers’ choices 
and activities (Ottomano Palmisano et al., 2021). FW, on the other hand, 
is defined as a reduction in food quality and quantity due to retailer, 
consumer, and service provider behaviors. FW and food loss are caused 
mainly by the world’s fast population increase and food consumption 
trends (O’Connor et al., 2021; Son Le et al., 2022). FW in the food chain 
exacerbates the ecological consequences of food production and 
amounts to a total of 1.3 billion tons annually, almost 33 % of all food 
produced for human use (Vilariño et al., 2017). As reported, pulses, 
cereals, vegetables and fruits, animal products, tubers, roots, and fatty 
acids-bearing crops are the key dietary categories that contribute to 
nutritional and FW or loss (Dilamian and Noroozi, 2021). The two most 
prevalent food types, according to food loss, are tubers, roots, and fatty 
acids-bearing produces (nearly 26 %) and fruits and vegetables (closely 
22 %). Cereals, root crops/fruits/vegetables, and oilseeds account for 30 
%, 40 %, 50 %, and 20 % of worldwide yearly FW, respectively 

Fig. 1. Various food waste sources, showing complex issues in control and management (Natalie Marchant, 2021).  



conclusion summarizes the whole article. 

2. Role of FW in circular bioenergy

A significant portion of food and household waste is biodegradable
and may be used as a bioresource to recover value-added products like 
biochemicals, bioplastics, biofuels, enzymes, etc., via bioprocessing 
techniques such as AD, microbes-based fermentation, and bioprocess 
based electrochemical systems (Tamasiga et al., 2022). Bioprocessing of 
urban waste is the most cost-effective waste management alternative 
today, given the possibility and development of non-toxic substances 
(Imam et al., 2021). Bacteria used in waste bioprocessing have been 
shown to have a high potential for organic waste fraction breakdown 
(Banerjee and Arora, 2021; Bhurat et al., 2023). Furthermore, bio-
processing technology might be used with other waste treatment pro-
cesses to increase waste management efficiency. These technologies, 
however, can only be properly implemented if national and local gov-
ernments support them (Usmani et al., 2021). 

FW is especially appealing to researchers of renewable energy due to 
its lignocellulosic composition, which contains high cellulose and lignin 
levels. It has been proven that different FW such as apple pomace, 
bagasse, sugarcane vinasse, and brewers’ leftover grain could be used 
for converting into biofuels (Bigdeloo et al., 2021; Santagata et al., 2021; 
Singh et al., 2021). Enzyme-assisted cellulose and hemicellulose 
biodegradation and biotransformation provide free xylose and glucose 
(Liu et al., 2020), which fermentative microorganisms may turn into fuel 
ethanol. Furthermore, the lignin molecule may create hydrogen and 
methane during pyrolysis and anaerobic digestion, showing that FW 
looks to be a highly renewable energy resource and a reservoir of several 
added-value compounds (Chalima et al., 2019; Raizada and Yadav, 
2022). However, it was recently discovered that making bulk chemicals 
from biowaste is almost four times cheaper than converting them to 
biofuels (Shukla et al., 2020). 

Bio-refinery is an emerging idea in the area of waste processing that 
aims to transform all sorts of waste-derived material into different types 
of energy, biofuels, chemicals, and materials via a sequence of 
economically feasible and low-impact technical processes (Goswami 
et al., 2019). The bio-refinery idea promotes cooperation among scien-
tists/researchers from many domains such as biochemistry, economics, 
environmental/material sciences, and chemical engineering to transi-
tion to a bio-based business that uses renewable resources for better 
profitability (Caldeira et al., 2020; Maina et al., 2017). Indeed, the idea 
of a circular type economy is well suited to the sustainability of FW 
valorization in the long term. It is the right push needed to pull more 
investment and awareness among the masses. It is regenerative and 
restorative, with the reuse of existing resources and components as a 
fundamental notion (Usmani et al., 2022). It is thought to extend their 
worth, reduce waste creation, and shut loops. To enable the enactment 
of a circularity-based economy and the closure of loops, technical, 
financial, and societal transformations are necessary (Dangol et al., 
2022). The European chemical industry may be able to use waste flow as 
feed for bio-based polymer and chemical production, reducing the need 
to import fossil-based raw materials. The use of indigenous feedstock 
will also result in the deployment of innovative techniques, that will 
increase productivity and provide new job opportunities (Majava et al., 
2022; Omran and Baek, 2022). A summary of research works under-
taken by researchers depicting sustainable FW valorization/bio-
processes for useful products is given in Table 1. 

As massive FW is becoming a global misfortune, sustainable treat-
ments are the most attractive solution. The FW may be utilized as a 
possible feedstock in biological processes to generate a variety of bio- 
based products, as well as for cleanup. FW valorization can be enabled 
by bioprocesses such as fermentation, the genesis of acids, the produc-
tion of biomethane, the oleaginous process, and most important bio-
fuels. FW can be converted to biofertilizers, animal feed, platform 
chemicals, bioelectricity, animal feed, etc. Integrating these 

(Capanoglu et al., 2022). In general, FW and food loss are considered 
complex matters and they could come from various sources as depicted 
in Fig. 1, showing the difficulties in managing FW and food loss. 

Facing the ever-increasing FW, FW management has been a world-
wide concern owing to the rising populace causing intense demand for 
food. Currently, incineration and landfill are the primary methods of FW 
disposal, but economic and environmental sustainability have been a 
concern (Slorach et al., 2019; Talan et al., 2021a). As a result, biological 
approaches for recovering nutrients and energy through FW valor-
isation have been investigated (Chausali et al., 2022; Govarthanan et al., 
2022). However, these biological techniques have limitations and 
cannot provide a full answer for FW control. In this context, several 
sustainable technologies using smart approaches like zero-solid waste 
discharge, anaerobic digestion, bio-fermentation, etc., are being 
considered for resource and energy recovery (Hyun Chung and Ranjan 
Dhar, 2021)(Narisetty et al., 2022). Due to the sheer organic matter, 
availability, and high nutritional content of FW, it may be regarded as a 
low-cost and suitable feedstock to produce value-added materials like 
biohydrogen, biomethane, biodiesel, biogas, biomethane, and fertilizers 
(Engelberth, 2020; Sirohi et al., 2023). Composting, bioethanol syn-
thesis, feed fermentation, anaerobic digestion (AD), and other bio-
processes are researched for resource recovery and energy from FW 
(Idris et al., 2021; Kharisma et al., 2022; Närvänen et al., 2020; Talan 
et al., 2021b). These processes for turning FW into value-added goods, 
though, have certain drawbacks, such as a shortage of skilled hands, 
high operating costs, and post-processing of solid residues (Demichelis 
et al., 2018; Sharma et al., 2021). In such a case, a technique for effective 
FW management toward simultaneous energy and nutrients recovery 
with low operating costs, and little solid residue discharge is needed in 
the global FW market (Kamal et al., 2023). 

According to the literature assessment, efforts to minimize FW will 
fail to produce the envisioned sustainability and suppleness co-benefits 
unless the infrastructural systems that compose food supply chains are 
strengthened. The infrastructural systems that create, supply, and 
manage food and associated waste; the human infrastructure, which 
includes employees; and the use of modern technologies for plan 
execution, coordination, monitoring, and simulation necessitate new 
investigations and solutions. Positive governance, institutions, and in-
formation infrastructure are all likely to increase coordination and 
management. While there are several review studies accessible on the 
issue of FW valorisation, there are nearly no review studies available in 
the open literature on smart ways available such as artificial intelligence 
(AI), machine learning (ML), and the internet of things (IoT) to increase 
the efficiency and sustainability of FW valorisation. The fact shows that 
these smart approaches have improved the quality of life across the 
board, beginning with IoT-enabled smart homes and offices, and com-
plex problem resolution and model prediction with AI and ML. As a 
result, the goal of this work is a new review study on the application of 
smart approaches like AI, ML, and IoT to efficient management and 
sustainable valorisation of FW aiming to fill the research gaps. Indeed, 
this current work focuses on the application of AI, ML, and IoT tech-
niques to analyse the role of FW, as well as to manage FW as these 
techniques pertain to bioprocesses objectively, and it provides an in- 
depth examination of major algorithms and their applications in 
model prediction of FW. This paper has the potential to be a ready-to-use 
reference guide on smart ways for sustainable FW valorisation. In 
addition, this paper also addresses some of the difficulties and views 
surrounding AI and ML, as well as future research directions. 

The present review is structured in a way that the first section dis-
cusses the global issue of FW and food loss. The second section presents 
various ways to use FW and the role of FW in circular economy, like 
turning it into bioenergy in detail. The third section talks about using 
machine learning to improve the process of using food waste. The fourth 
section talks about IoT technology that can help monitor and control the 
process in real time. The fifth section discusses the challenges associated 
with using modern approaches in FW bioprocessing. Finally, the 



bioprocesses improves process efficiency and resource recovery over 
time (Usmani et al., 2021). An integrated approach to biorefinery 
strategy may lead to establishing a circular bio-economy. The waste 
biorefinery strategy for FW necessitates optimizing the cascade of 
distinct bioprocesses to transition from a wastage-laden economy to a 
circular bio-economy (Dahiya et al., 2018). Indeed, the circular econ-
omy idea based on FW necessitates a paradigm change throughout all 
manufacturing chains, from giant processors to medium/small pro-
ducers (Osorio et al., 2021). It will impact not just sellers of products and 
services, but also all areas of modern society, including the press, 
communication services, academia, and governance (Hosseinzadeh- 
Bandbafha et al., 2022; Santeramo, 2021). 

3. Machine learning for bioprocesses

Machine learning (ML) is a promising technique that is rapidly
evolving owing to its capability to handle a wide range of issues in fields 
such as engineering, information technology, medicine, mining, gaming, 
and many others. Using ML increases the power of modeling complex 
systems with non-linear input–output relationships, especially when the 
number of inputs, outputs, or decision scenarios is large. ML models, like 
many other data-driven techniques, do not need physical knowledge of 
the system, but they may nevertheless predict physical occurrences if 
properly trained and adequate data for model training is available 
(Singh et al., 2023). The application of ML techniques in the domain of 
FW valorisation was observed mainly in three categories e.g., model- 
prediction, optimization, and the hybrid approach of prediction- 
optimization (Malefors et al., 2022). Several ML methods have been 
used to simulate the non-linear and complicated interactions of the 
several bioprocesses, including artificial neural network (ANN) (Shen-
bagaraj et al., 2021), random forest (Cheng et al., 2022), support vector 
machine (SVM) (Andrade Cruz et al., 2022; Sarlaki et al., 2021), adap-
tive neuro-fuzzy inference system (ANFIS) (Olatunji et al., 2022; Primaz 
et al., 2021), decision trees, boosted regression tree and also Bayesian 
optimized ML methods. In the case of optimization, several heuristic 
methods and evolutionary methods are being used such as particle 
swarm optimization, genetic algorithm, grey wolf optimizer, artificial 

bee colony, bat algorithm, black hole optimization, cat swarm opti-
mizer, etc. Recently, hybrid approaches to connecting ML with optimi-
zation methods to improve precision are being implemented such as 
ANN- particle swarm optimization, ANFIS-grey wolf optimizer, bat 
algorithm-ANN, etc. The following section discusses these methods as 
applicable to FW valorisation. 

Bioprocesses are frequently used to remediate various organic wastes 
while also producing sustainable energy and nutrient-rich digestate. 
However, the bioprocess is unstable, which hurts the output. Significant 
efforts have been made to create techniques for controlling the different 
bioprocesses to preserve process firmness and forecast the performance 
of bioprocess (Sinner et al., 2021). Amongst various methodologies, ML 
has received a lot of attention in recent times for bioprocess optimiza-
tion, predicting unknown parameters, detecting trepidations, and real- 
time observation (Peter et al., 2023; Wan et al., 2022). In ML, induc-
tive interpretation is used to broaden the scope of relationships between 
datasets, which is then utilized to make informed conclusions in new 
situations (Andrade Cruz et al., 2022; Sharma and Sharma, 2021). A 
typical flow process depicting ML application for anaerobic digestion of 
FW is depicted in Fig. 2. 

ML has developed as a data-driven approach that is uninfluenced by 
the complicated linkages used in mathematical models (Al-Waeli et al., 
2019; Said et al., 2022a). This technique is wholly dependent on the data 
that is publicly accessible or from historical events like experiments. A 
training and testing technique using a training data set is used in ML to 
enable the model to discover previously unknown patterns in the data 
(Tercan and Meisen, 2022). The model is validated using a separate data 
set to enhance the model’s predictive performance by hyperparameter 
optimization (Nguyen et al., 2021). Following that, model testing is used 
with a new set of data to assess the accuracy of the model. Although ML 
algorithms are capable of handling intricate multivariate data, can 
forecast non-linear correlations, and manage outliers and missing 
values, choosing the correct approach for a specific assignment is vital to 
attaining optimal results (Jamei and Ahmadianfar, 2020; Shenbagaraj 
et al., 2021). 

3.1. Artificial neural networks (ANN) 

ANNs are modern computational techniques that can be used to 
efficiently model engineering processes where, due to unidentified in-
terrelationships and feedback complexity among different processes at 
different scales, classical-type regression methods produce inadequate 
results. In such instances, an ANN trained merely on an observational set 
of input–output data may create the data processing structure necessary 
to effectively correlate the set of inputs and associated outputs (Fajobi 
et al., 2022). Thereafter can be used to indicate latent patterns of in-
terrelationships by themselves. One model structure, referred to as a 
universal approximator, may handle complicated multiple inputs into 
multiple output data concurrently by correctly adjusting the weights of 
interneuron connections and neuron bias values during controlled 
training. Furthermore, no preceding assumptions about the choice of a 
correlating template are required. The models can be tested on statistical 
indices to measure the model’s robustness. 

In multilayer perceptron type ANN, each layer is made up of neurons 
that are linked to the neurons in the preceding and succeeding levels 
through connection weights (Wij). These weights are modified based on 
the trained network’s mapping capacity. An extra bias term (bj) is 
included to create a threshold for neuron activity. The input data (Xi) are 
supplied to the network via the input layer, and the weights are then 
transmitted to the hidden layer. The weighted output (XiWij) is then 
added to a threshold to generate the neuron input (Nj) in the output 
layer. This neuron input is processed by an activation function f

(
Nj
)

to 
get the desired output Yj. The log-sigmoid function that has the form; 
serves as the most widely employed activation function. 

Biogas production, for example, has been efficiently forecasted using 

Theme Approach Main outcomes Reference 

Sustainable FW 
management in 
Bangladesh 

Analysis of waste 
management 

According to the 
research, FW may 
create 481.6 MW of 
electricity per year 

(Ananno et al., 
2021) 

FW in the 
aviation sector 

Material flow 
analysis 

Considerable 
reduction in FW 

(Thamagasorn 
and Pharino, 
2019) 

FW management 
at Hong Kong 
International 
airport 

Life cycle cost- 
benefit analysis 

Developed model 
can be implemented 
globally 

(Lam et al., 
2018) 

Analysis of 
Italian plant for 
FW composting 

Circular bio- 
economy 

Substitution of 
natural gas with 
biomethane 

(Le Pera et al., 
2022) 

Sustainable food 
system 
framework 

Fuzzy-Delphi 
method for 
qualitative 
information 

Production 
evaluation, 
transport, and 
preservation result in 
technological 
innovation 

(Tseng et al., 
2022) 

Bio-refinery for 
sustainable FW 
valorization 

FW to biodiesel 248.21 g of biodiesel 
per kg of FW 

(Patel et al., 
2019) 

Solid biofuel 
from FW 

Hydrothermal 
carbonization 

Production of solid 
biofuel towards 
sustainable FW 
valorization 

(Wang et al., 
2021) 

FW: food waste. 

Table 1 
Summary of sustainable FW valorization/bioprocesses.  



ANN models in controlled laboratory-scale tests (Gonçalves Neto et al., 
2021). Özarslan et al. (2021) employed ANN to simulate and model the 
co-digestion performance of tea waste mixed with a co-substrate of spent 
tea. The peak cumulative yield of methane during co-digestion was 
modeled as 468.43 mL CH4/g volatile solids in the case of the ratio of 
spent tea waste and tea factory was 35 % and 65 % w/w volatile solids, 
correspondingly. Co-substrates had a 183 % greater anticipated 
methane output than mono-substrates. Quashie et al (2021) simulated 
the process of biogas production from FW employing an ANN. The 
research focuses on the impacts of numerous parameters on biogas 
generation, including removal of chemical oxygen demand, effluent pH, 
oxidation decreasing potential, organic loading rate, volatile type fatty 
acids, influent pH, and influent ammonium. The Levenberg Marquardt 
back-propagation method was selected as the model’s algorithm from a 
seven-benchmark comparison. The determination coefficient and frac-
tional variance employed for the exactitude of the optimum ANN model 
were 0.9414 and 0.0484. ANN in this study could emulate the modeling 
of process parameter interactions with high precision (Barik and Mur-
ugan, 2015). Several other researchers employed ANN with different 
configurations and also in a hybrid setting with different optimization 
techniques. The literature in this domain shows that ANN is the most 
used model prediction for food valorization processes (Kapoor et al., 
2020; Sharma and Sahoo, 2022). 

3.2. Adaptive neuro-fuzzy inference system (ANFIS) 

ANFIS, employs a fuzzy logic cum neural network-based hybrid 
learning approach, to achieve excellent learning in quantity and 
modeling. ANFIS surpasses the ANN model in terms of lower residuals 
and peak flow prediction accuracy. Complex issues may be solved using 
the ANFIS model with fuzzy inputs and a neural network. The ANFIS 
model employs back-propagation to optimize the member function pa-
rameters (fuzzy rules). Fuzzification, which describes inputs that aren’t 
unique, makes the neural network’s responsibility more accessible, 
leading to a more resilient overall model. ANFIS governs several set rules 
that can learn non-linear equations. The directional linkages are con-
nected via nodes. Each node serves a distinct purpose and is comprised 
of set parameters. A Takagi-Sugeno-type fuzzy system is crucial since it 
holds IF-THEN rules and is the most accurate as well as widely used 
fuzzy modeling algorithm. 

The excellent prediction abilities and availability of suitable algo-
rithms have resulted in the extensive use of ANFIS in the domain of FW 
valorization. Yang et al. (2021) employed the ANFIS to predict biogas 
yield from several kinds of FW. The results of the proposed models show 
that they are quite capable of forecasting biogas generation. The mean 
squared error (MSE) and mean relative error (MRE) values determined 
for ANFIS were 0.0039 and 29.318, respectively indicating that the 

model had a greater capacity to forecast the target data. You et al. 
(2017) compared the prediction efficiency of ANN, random forest, 
ANFIS, and SVM for investigating the higher calorific value of waste 
burning in a circulating-type fluidized bed reactor. To assess the pre-
diction efficiency of the models, a complete comparative study was 
conducted. The results show that the ANFIS outperformed the other 
three models, with the random forest model coming in second and the 
ANN model coming in last. 

3.3. Support vector regression (SVR) 

In 1995, Vapnik’s statistical learning model laid the groundwork for 
the support vector machine (SVM). Since its conception, SVM has found 
various applications across a wide range of study areas. SVM was pri-
marily created for classification problems, but it was subsequently 
expanded to include regression applications. When used for classifica-
tion or prediction, it is referred to as support vector classification or 
support vector regression (SVR). SVR has special enticing properties like 
a tractable global optimal solution with great repeatability and consis-
tency (Quan et al., 2022). Furthermore, SVR is less prone to overfitting 
problems, enabling it to generalize successfully in the face of smaller 
datasets. Finally, SVR may explain complex non-linear decision 
boundaries. The purpose of simple regression is to reduce the error rate, 
whereas the goal of SVR is to accommodate the error inside a certain 
threshold, which suggests that the job of SVR is to estimate the best 
value within such a specified margin known as - tube. A generalized 
representation of SVR with bioprocesses can be seen in Fig. 3a. 

The SVR approach finds a function that imitates the expected and 
observed response values using a precision value ′ρ′, where errors less 
than ′ρ′, are regarded insignificant. SVR finds a line or a hyperplane in a 
higher dimension that fits the data. Kernel (φ) is utilized to search the 
hyperplane in a greater dimension san incurring extra processing over-
head. When the size of the data grows, so does the computational cost 
(Awad and Khanna, 2015). Several researchers reported the use of SVR 
for model prediction of FW valorization. The least squares support 
vector regression was utilized to optimize the pretreatment process 
parameters to increase the production and efficiency of biogas generated 
from the anaerobic fermentation of maize stalk by Dong et al. (2019). 
The experimental parameters of orthogonal experimental design were 
the weight of the corn stalk, alkali pretreatment, ultrasonic duration 
time, and single/dual-frequency ultrasound. The results showed least 
squares support vector regression as an effective optimization method 
for process characteristics. Cinar et al. (2022) employed SVR for tem-
perature management in an AD process. Models were built to predict 
biogas generation under various feeding intensities and temperature 
fluctuations. This model can be used to forecast the influence of tem-
perature changes on process efficiency, allowing for real-time control 

Fig. 2. Flow diagram of typical bioprocesses using machine learning.  



and monitoring of biogas systems. In this study, some different ML al-
gorithms - linear and logistic regression, k-nearest neighbors, decision 
trees, random forest, SVR, and extreme gradient boosting - were 
compared to field test results to model-predict the effects of fluctuations 
in temperature on process stability. According to the metric precision of 
the models generated using the confusion matrix, SVR delivered the 
highest accuracy of 93 %. Kazemi et al. (2021) employed SVR for fault 
detection in the AD process using FW and wastewater. AD process is 
complex, and monitoring such processes is critical to ensuring optimal 
functioning and preventing breakdowns and catastrophic repercussions 
during plant operation. To accomplish this aim, a realistic data-driven 
framework for fault identification in AD is provided and verified using 
a simulated data set collected using the International Water Associa-
tion’s benchmark simulation model No.2. Before soft-sensor design, the 
most acceptable subset of input variables was identified using the 
feature selection approach. The optimal selection of input variables was 
chosen to be ammonia concentration, pH, pressure, and CO2 mole 
fraction. Each soft sensor was tested for fault robustness, and it was 
discovered that although an ensemble of neural networks and extreme 
learning machine approaches have demonstrated great accuracy in 

predicting volatile fatty acids under normal operating circumstances, 
they cannot be utilized successfully for fault detection since they are not 
robust enough. 

3.4. Gene expression programming (GEP) 

Ferreira suggested gene expression programming (GEP) as a subset of 
genetic programming. With minimal modifications, most operations of 
genetic programming are employed in GEP (Ferreira, 2006). In general, 
numerous processes may be mimicked and assessed by connecting 
different terminals and functions in an expression tree. The genetic al-
gorithm looks through the available data for a function that predicts the 
response, while genes carry out genetic variations. In GEP model con-
struction, the roulette wheel technique is used to choose data repeated 
simultaneously by genetic operators. The function set, the terminal set, 
the function of fitness, the controlling parameters, and the closure 
criteria are the five chief components of the GEP. A genome or chro-
mosome is a fixed-length linear symbolic string that contains one or 
more genes in GEP. By weighting their linkages, GEP learns about cor-
relations between variables in data sets. The algebraic expression may 

Fig. 3. A generalized representation towards bioprocesses; (a) Support vector regression (SVR) and (b) Gene expression programming (GEP).  



performance, classification, and regression models were built. Using 
genetic data, high prediction accuracy was attained. Microbial species 
and critical operating factors were discovered. The model can give 
advanced warning and process management recommendations. A sum-
mary of works depicting the application of ML for improving the FW 
valorization is given in Table 2. 

To accomplish forecasting, the ANN attempts to build a direct cor-
relation between observed input data and output forecasted data. 
However, due to a lack of time-based correlation establishment among 
data sequences, the ANN-based model fails to define the relationship 
between time and data, restraining its applicability in time series-based 
prognostic approaches (Sharma et al., 2022). As a result, the recurrent 
neural network is proposed as a resolution to this issue. The recurrent 
neural network may create a sequential type mapping between obser-
vation and forecasted values by creating cyclical connections to neurons. 
As a result, the outcome of each time-based step is impacted by the input 
of the previous time step. A recurrent neural network achieves the stored 
characteristic as a consequence. The recurrent neural network training 
technique includes a backward and forward step. A recurrent neural 
network’s forward pass is analogous to a mono-hidden layer of a 
multilayer perceptron (Hajiabotorabi et al., 2019; Wang et al., 2020). 
The stimulations from both the present external input and the hidden 
layer responses from past time steps occur at the hidden layer. The 
distinction is that the initiation of the hidden layer affects the loss 
function for recurrent neural networks both from its influence on the 
output layer and the hidden layer in the succeeding phase (Wang and 
Zhang, 2018). 

The radial basis function neural network is also popular owing to its 
benefits, such as simple construction, additional estimate features, and a 
fast-learning process. Radial basis function networks consist of three 
layers, in which the input layer serves just to link the network to its 
surroundings (Hemmati-Sarapardeh et al., 2018). The hidden layer 
consists of multiple nodes that employ a non-linear change to the control 
factors (input) employing a radial basis function, like a thin plate spline 
function or Gaussian function. The output layer is a linear summation 
unit. In the usual training procedure, the configuration of the radial 
basis function network is chosen via trial and error. Parameters of the 
radial basis function are estimated in two phases: The centers of the 

Table 2 
Notable studies on machine learning for improving FW valorization.  

FW/biomass Machine learning 
technique 

Main outcomes Reference 

Corn stalk Least squares- 
support vector 
machine 

Optimization helped in 
improving the biogas 
yield. 

(Dong and 
Chen, 2019) 

Pawpaw fruit Response surface 
methodology 

26.5 % increase in yield 
of biogas 

(Dahunsi 
et al., 2017) 

FW water and 
sewage 

Time series and 
Pearson’s 
correlation analysis 

Improved bioavailability 
of waste mixture 

(Choi et al., 
2021) 

Karanja seed 
cake and 
cattle dung 

Genetic algorithm 
and ANN 

Robust prediction model 
with a R close to one. 

(Barik and 
Murugan, 
2015) 

FW Recurrent neural 
network 

Robust prognostic model 
developed 

(Seo et al., 
2021) 

Vegetable, 
food, and 
fruit waste 

ANN Model-based predictions 
were more than 85 % 
correct. 

(Gonçalves 
Neto et al., 
2021) 

Fresh fish 
waste 

Random forest, 
ANN, Long short- 
term memory 
networks, and SVM 

Long short-term memory 
networks provided the 
best results with root- 
mean-square error as low 
as 27.82.  

(Miguéis 
et al., 2022) 

Pumpkin peel 
waste 

ANN and response 
surface 
methodology 

ANN outperformed the 
response surface 
methodology 

(Chouaibi 
et al., 2020) 

FW: food waste; ANN: artificial neural network; SVM: Support vector machine. 

be shown using phenotype and genotype. Increasing the number of 
genes leads to more intricate GEP expression while increasing the 
number of chromosomes is time-consuming. The number of constants 
utilized in each gene’s mathematical equation is determined by the user. 
Trial and error were employed to calculate the count of chromosomes, 
genes, and head size. 

Despite being a robust model prediction method for complex engi-
neering problems, the researchers have not sufficiently utilized the GEP. 
There are few studies reported in the domain of biofuel-powered en-
gines, nanofluids, and concrete design by Sharma (2020) and Sharma 
et al. (2021). The forecasting capacity of GEP in the calculation of CH4 
production and effluent substrate generated by two anaerobic filters was 
investigated by Seckin et al. (2011). The observed data from both upflow 
anaerobic filters - one being mesophilic (35 ◦C) and the other thermo-
philic (55 ◦C) - were employed for the valorization of waste under 
various organic loadings used in the modeling investigation. The GEP- 
based model included three control factors: duration of hydraulic 
retention, rate of organic loading, and influent substrate (Si), as well as 
one output, methane yield. When compared to the more traditional 
Stover-Kincannon approach the findings justify the use of the GEP 
methodology (with R2 = 0.786) as an alternative to more traditional 
techniques in estimating methane yield. Abdulsalam et al. (2020) 
employed GEP to predict the physiochemical properties of waste- 
derived biochar, such as mass, energy yield, and higher heating value. 
The ability of the GEP approach to forecasting hydrochar characteristics 
based on input parameters was determined to be adequate in this study. 
A generalized representation of GEP with bioprocesses can be seen in 
Fig. 3b. 

3.5. Gaussian process regression (GPR) 

The ML-based GPR technique is a supervised but non-parametric 
method that uses the observed data to prognosticate a dependent vari-
able. GPR, as opposed to least-square regression, could be a more robust 
tool for coping with chaotic and complex data. The detailed procedure of 
GPR can be accessed in the literature (Lee et al., 2020; Said et al., 2022b; 
Yuan et al., 2008). 

In comparison to ANN and ANFIS, the GPR technique is relatively 
less used despite being a highly efficient technique. Xiao et al. (2021) 
employed a novel generic data-driven two-stage model, hybrid neural 
networks, which was first created to estimate CH4 generation from in- 
situ biogas upgrading in bio-cathode MECs through direct electron 
transfer. The developed model was compared with the GPR-based 
model. Compared to the traditional one-stage model, the new ML- 
based modeling technique could improve the applicability and versa-
tility by recording substantial transitional variables and anticipating 
CH4 production via direct electron transfer with an impressive perfor-
mance as R2 was observed as 0.918 while the mean squared error was 
0.0065. Yapıcı et al. (2022) used SVM and GPR to model-predict the 
biogas yield. The Gaussian Kernel Function performed well for SVR 
prediction (0.0011 RMSE and 0.89 R2, whereas the Exponential Kernel 
Function performed best for GPR (0.0011 RMSE and 0.93 R2). The ec-
centricities in the SVM-based model with linear type kernel fluctuate 
throughout a vast range of 0.25 % to 80.85 %, but the deviations in the 
GPR model employing exponential type kernel were well within 0.06 % 
to 03.91 %, of each other. 

Although methane output from an industrial facility has been fore-
casted regularly utilizing random forest and extreme gradient boosting 
(Chiu et al., 2022; De Clercq et al., 2020). Likewise, biogas output from 
the maize straw co-digested with cow manure was projected and 
maximized using an ANFIS model in pilot-scale research. Furthermore, 
ML web-based applications and waste modeling can improve the 
analytical skills, strategic planning, and scheduling of biogas plant op-
erators (Spyridonidis et al., 2020; Zareei and Khodaei, 2017). Long et al. 
(2021) effectively used ML in conjunction with genomic data to model- 
predict anaerobic digestion performance. To anticipate reactor 



4. Internet of things for bioprocesses

Controlling numerous components influencing bioprocesses pre-
cisely is critical for meeting growing research and production demands. 
These factors include nourishment and metabolite concentrations (like 
lactate and glucose), cell density, pH, oxygen level, humidity, and 
temperature (EA et al., 2021). The real-time measurement of bioprocess 

parameters such as cellular elements, metabolites, and nutrients is 
significantly more complex. The UV–visible, mid-infrared, near- 
infrared, fluorescence, and Raman spectroscopic methods show poten-
tial for real-time monitoring of a variety of parameters. The employment 
of the spectroscopy technique, however, does suffer from poor 
discernment, chemometrics skill, and multivariate data processing 
ability. Consequently, there is still a desire for durable sensor systems, 
low in cost, small in size, and constantly running with greater selectivity 
(Rusli et al., 2021). To monitor these key characteristics, many analyt-
ical approaches have been used. The Internet of things (IoT) is one most 
promising technology with immense prospects (Chau et al., 2021; Has-
soun et al., 2022). It has the necessary qualities of real-time monitoring 
systems, which can be extensively used for parameters such as humidity, 
temperature, pH, pressure, and oxygen level monitoring (Cruz et al., 
2021). The IoT has been enhanced by the use of microfabrication 
techniques, enabling downsizing and the creation of innovative multi- 
parametric electrochemical sensors (Van et al., 2022a). Sensors that 
could respond to a wide range of chemical, biological, and physical 
stimuli are often required for IoT applications. Normally, these small 
sensors must be joined together (Gopikumar et al., 2021a). Researchers 
would want to assemble many small sensors on single substrate appli-
cations that need high performance in a tiny size, low energy usage, and 
expenditure (Melikoglu, 2020). In general, a typical arrangement of IoT- 
based FW valorisation systems is shown in Fig. 4. 

Kazemi et al. (2020) suggested a methodology for real-time moni-
toring that combines recent ML approaches with digital monitoring This 
device used the internet to monitor volatile fatty acids in the process of 
anaerobic digestion in real time. The different models’ predicting and 

Fig. 4. The Internet of things-based system for managing the food waste valorization process.  

hidden layer nodes are found in the first step using the k-means clus-
tering approach. In the second stage, simple linear regression is used to 
construct the link weights (Sohani et al., 2022). 

The ML approaches outlined in previous sub-sections were mostly 
published in the literature on FW valorization and anaerobic digestion 
applications. Such ML techniques may be used with the desirability 
approach, particle swarm optimization, genetic algorithms, and impe-
rialist competitive algorithms to improve forecast accuracy and pro-
cessing efficiency. An interdisciplinary technique that may drastically 
cut down on the amount of high-quality food that is thrown away 
combines ML with the sustainable valorization of FW. Beneficial appli-
cations of ML may be found in the following steps of the process: se-
lection of potentially high-value FW, quality identification, odor-based 
categorization, supply chain management, and ultimate disposal. The 
effects of ML are connected to various problems, and the approaches to 
resolving those problems may give rise to a new revolution in the fields 
of waste reduction, food security, and environmental concerns. How-
ever, the widespread use of ML is being hampered by several obstacles, 
one of which is the demand for highly qualified individuals to solve is-
sues and build new systems. 



In general, the IoT makes it easier to monitor and manage the 

bioprocesses that are used to transform waste food into usable products, 
such as biofertilizers, biofuel, solvents, medicinal compounds, flavoring 
agents, biosurfactants, and so on. To make optimal use of an IoT-based 
system, one of the main criteria is the optimization of the physical ar-
chitecture of the sensors, radio frequency identification, and data net-
works. However, the uneven network and hardware, the need to often 
replace radio frequency identification tags for waste food bins, mea-
surement inaccuracy sensors, the potential of data leakage, and dis-
agreements between government bodies over how to correctly construe 
the data from the IoT system are all unfavorable effects. 

5. Challenges and prospective

The development of green, creative, safe, and sustainable procedures
supports the viability of adopting sustainable technologies to convert 
FW into useful goods and energy. The modern approaches comprising 
IoT, sensors, ML, and nanotechnology are proving to be a positive 
catalyst for sustainable FW valorization and circular economy (Lin et al., 
2022). However, scaling up these procedures to industrial/mass scale is 
limited by operational problems such as high FW collecting costs, se-
lection of appropriate ML techniques, the optimized layout of sensors 
installation, availability of a strong internet network, a skilled hand, 
chemical characterization, and process compatibility (Babbitt et al., 
2022; Culaba et al., 2022). 

The availability of data for model building continues to be a key 
barrier. Experimenting may be costly and time-demanding, and con-
structing ML-based models generally needs training data. Many research 
gathered experimental data from the literature; however, variations in 
data citation might make this procedure complex and subsequent 
comparison problematic (Ascher et al., 2022). Furthermore, the kind of 
training data utilized affects the trade-off between the generalization 
and predictive performance of the model. Using extremely homogenous 
experimental data from, for example, just one kind of valorization 
method leads to a model with superior prognostic accuracy for modeling 
the process of the specific type of FW. This, though, indicates that the 
model is appropriate for the specific sort of training dataset employed. 
Developing more varied models with inferior but still acceptable pre-
diction efficiency would be beneficial. Furthermore, the quantity of 
training data necessary would rise since the data would be needed to 
represent a greater range of parameters. Furthermore, since there are 
several concerns in the network setup, sensor layout design, and oper-
ations optimization, the cost of establishing bio-refineries is significant 
(Andrade Cruz et al., 2022). ML combined with sustainable FW valori-
zation is a multidisciplinary strategy that may significantly reduce the 
waste of high-quality food. ML is beneficial when selecting potentially 
high-value FW, quality identification, odor-based classification, supply 
chain management, and final disposal. ML impacts are related to various 
issues, and solutions to those challenges may emerge as a new revolution 
in waste reduction, food security, and environmental concerns. How-
ever, several limitations are hindering the rollout of ML, such as the 
requirement for highly skilled hands to deal with problems and design 
new programs. 

IoT improves the supervision and control of bioprocesses that 
convert FW to useful products such as biofertilizers, biofuel, solvents, 
pharmaceutical ingredients, flavoring agents, biosurfactants, etc. An 
optimized layout of sensors, radio frequency identifications, and data 
networks are essential for effectively utilizing IoT-based systems. 
Negative outcomes include the inconsistent network/hardware, the 
requirement to often renew radio frequency identification tags for waste 
food bins, measurement error sensors, data leakage threats, and differ-
ences among government agencies over how to appropriately interpret 
data from the IoT system. Aside from the scaling-up obstacles and 
infrastructural setup, all of the valorization strategies also have certain 
difficulties. For example, the anaerobic digestion process is heavily 
reliant on the proper development of bacterial populations, and their 
degrading behavior is impacted by a variety of parameters such as 

Table 3 
Notable researches on IoT for food and biomass waste valorization.  

Food and 
biomass 
waste 

IoT framework Main outcomes Reference 

Waste sludge 
and 
wastewater 

Geographic information 
system based 
monitoring 

Improved 
monitoring for 
planning and 
implementation 

(Gopikumar 
et al., 2021b) 

Restaurant 
FW 

Radio frequency 
identification tag, 
surveillance camera 
coupled with 
geographic information 
system 

Net positive impact 
on all the 
stakeholders 

(Wen et al., 
2018) 

Soybean 
protein 

Monitoring sensors for 
temperature 

Long term 
preservation of fruits 
and vegetables 

(Niu and 
Jiang, 2022) 

Household 
FW 

Sensors, relay, and 
mobile applications 

Important 
parameters be 
measured with IoT 
network 

(Van et al., 
2022b) 

FW in 
restaurants 
and home 

Radio frequency 
identification based 
sensors and display 

Reduction in FW (Kodan et al., 
2020) 

Food sector 
waste 

Data collection with 
sensors and uploading 
to local cloud 

Effective monitoring 
of FW, water, and 
energy 

(Jagtap et al., 
2021) 

University 
campus FW 

Programmable logic 
controller connected 
with IoT network 

Centralized 
monitoring of remote 
operations in real- 
time 

(Logan et al., 
2019) 

FW: food waste; IoT: Internet of things. 

generalization skills were also assessed. According to this comparison, 
the soft sensor based on genetic programming is more precise than the 
other soft sensors. The findings of the study by Shan et al. (2021) show 
that the innovative multi-sensor approach coupled with IoT can give 
insight into silage aerobic microbial respiration and hence provide more 
specific information to guide silage management than earlier assess-
ments of aerobic stability. Logan et al. (2019) studied a pilot-size 
decentralized biogas reactor having a capacity of 675 L. It was 
conceived, constructed, and deployed to treat FW produced by the 
university campus community. The reactor was run in anaerobic, mes-
ophilic, and wet conditions, using feedstock containing 10 % total solids. 
At organic loading rates of 1, 2, and 3 kg volatile solids/m3.d, the 
average decrease in total solids was 70.7, 66.5, and 54.98 %. The IoT 
provided real-time remote monitoring and supported the centralized 
operator in improving process performance, resulting in improved 
maintenance and operation of the decentralized anaerobic digestion 
systems. Gopikumar et al. (2021b) employed an Arduino microcon-
troller with a mechanical trash segregator to recognize the kind of trash 
and separate it. The regular and real-time surveillance of process control 
is based on plasma controlled remotely and onsite using the IoT cloud. 
The devices are linked to the process of mathematical calculation, which 
plays an important role in transforming the objects, and are used to 
examine turbidity, suspended solids, dissolved oxygen, and chemical 
oxygen demand using sensing devices, thus also managing the effluent. 
Nath et al. (2021) conducted studies on tiny energy-generating devices, 
namely cost-effective microfluidic paper-based microbial fuel cells. 
Several bacterial-based research was conducted to determine the most 
suited ideal bacterial settings, including growth curve studies, volu-
metric ratios, and incubation duration. IoT-based hardware has been 
created and combined with the microfluidic paper-based microbial fuel 
cells platform to monitor real-time device performance, resulting in the 
platform’s long-term potential to run miniature microelectronics de-
tectors and portable devices. A summary of research works undertaken 
by researchers depicting IoT’s application in the FW valorization/Bio-
processes is given in Table 3. 



6. Conclusion

A scientific and smart strategy using IoT, AI, and ML to value and
manage food waste toward sustainability was scrutinized in this paper. 
The most effective way to manage food waste and turn it into something 
useful is to combine two methods: collecting data via IoT technology and 
analyzing the data using real-time ML algorithms and AI technology. 
This method can assist the researchers in better understanding and 
controlling the complex process of food waste valorization. However, 
developing unique and robust modeling frameworks should be further 
enhanced to accelerate prognostic research for food waste valorisation 
and reduction toward sustainable development. 
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Osorio, L.L.D.R., Flórez-López, E., Grande-Tovar, C.D., 2021. The Potential of Selected 
Agri-Food Loss and Waste to Contribute to a Circular Economy: Applications in the 
Food. Cosmetic and Pharmaceutical Industries. Molecules 26, 515. https://doi.org/ 
10.3390/molecules26020515. 

Ottomano Palmisano, G., Bottalico, F., El Bilali, H., Cardone, G., Capone, R., 2021. Food 
losses and waste in the context of sustainable food and nutrition security, in: Food 
Security and Nutrition. Elsevier, pp. 235–255. doi: 10.1016/B978-0-12-820521- 
1.00010-1. 
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Veza, I., Phuong Nguyen, X., Quang Duong, X., Huang, Z., Hoang, A.T., 2022. 
Hydrothermal carbonization of food waste as sustainable energy conversion path. 
Bioresour. Technol. 363, 127958 https://doi.org/10.1016/j.biortech.2022.127958. 

Spyridonidis, A., Vasiliadou, I.A., Akratos, C.S., Stamatelatou, Κ., 2020. Performance of a 
Full-Scale Biogas Plant Operation in Greece and Its Impact on the Circular Economy. 
Water 12, 3074. https://doi.org/10.3390/w12113074. 

Talan, A., Tiwari, B., Yadav, B., Tyagi, R.D., Wong, J.-W.-C., Drogui, P., 2021. Food waste 
valorization: Energy production using novel integrated systems. Bioresour. Technol. 
322, 124538. 

Tamasiga, P., Miri, T., Onyeaka, H., Hart, A., 2022. Food Waste and Circular Economy: 
Challenges and Opportunities. Sustainability 14, 9896. https://doi.org/10.3390/ 
su14169896. 

Tercan, H., Meisen, T., 2022. Machine learning and deep learning based predictive 
quality in manufacturing: a systematic review. J. Intell. Manuf. 33, 1879–1905. 
https://doi.org/10.1007/s10845-022-01963-8. 

Thamagasorn, M., Pharino, C., 2019. An analysis of food waste from a flight catering 
business for sustainable food waste management: A case study of halal food 
production process. J. Clean. Prod. 228, 845–855. https://doi.org/10.1016/j. 
jclepro.2019.04.312. 

Tseng, M.-L., Lim, M.K., Helmi Ali, M., Christianti, G., Juladacha, P., 2022. Assessing the 
sustainable food system in Thailand under uncertainties: governance, distribution 

Nguyen, N.Q., Bui, L.D., Doan, B.V., Sanseverino, E.R., Cara, D.D., Nguyen, Q.D., 2021. 

https://doi.org/10.1016/j.epsr.2021.107427
https://doi.org/10.1155/2022/4941243
https://doi.org/10.1155/2022/4941243
https://doi.org/10.1016/j.envpol.2020.115985
https://doi.org/10.1016/j.wasman.2020.09.010
https://doi.org/10.1016/j.wasman.2020.09.010
https://doi.org/10.1016/j.renene.2022.02.088
https://doi.org/10.1016/j.jenvman.2022.114806
https://doi.org/10.1016/j.jenvman.2022.114806
https://doi.org/10.3390/molecules26020515
https://doi.org/10.3390/molecules26020515
https://doi.org/10.1016/J.FUEL.2021.121715
http://refhub.elsevier.com/S0960-8524(23)00378-4/h0435
http://refhub.elsevier.com/S0960-8524(23)00378-4/h0435
http://refhub.elsevier.com/S0960-8524(23)00378-4/h0435
https://doi.org/10.1016/j.fuel.2022.126438
https://doi.org/10.1080/15567036.2022.2055232
https://doi.org/10.1016/j.energy.2021.121363
https://doi.org/10.1016/j.energy.2021.121363
https://doi.org/10.1007/s00521-020-04836-4
https://doi.org/10.1080/15567036.2022.2056269
https://doi.org/10.1080/15567036.2022.2056269
https://doi.org/10.1016/j.rser.2021.111717
https://doi.org/10.1016/j.rser.2021.111717
https://doi.org/10.1109/JSEN.2021.3094034
https://doi.org/10.1109/JSEN.2021.3094034
https://doi.org/10.1016/J.POWTEC.2022.117190
https://doi.org/10.1016/J.POWTEC.2022.117190
https://doi.org/10.1016/J.EST.2022.104858
https://doi.org/10.1016/j.jclepro.2020.125490
https://doi.org/10.1016/j.jclepro.2020.125490
https://doi.org/10.1186/s40066-021-00302-z
https://doi.org/10.1186/s40066-021-00302-z
https://doi.org/10.1016/j.renene.2020.08.096
https://doi.org/10.1016/j.renene.2020.08.096
https://doi.org/10.1016/J.ECOLENG.2010.12.002
https://doi.org/10.1016/J.ECOLENG.2010.12.002
https://doi.org/10.1016/j.biortech.2021.125829
https://doi.org/10.1016/j.biortech.2021.125829
https://doi.org/10.1016/j.biosystemseng.2021.04.004
https://doi.org/10.1016/j.biosystemseng.2021.04.004
https://doi.org/10.1016/j.fuel.2022.124131
https://doi.org/10.1016/j.fuel.2022.124131
https://doi.org/10.1021/acs.energyfuels.2c01006
https://doi.org/10.1021/acs.energyfuels.2c01006
http://refhub.elsevier.com/S0960-8524(23)00378-4/h0530
http://refhub.elsevier.com/S0960-8524(23)00378-4/h0530
http://refhub.elsevier.com/S0960-8524(23)00378-4/h0530
https://doi.org/10.1016/j.biortech.2021.124684
https://doi.org/10.1016/j.biortech.2021.124684
https://doi.org/10.1016/j.ijhydene.2021.01.122
https://doi.org/10.1007/s13201-020-1145-z
https://doi.org/10.1016/j.jclepro.2021.129453
https://doi.org/10.1016/j.biortech.2022.128486
https://doi.org/10.1016/j.biortech.2022.128486
https://doi.org/10.1016/j.biortech.2020.124395
https://doi.org/10.1016/j.biortech.2020.124395
https://doi.org/10.1016/j.eti.2023.103100
https://doi.org/10.1016/j.eti.2023.103100
https://doi.org/10.1016/j.scitotenv.2019.07.322
https://doi.org/10.1016/j.scitotenv.2019.07.322
https://doi.org/10.1007/s10973-021-10744-z
https://doi.org/10.1007/s10973-021-10744-z
https://doi.org/10.1016/j.biortech.2022.127958
https://doi.org/10.3390/w12113074
http://refhub.elsevier.com/S0960-8524(23)00378-4/h0595
http://refhub.elsevier.com/S0960-8524(23)00378-4/h0595
http://refhub.elsevier.com/S0960-8524(23)00378-4/h0595
https://doi.org/10.3390/su14169896
https://doi.org/10.3390/su14169896
https://doi.org/10.1007/s10845-022-01963-8
https://doi.org/10.1016/j.jclepro.2019.04.312
https://doi.org/10.1016/j.jclepro.2019.04.312


and storage drive technological innovation. J. Ind. Prod. Eng. 39, 1–18. https://doi. 
org/10.1080/21681015.2021.1951858. 

UNEP, 2021. Food Waste Index Report 2021. https://wedocs.unep.org/20.500.11822/ 
35280 (accessed 12.19.22). 

Usmani, Z., Sharma, M., Awasthi, A.K., Sivakumar, N., Lukk, T., Pecoraro, L., Thakur, V. 
K., Roberts, D., Newbold, J., Gupta, V.K., 2021. Bioprocessing of waste biomass for 
sustainable product development and minimizing environmental impact. Bioresour. 
Technol. 322, 124548 https://doi.org/10.1016/j.biortech.2020.124548. 

Usmani, Z., Sharma, M., Gaffey, J., Sharma, M., Dewhurst, R.J., Moreau, B., Newbold, J., 
Clark, W., Thakur, V.K., Gupta, V.K., 2022. Valorization of dairy waste and by- 
products through microbial bioprocesses. Bioresour. Technol. 346, 126444 https:// 
doi.org/10.1016/j.biortech.2021.126444. 

Van, J.C.F., Tham, P.E., Lim, H.R., Khoo, K.S., Chang, J.-S., Show, P.L., 2022a. 
Integration of Internet-of-Things as sustainable smart farming technology for the 
rearing of black soldier fly to mitigate food waste. J. Taiwan Inst. Chem. Eng. 137, 
104235 https://doi.org/10.1016/j.jtice.2022.104235. 

Van, J.C.F., Tham, P.E., Lim, H.R., Khoo, K.S., Chang, J.-S., Show, P.L., 2022b. 
Integration of Internet-of-Things as sustainable smart farming technology for the 
rearing of black soldier fly to mitigate food waste. J. Taiwan Inst. Chem. Eng. 
104235 https://doi.org/10.1016/j.jtice.2022.104235. 

Vilariño, M.V., Franco, C., Quarrington, C., 2017. Food loss and waste reduction as an 
integral part of a circular economy. Front. Environ. Sci. 5 https://doi.org/10.3389/ 
fenvs.2017.00021. 

Wan, X., Li, J., Xie, L., Wei, Z., Wu, J., Wah Tong, Y., Wang, X., He, Y., Zhang, J., 2022. 
Machine learning framework for intelligent prediction of compost maturity towards 
automation of food waste composting system. Bioresour. Technol. 365, 128107 
https://doi.org/10.1016/j.biortech.2022.128107. 

Wang, T., Liu, X., Wang, D., Gong, Z., Si, B., Zhai, Y., 2021. Persulfate assisted 
hydrothermal processing of spirulina for enhanced deoxidation carbonization. 
Bioresour. Technol. 322, 124543 https://doi.org/10.1016/j.biortech.2020.124543. 

Wang, F., Xuan, Z., Zhen, Z., Li, K., Wang, T., Shi, M., 2020. A day-ahead PV power 
forecasting method based on LSTM-RNN model and time correlation modification 
under partial daily pattern prediction framework. Energy Convers. Manag. 212, 
112766 https://doi.org/10.1016/J.ENCONMAN.2020.112766. 

Wang, J., Zhang, C., 2018. Software reliability prediction using a deep learning model 
based on the RNN encoder–decoder. Reliab. Eng. Syst. Saf. 170, 73–82. https://doi. 
org/10.1016/J.RESS.2017.10.019. 

Wen, Z., Hu, S., De Clercq, D., Beck, M.B., Zhang, H.a., Zhang, H., Fei, F., Liu, J., 2018. 
Design, implementation, and evaluation of an Internet of Things (IoT) network 
system for restaurant food waste management. Waste Manag. 73, 26–38. https://doi. 
org/10.1016/j.wasman.2017.11.054. 

Xiao, J., Liu, C., Ju, B., Xu, H., Sun, D., Dang, Y., 2021. Estimation of in-situ biogas 
upgrading in microbial electrolysis cells via direct electron transfer: Two-stage 
machine learning modeling based on a NARX-BP hybrid neural network. Bioresour. 
Technol. 330, 124965 https://doi.org/10.1016/J.BIORTECH.2021.124965. 

Yadav, M., Joshi, C., Paritosh, K., Thakur, J., Pareek, N., Masakapalli, S.K., 
Vivekanand, V., 2022. Reprint of Organic waste conversion through anaerobic 
digestion: A critical insight into the metabolic pathways and microbial interactions. 
Metab. Eng. 71, 62–76. https://doi.org/10.1016/j.ymben.2022.02.001. 

Yang, Y., Zheng, S., Ai, Z., Jafari, M.M.M., 2021. On the Prediction of Biogas Production 
from Vegetables, Fruits, and Food Wastes by ANFIS- And LSSVM-Based Models. 
Biomed Res. Int. 2021 https://doi.org/10.1155/2021/9202127. 
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