Dominique Larchey-Wendling 
  
Jean-François Monin 
  
Proof Pearl: Faithful Computation and Extraction of µ-Recursive Algorithms in Coq

Keywords: 2012 ACM Subject Classification Theory of computation → Models of computation, Theory of computation → Type theory, Theory Unbounded linear search, µ-recursive functions, computational contents, Coq, extraction, OCaml Digital Object Identifier 10.4230/LIPIcs.ITP.2023.21

Basing on an original Coq implementation of unbounded linear search for partially decidable predicates, we study the computational contents of µ-recursive functions via their syntactic representation, and a correct by construction Coq interpreter for this abstract syntax. When this interpreter is extracted, we claim the resulting OCaml code to be the natural combination of the implementation of the µ-recursive schemes of composition, primitive recursion and unbounded minimization of partial (i.e., possibly non-terminating) functions. At the level of the fully specified Coq terms, this implies the representation of higher-order functions of which some of the arguments are themselves partial functions. We handle this issue using some techniques coming from the Braga method. Hence we get a faithful embedding of µ-recursive algorithms into Coq preserving not only their extensional meaning but also their intended computational behavior. We put a strong focus on the quality of the Coq artifact which is both self contained and with a line of code count of less than 1k in total.

Introduction

The theory of µ-recursive functions is a well established and widely used model for representing (partial) recursive functions of type N k ⇀ N where N k is the type of tuples of natural numbers of arity k. It originates from primitive recursive functions, invented in the 1920s in the Hilbert school (the modern denomination was coined by Rózsa Péter), which is the smallest class of functions containing constant functions, the successor function, projections (of the i-th argument), and closed under the schemes of composition and primitive recursion. Primitive recursive schemes define provably total functional relations but do not cover all the spectrum of computability, the Ackermann function giving the most popular counter-example.

Gödel defined the larger class of "general" recursive functions, developing ideas of Herbrand, and Kleene [START_REF] Stephen | λ-definability and recursiveness[END_REF] later proposed to augment the allowed primitive recursive schemes with that of unbounded minimization of partial functions, giving the class of µ-recursive functions, equivalent (extensionally) to that of general recursive functions, and of which primitive recursive functions form a natural, strict sub-class. In the context of mechanization, µ-recursive functions have been implemented and/or used in several projects [START_REF] Zammit | A Proof of the S-m-n theorem in Coq[END_REF][START_REF] Larchey-Wendling | Typing Total Recursive Functions in Coq[END_REF][START_REF] Carneiro | Formalizing Computability Theory via Partial Recursive Functions[END_REF][START_REF] Larchey | Hilbert's Tenth Problem in Coq (Extended Version)[END_REF]. Most of these developments are concerned with computability theory (the S-n-m theorem, Rice's theorem, Kleene's normal form theorem, Hilbert's tenth problem) so they mainly focus on their extensional properties. On the contrary, in this proof pearl, we mostly focus on the intentional contents of µ-recursive schemes. We call these µ-algorithms and reserve the term "function" for the extensional notion.

Of course, µ-algorithms do not provide all the algorithmic means to compute values: for instance, they lack course-of-values recursion, nested recursion, higher-order primitive recursion, higher-order functions, and they are grounded on the very rudimentary datatype natural numbers, hence, when e.g. computing with lists or trees, one must pass through encoders and decoders. However, µ-recursive functions are universal in that they capture all computable functions and, in comparison with other models with the same power, they have the usual "referential transparency" advantage of functional languages over imperative ones, which naturally makes them better suited to equational and compositional reasoning than, say, Turing or Minsky (counter) machines.

In a contemporary approach, µ-algorithms can be described by an abstract syntax and a simple interpreter providing the computation rules to be followed by each construct. This abstract syntax can be implemented by the following type, where Ra_comp encodes composition, Ra_prec encodes primitive recursion, Ra_umin encodes minimization, and Ra_zero, Ra_succ and Ra_proj are obvious. A natural OCaml program for interpreting pieces of code written in the above language is displayed in Figure 1. The arguments (s, s vec ) of Ra_comp stand respectively for (the source code of) a n-ary function and a n-tuple of functions, whose output is expected to be fed as inputs for (the interpreter of) s. The arguments (s, s ′′ ) of Ra_prec stand respectively for the result to be returned in the base case (the last argument is zero) and the function to be applied in the step case (the last argument is a successor). For convenience, the tuple ⟨x 1 , . . . , x k ⟩ of natural numbers representing the inputs of a µ-recursive algorithm is encoded by a list in the reverse order [x k ; . . . ; x 1 ], so that the driving argument n for primitive recursion is the head of the list.

The functional implementations of µ-recursive schemes are straightforward: vec_prj for projections, vec_map_compute for compositions, prim_rec_compute for primitive recursion and umin_compute for µ-minimization.

( * * val vec_prj : α list → nat → α * * ) let rec vec_prj u i = match u with | x :: v → match i with O → x | S j → vec_prj v j ( * * val vec_map_compute : (α → β) → α list → β list * * ) let rec vec_map_compute f = function | [] → [] | x :: v → f x :: vec_map_compute f v ( * * val prim_rec_compute : (α → β) → (α → nat → β → β) → α → nat → β * * ) let rec prim_rec_compute f g x = function | O → f x | S n → g x n (prim_rec_compute f g x n) ( * * val umin_compute : (nat → nat) → nat → nat * * ) let rec umin_compute f n = match f n with | O → n | S _ → umin_compute f (S n)
Though the above code is not very complicated, there are some subtle points making it a not-so-trivial case study if we want to prove its correctness w.r.t. a formal specification. In particular, as a purely functional piece of code, it seems reasonable to get it by extraction of a Coq proof. However, unbounded minimization or µ-minimization of a (partial) function f : N × N ⇀ N consists in the (partial) function µf : N ⇀ N such that µf (x) is the number n for which f (n, x) is 0 and f (i, x) is defined and not equal to 0 for every number i less than n.

Although uniquely defined, it may not exist. For instance, µ-minimization of a constant (non-zero) function (e.g. f (•, •) = 1) is the nowhere defined function of type N ⇀ N. Indeed, as soon as µ-minimization is available, all the other constructs are contaminated and encode possibly non-terminating functions. Altogether, not only ra_compute is clearly undefined on some inputs (where computation does not terminate), but it relies on higher-order programs such as vec_map_compute and prim_rec_compute which have to be themselves considered as non-terminating since they are applied to possibly non-terminating arguments, all in a nested recursive manner.

In a previous work [START_REF] Larchey-Wendling | Typing Total Recursive Functions in Coq[END_REF], the first author showed that it is possible to derive a Coq term which computes the same result as a given µ-recursive function. The latter was first transformed, by bounding it using the folklore "fuel" technique, thus giving a primitive recursive (hence terminating) algorithm, and then applying Constructive Epsilon, i.e. unbounded minimization of inhabited and decidable predicates over N. Kleene used a comparable trick in order to establish that every µ-recursive function can be obtained from the µ-minimization of some primitive recursive function, i.e. the normal form theorem [START_REF] Stephen | Recursive predicates and quantifiers[END_REF]. In his section "resource bounded evaluation, " Carneiro [START_REF] Carneiro | Formalizing Computability Theory via Partial Recursive Functions[END_REF] uses the same fuel trick in Lean to approximate partial computable functions with primitive recursive ones, combined with a variant of Constructive Epsilon he calls find.

Though this approach is sufficient for theoretical purposes such as studying the expressive power of computational models, 1 it is unsatisfactory from an algorithmic point of view: the underlying calculation boils down to a systematic and heavy trial-and-error process that is unfaithful to the intended behavior, unlike the intuitive OCaml code above. Directly reasoning on the latter with extraction in mind is actually more demanding: we need to express the computational counterpart of the desired specific program in a type-theoretic framework where only total functions are allowed. In other words, we need to provide "generic" partial termination certificates for (the Coq counterpart of) the above OCaml functions.

We show here how the Braga method [START_REF] Larchey | The Braga Method: Extracting Certified Algorithms from Complex Recursive Schemes in Coq, chapter 8[END_REF], our trick to manage termination issues in recursive programs, can be adapted in the present case study in order to satisfy the above requirements. In a nutshell, the Braga method allows us to define functions of x whose termination is provided by an additional domain argument d : D x, of sort Prop, where D is inductively defined and systematically derived from the shape of the desired program Pgm to be extracted. In this way we can express a functional program Fixpoint g x (d : D x) {struct d} := . . . g x ′ d ′ . . . where d ′ : D x ′ is structurally smaller than d -the guard condition which ensures termination. Then we can reason on the partial correctness properties of g before (and without) bothering about termination (e.g., without defining a measure which, anyway, could not exist in all cases). The domain D is typically the domain of an inductive input-output graph G, which is nothing but a relational presentation of Pgm and can be seen as a complete characterization of Pgm. In [START_REF] Larchey | The Braga Method: Extracting Certified Algorithms from Complex Recursive Schemes in Coq, chapter 8[END_REF], G is also used in the Σ-type of g : ∀x, D x → {y | G x y} so that, after erasure, the extracted OCaml program automatically satisfies this characterization as well as the partial correctness properties which are derived from it.

In the case of µ-algorithms we need to go further than [START_REF] Larchey | The Braga Method: Extracting Certified Algorithms from Complex Recursive Schemes in Coq, chapter 8[END_REF]. First, partial functions are essential here whereas almost all examples considered in [START_REF] Larchey | The Braga Method: Extracting Certified Algorithms from Complex Recursive Schemes in Coq, chapter 8[END_REF] turn out to be total functions. Second, we already have a natural input-output graph: a relational semantics for the abstract syntax of µ-algorithms. However, this semantics is naturally expressed as a combination of partial functions, one for each construct of µ-algorithms. In order to mimic the original formulation, we encode partial functions from N k to N by total functions from N k to N→Prop, yielding a compact and crystal-clear specification. This semantics is detailed in section 4.2 and noted . . Looking back at the intended program above, we need to extend the Braga method to get Coq programs that: first, combine in a similar and hopefully modular way an implementation of µ-minimization with "ordinary looking" structural recursion on data structures such as nat or the syntax of µ-algorithms; and second, are driven by the domain of an input-output graph G, such as . , that is not necessarily expressed inductively. A suitable general type scheme for such programs is simply ∀x, (∃y, G x y) → {y | G x y}, which can be implemented either by ordinary structural recursion on the first input x, or by using the Braga method on a termination certificate derived from the second input (∃y, G x y).

Additionally, µ-minimization provides another opportunity to change the Braga machinery a little bit: for umin_compute, which is basically a tail-recursive presentation of an (unbounded) loop for linear search, the propagation of assertions is not encoded backwards by a Σ-type embedding of the expected input-output relation, but forwards by a parameter containing an inductive invariant. This makes the enriched Coq program already tail-recursive and, more importantly, proofs of propagation become simpler.

Remarks about the Coq code. The artifact we publicly deliver only requires a minimal amount of Coq machinery to implement linear search and the interpreter for µ-recursive algorithms. To illustrate this and also produce self-contained code, we do not use the Coq standard library, except for the modules Utf8 to allow for better human readable Coq code, and Extraction to witness our claims about the faithfulness of the extracted code to the "natural" OCaml interpreter. The code is intended to be read as an essential part of this pearl, and we invite the reader to consult the associated artifact, starting with the README.md file. We tried to make the artifact readable by a human, without the help of the type-checker. This means that proofs written with scripts (Ltac) are both very short, and with only light automation not beyond trivial or easy. When the contents of terms is critical, e.g. when it contributes to extraction, or in order to visualize structural decrease, we write these as λ-terms.

Contributions. We hope our contributions to be somewhat valuable for people using Coq or a similar Type Theory as a programming language, but nothing original is claimed about computability theory. First of all, we provide a short, clean, readable and (hopefully) informative, Coq implementation of the partial linear search algorithm, extending Constructive Epsilon to partially decidable predicates, using a variant of the Braga method that also fully takes into account the tail recursivity of the underlying program. Second, we contribute a Coq interpreter for µ-recursive algorithms, which follows their intended (functional) operational semantics, taking [START_REF] Boolos | Computability and Logic[END_REF] as reference, as witnessed by a neat extraction to OCaml. Third, this interpreter relies on linear search in a way that illustrates a general approach to integrating programs written with the Braga method (or variants of it) and structural recursive programs that depend on each other in a nested or mutual recursive way. With this reasonably sized and documented code, we also hope to popularize further some dependent inversion techniques that sometimes hinder the usage of Coq structural fixpoints. For instance, see our small library for dependent vectors that features improvements on the standard library and is of independent interest. This proof pearl is constructed as follows. Section 2 provides the prerequisites needed to understand the paper and the associated Coq artifact. Section 3 explains how to generalize the specification of the linear search algorithm to be able to search with partially decidable predicates. This generalization of Constructive Epsilon is the essential ingredient to implement the scheme of µ-minimization. Section 4 presents the Coq implementation of µ-algorithms with their extensional semantics, following [START_REF] Boolos | Computability and Logic[END_REF], and then their intentional contents as a Coq term, an interpreter computing the output, if provided with a proof of termination on the given input. Section 5 presents the result of the extraction of the above mentioned interpreter as an OCaml program. We list the various tweaks that help at completely rendering a readable (and herein presentable) program. We also explain how to get rid of some possibly unwanted OCaml tricks used by the extraction plugin to circumvent the limitations of the OCaml type-system, as compared to that of Coq, the source type theory.

Type-theoretic basics and notations

We present this pearl in the language of the type theory of Coq containing the sort Prop, the impredicative type of propositions, and the sort Set, the predicative type at the ground-level of sorts in Type, the predicative type hierarchy above both Prop and Set.

The basic inductive structures we use are the propositions (True : Prop := I) and (False : Prop := .), the data types unit : Set := tt, first-order logic connectives and Peano natural numbers nat : Set := O | S (_ : nat), endowed with natural (≤) and strict (<) orders. Only a minimal amount of basic arithmetic results are needed, for which we give tiny proofs in arith_mini.v. We won't use lists but vectors instead, see Section 4.4.

We will use tuples (n-ary products) and dependent pairs (Σ-types) that come under various forms in Coq, see files sigma.v, relations.v and vec.v. We will write e.g. ⟨a, b, c⟩ for a triple of three values that may be proofs of propositions, hence giving of a proof of say A ∧ B ∧ C, or else terms giving a value in the product type A × B × C.
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Given a predicate P : X → Prop, we write dependent pairs as ⟨⟨x, p⟩⟩ where p is a proof of P x (hence dependent on x). In this paper, depending on the context (Prop vs. Type), ⟨⟨x, p⟩⟩ denotes either a proof of the proposition ∃x, P x : Prop, also written ex P , or an inhabitant of the type {x | P x} : Type, also written sig P . Likewise, given d := ⟨⟨x, p⟩⟩, we write π 1 d := x and π 2 d := p for the projections of the dependent pair d.

In the file relations.v, we also give basic tools to manipulate 0-ary, unary and binary relations (i.e. predicates), like notations for composition, inclusion, conjunction. A unary relation P : X → Prop is functional (or deterministic) if there is at most one x s.t. P x.

Unbounded linear search in Coq

The linear search algorithm on an unbounded interval of N (LS for short) is the main engine of µ-minimization. 

let rec loop s = if test s then s else loop (s + 1)
Let us informally write Gr_than P (s) for the set of natural numbers x such that x ≥ s and P x holds. If Gr_than P (s) is inhabited, the returned value is actually the least value m in Gr_than P (s); but otherwise, the algorithm loops forever. The underlying function is then clearly partial. In the following we discuss the contents of file linear_search.v.

Specification of linear search

Aiming first at a general Coq specification of the unbounded linear search algorithm, we actually don't need to assume that P is decidable on nat, but only between s and a large enough number. For additional generality and convenience we also consider two predicates D test (the domain of test) and Q such that, whenever D test holds, P or Q can be decided and P and Q cannot hold together.

test : ∀n, D test n → {P n} + {Q n} PQ_abs : ∀n, D test n → P n → Q n → False
We then only assume that D test holds between s and a large enough number. On the side of the post-condition, we see that not only D test and P hold at the returned value m, if any, but also that s ≤ m and that D test and Q hold at all k such that s ≤ k < m. Defining

Definition btwn (A : nat → Prop) n m := n ≤ m ∧ (∀k, n ≤ k < m → A k) (1)
and with the notation A ∧ 1 B := λ n, A n ∧ B n, the strongest post-condition characterizing the output of LS is then:

Definition Post ls s x := (D test x ∧ P x) ∧ btwn (D test ∧ 1 Q) s x.
On the side of the pre-condition of LS, we assume the existence of some x in Gr_than P (s) and the ability to perform test from s to x. It can be stated using the following predicate.

Definition Pre ls s x := (D test x ∧ P x) ∧ btwn D test s x.
The expected type for linear search (starting at s) is then (∃x, Pre ls s x)→{m | Post ls s m}.

Termination of linear search

Observe that the witness x mentioned in the pre-condition is not used in the search loopit is not available at the informative level. Moreover, btwn Q s x is not assumed, that is, x is not necessarily minimal in Gr_than P (s). But x can be used to compute a termination certificate since its very existence guarantees that the search loop eventually halts. The usual argument, in an imperative setting, consists in proving that x -s is a loop variant. However, as mentioned in the introduction, we can take advantage of an essential feature of type theory of Coq to provide a direct inductive characterization of termination of sort Prop called Dls, to be used as follows: 

| left p ⇒ n | right q ⇒ loop (S n) (Dls_π2 d q)
end.

The second projection Dls_π 2 d returns a λ-term of type Q n → Dls (S n) for each constructor. In the easy (and "intended") case where d is Dls_next t d S , it just returns λ _, d S . And when d is Dls_stop ⟨t, p⟩, then t, p and q conspire with PQ_abs to construct a proof of the empty type False, on which an additional pattern matching provides a strict sub-term of any proof (of any inductive predicate).

Definition Dls_π2 {n} (d : Dls n) : Q n → Dls (S n) := match d with | Dls_stop ⟨t, p⟩ ⇒ λ q, match PQ_abs t p q with end | Dls_next _ dS ⇒ λ _, dS end.
The braces around the first parameter {n} mark an implicit parameter, and the Coq code of Dls_π 2 witnesses structural decrease in a way suitable for a human to check at first glance.
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Building an initial termination certificate

A termination certificate d for s can be computed (in the hidden realm of propositions and proofs) from the existence of x such that Pre ls s x. It is easy to perform from a suitable inductive characterization of btwn but, in order to stick to its arithmetical definition (1), we simulate the two constructors and a special induction principle for btwn by proving:

btwn refl {A n} : btwn A n n btwn next {A n m} : btwn A n m → A m → btwn A n (S m) btwn ind A a b : btwn λ n, A (S n) → A n a b → A b → A a.
See the file between.v for the code of btwn and its tools that we use here to get

Lemma Pre ls _Dls {s} : (∃x, Pre ls s x) → Dls s by applying btwn ind to Dls and conclude with the monotonicity of btwn.

A tail-recursive program for the full loop

In order to prove that the output of the previous version of loop satisfies the desired postcondition, we could promote its type from nat to {m : nat | Post ls s m}. This would lead to a decomposition of the result of the recursive call into a pair ⟨⟨m, po⟩⟩, where m is the found value and po the associated proof of post-condition, followed by the construction of a similar pair ⟨⟨m, po ′ ⟩⟩, only different on its proof component, to be returned. A more elegant way is to proceed with proofs as with data in functional programming, when mimicking while loops using recursivity and accumulators. A remarkable point is that in the proofs-as-programs paradigm, proof accumulators turn out to be (proofs of) loop invariants, as illustrated below by b becoming btwn next b ⟨t, q⟩ in the recursive call.

In more detail, we first fix a starting value s and take as invariant btwn (D test ∧ 1 Q) s n. The linear search algorithm then calls loop with s as the initial input value for n, (Pre ls _Dls e) as the initial termination certificate, where e is a proof of (∃n, Pre ls s n), and btwn refl as the initial (proof of the) invariant. In the course of the loop, we assume a proof of the invariant for n named b; the proof of D test n derived from d is first bound to t; in the recursive call, the (proof of the) invariant for S n is derived from b, t and q : Q n using btwn next ; and finally, when the test provides a proof p : P n, the desired proof of Post ls s n is just ⟨t, p⟩ paired with the invariant b. Altogether, the extended code of LS is rather short. 

From linear search to µ-minimization

To use the above linear search program, we only have to instantiate P , Q, D test and the test function, to provide a corresponding proof of PQ_abs, and possibly to add stubs to adapt the pre-and post-conditions. For instance in the case of Constructive Epsilon, we are given an arbitrary predicate P on nat, with the hypothesis P_dec : ∀n, {P n} + {¬P n}.

Then we keep P and take ¬P for Q, (λ _, True) for D test and λ n _, P_dec n for test; the proof of PQ_abs is trivial. The case of µ-minimization is more interesting, in particular, we have a non-trivial instantiation for D test . We are given a functional relation F : nat → nat → Prop such that, if n is in the domain of F , then the y such that F n y can be computed by a program f : ∀n, ex (F n) → sig (F n). We want to transfer this to the minimization of F , that is, assuming the existence of a minimal m such that F is defined and strictly positive for all x < m, and F m O, we want to provide a computation returning this (unique) m. Formally, we define:

def_at F := λ n, ∃y, n y ze_at F := λ n, F n O pos_at F := λ n, ∃k, F n (S k) umin 0 F y := ze_at F y ∧ ∀n, n < y → pos_at F n
The formal specification of µ-minimization is then ex (umin 0 F )→sig (umin 0 F ). As a natural and cheap generalization, we also define umin F s y := ze_at F y ∧ btwn (pos_at F ) s y. Then µ-minimization is the special case, with s := 0, of ∀s, ex (umin F s) → sig (umin F s)

(

This is very close to the specification of linear search, with D test instantiated as def_at F , P as ze_at F and Q as pos_at F respectively. In order to use its implementation given in Section 3.4, we just have to feed it with a proof of PQ_abs (simple, using functionality of F and discrimination between O and S _) and a suitable test program: However, the code obtained is this way is somewhat unsatisfactory, because each call to loop first constructs a dependent Boolean from the input and next immediately performs a pattern matching on the latter, and this intermediate Boolean would be reflected at extraction stage. A simple way to improve this state of affairs consists in performing a program transformation on the Coq loop, taking advantage, in passing, of P ⊆ D test and Q ⊆ D test . Those transformations have only an impact on the loop (6 lines of code):

Fixpoint loop n (d : Dls Dtest P n) b : btwn Q s n : sig (umin F s) := let (k, e k ) := f n (Dls_π1 Dtest P d) in match k return F _ k → _ with | O ⇒ λ e, ⟨⟨n, ⟨e, b⟩⟩⟩ | S _ ⇒ λ e, loop (S n) Dls_π2 Dtest . . . d ⟨⟨_, e⟩⟩ btwnnext b ⟨⟨_, e⟩⟩ end e k .
and the code of linear_search can be reproduced as is.

In conclusion to the file umin_compute.v, the program umin 0 _compute, which is needed in our full development of µ-recursive algorithms, is defined in two lines by functional composition of linear_search and simple monotonicity lemmas relating the various statements of umin. The reader can consult the file umin_compute_details.v to get a gradual derivation of the above loop from the one used in the original linear_search. As a side remark, it is I T P 2 0 2 3 21:10 Faithful Computation and Extraction of µ-Recursive Algorithms possible to present µ-minimization as just an instance of a parametric version of linear search, allowing us to share not only the Dls predicate but also the code of the loop whatever the type of the result of the test function and the resulting extracted program. But, as symptomatic to many generic code constructions, it is unfortunately not yet as short and reasonably explainable as the above compromise between code sharing and code readability, where we transform a small part of the generic code to get µ-minimization.

Representing µ-algorithms in Coq

Basing on our implementation of µ-minimization, we now switch to the intentional encoding of all µ-recursive algorithms in Coq. We follow the idea already developed in [START_REF] Larchey-Wendling | Typing Total Recursive Functions in Coq[END_REF][START_REF] Larchey | Hilbert's Tenth Problem in Coq (Extended Version)[END_REF] of capturing the syntax of µ-algorithms in a type dependent on the arity (number of parameters of the corresponding function), and nested with a parametric type of dependent vectors. However, in this pearl, we insist on giving a minimized and as clean as possible account of these types. We do not use lists at all. Instead, for a given base type X, we use vectors of type denoted vec X n, which are lists but augmented with a further dependency on their length, herein denoted using n : nat. Components of vectors are accessed through indices in the finite type idx n : Set also dependent on n. In the sequel, ⟨ ⟩ denotes the empty vector, a :: v denotes the vector made of a followed by v, and v.[i] denotes the ith element of v. We also might write ⟨a; b; c⟩ for the vector a :: b :: c :: ⟨ ⟩. Our files index.v and vec.v reproduce the types Fin.t and Vector.t of the Coq standard library but are better tailored towards clean extraction. Technical details on our library are postponed to 4.4.

µ-algorithms as a nested dependent type

Usually leaving arities (denoted using the letters a, b) as implicit arguments of Coq constructors or terms, we define the type of µ-algorithm of arity a as recalg a or simply A a : Set herein, with the following constructors (inductive rules):

ra_zero : A 0 ra_succ : A 1 i : idx a ra_proj i : A a f : A b g : vec A a b ra_comp f g : A a f : A a g : A 2+a ra_prec f g : A 1+a f : A 1+a ra_umin f : A a
This inductive data-structure that we define in recalg.v mimics that in [START_REF] Larchey-Wendling | Typing Total Recursive Functions in Coq[END_REF] but we use slightly different schemes to better match those of [START_REF] Boolos | Computability and Logic[END_REF] that serve as our textbook reference here. For instance, we do not have constants (of arity 0) except for the zero constant itself which appears both at arity 0 and at arity 1 in [START_REF] Larchey-Wendling | Typing Total Recursive Functions in Coq[END_REF]. The constructor ra_comp _ _ for composition nests the type A _ with the type of vectors vec _ _, hence Coq fails to automatically derive a powerful enough eliminator for that nested inductive type. For completeness or further extensions, we provide a hand written general eliminator recalg_rect for A a in the file recalg.v (as a suitable fixpoint), but we will not need it in this pearl since we will always reason or compute inductively on A a using hand-written fixpoints, i.e. by inlining recalg_rect.

The semantics of µ-algorithms

We characterize the semantics S a v a o of the µ-algorithm of S a : A a by interpreting it as a binary relation between an input vector v a : vec nat a and an output value in o : nat, hence for IO a := vec nat a → nat → Prop, we seek to define S a : IO a . The denotation S a is intended to recall that this is S(ource code) for arity a. Notice that this provides an extensional meaning to S a that restricts the possible algorithmic interpretations (or intentional meaning) of S a which must realize that specification. To do so, we define ra_sem : ∀{a}, A a → IO a as a fixpoint where we denote S a := ra_sem S a :

Fixpoint ra_sem {a} (Sa : Aa) :

IOa := match Sa with | ra_zero ⇒ Zr | ra_comp S b S ab ⇒ Cn S b (vec_map • S ab ) | ra_succ ⇒ Sc | ra_prec Sa S a ′′ ⇒ Pr Sa S a ′′ | ra_proj i ⇒ Id i | ra_umin S a ′ ⇒ Mn S a ′
end where Sa := (ra_sem Sa).

Notice the nesting of vec_map which applies ra_sem, to every component of the vector S ab : vec A a b, and the references to Zr, Sc, Id, Cn, Pr, Mn which correspond to the Coq encoding of µ-recursive schemes as defined in [START_REF] Boolos | Computability and Logic[END_REF]. The fixpoint proceeds by structural induction on S a but the guard-checker inspects the code of the nested instance of vec_map to ensure • is called only on sub-terms of the vector S ab . Notice that since the inductive type A a nests the type of vectors vec A a b in the constructor ra_comp _ _, the only way to traverse such structures is via nested fixpoints which, if properly written, can fortunately be accepted by the guard condition of the type-checker.

As a side note, instead of a direct fixpoint, we could use the general recursor recalg_rect (see file recalg.v), but this would have unfortunate consequences: it would hinder a unified presentation of ra_sem and ra_compute. Indeed, the induction hypothesis for the ra_comp constructor does not expect a vector but a (dependent) map, and would thus be incompatible with the output type of vec_map, hence involving some glue code. That glue code would also be necessary in the upcoming fixpoint ra_compute in section 4.3, and would there unfortunately reflect in the extracted OCaml code. To get a unified presentation of ra_sem and ra_compute, we choose to inline recalg_rect in both cases.

We follow precisely our reference textbook [1, p. 63] using reversely ordered vectors to represent tuples. See file recalg_semantics.v where we define Definition Zr : IO 0 := λ _ y, y = 0. Definition Sc :

IO 1 := λ v 1 y, y = 1 + vec_head v 1 . Definition Id {a} (i : idx a) : IO a := λ v a y, y = v a .[i].
We follow up with composition of a b-ary µ-algorithm with a vector of a-ary µ-algorithms:

Definition Cn {a b} (φ b : IO b ) (ψ ab : vec IO a b) : IO a := λ v a y, ∃v b , φ b v b y ∧ ∀i, ψ ab .[i] v a v b .[i]
to be found in [1, p. 64]. Primitive recursion is mechanically best described using a higherorder primitive recursive scheme (like that of e.g. Gödel system T). We define Definition Pr {a} (φ a : IO a ) (ψ a ′′ : IO 2+a ) : IO 1+a := vec_S_inv λ n v a , prim_rec φ a λ w a m y, ψ a ′′ (m :: y :: w a ) v a n where prim_rec is defined in schemes.v as the following instance nat_rect, the dependent eliminator/recursor for the nat type and ⋄ denotes the right-associative composition of a binary relation with a unary one:

Context {X Y : Type} (F : X → Y → Prop) (G : X → nat → Y → Y → Prop). Definition prim_rec (x0 : X) := nat_rect (λ _, Y → Prop) (F x0) λ n p, (G x0 n) ⋄ p .
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Informally, this would read as prim_rec x 0 n := G x 0 (n -1) ⋄ • • • ⋄ (G x 0 0) ⋄ (F x 0 ). We check that Pr satisfies the following two definitional equations, which correspond to the characterization of primitive recursive scheme in [1, p. We finish with the scheme of unbounded minimization (starting at O), defined via a more general scheme of minimization starting at a value given as extra parameter:

Definition Mn {a} (φ a ′ : IO 1+a ) : IO a := λ v a , umin 0 λ y, φ a ′ (y :: v a ) .

The definitions of umin and umin 0 occur in the file schemes.v and are also discussed in Section 3.5. We check that Mn satisfies the following definitional equation:

Mn φ a ′ v a y = φ a ′ (y :: v a ) O ∧ ∀n, n < y → ∃k, φ a ′ (n :: v a ) (S k)
which mimics the definition of the minimization scheme in [1, p. 70].

Having defined the semantic (extensional) interpretation of µ-algorithms, we verify that S a is a functional relation. We proceed by structural induction on S a , Theorem ra_sem_fun {a} (S a : A a ) : functional S a directly with a fixpoint, by compositionally exploiting the fact that µ-recursive schemes preserve functional relations.

The interpreter for µ-algorithms

Following the approach hinted in the introduction, given a specification predicate P : X→Prop over a type X, we characterize a specified partial value by a term t : (∃x, P x) → {x | P x} in which the specified value {x | P x}, that is, an x paired with a proof of P x, is guarded by its existence (∃x, P x):

The unary predicate P : X → Prop gives the specification of the value. In our case, we instantiate e.g. P := S a v a : nat → Prop, hence, thanks to ra_sem_fun, P will hold for at most one x; the Coq term t computes a value x such that P x, provided it is given a certificate for its algorithm to terminate the computation, stated as the non-informative existence of an (output) value satisfying P . In the file compute_def.v, we define the predicate capturing specified partial values as compute {X} (P : X → Prop) := (∃x, P x) → {x | P x}. 2 This encoding of partiality allows a direct generalization of the code of the semantic ra_sem (noted • ) into an interpreter ra_compute (noted • o ) as described below, with relatively short proof terms for pre/post conditions.

As a side note, our approach contrasts with the "partiality monad" of [START_REF] Carneiro | Formalizing Computability Theory via Partial Recursive Functions[END_REF] where a partial value is of type {Q : Prop | Q → X}, i.e. though guarded by a predicate Q, it refers to an output type X only, and is not further specified in that type. In our case, a compute value is always specified w.r.t. a predicate over a type (i.e. P ) which in practice characterizes that value uniquely. It comes with a proof that the value satisfies its specification (i.e. P x). Hence that guard and the specification are linked together. Also, having an output specification allows us to compositionally derive a correct-by-construction interpreter.

For instance, the term vec_S_inv (λ x v, f x v) u can then be seen as a correct (hence type-checkable) way to write something like match u with x :: v ⇒ f x v end for a vector u : vec _ (S _), that moreover extracts into a pattern-matching on u, i.e. of the form match u with ⟨ ⟩ → assert false | x :: v → f x v.

The alternate code f (vec_head u) (vec_tail u) would extract less gracefully in two successive pattern-matchings on u performed inside vec_head and vec_tail.

Extraction to OCaml

To shorten a bit the extracted code and make it easier to read, in the file interpreter.v we feed the extraction plugin of Coq with several kinds of directives: we generally forget about arities because they do not participate in the computation. They exist at proof-level to ensure that e.g. composition (resp. projection) occurs only between vectors (resp. and indices) of proper arities; we extract indices in idx n as natural numbers directly to avoid duplication of code between idx _ and nat; having forgotten their arity, we can extract vectors as native OCaml lists to present the reader with a familiar notation for tuples; we inline some Coq terms to avoid duplicating OCaml names for the same functions and avoid steps that need no factorization because they are only used once. With those directives, in a first iteration of extraction, we get the OCaml interpreter for µ-algorithms as presented in the introduction, with two minor differences that we describe and discuss how they can be addressed below.

The first difference is that Coq does not generate partial match filters and thus, we get extra assert false statements instead of missing match cases. Computationally the only difference this makes is in the name of the generated exception. However, they should not be triggered unless the OCaml interpreter is called on a context which could not be typed within Coq, e.g. the input vector has a shorter length that the arity of the µ-algorithm. 4The second difference is the occurrence of __ = Obj.t OCaml type and object that the extraction plugin uses to circumvent the type system of OCaml on Coq types which are too general for it. 5 This difference is more important to tackle in our opinion.

Let us start with an explanation of why these __ appear in the extracted code in the first place. They come from e.g. the second (non implicit) argument of umin 0 _compute, which is a partial value of type f : ∀n, compute (F n) or, by expanding the definition of compute, of type f : ∀n, (∃y, F n y) → {y | F n y}. The extraction plugin is not able to recognize that it can safely erase (∃y, F n y) because f is itself an argument of umin 0 _compute. No directive of our knowledge is able to inform the extraction plugin with non-informative data in the types of the arguments of extracted terms.

We present two ways of getting rid of __. Both consist in hiding the proposition (∃y, F n y) in the propositional part of a Σ-type. We think it is better to describe these tricks as a diff on the Coq code rather than directly exposing a more convoluted variant of the interpreter; see files unit.diff and hide.diff.

The first approach consists in adding a new parameter of type unit and packing it with the proposition (∃y, F n y), hence we get the following definition of compute u : Definition compute u {X} (P : X → Prop) := {_ : unit | ∃x, P x} → {x | P x} the type of the parameter f in umin 0 _compute becoming f : ∀n, compute u (F n). We do not need to upgrade compute into compute u everywhere though, only when a parameter is a partial function, e.g. in the definitions of prim_rec_compute, or vec_map_compute or that of umin_compute and umin 0 _compute.

This solution has the advantage of symmetry (see below) and conceptual simplicity. The simplest way to visualize small amount of needed updates in the code is through the diff file unit.diff. The resulting extracted code is the same as in the first iteration except that Obj.t (resp. __) gets substituted with unit (resp. ()). So there is no trick to circumvent the OCaml type system anymore but still, an extra dummy/unit argument remains.

The second approach gives us an extraction where the __ parts are completely removed from the code. This is quite satisfying and not much more complicated than the unit trick but we lose symmetry in the treatment of the arguments of Coq terms. The trick consists in hiding (∃y, F n y) directly under the last argument it depends on, hence n in the case of umin 0 _compute. So we get the following type for its second argument: f : ∀p : {n | ∃y, F n y}, {y | F (π 1 p) y}.

Again, we only need to make that change on the type of the arguments that represent partial functions, e.g. f , not on the terms implementing partial functions, e.g. umin 0 _compute. We recall that the simplest way to visualize the small amount of required modifications in the Coq code is via the diff file hide.diff.

Conclusion

Program extraction was advocated as an interesting approach to the study of the correctness (by construction) of functional programs for a long time, and the issue of partial functions, especially possibly non-terminating programs, was raised very early, both in untyped settings such as PX [START_REF] Hayashi | Extracting Lisp Programs from Constructive Proofs: A Formal Theory of Constructive Mathematic Based on Lisp[END_REF] and in strongly typed logical settings where only terminating (functional) programs can be expressed such as Nuprl [START_REF] Robert | Implementing Mathematics with the Nuprl Development System[END_REF]. Parametric ways to deal with partial values in Coq include [START_REF] Carneiro | Formalizing Computability Theory via Partial Recursive Functions[END_REF][START_REF] Forster | Church's Thesis and Related Axioms in Coq's Type Theory[END_REF], allowing for the development of synthetic computability theory [START_REF] Forster | Parametric church's thesis: Synthetic computability without choice[END_REF].

In addition to theoretical considerations, the issue of partiality is not that easy from a practical point of view, notably when partial functions are mixed with higher-order functional programs: when the latter are basically structurally recursive, it is desirable to keep their conceptual simplicity as much as possible. We think that the example of µ-recursive functions contains a significant summary of the issues raised, so the work presented here may help to understand how they can be dealt with in CIC as implemented in the Coq proof assistant. We could have just tried to follow the Braga method [START_REF] Larchey | The Braga Method: Extracting Certified Algorithms from Complex Recursive Schemes in Coq, chapter 8[END_REF], i.e., to provide an inductive definition of the domain of the full desired interpreter (ra_compute) either directly, or from an inductive presentation of its input-output graph. Clearly, the resulting development would have been much more convoluted. Instead, we have limited the use of the machinery of [START_REF] Larchey | The Braga Method: Extracting Certified Algorithms from Complex Recursive Schemes in Coq, chapter 8[END_REF] -actually a tail-recursive variant of it -at the single place where it is relevant (unbounded minimization), using ordinary structural recursion on the input data at all other places. Beyond careful explanations on why and how guard condition for termination are satisfied, the resulting development is made conceptually
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 12 Pr φ a ψ a ′′ (O :: v a ) y = φ a v a y; Pr φ a ψ a ′′ (S n :: v a ) y = ∃o, Pr φ a ψ a ′′ (n :: v a ) o ∧ ψ a ′′ (n :: o :: v a ) y.

  As one of the simplest examples of a program which computes a partial (recursive) function, it is particularly interesting. It can be specified as follows. Given a

decidable predicate P on N and a starting number s : N, find an n : N greater or equal to s such that P (n). Among its many other applications, we can cite Constructive Epsilon, which corresponds to the special case where s = 0. More precisely, it realizes the specification ex P → sig P , a short hand for (∃x, P x) → {n | P n}. As we reuse some ideas coming from ConstructiveEpsilon.v of the Coq standard library, the name "Constructive Epsilon" will below refer to this implementation.

Assuming a suitable program test, here is an obvious OCaml program for unbounded linear search:

Most of the textbook presentations of µ-recursive functions like e.g.[START_REF] Shoenfield | Mathematical Logic. Addison-Wesley series in logic[END_REF][START_REF] Boolos | Computability and Logic[END_REF] focus on their extensional meaning as set-theoretic partial functions, i.e., the relation between inputs and outputs, or so called graph, but not on the calculations performed.

The Coq standard library version 8.16.1 of Vector.nth proceeds by recursion on the index, not on the vector, which would conflict with our guard conditions, but a version of nth computationally similar to vec_prj has been accepted into future revisions of the standard library as PR #16731.

We do not know if it is possible to instruct the extraction plugin to dismiss impossible match cases.

Additional issues could be raised by the call-by-value evaluation strategy of OCaml; anyway, extracting to Haskell produces similar extra arguments of type any, showing that the discussion below still makes sense even with a lazy strategy, especially the second improvement.
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We can now present the Coq term for µ-algorithms that is going to be extracted into OCaml as a natural interpreter for µ-algorithms in that programming language. For S a : A a , the term ra_compute S a : ∀v a : vec nat a, compute S a v a will realize the extensional interpretation • , by directly computing the output from the input along the lines of the given µ-algorithm. In the file interpreter.v, we write the following Fixpoint ra_compute {a} S a also denoted S a o (for a more compact notation) reusing the same scheme as that of the code of ra_sem {a} S a = S a . The suffix in the new notation • o is intended to recall that we do not simply define a proposition but instead, an o(utput) value is now computed:

end where Sa o := (ra_compute Sa).

The sub-term • o v a has type ∀S a , compute S a v a which states that • v a is a partial function, which can be computed in Coq if fed with a certificate that its output exists (termination), and it is passed to vec_map_compute which generalize vec_map to the application of partial functions on every component of a vector, but still by structural recursion on the vector. Then the computation follows a natural interpretation of µ-algorithms as functional programs via extraction.

We further comment on the code of the ra_compute fixpoint, focusing on how Coq establishes termination. First, it proceeds by structural recursion on S a . Hence the guardchecker verifies that ra_compute is only applied to sub-terms of S a . And for this, it has to inspect the code of vec_map_compute which inevitably nests a call to ra_compute (noted • o ) because S ab : vec A a b is a (nested) vector of sub µ-algorithms in A a . Because vec_map_compute proceeds by recursion on S ab , the guard checker accepts this nesting.

In the case of ra_umin S a ′ , we see that Mn_compute receives S a ′ o , the fixpoint itself applied to S a ′ , as first parameter, which obviously passes the guard-checker. The code of Mn_compute can be found in the compute.v and is based on that of umin 0 _compute; see the file umin_compute.v and explanations in Section 3.5.

The case of ra_prec S a S a ′′ is similar to that of ra_umin S a ′ . The case of ra_comp S b S ab is however more complicated because of the nesting with vec_map_compute that is mandated to recursively iterate • o v a over the components of the vector of sub µ-algorithms S ab . We leave out as holes _ the three (small) proof obligations that can be studied further in code file compute.v. The term vec_map_compute is used to fill the argument cS ab of Cn_compute and its code is described in the file map_compute.v. It generalizes the code of vec_map to deal with specifications (i.e. pre/post conditions), but extracts the same. 

Remarks on a carefully crafted library of indices and vectors

The types for indices and vectors are defined inductively with the following rules/constructors:

We can analyze the content of vectors by standard pattern matching, or, on nonempty vectors, using the standard vec_head : vec X (S n) → X and vec_tail : vec X (S n) → vec X n functions. But to access the components in a more versatile way, as sometimes required by the definition of µ-algorithms, we define the projection vec_prj {X n} : vec X n→idx n→X.

The Coq fixpoint defining vec_prj is carefully written by structural recursion on the vector, 3 and the use of idx_inv {0} : idx 0 → False allows to dispose of the impossible case in a guard-checker friendly way.

The type of idx_inv {n : nat} is a bit more general (by dependent pattern matching on n), to also allow inversions of indices in idx (S n) but the idea is the same. Actually, besides the definition of idx n, the statement of the lemma idx_inv together with its short proof is the only tool defined in our library for indices (in file index.v). Notice that we avoid idx_inv by inlining it in the second match case x :: v because using it would introduce an additional level of constructors/matches in the extracted code.

Then v.[i] is just a convenient notation for vec_prj v i. As a consequence of our definition, the identities (x :: v).[O] = x and (x :: v).[S i] = v.[i] hold by definitional equality. But more importantly, any component v. [i] is recognized as a sub-term of v by the guard-checker when type-checking a fixpoint nesting a call to vec_prj. Additionally, vec_prj extracts to desirable OCaml code:

The projection vec_prj allows to view the inductive type vec X n as an extensional representation of the type idx n → X: two vectors are equal iff their components are equal, i.e. ∀i, v.

[i] = w.[i] → v = w, which is not the case for "functional vectors" in idx n → X.

Complementary to vec_head and vec_tail, we also provide versatile inversion lemmas for vectors in either vec X O or vec X (S n) of types (see vec.v for detailed explanations): simple and concise. To this effect, a very simple, hence easy to overlook idea turned out to be surprisingly effective: use ∀x, (∃y, G x y) → {y | G x y} as a general shape for specifying ra_compute and its auxiliary functions.

Note that, as a bonus, the results previously presented in [START_REF] Larchey-Wendling | Typing Total Recursive Functions in Coq[END_REF] can then be obtained with much shorter and elegant proofs.