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Abstract: Analysis of variance (ANOVA) tests for differences in the means
of independent samples but is unsuitable for evaluating differences in tail
behaviour, especially when means do not exist or empirical estimation of
means or higher moments is inconsistent due to heavy-tailed distributions.
Here, we propose an ANOVA-like decomposition to analyse tail variability,
allowing for flexible representation of heavy tails through a set of user-
defined extreme quantiles, possibly located outside the range of observa-
tions. Assuming regular variation, we introduce a test for significant tail
differences across multiple independent samples and derive its asymptotic
distribution. We investigate the theoretical behaviour of the test statistics
for the case of two samples, each following a Pareto distribution, and ex-
plore strategies for setting test hyperparameters. We conduct simulations
that highlight generally reliable test behaviour for a wide range of finite-
sample situations. The test is applied to identify clusters of financial stock
indices with similar extreme log-returns and to detect temporal changes in
daily precipitation extremes in Germany.

MSC2020 subject classifications: 62G3262E20.
Keywords and phrases: Analysis of variance, extreme quantile, Extreme-
Value Theory, heavy tail, hypothesis test.

1. Introduction

Consider J samples of independent and identically distributed (i.i.d.) realisa-
tions of random variables with cumulative distribution functions F1, . . . , FJ ,
respectively, where J > 1. If Fj has mean µj for j = 1, . . . , J , the classical
ANalysis Of VAriance (ANOVA) tests the equality of the J means using a de-
composition of the total variance into intra-class and inter-class variances [36].
However, this approach to detect data heterogeneity suffers from some limi-
tations. First, asymptotic properties of the test statistic are obtained under
Gaussian assumptions. Moreover, testing the equality of means always requires
the existence of the first moment, and even of the second moment in the ANOVA
setting, whereas such conditions are not fulfilled by many distributions. Certain
extensions relax these conditions by proposing, for instance, to test the equality
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of medians, as in [19, Chapter 6], or to use rank-transforms [27], or to general-
ize ANOVA by assuming only the existence of low-order moments [35]. All of
these approaches focus on the central behaviour of the distribution and are not
suited to detect heterogeneity in the distribution tails. Distributions can share
the same mean or median but show strongly contrasted tail behaviour.

Many biological, environmental or physical phenomena, as well as financial
and actuarial data, are known to be heavy-tailed and possess power-law be-
haviour [4, 21, 28, 32, 33]. A common assumption is that the survival functions
(s.f.) associated with F1, . . . , FJ are regularly varying, i.e.,

F j(x) = 1−Fj(x) = x−1/ξjL(j)(x),
Lj(tx)

Lj(x)
→ 1, x → ∞, t > 0, j = 1, . . . , J,

(1)
where ξj > 0 is the tail index and Lj is a slowly-varying function. Condition (1)
characterises the class of distributions with positive tail index, also known as the
Fréchet maximum domain of attraction [7, Theorem 1.2.1]. Such distributions
only admit moments of order less than 1/ξj , which limits ANOVA to moderately
heavy-tailed distributions satisfying ξ < 1/2. We cite two counter-examples:
claim amounts caused by tornadoes with an estimated tail index close to 1 [5];
burnt areas of wildfires with estimated tail index often beyond 1/2 [25, 31].

Certain test procedures focus on the tail indices ξ1, . . . , ξJ . For example, in
[29] a test was developed for equal tail indices based on a nonparametric min-
imax principle; [38] introduced a test for comparing positive tail indices via an
empirical likelihood ratio; a test for different tail indices in the setting of het-
eroscedastic extremes was proposed in [11, Section 3]. However, tests based on
tail indices neglect the slowly-varying functions Lj , which could be modified
by any positive factor without affecting neither the tail index ξj nor the be-
haviour of classical tail-index estimators. Therefore, the tail of a heavy-tailed
distribution is usually described by both the tail index, also called shape param-
eter, and a scale parameter. In the Peaks-Over-Threshold (POT) method [6],
positive excesses above a high threshold are modeled by a Generalized Pareto
distribution with both shape and scale parameters, allowing for model-based
tail comparison.

Here, we focus on extreme quantiles that have probability level α = αn → 1 as
the sample size n tends to infinity. Two heavy-tailed distributions have asymp-
totically equivalent extreme quantiles if and only if they share the same shape
and scale parameters, and extreme quantiles are therefore interesting tools for
testing tail heterogeneity. In [18], extreme quantiles were used to propose a test
for a change point in a series of random variables, and the work in [8] concerns
quantile-based tests for causal treatment effects. However, such quantile-based
tests usually consider only a single quantile, which is problematic since distri-
butions with very different tail behaviour can have the same quantile at a given
probability level. Moreover, focusing only on a single parameter such as the
shape, the scale or a single quantile can lead to relatively high uncertainty in
statistical estimations and therefore relatively weak power of statistical tests for
detecting differences in tails. If parametric assumptions are made about the tail
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distribution, then likelihood-based methods could be used to compare models
having different parameters for different samples with models where some of the
parameters are held equal across several samples (e.g. similar to the changepoint
analyses of [9, 10]), but we do not pursue such model-based approaches here.

Inspired by ANOVA, we propose to test for the equality of L extreme quan-
tiles q1(αℓ,n), . . . , qJ(αℓ,n), ℓ = 1, . . . , L, with L > 1, by decomposing the vari-
ability of the corresponding extreme-quantile estimates. This puts focus on the
most extreme possible events, for which statistical techniques that are directly
based on the empirical distribution are not applicable. By jointly studying mul-
tiple quantiles with moderately large L (typically in the range of 2 to 100 de-
pending on the application context), we obtain a precise characterization of tail
behaviour at extreme levels, and both the statistical uncertainty and the nu-
merical cost of required computations remain relatively low. In practice, for a
useful choice of the L quantiles αℓ,n, ℓ = 1, . . . , L, when the sample size is n,
we suggest using αℓ,n = 1− ℓ/n, such that the lowest considered extreme quan-
tile at level 1 − L/n is exceeded approximately L times in the sample and the
highest quantile at level 1−1/n is exceeded by events that occur approximately
once with the given sample size. Though, our theoretical results are formulated
for more general choices of αℓ,n. This approach is simple, does not require the
existence of any moment, and is based on the heavy-tail assumption (1) that
encompasses a wide class of distributions commonly used for risk management,
such as the Pareto, Generalized Pareto, Fréchet or Student’s t distributions.

The remainder of the paper is organized as follows. The new test statis-
tic, called ANOVEX (ANalysis Of Variability in EXtremes), is introduced in
Section 2, based on extreme quantile estimators. Section 3 then provides the
asymptotic properties of this test statistic and precisely defines the ANOVEX
test procedure. The statistical power of ANOVEX is discussed in Section 4
thanks to approximations of type I and type II errors for three examples involv-
ing Pareto distributions in the two-sample setting, i.e., for J = 2. The simulation
study in Section 5 highlights the test performance in various simulation scenar-
ios. Two real data examples (financial and environmental data) are considered
in Section 6. The proofs of the results are postponed to Appendix A, while fig-
ures illustrating some additional simulation results are shown in Appendices B
and C, respectively.

2. Setting and assumptions

We consider J > 1 samples Ej = {X(j)
i , i = 1, . . . , nj}, j = 1, . . . , J , with

independence between samples and possibly different sample sizes nj > 1. We
assume that the random variables in each Ej are identically distributed ac-
cording to a cumulative distribution function Fj satisfying condition (1). This
property is denoted by Fj ∈ C1(ξj) in the following definition.

Definition 1 (Class C1(ξ)). The cumulative distribution function F is said to
belong to the class C1(ξ), ξ > 0, if it satisfies condition (1).
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Equivalently,

lim
t→∞

F (ty)

F (t)
= y−1/ξ for all y > 0.

For asymptotic results, we consider sample sizes nj increasing at the same rate,
i.e., nj/n → λj > 0 as n → ∞, for j = 1, . . . , J . We denote by qj(α) :=
inf {x ∈ R : α ≤ Fj(x)} the quantile of distribution Fj at probability level α ∈
(0, 1). The null hypothesis to be tested is

(H0) For all (j, j′) ∈ {1, . . . , J}2 with j ̸= j′, we have qj′(α)/qj(α) → 1 as
α → 1.

The tail behaviour of the J samples is summarized through J ×L estimators
q̃j(αℓ,n) of extreme quantiles qj(αℓ,n), where αℓ,n → 1 such that n(1− αℓ,n) →
τℓ ≥ 0 as n → ∞, ℓ = 1, . . . , L and j = 1, . . . , J . The above conditions imply

P
(

max
i=1,...,nj

X
(j)
i ≤ qj(αℓ,n)

)
= α

nj

ℓ,n → exp (−λjτℓ) , n → ∞,

and therefore such quantiles can lie beyond the observation range when τℓ is
small. Direct empirical estimation of such quantiles leads to a high estimation
variance and/or bias, so that semi-parametric estimation is preferable. Often,
the Weissman estimator [37] is used:

q̂W

j (αℓ,n |βj,n) = q̂j(βj,n)

(
1− βj,n

1− αℓ,n

)ξ̂j(βj,n)

, (2)

where

• βj,n are intermediate probability levels, i.e., βj,n → 1 and n(1−βj,n) → ∞
as n → ∞, for j = 1, . . . , J ;

• q̂j(βj,n) = X
(j)
⌊βjnj⌋,nj

is the empirical quantile of level βj,n in Ej , j =

1, . . . , J , and
• ξ̂j(βj,n) is an estimator of ξj , such as the Hill estimator [17] based on the
kj,n := ⌊(1− βj,n)nj⌋ largest observations from sample Ej , j = 1, . . . , J :

ξ̂H

j (βj,n) =
1

kj,n

kj,n−1∑
i=0

logX
(j)
nj−i,nj

− logX
(j)
nj−kj,n,nj

. (3)

We propose to additively decompose the variance of quantiles into contri-
butions from the factor (i.e., the sample in our setting) and from the different
quantile levels. Moreover, we work in log-scale to achieve statistically stable
behaviour of differences between log-quantiles and their averages in the heavy-
tailed setting. We write the overall sum-of-squares as

∆n =
1

JL

J∑
j=1

L∑
ℓ=1

(log q̃j(αℓ,n)− µα,n)
2
, with µα,n =

1

JL

J∑
j=1

L∑
ℓ=1

log q̃j(αℓ,n).
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The new test statistic, called ANOVEX (ANalysis of Variability in EXtremes),
is constructed based on the decomposition of this extreme log-quantile variance
into two parts: variance ∆1,n due to the J different samples, and variance ∆2,n

due to the L different quantile levels. This decomposition is formalized in the
following proposition and illustrated in Figure 1. We construct the ANOVEX
test statistic to reject (H0) if ∆1,n/∆2,n exceeds an appropriately fixed thresh-
old, i.e., if the contribution of the inter-sample variance to the total variance is
very strong. Therefore, the test statistic is straightforward to interpret and to
compute.

Proposition 2.1. The decomposition ∆n = ∆1,n +∆2,n holds where

∆1,n =
1

L

L∑
ℓ=1

∆1,ℓ,n (variance due to the different samples),

∆2,n =
1

L

L∑
ℓ=1

(
µ(ℓ)
α,n − µα,n

)2
(variance due to the different quantile levels),

with the components indexed by ℓ = 1, . . . , L given as

µ(ℓ)
α,n =

1

J

J∑
j=1

log q̃j(αℓ,n) (mean estimation at level ℓ),

∆1,ℓ,n =
1

J

J∑
j=1

(
log q̃j(αℓ,n)− µ(ℓ)

α,n

)2
(variance due to the different samples

at level ℓ).

3. Asymptotic distribution of the test statistic

We need the following notations defined for any positive u1, . . . , uL:

smlog(u1:L) =
1

L

L∑
ℓ=1

(log (uℓ))
2
, and

varlog(u1:L) =
1

L

L∑
ℓ=1

(log (uℓ))
2 −

(
1

L

L∑
ℓ=1

log (uℓ)

)2

(4)

which can be viewed respectively as the empirical second moment and variance
of (log(u1), . . . , log(uL)). Our first main result establishes the asymptotic distri-
bution of the test statistic under (H0), which requires a deterministic rescaling
factor.

Theorem 3.1. Let E1, . . . , EJ be independent samples. Assume Fj ∈ C1(ξj) for
j = 1, . . . , J and the following conditions:
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Fig 1. Decomposition of extreme log-quantile variance for a standard normal (black curve)
and a Student’s t distribution 3 degrees of freedom (red curve), for two extreme quantiles at
probability levels {0.98, 0.99}.
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• Extreme probability levels: For all ℓ = 1, . . . , L, αℓ,n → 1 as n → ∞.
• Extreme quantile estimator: q̃j(αℓ,n) is an estimator of the extreme quan-
tile qj(αℓ,n), computed on the nj-sample Ej where nj/n → λj > 0 as
n → ∞, and satisfies

σ̄−1
ℓ,n (log (q̃j(αℓ,n))− log (qj(αℓ,n)))

d−→ ξjZj , (5)

where Z1, . . . , ZJ are independent standard Gaussian random variables
and for deterministic normalizing sequences σ̄ℓ,n → 0 as n → ∞, for
all j = 1, . . . , J and ℓ = 1, . . . , L.

Then, under (H0),

J varlog((1− αn)1:L)

σ̄2
n

∆1,n

∆2,n

d−→ χ2
J−1, (6)

with χ2
J−1 a chi-square random variable with J − 1 degrees of freedom, where

σ̄2
n =

1

L

L∑
ℓ=1

σ̄2
ℓ,n.

If, moreover, αℓ,n = 1− τℓ/n for ℓ = 1, . . . , L, then (6) can be simplified as

J varlog(τ1:L)

σ̄2
n

∆1,n

∆2,n

d−→ χ2
J−1.

We emphasize that the independence of the limiting random variables Zj is
a consequence of the independence of the samples Ej , j = 1, . . . , J . Besides,
the limiting distribution of most extreme quantile estimators is inherited from
the limiting distribution of the tail-index estimator, see for instance [7, Theo-
rem 4.3.8]. The assumption in (5) that the random variables Zj do not depend
on ℓ is thus non restrictive in general. Finally, for the results of Theorem 3.1 to
hold we do not need independence of the variables in each of the samples Ej

but only independence between the samples for different j. One can for instance
refer to [20] for the asymptotic normality of tail-index estimators in the case of
stationary sequences with short range dependence.

Remark 1 (Use of other risk measures). The result of Theorem 3.1 remains
valid if the quantile is replaced by any other risk measure whose extreme estima-
tor fulfills condition (5). Indeed, the Conditional Tail Expectation (also called
Expected Shortfall, introduced in [1]), or the expectile [30], could be used, since
they are asymptotically proportional to the extreme quantile [14, 12]. Here, we
keep the focus on quantiles since they do not require a finite first moment.

We next study an extreme quantile estimator satisfying the assumptions of
Theorem 3.1. Condition (5) is fulfilled by combining the Weissman estimator (2)
with the Hill estimator (3). However, a stronger second-order assumption, widely
used in the extreme-value literature and satisfied by numerous distributions [2],
is necessary. We denote it by C2(ξ, ρ,A).
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Definition 2 (Class C2(ξ, ρ,A)). The cumulative distribution function F be-
longs to the class C2(ξ, ρ,A) with tail index ξ > 0 and second-order parameter
ρ < 0, if there exists a measurable auxiliary function A with constant sign,
satisfying A(t) → 0 as t → ∞, such that

lim
t→∞

1

A(1/F (t))

(
F (ty)

F (t)
− y−1/ξ

)
= y−1/ξ yρ/ξ − 1

ξρ
, for all y > 0.

The function |A| is regularly varying with index ρ. For small ρ ≤ −1, including
the Pareto, Burr, Fréchet distributions, the distribution tail is very close to a
Pareto tail, and the Weissman estimator is very accurate. For ρ near 0, as for
the Generalized Pareto distribution with small ξ = −ρ > 0, the Weissman
approximation remains valid but becomes accurate only relatively far in the
tail.

From now on, we assume that the random variables in each Ej are mutually
independent and identically distributed according to a cumulative distribution
function Fj satisfying condition (1). Then, the combined Weissman-Hill esti-
mator is asymptotically Gaussian under the second-order condition C2(ξ, ρ,A),
such that condition (5) of Theorem 3.1 holds (see the proof in Appendix), and
we get the following result.

Corollary 3.1. Let E1, . . . , EJ be independent samples. Suppose that Fj ∈
C2(ξj , ρj , Aj) for j = 1, . . . , J according to Definition 2. Moreover, we assume
the following conditions hold:

• Extreme probability levels: βn → 1 with n(1− βn) → ∞ and αℓ,n → 1 for
all ℓ = 1, . . . , L, as n → ∞.

• Extreme quantile estimator: q̂W
j (αℓ,n |βj,n) is the combined Weissman-Hill

estimator (2), (3) of the extreme quantile qj(αℓ,n) computed on the nj-
sample Ej such that, as n → ∞ and for all j = 1, . . . , J and ℓ = 1, . . . , L,

nj/n → λj > 0,

(1− βj,n)/(1− βn) → 1/λj ,

(1− αℓ,n)/(1− βn) → 0,√
n(1− βn)/ log((1− βn)/(1− αℓ,n)) → ∞.

• Second-order behaviour: the auxiliary function A satisfies√
n(1− βn)Aj

(
(1− βn)

−1
)
→ 0, n → ∞, for all j = 1, . . . , J. (7)

Then, under (H0),

J varlog((1− αn)1:L)n(1− βn)

1
L

L∑
ℓ=1

(
log
(

1−βn

1−αn,ℓ

))2 ∆1,n

∆2,n

d−→ χ2
J−1, n → ∞. (8)

If, moreover, αℓ,n = 1− τℓ/n for ℓ = 1, . . . , L, then (8) can be simplified as

J varlog(τ1:L)n(1− βn)

Sn(βn, τ1:L)

∆1,n

∆2,n

d−→ χ2
J−1, n → ∞, (9)
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where

Sn(βn, τ1:L) =
1

L

L∑
ℓ=1

(
log

(
n(1− βn)

τℓ

))2

. (10)

Regarding the technical conditions involved in this result, we emphasize that
the sample sizes n1, . . . , nJ must be asymptotically proportional. In practice,
they should therefore not be too unbalanced, and n can be chosen as the average
of nj . The intermediate levels βj,n must be chosen accordingly, such that the
number of order statistics kj,n = nj(1−βj,n) remains asymptotically equivalent
in all samples. The second-order condition (7) ensures that the Hill estimator
is asymptotically unbiased. Bias-reduced versions of the Hill estimator with the
same asymptotic variance exist [3], and this condition could then be dropped or
replaced by a weaker condition on the auxiliary functions Aj .

The ANOVEX test rejects (H0) with asymptotic level γ ∈ (0, 1) if

Tn :=
J varlog(τ1:L)n(1− βn)

Sn(βn, τ1:L)

∆1,n

∆2,n
> χ2

J−1,1−γ , (11)

where χ2
J−1,1−γ denotes the quantile of level 1−γ of the chi-square distribution

with J − 1 degrees of freedom. The test is asymptotically equivalent to

J varlog(τ1:L)n(1− βn)

(log (n(1− βn)))
2

∆1,n

∆2,n
> χ2

J−1,1−γ .

For accuracy reasons, we adopt the first version (11) of Tn in the sequel.

4. Examples of type-I and type-II error approximations

4.1. Pareto-distribution setting

We analytically investigate the finite sample behaviour of the test to study its
power with data following the Pareto distribution, the prototype of regularly-
varying distributions. Numerical investigation into more general settings is car-
ried out in the simulation study in Section 5. We leverage Rényi’s representation
[34] to provide accurate approximations of the distribution of the test statistic
Tn, as well as type-I and type-II errors, for J = 2 independent samples. We write
P(1/ξ) for the Pareto distribution with scale parameter 1 and shape parameter
1/ξ > 0; its cumulative distribution function is 1 − x−1/ξ, x > 1. We consider
three settings: identical Pareto distributions (Section 4.2); Pareto distributions
with different scale parameters (Section 4.3); Pareto distributions with different
shape parameters (Section 4.4). We treat the case where αℓ,n = 1 − τℓ/n for
ℓ = 1, . . . , L. In addition to the normalizing constant Sn in (10), we need the
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following constants:

sn(βn, τ1:L) =
1

L

L∑
ℓ=1

√
1 +

(
log

(
n(1− βn)

τℓ

))2

,

and sn(βn, τ1:L) =
1

L

L∑
ℓ=1

log

(
n

τℓ

)√
1 +

(
log

(
n(1− βn)

τℓ

))2

.

4.2. Identically distributed Pareto samples

If both samples follow the same Pareto distribution, the ANOVEX test is sup-
posed to wrongly reject the null hypothesis with asymptotic probability γ (type-I
error). We investigate the impact of test hyperparameters on this probability
through a stochastic approximation of the test statistic.

Proposition 4.1. Consider two independent samples Ej = {X(j)
1 , . . . , X

(j)
n },

j = 1, 2, of i.i.d. variables following the same Pareto distribution P(1/ξ), ξ > 0.
Assume the following:

(a) Probability levels: (βn) is an intermediate probability level such that (1 −
βn) log(n) → 0 as n → 0.

(b) Extreme quantile estimator: q̂W
j (αℓ,n |βn) is the Weissman estimator (2)

of the extreme quantile qj(αℓ,n), based on the Hill estimator ξ̂H
j (βn) defined

in (3), where αℓ,n = 1− τℓ/n, for ℓ = 1, . . . , L and j = 1, 2.

Then, as n → ∞,

Tn
d
= Γ2

(
1 +

1

Sn(βn, τ1:L)

)(
1+OP

(
1√

n(1− βn)

)
+OP

(
1− βn

log(n(1− βn))

))

where Γ is a standard normal random variable.

This stochastic representation leads to a pretty accurate approximation of
the rejection probability.

Remark 2. Assume that conditions of Proposition 4.1 hold. The probability
PH0

(
Tn > χ2

1,1−γ

)
to wrongly reject (H0) with asymptotic level γ ∈ (0, 1) is for

large n approximately equal to

pn(γ) = 2Φ̄

(
Φ̄−1(γ/2)

(
1 +

1

Sn(βn, τ1:L)

)−1/2
)
, (12)

where Φ(·) is the standard Gaussian survival function.

According to (12), the behaviour of pn(γ) is driven by Sn(βn, τ1:L) but does

not depend on the tail index ξ. Clearly, pn(γ)
>−→ γ as n → ∞ in view of
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Sn(βn, τ1:L) ∼ (log(n(1 − βn)))
2 as n → ∞. Indeed, a first-order expansion

yields

pn(γ) = γ +
Φ̄−1(γ/2)φ(Φ̄−1(γ/2))

(log(n(1− βn)))2
(1 + o(1)),

where φ(·) is the density of the standard Gaussian distribution. Therefore, we
obtain a logarithmic rate of convergence with respect to n(1−βn), the expected
number of observations above q1(βn) = q2(βn). The accuracy of approxima-
tion (12) for Pareto distributions P(1/ξ = 4) and P(1/ξ = 1) is illustrated in
the top panel of Figure 2, for n = 1, 000 and L = 2, . . . , 30. The first-order
approximation (12) (solid blue curve) is compared to the empirical estimation
of pn(γ = 0.05) based on N = 10, 000 replications (dashed blue curve); see Sec-
tion 5 for details. The approximation is fairly precise, especially for moderate
values of L, with only a small bias of observed type-I errors with respect to
the nominal level γ. As expected, pn(γ) ≥ γ (horizontal black line for γ). The
true pn(γ) does not seem to depend on ξ in these numerical experiments, in
line with the analytical approximation (12). Finally, under the weak condition
log(n(1 − βn)) ≥ 3, the quantity Sn(βn, τ1:L) is a decreasing function of L, so
that the approximation (12) is increasing with L if τℓ = ℓ. The practical choice
of L is discussed in Section 5.

4.3. Pareto samples with different scale parameters

We consider two Pareto samples with the same shape parameter 1/ξ, ξ > 0,

but different scale parameters 1 and λn > 0, and we assume λn
̸=−→ 1 as

n → ∞ to study the power of the ANOVEX test to reject (H0). We provide an
approximation of the distribution of the test statistic.

Proposition 4.2. Suppose that the assumptions (a, b) of Proposition 4.1 hold.

Consider two independent samples denoted by E1 = {X(1)
1 , . . . , X

(1)
n } and E2 =

{X(2)
1 , . . . , X

(2)
n }, where, for i = 1, . . . , n, the X

(1)
i s are i.i.d. from a Pareto

distribution P(1/ξ), ξ > 0 and the X
(2)
i s are i.i.d. with X

(2)
i

d
= λnX

(1)
i , λn > 0,

λn → 1 as n → ∞ such that

(i) log(n(1−βn))
(n(1−βn))3/4

∨
√

log(n(1−βn))
n = o(log(λn)),

(ii) log(λn) = o(1/
√

n(1− βn)).

Then, as n → ∞,

Tn
d
=

(
(log(λn))

2
n(1− βn)

2ξ2Sn(βn, τ1:L)
−
√
2n(1− βn) log(λn)sn(βn, τ1:L)

ξSn(βn, τ1:L)
Γ

+
1 + Sn(βn, τ1:L)

Sn(βn, τ1:L)
Γ2

)
×

(
1 +OP

(
1√

n(1− βn)

)
+OP

(
1− βn

log(n(1− βn))

))

where Γ is a standard normal random variable.
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This result yields an approximation of the type-II error when the alternative
hypothesis is formulated as

(H1,n) X
(1)
i ∼ P(1/ξ) and X

(2)
i

d
= λnX

(1)
i , i = 1, . . . , n and λn → 1 as n → ∞.

Remark 3. If assumption (i) of Proposition 4.2 is replaced by the slightly
stronger condition

(i’) (log(n(1− βn)))
2
/(n(1− βn))

3/4 ∨
√

(log(n(1−βn)))
3

n = o(log(λn)),

then the probability PH1,n

(
Tn ≤ χ2

1,1−γ

)
to accept (H0) with asymptotic level

γ ∈ (0, 1) is for large n approximately equal to

Φ̄
(
Ω1,n −

√
Ω2,n

)
− Φ̄

(
Ω1,n +

√
Ω2,n

)
(13)

where

Ω1,n =
log(λn)

√
n(1− βn)sn(βn, τ1:L)√

2ξ (1 + Sn(βn, τ1:L))
,

Ω2,n =
(log(λn))

2
n(1− βn)

2ξ2
sn(βn, τ1:L)

2 − 1− Sn(βn, τ1:L)

(1 + Sn(βn, τ1:L))
2

+
Sn(βn, τ1:L)

1 + Sn(βn, τ1:L)
χ2
1,1−γ > 0.

First, we have Ω1,n → 0 and Ω2,n → χ2
1,1−γ as n → ∞; see the proof of

Remark 3 in the Appendix. Thus, PH1,n

(
Tn ≤ χ2

1,1−γ

)
→ 1 − γ as n → ∞,

and the asymptotic type-II error is 1−γ when (H1,n) approaches (H0). Second,
considering λn = 1 yields

Φ̄
(
Ω1,n −

√
Ω2,n

)
− Φ̄

(
Ω1,n +

√
Ω2,n

)
= 1− 2Φ̄

(
Φ̄−1(γ/2)

(
1 +

1

Sn(βn, τ1:L)

)−1/2
)

= 1− pn(γ),

see (12), which is in accordance with the type-I error in Section 4.2. Third, in
the converse case where λn is large, i.e. when the two Pareto distributions are
very different, the approximation (13) tends to zero, and the ANOVEX test is

likely to reject (H0). The same reasoning may be applied to λ
1/ξ
n , which is the

key quantity in Ω1,n and Ω2,n. For a fixed value of λn, the approximated prob-
ability is a decreasing function of ξ: Heavy tails are thus more easily discerned.
Adopting the classical choice βn = 1−c/

√
n, c > 0, conditions of Proposition 4.2

and Remark 3 imply that λn converges to 1 not faster than n−3/8, up to a log-
arithmic factor. This may interpreted as the minimum gap between (H0) and
(H1,n) that the ANOVEX test is able to discriminate.

The accuracy of the approximation given in Remark 3 is illustrated in the
second row of Figure 2 in Section 5 for λn = 1.2 with ξ ∈ {0.15; 0.25; 0.35; 0.50}
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(left panel), ξ = 0.25 with λn ∈ {1.1; 1.2; 1.3; 1.4} (middle panel) and λn = λ
(fixed) ∈ {1.2; 1.5} with n ∈ {500; 1, 000; 5, 000} (right panel). The approxima-
tion (13) is remarkably accurate throughout. The numerical results also confirm
the roles of λn and ξ in the type-II error.

4.4. Pareto samples with different shape parameters

For two Pareto samples with different shape parameters 1/ξ and 1/(ξθn), ξ, θn >

0, we investigate the ability of the ANOVEX test to reject (H0) when θn
̸=−→ 1

as n → ∞. We provide an approximation of the test statistic distribution.

Proposition 4.3. Suppose that the assumptions (a, b) of Proposition 4.1 hold
with the additional condition that log(n) = O(log(n(1 − βn))). Consider two

independent samples E1 = {X(1)
1 , . . . , X

(1)
n } and E2 = {X(2)

1 , . . . , X
(2)
n }, where,

for i = 1, . . . , n, the X
(1)
i s are i.i.d. from a Pareto distribution P(1/ξ), ξ > 0

and the X
(2)
i s are i.i.d. with X

(2)
i

d
= (X

(1)
i )θn , θn > 0 and θn → 1 as n → ∞,

where θn satisfies the same conditions (i) and (ii) as λn in Proposition 4.2.
Then, as n → ∞,

Tn
d
= 2

(
n(1− βn)(1− θn)

2

(1 + θn)2
smlog(n/τ1:L)

Sn(βn, τ1:L)

+2

√
n(1− βn)

√
1 + θ2n(1− θn)

(1 + θn)2
sn(βn, τ1:L)

Sn(βn, τ1:L)
Γ +

(1 + θ2n)

(1 + θn)2
1 + Sn(βn, τ1:L)

Sn(βn, τ1:L)
Γ2

)

×

(
1 +OP

(
1− βn

log(n(1− βn))

)
+OP

(
1√

n(1− βn)

))
,

where Γ is a standard normal random variable, and smlog(·) is defined in Equa-
tion (4).

The same choices can be made for θn as for λn, leading to similar interpre-
tations. This result allows approximating the type-II error associated with the
ANOVEX test when the alternative hypothesis is

(H ′
1,n) X

(1)
i ∼ P(1/ξ) and X

(2)
i

d
= (X

(1)
i )θn , i = 1, . . . , n and θn → 1 as n → ∞.

Remark 4. If assumption (i) in Proposition 4.2 (with λn instead of θn) is
replaced by the slightly stronger condition (i’) as in Remark 3, then the proba-
bility PH′

1,n

(
Tn ≤ χ2

1,1−γ

)
to accept (H0) with asymptotic level γ ∈ (0, 1) may

be approximated by for n large enough by

Φ̄
(
Ψ1,n −

√
Ψ2,n

)
− Φ̄

(
Ψ1,n +

√
Ψ2,n

)
(14)
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where

Ψ1,n =

√
n(1− βn)(θn − 1)sn(βn, τ1:L)√

1 + θ2n (1 + Sn(βn, τ1:L))
,

Ψ2,n =
(θn − 1)2n(1− βn)

(1 + θ2n)

sn(βn, τ1:L)
2 − (1 + Sn(βn, τ1:L)) smlog(n/τ1:L)

(1 + Sn(βn, τ1:L))
2

+
(1 + θn)

2

(1 + θ2n)

Sn(βn, τ1:L)

1 + Sn(βn, τ1:L)

χ2
1,1−γ

2
> 0.

Again, PH′
1,n

(
Tn ≤ χ2

1,1−γ

)
tends to 1− γ as n → ∞. Moreover, taking θn = 1

leads to 1 − pn(γ). However, unlike the approximation of Proposition 4.2, this
probability is not related to the tail index ξ. The accuracy of this approximation
for several values of θn is illustrated on the top middle panel of Figure 2 in
Section 5 for ξ = 0.25 and θn ∈ {1.1; 1.2; 1.3; 1.4}. Another example with a fixed
θn = θ ∈ {1.1; 1.3} and a varying n ∈ {500; 1, 000; 5, 000} is proposed (top right
panel). Again, the curves associated with the approximated probability (14) are
almost identical to the curves associated with the empirical type-II errors.

5. Simulation study

For each example, we simulate N = 10, 000 times J samples of size n = 1, 000,
compute the test statistic (11) to assess (H0) at confidence level γ = 0.05. We
take αℓ,n = 1−ℓ/n (τℓ = ℓ) for ℓ = 1, . . . , L, consider values of L ranging from 2
to 30, and report empirical rejection (or equivalently non-rejection) probabilities
obtained through the N replications. Several heavy-tailed distributions with tail
index ξ > 0 are considered:

• The Pareto distribution with s.f. F (x) = x−1/ξ for x > 1;
• The Generalized Pareto distribution (GPD) with s.f. F (x) = (1+ ξx)−1/ξ

for x > 0. This distribution fulfills Assumption C2(ξ, ρ,A) with ρ = −ξ;
• The Fréchet distribution with s.f. F (x) = 1 − exp(−x−1/ξ) for x > 0.
Assumption C2(ξ, ρ,A) is also satisfied with ρ = −1;

• The Burr(ρ) distribution with s.f. F (x) = (1+x−ρ/ξ)1/ρ for x > 0. In this
case, C2(ξ, ρ,A) is satisfied for any ρ < 0.

• The Student distribution with ν > 0 degrees of freedom. Assumption
C2(ξ, ρ,A) is fulfilled with ξ = 1/ν and ρ = −2/ν.

Firstly, we focus on the simplest case with J = 2 samples of random variables
X1 and X2. In line with Sections 4.2, 4.3 and 4.4, we propose the following
examples involving Pareto distributions:

(P) As in Proposition 4.1, X1
d
= X2 = P(1/ξ), i.e. both samples are i.i.d.

replications of a Pareto distribution with ξ = 0.25. In this setting, we are
supposed to reject (H0) with probability γ = 0.05. We consider the cases
of balanced (n1 = n2) and unbalanced (several values of n1/n2 with fixed
n1 + n2 = 2n) data. Note that in order to be in line with the conditions
of Corollary 3.1, we take 1− βj,n = n(1− βn)/nj , j ∈ {1, 2}.
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(Pλ) As in Proposition 4.2, X1 follows a Pareto distribution, and X2
d
= λnX1,

where (λn) fulfills the conditions of Proposition 4.2. This case is interesting
(and pretty complicated) since the extreme quantiles of both distributions
asymptotically coincide (as n → ∞). However, in our finite sample size
setting, λn ̸= 1 and we expect the test to reject (H0). The empirical non-
rejection probabilities pλn(0.05) as well as their approximations calculated
in Section 4.3 are computed for ξ ∈ {0.15; 0.25; 0.35; 0.5}, λn = 1.2 (=
1 + 2/n1/3) and ξ = 0.25, λn ∈ {1.1; 1.2; 1.3; 1.4}. We finally propose to
fix λ ∈ {1.2; 1.5} and compute the empirical non-rejection probabilities
when the sample size n ∈ {500; 1, 000; 5, 000} varies (with ξ = 0.25 and
βn ≡ 0.9).

(Pθ) As in Proposition 4.3, X1 follows a Pareto distribution, and X2
d
= Xθn

1 ,
where (θn) fulfills the conditions of Proposition 4.3. Here also, the two
distributions (and quantiles) are asymptotically the sames, but are slightly
different with n = 1, 000 < ∞. The empirical non-rejection probabilities
pθn(0.05) as well as their approximations calculated in Section 4.4 are
computed for ξ = 0.25 and θn = 1+k/n1/3, 1 ≤ k ≤ 4. We finally propose
to fix θ ∈ {1.1; 1.3} and compute the empirical non-rejection probabilities
when the sample size n ∈ {500; 1, 000; 5, 000} varies (with ξ = 0.25 and
βn ≡ 0.9).

We limited ourselves to βn = 0.9 (≈ 1− 3/
√
n when n = 1, 000) everywhere for

convenience, in order to fulfill the assumptions of Propositions 4.1, 4.2 and 4.3.
The results are reported in Figure 2.
It clearly appears that the rejection rate is increasing with L. Moreover, the
rejection rate tends to be slightly greater when the two sample sizes differ. For
only moderately imbalanced samples, the results remain however very close to
the balanced case (the imbalanced case is thus omitted in the following simula-
tions). Finally, the type-I and type-II error approximations calculated in Propo-
sitions 4.1, 4.2 and 4.3 are remarkably accurate; see Figure 2. We now expand
the framework of this simulation study by considering other heavy-tailed distri-
butions (i.e., belonging to the Fréchet MDA). For that purpose, we propose to
study the following situations (still with J = 2 samples):

(F1) X1
d
= X2, i.e., both samples are i.i.d. replications of a heavy-tailed dis-

tribution. In this setting, we are supposed to reject (H0) with probabil-
ity γ = 0.05. Several distributions are considered: Burr (with ρ = −1),
Fréchet, GPD and Student, with ξ = 0.25 and 1.

(F2) X1 follows a Fréchet distribution, and X2 follows a Burr distribution with
ρ = −5, −1 or −0.5, and ξ = 0.25 in both cases (the empirical results
are not sensitive to the value of ξ here). In this context, the two extreme
quantiles are asymptotically equivalent, and (H0) should be rejected with
probability γ = 0.05.

(F3) X1 and X2 follow Fréchet distributions with different shape parameters.
The null (H0) thus has to be rejected.

(F4) X1 follows a GPD distribution, and X2 follows a Student distribution. We
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Fig 2. Empirical (solid curves) and approximated (dashed curves) type I (top left panel) and
type II (other panels) errors obtained for 10,000 replications, as shown as functions of L.
Top left: Example (P) with ξ = 0.25 and: n1 = n2 = 1, 000 (blue), n1 = 1.5n2 = 1, 200
(green), n1 ≈ 2n2 = 1, 333 (purple), n1 = 3n2 = 1, 500 (brown) and n1 = 4n2 = 1, 600
(red). Top middle: Example (Pθ) with ξ = 0.25 and θn = 1.1 (green curves), θn = 1.2 (brown
curves), θn = 1.3 (blue curves) and θn = 1.4 (red curves). Top right: same setting with a
fixed θ = 1.1 (dotted curves) or 1.3 (solid curves), and n = 500 (red), 1,000 (green) or 5,000
(blue). Bottom left: Example (Pλ) with λn = 1.2 and ξ = 0.15 (blue curves), ξ = 0.25 (green
curves), ξ = 0.35 (purple curves) and ξ = 0.5 (red curves). Bottom middle: same setting with
ξ = 0.25 and λn = 1.1 (blue curves), λn = 1.2 (green curves), λn = 1.3 (purple curves) and
λn = 1.4 (red curves). Bottom right: same setting with a fixed λ = 1.2 (dotted curves) or 1.5
(solid curves), and n = 500 (red), 1,000 (green) or 5,000 (blue). In all examples, n = 1, 000,
βn = 0.9, γ = 0.05 and αℓ,n = 1− ℓ/n, ℓ = 1, . . . , L.

choose among ξ ∈ {0.25, 0.5, 0.75, 1} for both distributions, leading to a
situation where the shapes are identical, but not the scales. The null (H0)
is thus supposed to be rejected.

(F5) X1 and X2 follow Student distributions with different degrees of freedom.
The tail indices are therefore different, and (H0) has to be rejected.

The results are reported in Figure 3.
Interestingly, the type I error seems to be decreasing with ρ. Indeed, for small
values of ρ (let us say ρ ≤ −1), the choice of L = 2 seems to be the best calibrated
one in terms of type I error. However, when ρ is close to 0, the rejection rate
is too low if L is small, and a choice of a large L is thus more suited. Through
additional simulations (considering τℓ = ℓ and several Burr distributions with
different values of ρ or Generalized Pareto distributions), we observed that for
n = 1, 000, a choice of L ≈ 20 seems to be optimal when ρ = −0.75 (i.e. the
rejection rate is around 5%). Similarly, L ≈ 50 is tailored when ρ = −0.5, and
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Fig 3. Empirical type-I (top panels) and type-II (bottom panels) errors obtained for 10,000
replications, shown as functions of L. Top row, left and middle displays: Example (F1) with
ξ = 0.25 (left) and 1 (middle). The underlying distribution is a Burr with ρ = −1 (blue),
Fréchet (green), GPD (red) and Student (purple) distribution. Top row, right display: Exam-
ple (F2) with ρ = −5 (blue), −1 (green) and −0.5 (red). Bottom row, left display: Example
(F3) where the shape parameters are 0.25 vs 0.275 (red), 0.25 vs 0.3 (purple), 0.25 vs 0.325
(green) and 0.25 vs 0.35 (blue). Bottom row, middle display: Example (F4) with ξ = 0.25
(blue), 0.5 (green), 0.75 (purple) and 1 (red). Bottom row, right display: Example (F5), where
the degrees of freedom are 2 vs 1 (blue), 2 vs 4 (green), 2 vs 4/3 (purple), 10/6 vs 4/3 (brown)
and 2 vs 10/6 (red).

L ≈ 80 in the challenging case ρ = −0.25. The results are similar for Burr and
Generalized Pareto distributions, and are apparently only sensitive to ρ, and
not to the distribution itself. A prior estimation of ρ (using for instance the
estimators of [16]) may thus be useful to select the parameter L yielding the
best calibration of the type I error. Results for examples with J > 2 are reported
in Appendix B.

6. Applications on real data

6.1. Analysis of stock market indices

We use log-returns for J = 10 stock market indices, namely AEX (Netherlands),
CAC 40 (France), Cboe UK 100 (United Kingdom), DAX (Germany), S&P
MERVAL (Argentina), MOEX (Russia), NASDAQ (United States), Nikkei 225
(Japan), SSE Composite (China) and TA-125 (Israel), to assess performance
differences across different stock indices. Similarly to [22, 29], we focus on the
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Mean (10−4) Var. (10−4) ξ̂Hj (βn) q̂Hj (βn) (10−2)

AEX 2.81 1.67 0.343 1.40
CAC40 2.63 1.99 0.417 1.40

Cboe UK 100 0.23 1.42 0.439 1.17
DAX 2.78 2.06 0.454 1.37

S&P MERVAL 24.7 188 0.382 3.28
MOEX 0.70 4.30 0.442 1.48

NASDAQ 5.55 2.92 0.376 1.85
Nikkei 225 4.70 1.58 0.356 1.51

SSE Composite 1.06 1.10 0.401 1.16
TA-125 2.14 1.44 0.334 1.32

Table 1
Application to stock market indices. Columns report empirical mean, variance, tail index

and intermediate βth
n quantile of the n = 1, 000 log-returns for each financial index.

tail behaviour of log-returns for different stock indices and apply the ANOVEX
procedure to test whether their tails are equal. Data were collected on Yahoo
Finance by taking the last 1,001 adjusted closing prices before June 16, 2023
(included), leading to 10 samples of n = 1, 000 log-returns. Data are summarised
in Table 1 and Figure 6, and Figure 7 shows exponential QQ-plots of weighted

log-spacings i log(X
(j)
n−i+1,n/X

(j)
n−i,n), for i = 1, . . . , 100 and j = 1, . . . , 10. The

heavy-tail assumption seems valid here since all QQ-plots are close to a straight
line with slope ξj , the worst linear fit being observed for NASDAQ and MOEX
indices. We consider βn = 0.9, αℓ,n = 1 − ℓ/n for all ℓ = 1, . . . , L, and a
confidence level of 95%, such that γ = 0.05.

A first ANOVEX test with L = 2 and J = 10 shows that (H0) is clearly
rejected, the p-value being 1.51 × 10−4. Since the rejection rate is increasing
with L (see Section 5), one can reasonably conclude that all tails are not equal.
In Table 1, the S&P MERVAL index appears to be significantly different from
the others. This is confirmed by separately testing the S&P MERVAL against
all the other indices: all bivariate ANOVEX tests are rejected with L = 2.

In the following, we exclude S&P MERVAL from the study and test the
equality of the remaining J = 9 tails. With L = 2, the ANOVEX test is no
longer rejected, the p-value being 0.132, but we find that it is strongly rejected
when L is increased to larger values. As suggested in Section 5, we propose to
select L so as to calibrate the type I error. First, Table 1 reports the tail indices
estimated around 0.3-0.4 for all of the 9 samples. Moreover, using the R function
mop in the Expectrem package, the second-order parameter ρ is estimated at
ρ̂ ≃ −0.7 in all 9 samples. To choose an appropriate value of L, we perform a
simulation study with 9 samples of size 1, 000 following a Burr distribution with
γ = 0.35 and ρ = −0.7. We obtain that L = 30 provides a type I error around
γ = 0.05, and we therefore set L = 30. With this choice, (H0) is rejected for the
stock indices, with a p-value of 2.3× 10−3, and we conclude that the log-return
tails are significantly different.
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To precisely explore which groups of stock indices show different tail be-
haviour, we study the p-values of the ANOVEX tests for pairs of samples in
Table 2. The log-returns of the European stock market indices (AEX, CAC 40,
Cboe UK 100 and DAX) could be gathered in a first group with homogeneous
tail behaviour by further including Nikkei 225. Indeed, none of the pairwise tests
is rejected for this group of 5 samples, and the p-value for the test of the whole
group with J = 5 is 0.335). These results are in line with results in [22], where
one of the groups is composed of France, Germany, Japan, UK and US. The
only difference here is that the ANOVEX test excludes the US index NASDAQ
from this group. In the study of [29], the CAC 40, FTSE 100 (another UK stock
market index) and Nikkei 225 are gathered together, i.e., they share similar tail
indices. Based on the pairwise p-values, we can also pool the NASDAQ (which is
significantly different from the AEX and Cboe UK 100) and the MOEX (which
is also very different from the AEX) in a second group, and a last group could
be composed of the SSE Composite, with tail behaviour different from DAX,
MOEX and the NASDAQ, present in the other two groups) and TA-125, for
which (H0) is most of the time rejected. We point out that some of the preced-
ing results could be affected by the fact the multiple tests were performed, but
we do not apply any correction for multiple tests, which would be intricate in
our setting of multiple dependent tests and is not the focus of this work.

We obtain four clusters : 1) AEX, CAC 40, Cboe UK 100, DAX and Nikkei
225; 2) NASDAQ, MOEX; 3) SSE Composite, TA-125; 4) S&P MERVAL. In
view of the exponential QQ-plots of Figure 7, Cluster 2 is composed of the
two indices NASDAQ and MOEX, for which heavy-tail behaviour of log-returns
may be questionable. Finally, we have compared the right-tail of the log-return
distributions. For risk management issues, it may also be interesting to compare
the left-tails (i.e. the losses). By doing the same approach, we find similar results
(and almost the same clusters), with one difference: the Nikkei 225 belongs to
Cluster 3 (with SSE Composite and TA-125) instead of Cluster 1.

6.2. Analysis of daily precipitation in Germany

To illustrate the behaviour of ANOVEX for J > 2 groups, we use the test to
detect nonstationary behaviour in extremes of daily accumulated precipitation
across J = 6 decades for observations collected at weather stations in Germany.
Heavy-tailedness is generally accepted for daily precipitation measurements [23].
We consider two periods: 1961–2020 with only few missing observations at 4342
weather stations, and 1901–1960 with sparser spatial coverage through 920 sta-
tions with few missing observations. For each combination of an observation
series and period with available data, the different samples consist of the obser-
vations for the different decades, either (1901+ (j− 1)× 10)− (1901+ (j× 10))
or (1961+(j−1)×10)− (1961+(j×10)), with j ∈ {1, 2, . . . , 6} and J = 6. We
test (H0) using the asymptotic χ2-distribution under (H0) with γ = 0.05 and
L = 10, and βj,n = βn is chosen to retain kj,n = k = 100 extreme order statistics
for each sample j = 1, . . . , 6. Figure 4 reports results where we highlight gauges
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Fig 4. p-values for German precipitation series. Left: 1901–1960; right: 1961–2020. p-value
intervals are [0.0, 0.05] (dark red, big points), (0.05, 0.5] (lighter red, smaller points), and
(0.5, 1] (grey, small points).

with significant nonstationarity across decades, and we also report relatively
low p-values larger than γ = 0.05. For the 1961–2020 period, the proportion of
gauges with (H0) rejected is around 5% and therefore of the order of γ, which
corresponds to the expected number of type I errors under H0. For 1901–1960,
a higher proportion of 16% of stations has (H0) rejected. Unreported results
for other choices of k and L show relatively stable behaviour of p-values over a
range of k between 50 and 250 for fixed L, with slightly higher values for larger
values of k for which estimation uncertainty is lower, thus indicating no strong
sensitivity to the choice of k. p-values tend to be relatively lower when increasing
L for fixed k, which is natural since the test then considers a larger number L
of extreme quantiles, some of them estimated at lower probability levels, such
that statistical uncertainty decreases and the power of the test increases; how-
ever, we would then test for differences in the distribution of events that may be
less extreme than those considered with L = 10. Follow-up work will include ex-
pert interpretations by climatologists in terms of observation biases and existing
knowledge about local climate systems and potential climate-change effects.

7. Conclusion

The ANOVEX test puts focus on differences in the distribution of the most ex-
treme possible events, for which uncertainties are usually high, especially with
naive approaches not making use of extreme-value statistics for extrapolation.
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The simulation study highlighted that our test is an easy-to-use, interpretable
and efficient tool for detecting different tail behaviours. It is a valuable com-
plement to existing tests that focus on more specific alternative hypotheses,
such as differences in the tail index or, provided that tail indices coincide, in
the tail scale. Our test is particularly powerful for detecting different tail scales
in the case of small tail indices. The number and levels of extreme quantiles
αℓ,n, ℓ = 1, . . . , L, are important hyperparameters of the ANOVEX approach.
In simulations and real-data analyses, we obtain reliable results when setting
αℓ,n = 1−ℓ/n, where the statistical power of the tests tends to increase strongest
when increasing L from the lowest value 2 towards larger values around 10; for
example, this can be seen from the relatively strong negative slopes in type-II
errors for small values of L. The behaviour of the test can be examined for a
range of L-values in practice to better understand its sensitivity to this hyper-
parameter and take better-informed decisions.

In future work, we aim to investigate how an automatic choice of L could
be achieved, for example by establishing an explicit link between L and the
second-order parameter ρ. We also plan to relax certain assumptions, notably
by considering dependent data (dependence across groups, and/or serial depen-
dence within groups). In the current study, we have mainly considered samples
with equal sizes in the error approximations and the simulation study. Although
our theoretical result (Theorem 3.1) allows samples to have different sizes, biases
may arise in practice, particularly when dealing with relatively small samples
and strongly unbalanced sample sizes, resulting in type I error probabilities
deviating significantly from the test level.

Furthermore, we plan to leverage the ANOVEX test statistic for change point
detection. More generally, our test statistic provides a valuable tail dissimilarity
measure for machine-learning tools, such as for making splits in regression trees
and random forests. In recent related work of [26], estimation of a tree was pro-
posed but with a focus solely on the tail index. The approach of [13] adopts a
model-based approach for inferring trees by using the Generalized Pareto Distri-
bution (GPD) for exceedances above a high threshold. In [15], GPD-based ran-
dom forests were developed; however, the tree structure and likelihood weights
are computed in a preliminary step using traditional quantile regression forests.
To extend these existing approaches, an ANOVEX-based procedure could offer
a rapid and robust likelihood-free method for tail prediction, applicable to both
trees and random forests.
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Appendix A: Proofs of the theoretical results

Some technical lemmas are collected in Section A.1 and will be useful to prove
the main results in Section A.2.

A.1. Preliminary results

We first show the following: if all cumulative distribution functions F1, . . . , FJ

are heavy-tailed under (H0), then necessarily their tail-indices are the same.

Lemma A.1. Assume (H0) holds. If Fj ∈ C1(ξj) for j = 1, . . . , J then

(i) ξ1 = · · · = ξJ =: ξ.
(ii) log qj(α) = −ξ log(1− α)(1 + o(1)) for all j = 1, . . . , J as α → 1.

Proof of Lemma A.1. (i) Let us recall that Fj ∈ C1(ξj) implies that there
exists a slowly-varying function Lj such that

qj(α) = (1− α)−ξjLj(1/(1− α)). (15)

It straightforwardly follows that qj0(α)/qj(α) → 0 as α → 1 if ξj > ξj0 and
qj0(α)/qj(α) → +∞ as α → 1 if ξj < ξj0 . The result (i) is thus proved.
(ii) From Lemma A.1(i), one has ξ1 = · · · = ξJ =: ξ and therefore (15) can be
rewritten as

log(qj(α)) = −ξ log(1− α) + log(Lj(1/(1− α))) = −ξ log(1− α)(1 + o(1)),

which proves the result. □
The second lemma provides an asymptotic equivalent of ∆1,n (defined in

Proposition 2.1) as n → ∞.

Lemma A.2. Let E1, . . . , EJ be independent samples. Assume Fj ∈ C1(ξj) for
j = 1, . . . , J .

• For all n ≥ 1 and ℓ = 1, . . . , L, let αℓ,n ∈ (0, 1) such that αℓ,n → 1 as
n → ∞.

• Let q̃j(αℓ,n) be an estimator of the extreme quantile qj(αℓ,n) computed on
the nj-sample Ej such that nj → ∞ as n → ∞ and

σ−1
j,ℓ,n (log q̃j(αℓ,n)− log qj(αℓ,n))

d−→ ξjZj ,

where Z1, . . . , ZJ follow independent standard Gaussian distributions and
for some σj,ℓ,n → ∞ as n → ∞, for all j = 1, . . . , J and ℓ = 1, . . . , L.

Then, under (H0),

∆1,n =
ξ2

L

L∑
ℓ=1

 1

J

J∑
j=1

σ2
j,ℓ,nZ

2
j −

(
1

J

J∑
k=1

σk,ℓ,nZk

)2
 (1 + oP(1)),
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Proof of Lemma A.2 Let us first recall that for all ℓ = 1, . . . , L,

∆1,ℓ,n =
1

J

J∑
j=1

(
log q̃j(αℓ,n)− µ(ℓ)

α,n

)2
with µ(ℓ)

α,n =
1

J

J∑
j=1

log q̃j(αℓ,n).

Under (H0), we have in view of Lemma A.1(i):

log q̃j(αℓ,n) = log qj(αℓ,n) + σj,ℓ,nξZj(1 + oP(1)),

where Z1, . . . , ZJ follow independent standard Gaussian distributions.
Lemma A.1(ii) entails

log q̃j(αℓ,n) = −ξ log(1− αℓ,n)(1 + o(1)) + σj,ℓ,nξZj(1 + oP(1)),

and therefore,

(
log q̃j(αℓ,n)− µ(ℓ)

α,n

)2
= ξ2

(
J∑

k=1

κk,jσk,ℓ,nZk

)2

(1 + oP(1)),

with κj,j = 1− 1/J and κk,j = −1/J if k ̸= j, so that

∆1,ℓ,n =
J − 1

J2
ξ2

J∑
j=1

σ2
j,ℓ,nZ

2
j (1 + oP(1))

− 2

J2
ξ2

∑
1≤j<k≤J

σj,ℓ,nσk,ℓ,nZjZk(1 + oP(1))

= ξ2

 1

J

J∑
j=1

σ2
j,ℓ,nZ

2
j −

(
1

J

J∑
k=1

σk,ℓ,nZk

)2
 (1 + oP(1)).

Finally, without any further assumption, the term ∆1,n may be written as fol-
lows:

∆1,n =
ξ2

L

L∑
ℓ=1

 1

J

J∑
j=1

σ2
j,ℓ,nZ

2
j −

(
1

J

J∑
k=1

σk,ℓ,nZk

)2
 (1 + oP(1)),

which is the desired result. □
The third lemma provides an asymptotic equivalent of ∆2,n (defined in Propo-

sition 2.1) as n → ∞.

Lemma A.3. Let E1, . . . , EJ be J samples. Assume Fj ∈ C1(ξj) for j =
1, . . . , J .

• For all n ≥ 1 and ℓ = 1, . . . , L, let αℓ,n ∈ (0, 1) such that αℓ,n → 1 as
n → ∞.
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• Let q̃j(αℓ,n) be an estimator of the extreme quantile qj(αℓ,n) computed on
the nj-sample Ej such that nj → ∞ > 0 as n → ∞ and

log q̃j(αℓ,n)/ log qj(αℓ,n)
P−→ 1, (16)

for all j = 1, . . . , J and ℓ = 1, . . . , L.

Then, under (H0),

∆2,n = ξ2 varlog((1− αn)1:L)(1 + oP(1)).

Proof of Lemma A.3. Combining (16) with Lemma A.1(ii) yields

log q̃j(αℓ,n) = (log qj(αℓ,n)) (1 + oP(1)) = −ξ log(1− αℓ,n)(1 + oP(1))

so that

µ(ℓ)
α,n =

1

J

J∑
j=1

log q̃j(αℓ,n) = −ξ log(1− αℓ,n)(1 + oP(1)),

for all ℓ = 1, . . . , L, and consequently,

µα,n − µ(ℓ)
α,n = −ξ

1

L

L∑
k=1

κ̃k,ℓ log(1− αk,n)(1 + oP(1)),

where κ̃ℓ,ℓ = 1−L and κ̃k,ℓ = 1 if k ̸= ℓ. Some straightforward calculations lead
to

∆2,n =
1

L

L∑
ℓ=1

(
µα,n − µ(ℓ)

α,n

)2
=ξ2

L− 1

L2

L∑
ℓ=1

(log (1− αℓ,n))
2 − 2

L2

∑
1≤ℓ<ℓ′≤L

log (1− αℓ,n) log (1− αℓ′,n)


(1 + oP(1))

=ξ2

(
1

L

L∑
ℓ=1

(log (1− αℓ,n))
2 − 1

L2

L∑
ℓ=1

L∑
ℓ′=1

log (1− αℓ,n) log (1− αℓ′,n)

)
(1 + oP(1))

=ξ2

[
1

L

L∑
ℓ=1

(log (1− αℓ,n))
2 −

(
1

L

L∑
ℓ=1

(log (1− αℓ,n))
2

)]
(1 + oP(1)),

which is the expected result. □
The next lemma provides precise asymptotic representations associated with

Hill estimators and intermediate quantiles computed on Pareto samples.
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Lemma A.4. Consider two independent samples E1 = {X(1)
1 , . . . , X

(1)
n } and

E2 = {X(2)
1 , . . . , X

(2)
n }, both distributed from a Pareto distribution P(1/ξ), ξ >

0. Let (βn) be an intermediate probability level, q̂j(βn) := X
(j)
⌊n(1−βn)⌋,n and

let ξ̂H
j (βn) be the associated Hill estimators (3), j = 1, 2. Then, the following

asymptotic representations hold:

ξ̂H

j (βn)
d
= ξ +

ξ√
n(1− βn)

Γξ,j

(
1 +OP

(
1√

n(1− βn)

))
, (17)

log

(
q̂j(βn)

qj(βn)

)
d
=

ξ√
n(1− βn)

Γq,j (18)

×

(
1 +OP

(
1√

n(1− βn)

)
+OP(1− βn)

)
, (19)

ξ̂H

1 (βn)− ξ̂H

2 (βn)
d
=

√
2ξ√

n(1− βn)
Γξ

(
1 +OP

(
1

n(1− βn)

))
, (20)

log

(
q̂1(βn)q2(βn)

q1(βn)q̂2(βn)

)
d
=

√
2ξ√

n(1− βn)
Γq

(
1 +OP

(
1

n(1− βn)

)
+OP(1− βn)

)
,

(21)

where Γq,j, Γξ,j, Γq and Γξ are standard Gaussian random variables, j = 1, 2.
Moreover, Equations (20) and (21) also hold for two Pareto samples with dif-

ferent scale parameters: X
(2)
i

d
= λX

(1)
i , λ > 0, i = 1, . . . , n.

Proof of Lemma A.4. Let us introduce kn = ⌊n(1 − βn)⌋ to simplify the
notations. Let j ∈ {1, 2}. First, Rényi’s representation entails that the log-

spacings
(
log(X

(j)
n−i,n)− log(X

(j)
n−kn,n

)
)
, i = 0, . . . , kn − 1 are independent and

exponentially distributed. Hill estimators are thus Gamma distributed:

ξ̂H

j (βn)
d
=

1

kn

kn∑
i=1

E(j)
i ,

where {E(j)
1 , . . . , E(j)

kn
} are i.i.d. realisations of an exponential distribution with

mean ξ. Berry-Esseen Theorem thus yields

ξ̂H

j (βn)− ξ
d
=

ξ√
kn

Γξ,j

(
1 +OP

(
1√
kn

))
,

and (17) is proved. Second, one has, in view of Rényi’s representation:

log

(
q̂j(βn)

qj(βn)

)
d
= E(j)

n−kn,n
− ξ log(n/kn)

d
=

n∑
i=kn+1

E(j)
i

i
− ξ log(n/kn),



S. Girard et al./ANOVEX 29

and thus, introducing Y
(j)
i = (E(j)

i − ξ)/(ξi), the following expansion holds:

√
kn log

(
q̂j(βn)

qj(βn)

)
d
=ξ
√
kn

n∑
i=kn+1

Y
(j)
i

+ ξ
√
kn

(
n∑

i=kn+1

1

i
− log(n/kn)

)
=: ξ(A(j)

n +Bn).

The well-known formula

n∑
i=1

1

i
= log(n) + γ − 1

2n
(1 + o(1)),

(where γ is Euler’s constant) entails that the non-random term can be controlled

as Bn = O(1/
√
kn). Letting σ2

i = E((Y (j)
i )2) and ρi = E(|Y (j)

i |3), Berry-Esseen
Theorem for non identically distributed random variables shows that

∑n
i=kn+1 Y

(j)
i√∑n

i=kn+1 σ
2
i

= Γq,j +OP

 max
i=kn+1,...,n

ρi/σ
2
i√∑n

i=kn+1 σ
2
i

 ,

or equivalently,

A(j)
n =

√√√√kn

n∑
i=kn+1

σ2
i Γq,j +OP

(√
kn max

i=kn+1,...,n
ρi/σ

2
i

)
.

Moreover, σ2
i = 1/i2, ρi = c/i3 with c > 0 so that

n∑
i=kn+1

σ2
i =

1

kn

(
1 +O

(
1

kn

))
− 1

n

(
1 +O

(
1

n

))
=

1

kn

(
1 +O

(
1

kn

)
+O

(
kn
n

))
,

max
i=kn+1,...,n

ρi/σ
2
i = O

(
1

kn

)
,

and therefore A
(j)
n = Γq,j +OP(1/

√
kn) +OP(kn/n). All in all,

√
kn log

(
q̂j(βn)

qj(βn)

)
d
= ξΓq,j +O(1/

√
kn) +OP(kn/n),

and (18) is proved. Moreover, one has

ξ̂H

1 (βn)− ξ̂H

2 (βn)
d
=

(E(1)
1 − E(2)

1 ) + . . .+ (E(1)
kn

− E(2)
kn

)

kn

d
=

L1 + . . .+ Lkn

kn
,
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where {L1, . . . ,Lkn} are i.i.d. realisations of a centered Laplace distribution
with variance 2ξ2. Since the Laplace distribution is log-concave, centered and
symmetric, [24, Theorem 1] may be applied to refine the Berry-Esseen bound
with kn (or equivalently n(1−βn)) instead of

√
kn (or equivalently

√
n(1− βn)),

hence the third result (20). Similarly,

log

(
q̂1(βn)

q̂2(βn)

)
= log

(
q̂1(βn)

q1(βn)

)
− log

(
q̂2(βn)

q2(βn)

)
d
=

n∑
i=kn+1

(E(1)
i − E(2)

i )

i

d
=

n∑
i=kn+1

Li

i
,

and the second result of [24, Theorem 1] can be used to establish the Berry-
Esseen bound. Rewriting

√
kn log

(
q̂1(βn)

q̂2(βn)

)
d
=
√
kn

√√√√ n∑
i=kn+1

1

i2

n∑
i=kn+1

θi,nLi,

with θi,n = 1

i
√∑n

j=kn+1 1/j2
and

∑n
i=kn+1 θ

2
i,n = 1, it thus follows:

n∑
i=kn+1

θi,nLi =
√
2ξΓq

(
1 +OP

(
n∑

i=kn+1

θ4i,n

))
.

Straightforward calculations on Riemann series lead to

n∑
i=kn+1

θ4i,n =

n∑
i=kn+1

1
i4(

n∑
i=kn+1

1
i2

)2 =

∞∑
i=kn+1

1
i4 −

∞∑
i=n+1

1
i4(

∞∑
i=kn+1

1
i2 −

∞∑
i=n+1

1
i2

)2

=
O
(

1
k3
n

)
(

1
kn

+O
(

1
k2
n

)
+O

(
1
n

))2 = O

(
1

kn

)
,

√√√√kn

n∑
i=kn+1

1

i2
=
√
kn

√
1

kn
+O

(
1

k2n

)
+O

(
1

n

)
= 1 +O

(
1

kn

)
+O

(
kn
n

)
.

Combining the previous expansions yields the expected result (21). To con-
clude, since the Hill estimator is scale invariant, Equation (20) also holds if

X
(2)
i ∼ λP(1/ξ), for all λ > 0 and i = 1, . . . , n. By noticing that, in this case,

q̂2(βn)/(λq1(βn))
d
= q̂1(βn)/q1(βn), Equation (21) holds true as well. □
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A.2. Proofs of main results

Proof of Proposition 2.1. The representation follows from the usual way of de-
composing sums of squares in ANOVA-like analyses:

∆n =: ∆1,n +∆2,n +∆3,n

=
1

JL

J∑
j=1

L∑
ℓ=1

(
log q̃j(αℓ,n) + µ(ℓ)

α,n − µ(ℓ)
α,n − µα,n

)2
=

1

JL

J∑
j=1

L∑
ℓ=1

(
log q̃j(αℓ,n)− µ(ℓ)

α,n

)2
+

1

JL

J∑
j=1

L∑
ℓ=1

(
µ(ℓ)
α,n − µα,n

)2
+

2

JL

J∑
j=1

L∑
ℓ=1

(
µ(ℓ)
α,n − µα,n

)(
log q̃j(αℓ,n)− µ(ℓ)

α,n

)
. (22)

The interaction term in (22) satisfies ∆3,n = 0, which can be shown by switching
the summations with respect to j and ℓ:

∆3,n =
2

JL

L∑
ℓ=1

J∑
j=1

(
µ(ℓ)
α,n − µα,n

)(
log q̃j(αℓ,n)− µ(ℓ)

α,n

)

=
2

L

L∑
ℓ=1

(
µ(ℓ)
α,n − µα,n

) 1

J

J∑
j=1

(
log q̃j(αℓ,n)− µ(ℓ)

α,n

)
= 0,

following the definition of µ
(ℓ)
α,n. □

Proof of Theorem 3.1. First, (5) and Lemma A.2 entail

∆1,n =
ξ2

L

L∑
ℓ=1

σ̄2
ℓ,n

 1

J

J∑
j=1

Z2
j −

(
1

J

J∑
k=1

Zk

)2
 (1 + oP(1))

d
=

ξ2

J

(
1

L

L∑
ℓ=1

σ̄2
ℓ,n

)
χ2
J−1(1 + oP(1))

=
ξ2

J
σ̄2
nχ

2
J−1(1 + oP(1)),

where Z1, . . . , ZJ follow independent standard Gaussian distributions. Second,
remark that (5) and σ̄ℓ,n → 0 imply (16) so that Lemma A.3 yields ∆2,n =
ξ2 varlog((1− αn)1:L)(1 + oP(1)), and consequently,

J varlog((1− αn)1:L)

σ̄2
n

∆1,n

∆2,n

d
= χ2

J−1(1 + oP(1)),

which proves the result. □
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Proof of Corollary 3.1. Under (H0), [7, Theorem 4.3.8] entails the following
representation for all j = 1, . . . , J and ℓ = 1, . . . , L:

log
(
q̂W

j (αℓ,n |βj,n)
)
= log (qj(αℓ,n)) +

log
(

1−βj,n

1−αℓ,n

)
√
nj(1− βj,n)

ξjZj(1 + oP(1)), (23)

where Z1, . . . , ZJ are independent standard Gaussian random variables. More-
over, taking account of ξj = ξ from Lemma A.1(i), nj/n → λj and (1−βj,n)/(1−
βn) → 1/λj as n → ∞ for all j = 1, . . . , J yields

log
(
q̂W

j (αℓ,n |βj,n)
)
= log (qj(αℓ,n)) +

log
(

1−βn

1−αℓ,n

)
√
n(1− βn)

ξZj(1 + oP(1)),

since log
(

1−βj,n

1−αℓ,n

)
∼ log

(
1−βn

1−αℓ,n

)
as n → ∞. As a consequence,√

n(1− βn)

log
(

1−βn

1−αℓ,n

) (log (q̂W

j (αℓ,n |βj,n)
)
− log (qj(αℓ,n))) = ξZj(1 + oP(1)),

and (5) holds with σ̄ℓ,n =
log

(
1−βn

1−αℓ,n

)
√

n(1−βn)
. The result follows from Theorem 3.1. □

Proof of Proposition 4.1 In the case where J = 2, ∆1,n can be simplified as

∆1,n =
1

4L

L∑
ℓ=1

(log q̃1(αℓ,n)− log q̃2(αℓ,n))
2
.

Using the Weissman estimator (2) and the Hill estimator (3), we have, for j =
1, 2:

log q̂W

j (αℓ,n |βn) = log qj(αℓ,n)+ log

(
1− βn

1− αℓ,n

)(
ξ̂H

j (βn)− ξ
)
+ log

(
q̂j(βn)

qj(βn)

)
,

(24)
and therefore

log q̂W

1 (αℓ,n |βn)− log q̂W

2 (αℓ,n |βn) = log

(
1− βn

1− αℓ,n

)(
ξ̂H

1 (βn)− ξ̂H

2 (βn)
)

+ log

(
q̂1(βn)

q1(βn)

)
− log

(
q̂2(βn)

q2(βn)

)
. (25)

Since X
(1)
i and X

(2)
i are Pareto distributed for i = 1, . . . , n, Equations (20)

and (21) of Lemma A.4 yield

ξ̂H

1 (βn)− ξ̂H

2 (βn)
d
=

√
2ξ√

n(1− βn)
Γξ

(
1+OP

(
1

n(1− βn)

))
(26)

log

(
q̂1(βn)

q1(βn)

)
− log

(
q̂2(βn)

q2(βn)

)
d
= (27)

√
2ξ√

n(1− βn)
Γq ×

(
1 +OP

(
1

n(1− βn)

)
+OP(1− βn)

)
(28)
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where Γq and Γξ are two independent standard Gaussian random variables.
Hence, plugging (26) and (27) into (25), it follows that

log q̂W

1 (αℓ,n |βn) − log q̂W

2 (αℓ,n |βn)

d
=

log
(

1−βn

1−αℓ,n

)
√
n(1− βn)

√
2ξΓξ

(
1 +OP

(
1

n(1− βn)

))
+

√
2ξ√

n(1− βn)
Γq

(
1 +OP

(
1

n(1− βn)

)
+OP(1− βn)

)
.

Taking account of αℓ,n = 1− τℓ/n, the above equality can be rewritten as

log q̂W

1 (αℓ,n |βn)− log q̂W

2 (αℓ,n |βn)

d
=

1√
n(1− βn)

{
log

(
n(1− βn)

τℓ

)√
2ξ Γξ

(
1 +OP

(
1

n(1− βn)

))
+
√
2ξΓq

+ OP

(
1

n(1− βn)

)
+OP(1− βn)

}
d
=

1√
n(1− βn)


√

1 +

(
log

(
n(1− βn)

τℓ

))2√
2ξΓ

+OP

(
log(n(1− βn)

n(1− βn)

)
+OP(1− βn)

}
,

where Γ is a standard Gaussian random variable, and consequently,

∆1,n
d
=

1

4L

L∑
ℓ=1

 √
2ξ√

n(1− βn)

√
1 +

(
log

(
n(1− βn)

τℓ

))2

Γ

2

(
1 +OP

(
1

n(1− βn)

)
+OP

(
1− βn

log(n(1− βn))

))
d
=

ξ2Γ2

2

1 + Sn(βn, τ1:L)

n(1− βn)

(
1 +OP

(
1

n(1− βn)

)
+OP

(
1− βn

log(n(1− βn))

))
.

Similarly, one can easily prove, thanks to the choice αℓ,n = 1− τℓ/n, that

∆2,n =
1

L2

[
L

L∑
ℓ=1

(
log q̂W

1 (αℓ,n |βn) + log q̂W
2 (αℓ,n |βn)

2

)

−

(
L∑

ℓ=1

log q̂W
1 (αℓ,n |βn) + log q̂W

2 (αℓ,n |βn)

2

)2


= varlog(τ1:L)

(
ξ̂H
1 (βn) + ξ̂H

2 (βn)

2

)2

= ξ2 varlog(τ1:L)

(
1 +OP

(
1√

n(1− βn)

))
. (29)
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Combining the two previous results, we get the following first-order approxima-
tion of ∆1,n/∆2,n:

∆1,n

∆2,n

d
=

Γ2

2 varlog(τ1:L)

1 + Sn(βn, τ1:L)

n(1− βn)(
1 +OP

(
1√

n(1− βn)

)
+OP

(
1− βn

log(n(1− βn))

))
,

and, in view of (9) the test statistic Tn becomes, under the condition (1 −
βn) log(n) → 0 as n → ∞:

Tn = Γ2

(
1 +

1

Sn(βn, τ1:L)

)(
1+OP

(
1√

n(1− βn)

)
+OP

(
1− βn

log(n(1− βn))

))

and the result is proved. □
Proof of Proposition 4.2. As a consequence of (24) in the proof of Proposi-

tion 4.1, one has

log q̂W

1 (αℓ,n |βn)− log q̂W

2 (αℓ,n |βn) = log

(
q1(αℓ,n)

q2(αℓ,n)

)
+ log

(
1− βn

1− αℓ,n

)(
ξ̂H

1 (βn)− ξ̂H

2 (βn)
)

+ log

(
q̂1(βn)

q1(βn)

)
− log

(
q̂2(βn)

q2(βn)

)
.

Besides, q2(αℓ,n) = λnq1(αℓ,n) and Equations (20), (21) in Lemma A.4 entail:

ξ̂H

1 (βn)− ξ̂H

2 (βn)
d
=

√
2ξ√

n(1− βn)
Γξ

(
1 +OP

(
1

n(1− βn)

))
,

log

(
q̂1(βn)

q1(βn)

)
− log

(
q̂2(βn)

q2(βn)

)
d
=

√
2ξ√

n(1− βn)
Γq

(
1 +OP

(
1

n(1− βn)

)
+OP(1− βn)

)
,

where Γξ and Γq are standard Gaussian random variables. Taking account of
αℓ,n = 1− τℓ/n and introducing kn = n(1− βn) to simplify the notations yields

log q̂W

1 (αℓ,n |βn)− log q̂W

2 (αℓ,n |βn) + log(λn)

=

√
2ξ log (kn/τℓ)√

kn
Γξ

(
1 +OP

(
1

kn

))
+

√
2ξ√
kn

Γq

(
1 +OP

(
1

kn

)
+OP(1− βn)

)

=

√
2ξ

√
1 + log (kn/τℓ)

2

kn
Γ

(
1 +OP

(
1

kn

)
+OP

(
1− βn

log(kn)

))
,
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where Γ is a standard Gaussian random variable. Then, recalling that

Sn(βn, τ1:L) =
1

L

L∑
ℓ=1

(
log

(
kn
τℓ

))2

, sn(βn, τ1:L) =
1

L

L∑
ℓ=1

√
1 +

(
log

(
kn
τℓ

))2

,

it follows:

∆1,n =
1

4L

L∑
ℓ=1

(log q̂W

1 (αℓ,n |βn)− log q̂W

2 (αℓ,n |βn))
2

=
(log(λn))

2

4
− ξ√

2

log(λn) sn(βn, τ1:L)√
kn

Γ

(
1+OP

(
1

kn

)
+OP

(
1− βn

log(kn)

))
+

ξ2

2

(1 + Sn(βn, τ1:L))

kn
Γ2

(
1 +OP

(
1

kn

)
+OP

(
1− βn

log(kn)

))
.

Assumption (i) entails (log(kn))
2
/k2n ∨ log(kn)/n = o((log(λn))

2
) while condi-

tion log(n)(1 − βn) → 0 implies log(kn)/n = o(1/kn). Besides, remarking that

Sn(βn, τ1:L) ∼ (log(kn))
2
and sn(βn, τ1:L) ∼ log(kn) as n → ∞ yields

∆1,n =
(log(λn))

2

4
− ξ√

2

log(λn) sn(βn, τ1:L)√
kn

Γ +
ξ2

2

(1 + Sn(βn, τ1:L))

kn
Γ2

+OP

(
(log(kn))

2

k2n

)
+OP

(
log(kn)

n

)
+OP

(
log(λn) log(kn)

k
3/2
n

)
+OP

(
log(λn)

√
kn

)
.

Assumption (i) implies in particular log(λn) = O(log(kn)/
√
kn) which, in turn,

entails that the third and fourth OP(·) are respectively bounded above by the
first and second ones. The above expansion can thus be simplified as

∆1,n =
(log(λn))

2

4
− ξ√

2

log(λn) sn(βn, τ1:L)√
kn

Γ +
ξ2

2

(1 + Sn(βn, τ1:L))

kn
Γ2

+OP

(
(log(kn))

2

k2n

)
+OP

(
log(kn)

n

)
.

Similarly to (29) in the proof of Proposition 4.1, one has

∆2,n = ξ2 varlog(τ1:L)

(
1 +OP

(
1√
kn

))
.

Combining the previous two results, and since (log kn)
2/k

3/2
n = o((log(λn))

2),
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in view of (i), we get the following asymptotic expansion of ∆1,n/∆2,n:

∆1,n

∆2,n
=

(log(λn))
2

4ξ2 varlog(τ1:L)

(
1 +OP

(
1√
kn

))
− 1√

2ξ

log(λn) sn(βn, τ1:L)√
kn varlog(τ1:L)

Γ

(
1 +OP

(
1√
kn

))
+

1

2

(1 + Sn(βn, τ1:L))

kn varlog(τ1:L)
Γ2

(
1 +OP

(
1√
kn

))
+OP

(
(log(kn))

2

k2n

)
+OP

(
log(kn)

n

)
=

(log(λn))
2

4ξ2 varlog(τ1:L)
− 1√

2ξ

log(λn) sn(βn, τ1:L)√
kn varlog(τ1:L)

Γ +
1

2

(1 + Sn(βn, τ1:L))

kn varlog(τ1:L)
Γ2

+OP

(
(log(kn))

2

k
3/2
n

)
+OP

(
log(kn)

n

)
+OP

(
(log(λn))

2

√
kn

)
+OP

(
log(λn) log(kn)

kn

)
.

The third and fourth OP(·) are bounded above by the first one since log(λn) =
O(log(kn)/

√
kn) in view of condition (ii), and consequently,

ξ2 varlog(τ1:L)
∆1,n

∆2,n

=
(log(λn))

2

4
− ξ√

2

log(λn) sn(βn, τ1:L)√
kn

Γ +
ξ2

2

(1 + Sn(βn, τ1:L))

kn
Γ2

+OP

(
(log(kn))

2

k
3/2
n

)
+OP

(
log(kn)

n

)
=

(
(log(λn))

2

4
− ξ√

2

log(λn)sn(βn, τ1:L)√
kn

Γ +
ξ2

2

(1 + Sn(βn, τ1:L))

kn
Γ2

)

×

1 +
OP

(
(log(kn))

2

k
3/2
n

)
+OP

(
log(kn)

n

)
(log(λn))2

4 − ξ√
2

log(λn)sn(βn,τ1:L)√
kn

Γ + ξ2

2
(1+Sn(βn,τ1:L))

kn
Γ2

 .

Focusing on the denominator of the above term, condition (ii) shows that√
kn log(λn) → 0 as n → ∞ leading to

(log(λn))
2

4
− ξ√

2

log(λn)sn(βn, τ1:L)√
kn

Γ +
ξ2

2

(1 + Sn(βn, τ1:L))

kn
Γ2

=
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and thus

∆1,n

∆2,n
=
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ξ2 varlog(τ1:L)

(
(log(λn))

2

4
− ξ√
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,

or equivalently,

Tn =
2varlog(τ1:L) kn
Sn(βn, τ1:L)
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.

The result follows. □
Proof of Remark 3. From Proposition 4.2, one has

P
(
Tn ≤ χ2
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)
= P

(
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)

where
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√
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are two non random sequences and
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(
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)
+OP
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)
are two random variables. It straightforwardly follows that
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=

√
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and
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=
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2
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2 .

Moreover, in view of (i) and log(n)(1− βn) → 0, one has:
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Besides, (i′) is equivalent to (log(kn))
2/k

3/4
n ∨

√
(log(kn))3/n = o(log(λn)) and

thus
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=
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,

where

Ω2,n =
(log(λn))
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A second-order Taylor expansion shows that sn(βn, τ1:L)
2−1−Sn(βn, τ1:L) → 0

as n → ∞. Besides, since Sn(βn, τ1:L) ∼ (log kn)
2 as n → ∞, it follows from

(ii) that Ω2,n → χ2
1,1−γ as n → ∞. As a consequence, Ωn is positive for n large

enough. Hence,

P
(
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)
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(
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(
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,

and the proposed approximation follows. □
Proof of Proposition 4.3. Following the steps of the proof of Proposition 4.2,

one has:

log

(
q̂W
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First, we establish a result similar to those of Lemma A.4 adapted to our setting.
Equations (17) and (18) yield:
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=
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since {E(2)
1 , . . . , E(2)

kn
} are i.i.d. realisations of an exponential distribution with

mean ξ. It thus comes
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Similarly,
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and one thus has
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.

Moreover, q2(αℓ,n) = q1(αℓ,n)
θn and q1(αℓ,n) = (τℓ/n)

−ξ, hence
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and replacing in (30) yields
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where we have introduced kn = n(1 − βn). Using (i), one has log(kn)/k
3/4
n ∨√

log(kn)/n = o(log(θn)) and taking account of log(n)(1− βn) → 0 as n → ∞,
it follows
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where it is recalled that
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The condition log(θn) = o(1/
√
kn) in (ii) ensures that the first and second OP

are bounded from above by the two others, hence
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In addition, straightforward calculations lead to

∆2,n = varlog(τ1:L)

(
ξ̂H
1 (βn) + ξ̂H

2 (βn)

2

)2

= ξ2 varlog(τ1:L)

(
1 + θn

2

)2(
1 +OP

(
1√
kn

))
.

Combining the previous two results, the following asymptotic expansion of
∆1,n/∆2,n follows:
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Condition (ii) implies log(θn)
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Therefore, the test statistics can be written as
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and the result is proved. □
Proof of Remark 4. Let us introduce the two non-random sequences
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hence, under (i′), one has (log(kn))
2/k

3/4
n ∨

√
(log(kn))3/n = o(log(θn)), and

therefore

b2n
4a2n

− Cn

an
= Ψ2,n

(
1 +OP

(
1√
kn

)
+OP

(
1− βn

log(kn)

))
,

where

Ψ2,n =
(θn − 1)2kn
(1 + θ2n)

sn(βn, τ1:L)
2 − (1 + Sn(βn, τ1:L)) smlog(n/τ1:L)

(1 + Sn(βn, τ1:L))
2

+
(1 + θn)

2

(1 + θ2n)

Sn(βn, τ1:L)

1 + Sn(βn, τ1:L)

χ2
1,1−γ

2
.

It appears that Ψ2,n → χ2
1,1−γ as n → ∞ under the condition log(n) =

O(log(kn)) and thus Ψ2,n > 0 for n large enough. As a consequence, one has
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leading to the proposed approximation. □

Appendix B: Simulation results for J > 2 samples

In extension of the simulation study in Section 5, we consider some examples
where J > 2, more specifically J ∈ {5, 10, 15}:

(MF) X1, . . . , XJ all follow an unit (ξ = 1) Fréchet distribution. We are thus
supposed to reject (H0) with probability 0.05. This distribution has no
mean, and the classical ANOVA is thus not applicable.

(MM) For all j = 1, . . . , J , Xj follows an unit Pareto distribution if j = 4k + 1,
an unit Fréchet distribution if j = 4k + 2, an unit Burr(−1) distribution
if j = 4k + 3 and an unit GPD if j = 4(k + 1) (k ∈ N). The extreme
quantiles of all these distributions are asymptotically equivalent and (H0)
is thus satisfied.

(MP) X1, . . . , XJ−1 all follow an unit Pareto distribution, and XJ follows a
Pareto distribution with tail index θ. If θ ̸= 1, then (H0) obviously has to
be rejected. We propose to consider the cases θ = 0.8 and θ = 1.2.

(CP) X1, . . . , XJ−1 all follow an unit Burr distribution (with ρ = −1), andXJ
d
=

πX1 +(1− π)
√
X1 is a contaminated Burr distribution (π ∈ [0, 1]). When

π < 1, the quantiles of XJ are asymptotically equivalent to π(1 − τ)−1

and differ from those of X1, . . . , XJ−1 which are asymptotically equivalent
to (1 − τ)−1, and we thus hope to reject (H0). We consider the cases
π ∈ {0.2, 0.5, 0.8}.
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The results are reported in Figure 5. Unsurprisingly, the error rates are in-
creasing with the number J of samples. Comparing the first two examples, it
seems that the type I error is not significantly sensitive to the underlying distri-
bution (for two distributions with the same second-order parameter ρ, confirm-
ing the observation made in the previous paragraph). Example (MP) shows
that, in more than 65% of the replications, the ANOVEX procedure is able
detect whether a sample over 5 has a slightly lower tail index (0.8 vs 1 for the
4 other samples). The result drops at 50% when a sample has a slightly greater
tail index (1.2 vs 1). The ANOVEX test is thus efficient to discriminate sam-
ples with different tail indices. However, the latter is less efficient when all the
samples share the same tail index, but have different scale parameters. Indeed,
example (CP) shows that, when the mixture parameter π is slightly lower than
1 (0.8), the test is rejected with a rate of only 10% (when J = 5, 10 or 15). This
rate is obviously much better when π = 0.5 (more than 25 % when J = 5) and
π = 0.2 (almost 100%).

Appendix C: Additional figures for real-data application

Figures 6 and 7 present additional information related to the financial data
analysed in Section 6.
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Fig 5. From left to right, top to bottom: examples (MF), (MM), (MP) with θ = 0.8 (solid
curves) and θ = 1.2 (dashed curves), and (CP) with π = 0.2 (dotted curves), π = 0.5 (dashed
curves) and π = 0.8 (solid curves). In all examples, n = 1, 000, βn = 0.9 and J = 5 (blue
curves), J = 10 (green curves) and J = 15 (red curves).
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Fig 6. n = 1, 000 log-returns associated with J = 10 stock market indices.
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Fig 7. Exponential QQ-plots of the weighted log-spacings associated with the daily log-returns
computed from 10 financial indices.
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