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Abstract. This study introduces a new metric called “DynamicScore”
to evaluate the dynamics of graphs. It can be applied to both vertices
and edges. Unlike traditional metrics, DynamicScore not only measures
changes in the number of vertices or edges between consecutive time
steps, but also takes into account the composition of these sets. To il-
lustrate the possible contributions of this metric, we calculate it for in-
creasing networks of preferential attachment (Barabási-Albert model)
and Edge-Markovian graphs. The results improve our understanding of
the dynamics inherent in these generated evolving graphs.

Introduction

Dynamic graphs refer to graphs subject to changes along time. Apart from the
term ’dynamic graphs,’ which can be found in [7], the terminology is varied.
The most common terms mentioned in the scientific literature include ’evolv-
ing graphs’ [6], ’dynamic networks’ [10], ’temporal networks’ [8], ’time-varying
graphs’ [4], and ’temporal graphs’ [9]. A Dynamic graph can be defined as a
sequence of snapshot graphs ordered by a timestamp. Many problems arising in
a wide variety of systems have been formulated using dynamic graphs. Among
them, as mentioned in [2], the analysis and understanding of complex networks
require the design of network growth models and graph evolution mechanisms.
The generation process always starts from an initial seed graph G0 (the initial
element of the sequence of snapshot graphs). Then, at each step, a new graph
is generated by applying rules to previously generated graphs. A comprehensive
description of this process is given in [3]. This new graph is then appended to
the sequence, and the process continues until a specified condition is met or re-
sults in an infinite number of graphs. The snapshot graph produced at step t is
both the current last element of the sequence produced by the generator and a
resource element for the generator itself as illustrated on Figure 1.

Numerous challenges in graph theory have been revisited in the context of
dynamic graphs. By introducing the temporal dimension, novel metrics have
emerged, and classical properties have been redefined. These include time-respecting
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Fig. 1: Synthetic description of Dynamic Graphs Generators

paths, reachability, temporal connectivity, and persistent patterns, among oth-
ers. Nevertheless, it is noteworthy that, to the best of our knowledge, limited
research has been dedicated to exploring the intricate relationship between the
generative process and the inherent dynamics of the graph itself. Some prior
works presuppose a limited number of changes between two consecutive snap-
shot graphs. Others characterize the dynamics using terms like ’slow dynamics’,
’not frequent changes’, ’similar consecutive snapshot graphs’ to cite a few. In
both scenarios, there exists a clear need for a metric capable of quantifying the
dynamism of the graph between two consecutive snapshot graphs. This metric
should not only capture changes in the cardinality of vertex and edge sets but
also alterations in their composition.

In this work, the DynamicScore metric, coping with both aspects, is pre-
sented1. The metric is implemented for the set of vertices, V-DynamicScore, and
for the set of edges, E-DynamicScore. Our main contribution is a novel analysis
of two state-of-the-art dynamic graphs generative processes based on this met-
ric: the preferential attachment growing model by Barabási and Albert [1] and
the Edge-Markovian Graph model [5]. In the next Section the metric is formally
defined and some singular values corresponding to peculiar graph evolutions are
presented and discussed. Section 2 is dedicated to the analysis of DynamicScore
on graphs generated using the Preferential Attachment growing model. It is
shown that the dynamics of the graph decreases as the number of steps increases.
Section 3 starts with a description of the Edge-Markovian Graphs Generator
(EMGG) and outlines some properties of the generated graphs. Then the anal-
ysis of the dynamics of Edge-Markovian graphs is conducted and some results
about edge dynamics with respect to the parameters of the model are presented.
We conclude this work by introducing two open questions about relationships
between Markovian-based dynamic graph evolution and the DynamicScore.

1 DynamicScore

The DynamicScore, which is derived from the Jaccard distance, encompasses
several properties that shed light on the nature of a dynamic graph. It effec-
tively captures the degree of dynamics exhibited by the graph, whether it is

1 In [3], this metric was referred to as ’nervousness,’ a translation of a French term
that could be misleading in English.
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applied to the vertices or the edges. Notably, DynamicScore emphasizes changes
in composition, both at a local level over time between two consecutive steps,
and at a global level spanning the entire graph. It is formally defined as follow:

Definition 1. V-DynamicScore:
Given a dynamic graph G, such that at time t Gt = (Vt, Et). We call V-

DynamicScore at time t and denoted by Dv
t , the ratio:

Dv
t =

|Vt+1△Vt|

|Vt+1 ∪ Vt|

where |A| denotes the number of edges present in set A. The △ operator for all
set A and B, referred to as A△B, is defined as A ∪B −A ∩B.

Similarly, for a given dynamic graph the definition of its edges DynamicScore is
defined as follow:

Definition 2. E-DynamicScore:
Given a dynamic graph G, such that at time t Gt = (Vt, Et). We call E-

DynamicScore at time t and denoted by De
t , the ratio:

De
t =

|Et+1△Et|

|Et+1 ∪Et|

The DynamicScore serves as a similarity metric, enabling comparisons between
two consecutive snapshot graphs. A score of 0 indicates that the two graphs are
identical, while a score of 1 signifies that they do not share any common vertices.
In general, a value close to 0 suggests minimal changes in the graph between two
consecutive steps, whereas a value close to 1 implies significant modifications
have occurred. It should be noted that graph order and DynamicScore measure
two different quantities. For instance, between two consecutive time steps, t and
t + 1, the value of Vertex-DynamicScore can be equal to 1 while the order of
the graph remains the same. This occurs when all the vertices have changed
between t and t + 1. In the next two sections the analysis will mainly focus on
the dynamics of Vertex and E-DynamicScore of the Barabaśı model as defined
in [1] and the EMGG model.

2 Analysis of the Dynamics of the Preferential

Attachment Growing Model

2.1 Introduction to the Model

In [1], the generative process is clearly described. For the first part of our analysis,
we only focus on the evolution of the number of vertices and on the number of
edges. Using our notations the generation of the graph starts with a seed graph
G0 = (V0, E0) such that |V0| = n0 and 0 ≤ |E0| = m0 ≤ 1

2
n0(n0 − 1). Note

that in the original research article, no information is given about the initial
number of edges. At every time step t + 1 a new vertex is added and this new
vertex is linked to m(≤ n0) vertices already in Vt. Thus |Vt+1| = |Vt| + 1 and
|Et+1| = |Et|+m.
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2.2 DynamicScore

From this it is possible to compute both Vertex and E-DynamicScore. As the
number of node inserted in the graph at each step is one,Dv

t = 1

n0+t+1
. Moreover,

the number of new connections being m and no connection being removed leads
to De

t = m
m0+tm

. Thus, both the Vertex and the E-DynamicScore are decreasing
and tends toward 0 as t tends to infinity.

3 Generator of Edge-Markovian Graphs

This section presents the Edge-Markovian Graphs Generator (EMGG), its for-
mal definition and some of its fundamental properties. In the first part, we
present the model and its characteristics. Moving on to the second part, we
delve into the general results and explore the relationships between EMGG and
the DynamicScore metric. These results unveil a significant connection between
the graph’s density and the value of DynamicScore, shedding light on their inter-
play and implications. By examining this relationship, we gain valuable insights
into the dynamics of the graph and the quantitative assessment provided by
DynamicScore.

3.1 The Model

The Edge-Markovian Graphs Generator (EMGG) is a stochastic process that
produces an infinite sequence of static graphs. We denote Gt the graph produced
at step t. Gt = (Vt, Et) where Vt (resp. Et) represents the set of vertices (resp.
edges) at step t.

The EMGG is parameterized by two probabilities, denoted as p and q, along
with an initial condition or seed graph, denoted as G0. The set of vertices of the
graph does not change during the evolution process, so, for all t > 0, Vt = V0 = n.
Given two vertices u and v, if at step t the edge (u, v) ∈ Et, the edge is said
present and absent otherwise. The EMGG operates as follows: at each step, all
possible edges (present or absent) are examined2. The generator determines for
each edge if it will remain in the same state (present/absent) in the next snapshot
graph or if it will change. The decision is based on two probability parameters:
0 ≤ p ≤ 1 and 0 ≤ q ≤ 1. The role of p is to define the probability that an edge
present at a given step remains present during the next step, while the role of q
is to define the probability that an edge absent at a given step remains absent
during the next step. This is summarized in the following diagram:

There are several special cases worth noting. When both p and q are set to 0,
the generated graphs exhibit a blinking behavior, where edges alternate between
present and absent at each step. On the other hand, when both p and q are set
to 1, the generated graphs remain static throughout the sequence, with Gt being
equal to the initial graph G0 for all time steps. In the case where q = 1− p, the
generating process becomes ”time-homogeneous”, meaning that the generation
of the new graph at each step does not depend on the previous step.

2 there are n(n− 1)/2 such edges
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Fig. 2: Description of the states.

Definition 3. An EMGG is parameterized through 4 parameters n ∈ N
∗, p and

q ∈ [0, 1] and an initial configuration G0. Instances produced by such a generator
are such that:

– for all step t, |Vt| = n;
– for pair of vertices e = (u, v) ∈ V 2

t :

• if e ∈ Et, then e ∈ Et+1 (remain present) with probability p and becomes
absent with probability 1− p;

• if e /∈ Et, then e ∈ Et+1 (becomes present) with probability 1 − q and
remain absent of Et+1 with probability q.

The maximum number of edges that may be contained at a given step t is
(

n

2

)

.
The set of edges is evolving through time and computing E-DynamicScore gives
an information about its dynamics. In the following sub sections we establish a
solid foundation for understanding its dynamics and its relationship with prob-
abilities p and q.
Note: in the following, the number of edges in a generated graph at step t will
be referred to as mt and the graph density will be referred to as m̂t.

3.2 Known Properties of EMGG

In order to ease the understanding of the dynamics of EMGG instances, some
results about EMGG are presented.

First note that the state of each edge is independent of the state of the other
edges of the graph, thus, studying the probability of presence/absence of each
edge independently from the others is correct. As presented in [5] the transition
matrix P for a single edge satisfies:

P =

(

p 1− p
1− q q

)

(1)

The analysis of Markovian processes and more especially the study of two-states
markovian processes has shown that for each single edge, the distribution of
presence, in the context of EMGG, converges toward a stationary distribution
π as long as |p+ q − 1| 6= 1. The situation |p+ q − 1| = 1 is discussed after the
proof of the theorem. As a stationary distribution of a Markov chain, π satisfies
π = πP .The value of vector π is stated in the following theorem:
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Theorem 1. Stationary distribution:
For p, q probabilities such that |p + q − 1| 6= 1, the stationary distribution π is
(

1−p

2−p−q

1−q

2−p−q

)

.

Proof : It is sufficient to notice that π =
(

1−p

2−p−q

1−q

2−p−q

)

is a distribution and

that π = πP . ⊓⊔
Thus, the presence of an edge has a Bernoulli distribution of parameter π∗ =

1−p

2−p−q
as a stationary distribution. As every edge is independent one from the

other, the number of edges has a binomial distribution of parameter
(

n

2

)

and π∗.
The situation for which |p + q − 1| = 1 as two subcases, either p = q = 1 or
p = q = 0. On the one hand if p = q = 1, then graphs produced by EMGG
remains unchanged forever. This means Gt = G0 for all t. On the other hand
if p = q = 0, then produced graphs are 2-periodic and more precisely, Et+1 is
the complementary of Et for all t. Thus, in both cases the density of a produced
graph does not converge to a stationary distribution.

3.3 EMGG and E-DynamicScore

This subsection presents several key results concerning the Edge-Markovian
Graphs Generator (EMGG) and the E-DynamicScore of the graphs it gener-
ates. Results stated here are specific cases of the analysis made in the previous
section. Every result mentioned in this section will be connected to ones stated
above. Firstly, we provide the computation of the density of these graphs, a fun-
damental quantity in the context of EMGG. The expectation of this quantity
is then stated, offering insights into its average behavior. Moving forward, we
examine the average DynamicScore across all possible density values. By ana-
lyzing this metric, we gain a comprehensive understanding of the dynamics of
the EMGG and its relationship with the density parameter. Specifically, we ex-
plore the DynamicScore at the fixed point density, uncovering the crucial role
played by the probabilities p and q, and elucidating the characteristics that can
be derived from this special value. Notably, we establish a meaningful connec-
tion between this particular value of the DynamicScore and the values obtained
through experimental observations. Through these results, we deepen our un-
derstanding of the EMGG and its association with E-DynamicScore, providing
valuable insights into the dynamics and quantitative assessment of this stochas-
tic graph generation process.

Density Evolution of Edge-Markovian Graphs:

In order to better understand the relationships between EMGG dynamics
and the E-DynamicScore metric, we first show that the number of edges is on
average close to a quantity depending only on p and q. To that end, we prove
the following lemma on the evolution of the density:

Lemma 1. Evolution of the Density
Let consider EMGG parameterized by (n, p, q). Let (G0, . . . , Gt) be a sequence of



DynamicScore 7

graphs produced by EMGG. Then, the expected normalized density for the graph
Gt+1 satisfies the following equation:

ˆmt+1 ≃ fp,q(m̂t) = m̂tp+ (1− q)(1 − m̂t) = (p+ q − 1)m̂t (2)

Proof: as the process is a Markov chain, ˆmt+1 depends only on m̂t. Second, it is
worth mentioning that every edge is independent from the others. The expected
number of edges that remain present is pm̂t while the expected number of edges
changing their state from absent to present is (1 − q)(1 − m̂t). The expected
number of edges present at step t+1 is thus the sum of these two quantities. ⊓⊔

This lemma provides a valuable interpretation of the density expectation,
which allows us to further investigate the existence of a fixed density. By ana-
lyzing the expectation, we can identify a specific value that represents a fixed
point within the computation process. In the context of the function fp,q, a fixed
point refers to a value m∗ for which f(m∗) = m∗ holds true. The computation
of this fixed point value is carried out according to the procedure outlined in the
subsequent lemma.

Lemma 2. Expected Number of Edges:
Let G be a graph produced by EMG(n, p, q) Let m̂t be the density of graph at
step t. Then, as long as |p+ q − 1| < 1 an expectation value for m̂t, referred to
as m∗, satisfies fp,q(m

∗) = m∗:

m∗ =
1− q

2− p− q
(3)

Proof: this result comes from finding a fixed point to the function fp,q ⊓⊔
This fixed point value matches with the probability of presence of an active

edge in the stationary regime. It is not surprising as it gives, in both case, the
average and expected value of the graph density. These findings enable us to gain
deeper insights into the dynamics of the system and the properties associated
with the EMGG, paving the way for a more comprehensive understanding of its
behavior.

3.4 Relationship with the DynamicScore

This section explores the relationship between the Edge-Markovian Graphs Gen-
erator (EMGG) and the DynamicScore, focusing on the computation of an ex-
pectation value regardless of the graph’s density. The following theorem provides
a precise value of this expectation, elucidating the crucial role played by the pa-
rameters p and q in this context:

Theorem 2. Average General DynamicScore
Let G be a graph produced by EMG(n, p, q) Let m̂t be the density of graph at
step t. Then, in average:

DE
t = 1−

pm̂t

1 + q(m̂t − 1)
(4)
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Proof: The proof consists in finding the average number of edges in Et△Et+1

and in Et ∪ Et+1. For the first one, it consists in computing, on average, the
number of edges which state is changing. Assuming the density of edges at t is
m̂t, then the density of edges that change from present to absent is on average
(1− p)m̂t and the density of newly present edges is on average (1− q)(1− m̂t).
Therefore, the size of Et△Et+1 is on average:

|Et△Et+1| = (1− p)m̂t + (1− q)(1 − m̂t)

For computing the union size, it is sufficient to notice that it contains all the
present edges at step t plus appearing edges (1 − q)(1 − m̂t). Thus, the size of
the union is in average:

|Et ∪ Et+1| = m̂t + (1− q)(1 − m̂t)

It is therefore possible to estimate the average DynamicScore:

DE
t =

(1 − p)m̂t + (1− q)(1 − m̂t)

m̂t + (1− q)(1− m̂t)
= 1−

pm̂t

1 + q(m̂t − 1)

⊓⊔
This result must be evaluated for densities close to m∗. Indeed, the distri-

bution of the edges follows a binomial law of parameters
(

n

2

)

and π∗. Therefore
most values of |Et| taken by generated graphs are close to the expected value
of the binomial law:

(

n

2

)

π∗. This implies density of these graphs are close to
π∗ = m∗. Combining this theorem with the fixed point density of generated
graphs provides DynamicScore at the fixed point density:

Theorem 3. E-DynamicScore in Average around m∗:
For all p, q such that |p+ q − 1| < 1

DE
t (m

∗) = 2
1− p

2− p

Moreover, DE
t (m

∗) may take all the values from 0 to 1.

Proof: it results from the combination of both theorem 2 and lemma 2. ⊓⊔
Notably, the average DynamicScore is independent of the value of q, and it

exhibits a decreasing trend as p increases. The range of possible values for the
DynamicScore ranges from 0 to 1, indicating its ability to capture the extent of
changes in the graph. To illustrate these findings, several figures are presented.
These figures have been obtained through simulations, considering various values
of p and q, both ranging from 0 to 1, while excluding the endpoints. These
visual representations offer a good understanding of the relationship between
EMGG instances, their DynamicScore on average, and the parameters p and
q. By examining these figures, we obtain experimental confirmation and deeper
understanding of the behavior and characteristics of the EMGG, corroborating
the insights provided by the above-stated theorem, particularly in relation to the
DynamicScore. The impact of the parameter q on the average DynamicScore
is found to be negligible, whereas parameter p appears to be more influential
in determining its value. Notably, it is observed that the DynamicScore can
encompass the entire range from 0 to 1 as p varies from 1 to 0.



DynamicScore 9

0 0.5 1

0.5

1

q

D
E

t
(m

∗

)

p =0.05

p =0.15

p =0.25

p =0.35

p =0.45

p =0.55

p =0.65

p =0.75

p =0.85

p =0.95

(a) E-DynamicScore Average vs. q.
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Fig. 3: Average dynamic score as a function of the parameters p and q. On the
left, the parameter p is set and the parameter q ranges from 0.05 to 0.95. One
may notice that for a fixed value of parameter p, the average dynamicScore does
not depend on q. On the right, the parameter q is set and the parameter p
ranges from 0.05 to 0.95. As observed with the picture on the left, the average
dynamicScore does not depend on q so all the marks are mingled.

4 Conclusion and Open Problems

In this work, a new metric called DynamicScore has been presented. This metric,
proposed for both edges and vertices, quantifies the evolution of the dynamics
of dynamic graphs. It has been demonstrated that the Preferential Attachment
growing model generates graphs with dynamics that tends toward zero. This
implies that after numerous iterations, the dynamic graph undergoes minimal
changes, resulting in a stability of the properties within the generated graphs.
However, the dynamics of real complex networks is not solely reliant on the cre-
ation of vertices and edges but also on the removal of vertices and edges. This
leads us to the following open question: (i) given a specific dynamic graphs gen-
erator, is there a relationship between DynamicScore values and the preservation
of properties in dynamic graphs?

The second studied generator was the Edge-Markovian Graphs Generator.
The mechanics of this generator is based on two probabilistic parameters, p and
q, driving the states of edges that can be present or absent. After an in-depth
analysis of the average density of the generated graphs, using DynamicScore, it
has been shown that the dynamics of such graphs is only driven by probability
parameter p. The analysis relies on the Markovian nature of the generator, which
prompts two additional open questions: (ii) if the evolution/generative process
exhibits Markovian characteristics in the evolution of edges, does the value of
E-DynamicScore remain nearly constant? and (iii) conversely, if the value of
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DynamicScore remains constant, does this indicate that the evolution process is
Markovian?
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