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Abstract

Analysis of variance (ANOVA) is commonly employed to assess differences in the means of in-

dependent samples. However, it is unsuitable for evaluating differences in tail behaviour, especially

when means do not exist or empirical estimation of moments is inconsistent due to heavy-tailed

distributions. Here, we propose an ANOVA-like decomposition to analyse tail variability, allowing

for flexible representation of heavy tails through a set of user-defined extreme quantiles, possibly

located outside the range of observations. Building on the assumption of regular variation, we

introduce a test for significant tail differences among multiple independent samples and derive

its asymptotic distribution. We investigate the theoretical behaviour of the test statistics for the

case of two samples, each following a Pareto distribution, and explore strategies for setting hy-

perparameters in the test procedure. To demonstrate the finite-sample performance, we conduct

simulations that highlight generally reliable test behaviour for a wide range of situations. The

test is applied to identify clusters of financial stock indices with similar extreme log-returns and

to detect temporal changes in daily precipitation extremes at rain gauges in Germany.

Keywords: Extreme-value analysis, Analysis of variance, Heavy tails, Extreme quantiles, Hy-

pothesis testing.

2020 MSC: 62G32, 62H15, 62E20.

1 Introduction

Let us consider data composed of J samples of independent and identically distributed (i.i.d.) realisa-

tions of random variables with cumulative distribution functions F1, . . . , FJ , respectively, where J > 1.

Given that Fj has mean µj for j = 1, . . . , J , the classical ANalysis Of VAriance (ANOVA) tests the

equality of these J means through a statistic based on the decomposition of the total variance into

intra-class and inter-class variances [Scheffe, 1999]. However, this approach to detect data heterogene-

ity suffers from some limitations. First, the asymptotic properties of the test statistic are obtained

under Gaussian assumptions. Moreover, testing the equality of means always requires the existence

of the first moment, and even of the second moment in the ANOVA setting, whereas such conditions

are not fulfilled by many distributions. Certain extensions relax these conditions by proposing, for

instance, to test equality of medians, as in [Hollander et al., 2013, Chapter 6] where no finite moments
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are required, or to use rank-transform procedures [Marden and Muyot, 1995], or to generalize ANOVA

by assuming only the existence of low-order moments, as in [Rizzo and Székely, 2010]. However,

these extensions focus on statistics describing only the central behaviour of the distribution, and are

therefore unable to detect heterogeneity in the distribution tails.

An accurate specification of the tail is crucial to anticipate the consequences of rare events and is

often required for risk management [Embrechts et al., 1999]. Distributions can indeed share the same

mean or median but can show strongly contrasted tail behaviours. Many biological, environmental or

physical phenomena are known to be heavy-tailed and possess power-law behaviour [Clauset et al.,

2009]. In finance, the centered log-returns of a financial asset, previously commonly modeled using the

Gaussian distribution, are nowadays rather modeled by a Student’s t distribution to account for their

heavy tails [Jondeau et al., 2007]. In this context, a common assumption for risk management is to

assume that the survival functions (s.f.) associated with F1, . . . , FJ are regularly varying, i.e.,

F j(x) = 1− Fj(x) = x−1/ξjL(j)(x),
Lj(tx)

Lj(x)
→ 1, x → ∞, t > 0, j = 1, . . . , J, (1)

where ξj > 0 is called the tail-index and Lj is a slowly-varying function. In the extreme-value theory,

condition (1) characterises the set of distributions with positive tail-index, also known as the Fréchet

maximum domain of attraction, see de Haan and Ferreira [2006, Theorem 1.2.1]. Such distributions

only admit moments of order less than 1/ξj , making ANOVA infeasible in many situations.

Several alternative test procedures focusing on the tail indices ξ1, . . . , ξJ have been proposed in the

literature, and we summarize them without claiming to be exhaustive. Mougeot and Tribouley [2010]

developed an equality test of tail indices based on a nonparametric minimax point of view; Worms

and Worms [2015] introduced a test for comparing tail indices for heavy-tailed distributions via an

empirical likelihood ratio; [Einmahl et al., 2016, Section 3] provided a test for different tail indices

in the setting of heteroscedastic extremes. However, such tests based on tail indices do not take

into account the slowly-varying functions Lj , which could be modified by any positive factor without

affecting nor the tail-index ξj neither the behaviour of classical tail-index estimators. Therefore, in

practice, the tail of a heavy-tailed distribution is usually described by both the tail-index (also called

shape parameter) and a scale parameter. In many applications [Davison and Smith, 1990], the Peaks-

Over-Threshold (POT) method is used where the excesses above a high threshold are approximated by

a Generalized Pareto distribution with both shape and scale parameters. We define extreme quantiles

as having a probability level α = αn → 1 as the sample size n tends to infinity. Two heavy-tailed

distributions have asymptotically equivalent extreme quantiles if and only if they share the same shape

and scale parameters. Extreme quantiles are therefore interesting tools for testing tail heterogeneity.

For instance, Hoga [2017] used extreme quantiles to propose a test for a change point in a series of

random variables, and Deuber et al. [2023] developed quantile-based tests for treatment effects with

heavy-tailed distributions in a causal framework. However, such quantile-based tests usually consider

only a single quantile, which again may be problematic since distributions with very different tail

behaviours can have coinciding quantiles at a given probability level.

Inspired by the ANOVA procedure, we here propose to test for the equality of L extreme quantiles

q1(αℓ,n), . . . , qJ(αℓ,n), ℓ = 1, . . . , L, with L > 1, by decomposing their variability similarly to classical

ANOVA. Using extreme quantiles, we focus on the most extreme possible events, for which classical

statistical techniques that are directly based on the empirical distribution are not applicable. By

jointly studying multiple quantiles, we obtain a precise characterization of tail behaviour and statistical
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uncertainty at extreme levels. This approach is simple, does not require the existence of any moment,

and is based on the general heavy-tail assumption (1) that encompasses a wide class of distributions

commonly used in the literature on risk management, such as the Pareto, Generalized Pareto, Fréchet

or Student’s t distributions.

The remainder of the paper is organized as follows. The new test statistic, called ANOVEX

(ANalysis of Variability in EXtremes), is introduced in Section 2, based on some extreme quantile

estimators. Section 3 provides the asymptotic properties of this test statistic and precisely defines

the ANOVEX test procedure. The statistical power of ANOVEX is discussed in Section 4 thanks to

approximations of type I and type II errors for three examples involving Pareto distributions, where

J = 2. The simulation study in Section 5 highlights the test performance on various simulated settings.

Two real data examples (financial and environmental data) are considered in Section 6. The proofs of

the results are postponed to Appendix A, while some additional figures are provided in Appendix B.

2 Setting of ANOVEX

We consider J > 1 independent samples Ej = {X(j)
i , i = 1, . . . , nj} with j = 1, . . . , J and possibly dif-

ferent sample sizes nj > 1. We assume that the random variables in each Ej are mutually independent

and identically distributed according to the cumulative distribution function Fj . Inspired by ANOVA,

we propose to test the equality of the tail of X(1), . . . , X(J). We focus on the heavy-tailed case by

assuming that condition (1) holds, such that each cumulative distribution function Fj is heavy-tailed

with positive tail-index ξj > 0. More specifically, this property is denoted by Fj ∈ C1(ξj) with the

following definition.

Definition 1 (Class C1(ξ)). The cumulative distribution function F is said to belong to the class C1(ξ),
ξ > 0 if it satisfies condition (1), i.e., if F := 1− F is regularly-varying with index −1/ξ such that

lim
t→∞

F (ty)

F (t)
= y−1/ξ for all y > 0.

This assumption is widely used in many risk management areas, including financial log-returns

[Rachev, 2003], actuarial claim amounts [Mikosch, 1997] or environmental records, such as daily pre-

cipitations in Katz et al. [2002] or other natural phenomena in Pisarenko and Rodkin [2010]. Recall

that a heavy-tailed distribution with tail-index ξ does not have moments of order greater than 1/ξ,

making the use of the classical ANOVA limited to the “reasonably” heavy-tailed distributions fulfilling

ξ < 1/2. As a counter-example, the claim amounts caused by tornadoes have an estimated tail-index

close to 1 in Daouia et al. [2023], and burnt areas of wildfires often have tail-index with values beyond

1/2 [Pereira and Turkman, 2019, Koh et al., 2023].

We here propose to compare extreme quantiles, which do not require the existence of any moment

of the distribution. For asymptotic results, we consider sample sizes nj increasing at the same rate,

i.e., nj/n → λj > 0 as n → ∞, for j = 1, . . . , J . We denote by qj(α) := inf {x ∈ R : α ≤ Fj(x)} the

quantile of distribution Fj at probability level α ∈ (0, 1). The null hypothesis to be tested is

(H0) For all j ̸= j′ ∈ {1, . . . , J}2, qj′(α)/qj(α) → 1 as α → 1.

The tail behaviour of the J samples is summarized through J × L estimators q̃j(αℓ,n) of extreme

quantiles qj(αℓ,n), where αℓ,n → 1 such that n(1 − αℓ,n) → τℓ ≥ 0 as n → ∞, ℓ = 1, . . . , L and
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j = 1, . . . , J . The above conditions imply

P
(

max
i=1,...,nj

X
(j)
i ≤ qj(αℓ,n)

)
= α

nj

ℓ,n → exp (−λjτℓ) ,

as n → ∞, and therefore such quantiles can lie beyond the observation range when τℓ is small. Direct

empirical estimation of such quantiles leads to a high estimation variance and/or bias, so that semi-

parametric estimation is preferable. A classical approach is to use the Weissman estimator [Weissman,

1978], defined as follows:

q̂Wj (αℓ,n |βj,n) = q̂j(βj,n)

(
1− βj,n

1− αℓ,n

)ξ̂j(βj,n)

, (2)

where

• βj,n are intermediate probability levels, i.e., βj,n → 1 and n(1 − βj,n) → ∞ as n → ∞, for

j = 1, . . . , J ;

• q̂j(βj,n) = X
(j)
⌊βjnj⌋,nj

is the empirical quantile of level βj,n in Ej , j = 1, . . . , J , and

• ξ̂j(βj,n) is an estimator of ξj , such as the Hill estimator [Hill, 1975] based on the kj,n := ⌊(1 −
βj,n)nj⌋ largest observations from sample Ej , j = 1, . . . , J :

ξ̂Hj (βj,n) =
1

kj,n

kj,n−1∑
i=0

logXnj−i,nj − logXnj−kj,n,nj . (3)

Inspired by classical ANOVA, we aim at additively decomposing the variance of quantiles into

contributions from the factor (i.e., the sample in our setting) and from the different quantile levels.

Moreover, we work in a log-scale to achieve statistically stable behaviour of differences between log-

quantiles and their averages in the heavy-tailed setting. We write the overall sum-of-squares as

∆n =
1

JL

J∑
j=1

L∑
ℓ=1

(log q̃j(αℓ,n)− µα,n)
2
, with µα,n =

1

JL

J∑
j=1

L∑
ℓ=1

log q̃j(αℓ,n).

With ANOVEX, we propose to decompose this extreme log-quantile variance into two parts: a variance

∆1,n due to the J different samples, and a variance ∆2,n due to the L different quantile levels. This

decomposition is formally proven in the following proposition and is further illustrated in Figure 1.

We construct the ANOVEX test statistic to reject (H0) if ∆1,n/∆2,n exceeds an appropriately fixed

threshold, i.e., if the contribution of the inter-sample variance to the total variance is very strong.

Therefore, the test statistic is straightforward to interpret and to compute. The definition of the

threshold is investigated in the next section.

Proposition 2.1. The decomposition ∆n = ∆1,n +∆2,n holds where

∆1,n =
1

L

L∑
ℓ=1

∆1,ℓ,n (variance due to the different samples),

∆2,n =
1

L

L∑
ℓ=1

(
µ(ℓ)
α,n − µα,n

)2
(variance due to the different quantile levels),
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with the components indexed by ℓ = 1, . . . , L given as

µ(ℓ)
α,n =

1

J

J∑
j=1

log q̃j(αℓ,n) (mean estimation at level ℓ),

∆1,ℓ,n =
1

J

J∑
j=1

(
log q̃j(αℓ,n)− µ(ℓ)

α,n

)2
(variance due to the different samples at level ℓ).
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Figure 1: Illustration of the ANOVEX-decomposition of extreme log-quantile variance with J = 2 for

a standard normal (black curve) and a Student’s t distribution with 3 degrees of freedom (red curve).

The number of extreme quantiles is L = 2 with probability levels chosen at 0.98 and 0.99.

3 Asymptotic distribution of the test statistic

To investigate the asymptotic properties of the ratio ∆1,n/∆2,n, we need the following notations defined

for any positive u1, . . . , uL:

smlog(u1:L) =
1

L

L∑
ℓ=1

log (uℓ)
2
, and varlog(u1:L) =

1

L

L∑
ℓ=1

log (uℓ)
2 −

(
1

L

L∑
ℓ=1

log (uℓ)

)2

, (4)
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which can be viewed respectively as the empirical second moment and variance of (log(u1), . . . , log(uL)).

Our first main result establishes the distribution of the test statistic under (H0), which requires an

appropriate deterministic rescaling factor.

Theorem 3.1. Assume Fj ∈ C1(ξj) for j = 1, . . . , J and the following conditions:

• Extreme probability levels: For all n ≥ 1 and ℓ = 1, . . . , L, the probabilities αℓ,n ∈ (0, 1) satisfy

αℓ,n → 1 as n → ∞.

• Extreme quantile estimator: q̃j(αℓ,n) is estimator of the extreme quantile qj(αℓ,n), computed on

the nj-sample Ej where nj/n → λj > 0 as n → ∞, and satisfies

σ̄−1
ℓ,n (log (q̃j(αℓ,n))− log (qj(αℓ,n)))

d−→ N (0, ξ2j ), (5)

for deterministic normalizing sequences σ̄ℓ,n → 0 as n → ∞, and for all j = 1, . . . , J and

ℓ = 1, . . . , L.

Then, under (H0),
J varlog((1− αn)1:L)

σ̄2
n

∆1,n

∆2,n

d−→ χ2
J−1, (6)

with χ2
J−1 a chi-square random variable with J − 1 degrees of freedom and notation

σ̄2
n =

1

L

L∑
ℓ=1

σ̄2
ℓ,n.

If, moreover, αℓ,n = 1− τℓ/n for ℓ = 1, . . . , L, then (6) can be simplified as

J varlog(τ1:L)

σ̄2
n

∆1,n

∆2,n

d−→ χ2
J−1.

Remark 1 (Use of other risk measures). The result of Theorem 3.1 remains valid if the quantile is

replaced by any other risk measure whose extreme estimator fulfills condition (5). Indeed, the Con-

ditional Tail Expectation (also called Expected Shortfall, introduced in Artzner et al. [1999]), or the

expectile [Newey and Powell, 1987], could be used, since they are asymptotically proportional to the

extreme quantile [El-Methni et al., 2014, Daouia et al., 2018]. Here, we keep the focus on quantiles

since they do not require a finite first moment.

We now study an extreme quantile estimator satisfying the assumptions of Theorem 3.1. Condi-

tion (5) is fulfilled by combining the Weissman estimator (2) with the Hill estimator (3). However, a

stronger second-order assumption, widely used in the extreme-value literature, is necessary. We denote

it by C2(ξ, ρ,A).

Definition 2 (Class C2(ξ, ρ,A)). The distribution F belongs to the class C2(ξ, ρ,A) with tail-index

ξ > 0 and second-order parameter ρ < 0, if there exists a measurable auxiliary function A with

constant sign, satisfying A(t) → 0 as t → ∞, such that

lim
t→∞

1

A(1/F (t))

(
F (ty)

F (t)
− y−1/ξ

)
= y−1/ξ yρ/ξ − 1

ξρ
, for all y > 0.
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Beirlant et al. [2004] lists numerous distributions satisfying this assumption. The function A(·) is
regularly-varying with index ρ. Therefore, when ρ is small, say ρ ≤ −1 (including the Pareto, Burr,

Fréchet distributions), the distribution tail is very close to a Pareto tail, and the Weissman estimator

is very accurate. On the contrary, if ρ is close to 0, as for the Generalized Pareto distribution (ρ = −ξ)

with small positive tail-index, the Weissman approximation remains valid, but becomes very accurate

only relatively far in the tail. Since the Weissman estimator is asymptotically Gaussian under the

second-order condition C2(ξ, ρ,A), condition (5) of Theorem 3.1 holds (see the proof in Appendix),

and we get the following result.

Corollary 3.1. Assume Fj ∈ C2(ξj , ρj , Aj) for j = 1, . . . , J according to Definition 2. Moreover, we

assume the following conditions hold:

• Extreme probability levels: For all n ≥ 1 and ℓ = 1, . . . , L, αℓ,n ∈ (0, 1) satisifies αℓ,n → 1 as

n → ∞.

• Extreme quantile estimator: q̂Wj (αℓ,n |βj,n) is the Weissman estimator (2) of the extreme quantile

qj(αℓ,n) computed on the nj-sample Ej such that, as n → ∞ and for all j = 1, . . . , J and

ℓ = 1, . . . , L,

nj/n → λj > 0,

(1− βj,n)/(1− βn) → 1/λj ,

(1− αℓ,n)/(1− βn) → 0,√
n(1− βn)/ log((1− βn)/(1− αℓ,n)) → ∞.

• Second-order behaviour: the auxiliary function A satisfies√
n(1− βn)Aj

(
(1− βn)

−1
)
→ 0, n → ∞, for all j = 1, . . . , J. (7)

Then, under (H0),

J varlog((1− αn)1:L)n(1− βn)

1
L

L∑
ℓ=1

log
(

1−βn

1−αn,ℓ

)2 ∆1,n

∆2,n

d−→ χ2
J−1, n → ∞. (8)

If, moreover, αℓ,n = 1− τℓ/n for ℓ = 1, . . . , L, then (8) can be simplified as

J varlog(τ1:L)n(1− βn)

Sn(βn, τ1:L)

∆1,n

∆2,n

d−→ χ2
J−1, n → ∞, (9)

where

Sn(βn, τ1:L) =
1

L

L∑
ℓ=1

log

(
n(1− βn)

τℓ

)2

. (10)

We shortly discuss the technical conditions involved in this result. First, the sample sizes n1, . . . , nJ

have to be asymptotically proportional. In practice, they should therefore not be too unbalanced, and

the reference value n could be chosen as the average of nj if they are not equal. Moreover, the

intermediate levels βj,n have to be chosen accordingly, such that the number of order statistics kj,n =

nj(1−βj,n) remains the same in all samples. Second, the condition (7) on the second-order behaviour
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ensures that the Hill estimator is unbiased across all samples. Results for the more general case√
n(1− βn)Aj

(
(1− βn)

−1
)
→ cj ∈ R could also be derived but involve more complicated formulas.

Moreover, bias-reduced versions of the Hill estimator with the same asymptotic variance were proposed

in the literature [Caeiro et al., 2005], and this condition may thus be dropped or replaced by a rather

weak condition on the auxiliary functions Aj .

The proposed ANOVEX test rejects (H0) with asymptotic level γ ∈ (0, 1) when

Tn :=
J varlog(τ1:L)n(1− βn)

Sn(βn, τ1:L)

∆1,n

∆2,n
> χ2

J−1,1−γ , (11)

where χ2
J−1,1−γ denotes the quantile of level 1− γ of the chi-square distribution with J − 1 degrees of

freedom. The test is asymptotically equivalent to

J varlog(τ1:L)n(1− βn)

log (n(1− βn))
2

∆1,n

∆2,n
> χ2

J−1,1−γ .

For accuracy reasons, we adopt the first version (11) of Tn in the sequel.

To sum up, we have constructed a statistical test called ANOVEX to detect whether a set of tail

quantiles is different across different distributions. Unlike classical ANOVA, ANOVEX does not require

a finite variance or even mean and can be applied to a much wider class of heavy-tailed distributions.

Next, we analytically investigate the finite sample behaviour of the test on some simple examples

to study the power of this test. A numerical investigation for more general settings is carried out in

the simulation study in Section 5.

4 Examples of type-I and type-II error approximations

An attractive feature of ANOVEX is its simplicity: it only requires an extreme quantile estimator,

such as the Weissman estimator. For the Pareto distribution, the prototype of regularly-varying

distributions, this simple structure allows us to leverage Rényi’s representation [Rényi, 1953] to provide

very accurate approximations of the distribution of the test statistic Tn, as well as type I and type II

errors, in the case of J = 2 independent samples.

We write P(1/ξ) for the basic Pareto distribution having scale parameter 1, and therefore lower

endpoint 1 of its support, and shape parameter 1/ξ > 0, where ξ is the tail-index; its cumulative

distribution function is 1− x−1/ξ, x > 1.

Three examples are considered with J = 2 independent samples coming from either two identi-

cal Pareto distributions (Section 4.1), two Pareto distributions with different scale parameters (Sec-

tion 4.2), or two Pareto distributions with different shape parameters (Section 4.3). We treat the case

where αℓ,n = 1− τℓ/n for ℓ = 1, . . . , L.

In addition to the normalizing constant Sn in (10), we need the following constants:

sn(βn, τ1:L) =
1

L

L∑
ℓ=1

√
1 + log

(
n(1− βn)

τℓ

)2

,

and sn(βn, τ1:L) =
1

L

L∑
ℓ=1

log

(
n

τℓ

)√
1 + log

(
n(1− βn)

τℓ

)2

.
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4.1 Identically distributed Pareto samples

Assume that both samples follow the same Pareto distribution. The ANOVEX test is supposed to

wrongly reject the null hypothesis with asymptotic probability γ (type I error). We investigate the

impact of the test parameters on this probability through an approximation of the rejection probability

provided in the following proposition.

Proposition 4.1. Consider two independent samples Ej = {X(j)
1 , . . . , X

(j)
n }, j = 1, 2, of i.i.d. vari-

ables following the same Pareto distribution P(1/ξ), ξ > 0. Assume the following:

(a) Probability levels: (βn) is an intermediate probability level such that (1−βn) log(n) → 0 as n → 0.

(b) Extreme quantile estimator: q̂Wj (αℓ,n |βn) is the Weissman estimator (2) of the extreme quantile

qj(αℓ,n), based on the Hill estimator ξ̂Hj (βn) defined in (3), where αℓ,n = 1−τℓ/n, for ℓ = 1, . . . , L

and j = 1, 2.

Then, the probability pn(γ) := PH0

(
Tn > χ2

1,1−γ

)
to wrongly reject (H0) with asymptotic level γ ∈ (0, 1)

is given by

pn(γ) = 2Φ̄

(
Φ̄−1(γ/2)

(
1 +

1

Sn(βn, τ1:L)

)−1/2
)
(1 + o(1)), (12)

where Φ(·) is the standard Gaussian survival function.

According to (12), the behaviour of pn(γ) is driven by Sn(βn, τ1:L) but does not depend on the

tail-index ξ. Clearly, pn(γ)
>−→ γ as n → ∞ in view of Sn(βn, τ1:L) ∼ (log(n(1 − βn)))

2 as n → ∞.

Indeed, a first-order expansion yields

pn(γ) = γ +
Φ̄−1(γ/2)φ(Φ̄−1(γ/2))

(log(n(1− βn)))2
(1 + o(1)),

where φ(·) is the density of the standard Gaussian distribution. Therefore, we obtain a logarithmic

rate of convergence with respect to n(1 − βn), the expected number of observations above q1(βn) =

q2(βn). An illustration of the accuracy of approximation (12) for Pareto distributions P(1/ξ = 4) and

P(1/ξ = 1) is provided in the top panel of Figure 2, for n = 1, 000 and L = 2, . . . , 30. The first-order

approximation (12) (solid blue curve) is compared to the empirical estimation of pn(γ = 0.05) based

on N = 10, 000 replications (dashed blue curve); see Section 5 for details and further examples. The

approximation is fairly precise, especially for moderate values of L, and there arises only a small bias

of observed type-I errors with respect to the nominal level γ. As expected, pn(γ) ≥ γ (horizontal black

line for γ). The true pn(γ) does not seem to depend on ξ in these numerical experiments, in line with

the analytical approximation (12). Finally, under the weak condition log(n(1− βn)) ≥ 3, the quantity

Sn(βn, τ1:L) is a decreasing function of L, which entails that the approximation (12) is increasing with

L in the case where τℓ = ℓ. The practical choice of L is discussed in Section 5.

4.2 Pareto samples with different scale parameters

We consider the case of J = 2 Pareto samples of size n > 0, with same shape parameter 1/ξ, ξ > 0,

and respective scale parameters 1 and λn > 0, where λn = 1 yields the setting of Section 4.1. Here,

we focus on the case where λn
̸=−→ 1 as n → ∞, and we investigate the power of the ANOVEX test

to reject (H0) in this situation. The following result provides an approximation of the distribution of

the test statistic.

9



Proposition 4.2. Suppose that the assumptions (a, b) of Proposition 4.1 hold. Consider two indepen-

dent samples E1 = {X(1)
1 , . . . , X

(1)
n } and E2 = {X(2)

1 , . . . , X
(2)
n }, where, for i = 1, . . . , n, the X

(1)
i s are

i.i.d. from a Pareto distribution P(1/ξ), ξ > 0 and the X
(2)
i s are i.i.d. with X

(2)
i

d
= λnX

(1)
i , λn > 0,

λn → 1 as n → ∞ such that

(i) log(n(1−βn))
(n(1−βn))3/4

∨
√

log(n(1−βn))
n = o(log(λn)),

(ii) log(λn) = o(1/
√
n(1− βn)).

Then, as n → ∞,

Tn
d
=

(
log(λn)

2n(1− βn)

2ξ2Sn(βn, τ1:L)
−
√
2n(1− βn) log(λn)sn(βn, τ1:L)

ξSn(βn, τ1:L)
Γ +

1 + Sn(βn, τ1:L)

Sn(βn, τ1:L)
Γ2

)

×

(
1 +OP

(
1√

n(1− βn)

)
+OP

(
1− βn

log(n(1− βn))

))
,

where Γ is a standard normal random variable.

This result yields an approximation of type II error associated with the ANOVEX test when the

alternative hypothesis is formulated as

(H1,n) X
(1)
i ∼ P(1/ξ) and X

(2)
i

d
= λnX

(1)
i , i = 1, . . . , n and λn → 1 as n → ∞,

as illustrated in the next remark.

Remark 2. If assumption (i) of Proposition 4.2 is replaced by the slightly stronger condition

(i’) log(n(1− βn))
2/(n(1− βn))

3/4 ∨
√

log(n(1−βn))3

n = o(log(λn)),

then, the probability PH1,n

(
Tn ≤ χ2

1,1−γ

)
to accept (H0) with asymptotic level γ ∈ (0, 1) may be ap-

proximated, for n large enough, by

Φ̄
(
Ω1,n −

√
Ω2,n

)
− Φ̄

(
Ω1,n +

√
Ω2,n

)
(13)

where

Ω1,n =
log(λn)

√
n(1− βn)sn(βn, τ1:L)√

2ξ (1 + Sn(βn, τ1:L))
,

Ω2,n =
log(λn)

2n(1− βn)

2ξ2
sn(βn, τ1:L)

2 − 1− Sn(βn, τ1:L)

(1 + Sn(βn, τ1:L))
2 +

Sn(βn, τ1:L)

1 + Sn(βn, τ1:L)
χ2
1,1−γ > 0.

First, remark that Ω1,n → 0 and Ω2,n → χ2
1,1−γ as n → ∞; see the proof of Remark 2 in the

Appendix for details. Thus, PH1,n

(
Tn ≤ χ2

1,1−γ

)
→ 1 − γ as n → ∞, meaning that the asymptotic

type II error is 1− γ when (H1,n) approaches (H0). Second, considering λn = 1 yields

Φ̄
(
Ω1,n −

√
Ω2,n

)
− Φ̄

(
Ω1,n +

√
Ω2,n

)
= 1− 2Φ̄

(
Φ̄−1(γ/2)

(
1 +

1

Sn(βn, τ1:L)

)−1/2
)

= 1− pn(γ)(1 + o(1)),

10



see (12), which is in accordance with the type I error provided by Proposition 4.1. Third, in the

converse case where λn is large (i.e. when the two Pareto distributions are very different), then the

approximation (13) tends to zero, and the ANOVEX test is likely to reject (H0). The same reasoning

may be applied to λ
1/ξ
n which is the key quantity in Ω1,n and Ω2,n. For a fixed value of λn, the

approximated probability is a decreasing function of ξ: Heavy tails are thus more easily discriminated.

Adopting the classical choice βn = 1− c/
√
n, c > 0, conditions of Proposition 4.2 and Remark 2 imply

that λn converges to 1 not faster than n−3/8 (up to a logarithmic factor). This may interpreted as the

minimum gap between (H0) and (H1,n) that the ANOVEX test is able to discriminate.

Finally, an illustration of the accuracy of the approximation given in Remark 2 is provided on the

second row of Figure 2 in Section 5 for λn = 1.2 and different values of ξ ∈ {0.15, 0.25, 0.35, 0.50}
(left panel) and for ξ = 0.25 and λn ∈ {1.1, 1.2, 1.3, 1.4} (right panel). It appears that the approxima-

tion (13) is, in all considered cases, remarkably accurate. The numerical results also confirm the roles

of λn and ξ in the type II error.

4.3 Pareto samples with different shape parameters

Finally, let us deal with the case of J = 2 Pareto samples of size n > 0, with respective shape parameters

1/ξ and 1/(ξθn) where ξ, θn > 0. Remark that θn = 1 yields back the setting of Paragraph 4.1.

Similarly to Paragraph 4.2, we investigate the ability of the ANOVEX test to reject (H0) when θn
̸=−→ 1

as n → ∞. The next result provides an approximation of the test statistic distribution in this context.

Proposition 4.3. Suppose that the assumptions (a, b) of Proposition 4.1 hold with the additional

condition that log(n) = O(log(n(1− βn))). Consider two independent samples E1 = {X(1)
1 , . . . , X

(1)
n }

and E2 = {X(2)
1 , . . . , X

(2)
n }, where, for i = 1, . . . , n, the X

(1)
i s are i.i.d. from a Pareto distribution

P(1/ξ), ξ > 0 and the X
(2)
i s are i.i.d. with X

(2)
i

d
= (X

(1)
i )θn , θn > 0 and θn → 1 as n → ∞ such that

(i) log(n(1−βn))
(n(1−βn))3/4

∨
√

log(n(1−βn))
n = o(log(θn)),

(ii) log(θn) = o(1/
√
n(1− βn)).

Then, as n → ∞,

Tn
d
= 2

(
n(1− βn)(1− θn)

2

(1 + θn)2
smlog(n/τ1:L)

Sn(βn, τ1:L)
+ 2

√
n(1− βn)

√
1 + θ2n(1− θn)

(1 + θn)2
sn(βn, τ1:L)

Sn(βn, τ1:L)
Γ

+
(1 + θ2n)

(1 + θn)2
1 + Sn(βn, τ1:L)

Sn(βn, τ1:L)
Γ2

)
×

(
1 +OP

(
1− βn

log(n(1− βn))

)
+OP

(
1√

n(1− βn)

))
,

where Γ is a standard normal random variable, and smlog(.) is defined in Equation (4).

Note that the conditions on the sequence (θn) are the same ones as those assumed for the sequence

(λn) in the previous example. The same choices can thus be made, with similar interpretations. This

result can be used to approximate the type II error associated with the ANOVEX test when the

alternative hypothesis is

(H ′
1,n) X

(1)
i ∼ P(1/ξ) and X

(2)
i

d
= (X

(1)
i )θn , i = 1, . . . , n and θn → 1 as n → ∞,

as illustrated in the next remark.
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Remark 3. If assumption (i) of Proposition 4.3 is replaced by the slightly stronger condition

(i’) log(n(1− βn))
2/(n(1− βn))

3/4 ∨
√

log(n(1−βn))3

n = o(log(θn)),

then, the probability PH′
1,n

(
Tn ≤ χ2

1,1−γ

)
to accept (H0) with asymptotic level γ ∈ (0, 1) may be ap-

proximated by for n large enough by

Φ̄
(
Ψ1,n −

√
Ψ2,n

)
− Φ̄

(
Ψ1,n +

√
Ψ2,n

)
(14)

where

Ψ1,n =

√
n(1− βn)(θn − 1)sn(βn, τ1:L)√

1 + θ2n (1 + Sn(βn, τ1:L))
,

Ψ2,n =
(θn − 1)2n(1− βn)

(1 + θ2n)

sn(βn, τ1:L)
2 − (1 + Sn(βn, τ1:L)) smlog(n/τ1:L)

(1 + Sn(βn, τ1:L))
2

+
(1 + θn)

2

(1 + θ2n)

Sn(βn, τ1:L)

1 + Sn(βn, τ1:L)

χ2
1,1−γ

2
> 0.

Here also, one can remark that PH′
1,n

(
Tn ≤ χ2

1,1−γ

)
tends to 1 − γ as n → ∞. Moreover, taking

θn = 1 leads to the formula of Proposition 4.1. However, unlike the approximation of Proposition 4.2,

this probability is not related to the tail-index ξ. The accuracy of this approximation for several

values of θn is illustrated on the bottom left panel of Figure 2 in Section 5 for ξ = 0.25 and θn ∈
{1.1, 1.2, 1.3, 1.4}. Again, the curves associated with the approximated probability (14) are nearly

superimposed to the curves associated with the empirical type II errors.

5 Simulation study

In this section, our methodology is applied on simulated examples. For each example, we simulate

N = 10, 000 times J samples of size n = 1, 000, and compute the test statistic (11) to reject, or not

reject (H0) with the confidence level γ = 0.05. For convenience, we take αℓ,n = 1 − ℓ/n (τℓ = ℓ) for

ℓ = 1, . . . , L, and consider several values of L (ranging from 2 to 30). We finally report the empirical

rejection (or equivalently non-rejection) probabilities obtained through the N replications. Note that

throughout the section, several heavy-tailed distributions are considered (all with tail-index ξ > 0):

• The Pareto distribution with s.f. F (x) = x−1/ξ for x > 1;

• The Generalized Pareto distribution (GPD) with s.f. F (x) = (1 + ξx)−1/ξ for x > 0. Note that

this distribution fulfills Assumption C2(ξ, ρ,A) with ρ = −ξ;

• The Fréchet distribution with s.f. F (x) = 1− exp(−x−1/ξ) for x > 0. Assumption C2(ξ, ρ,A) is

also satisfied with ρ = −1;

• The Burr(ρ) distribution with s.f. F (x) = (1 + x−ρ/ξ)1/ρ for x > 0. In this case, C2(ξ, ρ,A) is

satisfied for any ρ < 0.

Firstly, we focus on the most simple case with J = 2 samples of random variables X1 and X2. In line

with Sections 4.1, 4.2 and 4.3, we propose the following toy examples:
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(P) As in Proposition 4.1, X1
d
= X2 = P(1/ξ), i.e. both samples are i.i.d. replications of a Pareto

distribution. In this setting, we are supposed to reject (H0) with probability γ = 0.05. Figure 2

gives an overview of the rejection probabilities as functions of L. We also consider the case of

two identical Fréchet, Burr and GP distributions, and take ξ = 0.25 (top left panel) and ξ = 1

(top middle panel) in all cases. Note that, when ξ = 1, Burr and GPD distributions coincide.

(Pλ) As in Proposition 4.2, X1 follows a Pareto distribution, and X2
d
= λnX1, where (λn) fulfills the

conditions of Proposition 4.2. This case is interesting (and pretty complicated) since the extreme

quantiles of both distributions asymptotically coincide (as n → ∞). However, in our finite

sample size setting, λn ̸= 1 and we expect the test to reject (H0). The empirical non-rejection

probabilities pλn
(0.05) as well as their approximations calculated in Section 4.2 are reported in

Figure 2 for ξ ∈ {0.15; 0.25; 0.35; 0.5}, βn = 0.9 (≈ 1−3/
√
n), λn = 1.2 (= 1+2/n1/3) (top right

panel) and ξ = 0.25, λn ∈ {1.1; 1.2; 1.3; 1.4} (bottom left panel).

(Pθ) As in Proposition 4.3, X1 follows a Pareto distribution, and X2
d
= Xθn

1 , where (θn) fulfills the

conditions of Proposition 4.3. Here also, the two distributions (and quantiles) are asymptotically

the sames, but are slightly different with n = 1, 000 < ∞. The empirical non-rejection probabil-

ities pθn(0.05) as well as their approximations calculated in Section 4.3 are reported in Figure 2

(bottom middle panel) for ξ = 0.25 and θn = 1 + k/n1/3, 1 ≤ k ≤ 4.

(PB) X1 follows a Pareto distribution and X2 follows a Burr distribution with second-order parameter

ρ < 0. Such a distribution has a quantile function given by q(α) = ((1−α)ρ−1)−ξ/ρ. Hence, (H0)

is fulfilled, and the test is supposed to reject it with probability γ = 0.05. More precisely, when

ρ is small, the Burr distribution is very close to a Pareto one, and one may expect an empirical

rejection probability close to 0.05. On the contrary, when ρ is close to 0, the convergence

towards 1 of the ratio of the two extreme quantiles is very slow, and a high rejection rate may

be feared. Some results with ξ = 0.75 and ρ ∈ {−5;−1;−0.5} are reported in Figure 2 (bottom

right panel).

(FB) X1 follows a Fréchet distribution and X2 follows a Burr distribution with second-order parameter

ρ < 0. Here also, (H0) is filled, and a rejection rate around 0.05 is expected. The results for

ρ = −1 and ξ = 0.25 (note that the results are not sensitive to ξ) are reported in Figure 2

(bottom right panel).

Note that we limited ourselves to βn = 0.9 (≈ 1 − 3/
√
n) everywhere for convenience, in order to

fulfill the assumptions of Propositions 4.1, 4.2 and 4.3. It clearly appears that the rejection rate is

increasing with L. Interestingly, note also that the type I error seems to be decreasing with ρ. Indeed,

for small values of ρ (let us say ρ ≤ −1), the choice of L = 2 seems to be the best calibrated one in

terms of type I error. However, when ρ is close to 0, the rejection rate is too low if L is small, and a

choice of a large L is thus more suited. Through additional simulations (considering τℓ = ℓ and several

Burr distributions with different values of ρ or Generalized Pareto distributions), we observed that for

n = 1, 000, a choice of L ≈ 20 seems to be optimal when ρ = −0.75 (i.e. the rejection rate is around

5%). Similarly, L ≈ 50 is tailored when ρ = −0.5, and L ≈ 80 in the challenging case ρ = −0.25. The

results are similar for Burr and Generalized Pareto distributions, and are apparently only sensitive to

ρ, and not to the distribution itself. A prior estimation of ρ (using for instance the estimators of Gomes

and Martins [2002]) may thus be useful to select the parameter L yielding the best calibration of the
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type I error. Finally, the type I and type II errors approximations calculated in Propositions 4.1, 4.2

and 4.3 are remarkably accurate, see the top panels and the bottom left one in Figure 2.
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Figure 2: Top left and middle: Example (P) with ξ = 0.25 (left) and ξ = 1 (middle). Empirical

(dashed curves) and approximated (solid curve) values of pn(γ) = PH0

(
Tn > χ2

1,1−γ

)
as functions of

L for: Pareto vs Pareto (blue), Burr vs Burr (green), Fréchet vs Fréchet (purple) and GPD vs GPD

(red). Top right: Example (Pλ). Empirical (dotted curves) and approximated (solid curves) values

of pλn(γ) as functions of L. λn = 1.2 and ξ = 0.15 (blue curves), ξ = 0.25 (green curves), ξ = 0.35

(purple curves) and ξ = 0.5 (red curves). Bottom left: ξ = 0.25 and λn = 1.1 (blue curves), λn = 1.2

(green curves), λn = 1.3 (purple curves) and λn = 1.4 (red curves). Bottom middle: Example (Pθ)

with ξ = 0.25. Empirical (dotted curves) and approximated (solid curves) values of pθn(γ) as functions

of L with θn = 1.1 (green curves), θn = 1.2 (brown curves), θn = 1.3 (blue curves) and θn = 1.4 (red

curves). Bottom right: Examples (PB) and (FB). Pareto vs Burr with ρ = −5 (blue), ρ = −1 (green),

ρ = −0.5 (purple) and ξ = 0.75. Fréchet vs Burr with ρ = −1 and ξ = 0.25 (brown). In all examples,

n = 1, 000, βn = 0.9, γ = 0.05 and αℓ,n = 1− ℓ/n, ℓ = 1, . . . , L.

Let us now consider some examples where J > 2, more specifically J ∈ {5, 10, 15}:

(MF) X1, . . . , XJ all follow an unit (ξ = 1) Fréchet distribution. We are thus supposed to reject (H0)

with probability 0.05. Note that such a distribution has no mean, and the classical ANOVA is

thus not applicable.

(MM) For all j = 1, . . . , J , Xj follows an unit Pareto distribution if j = 4k + 1, an unit Fréchet

distribution if j = 4k + 2, an unit Burr(−1) distribution if j = 4k + 3 and an unit GPD if
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j = 4(k + 1) (k ∈ N). The extreme quantiles of all these distributions are asymptotically

equivalent and (H0) is thus satisfied.

(MP) X1, . . . , XJ−1 all follow an unit Pareto distribution, and XJ follows a Pareto distribution with

tail-index θ. If θ ̸= 1, then (H0) obviously has to be rejected. We propose to consider the cases

θ = 0.8 and θ = 1.2.

(CP) X1, . . . , XJ−1 all follow an unit Burr distribution (with ρ = −1), and XJ
d
= πX1+(1−π)

√
X1 is a

contaminated Burr distribution (π ∈ [0, 1]). When π < 1, the quantiles of XJ are asymptotically

equivalent to π(1−τ)−1 and differ from those ofX1, . . . , XJ−1 which are asymptotically equivalent

to (1− τ)−1, and we thus hope to reject (H0). We consider the cases π ∈ {0.2, 0.5, 0.8}.

The results are reported in Figure B.1. Unsurprisingly, the error rates are increasing with the num-

ber J of samples. Comparing the first two examples, it seems that the type I error is not significantly

sensitive to the underlying distribution (for two distributions with the same second-order parameter

ρ, confirming the observation made in the previous paragraph). Example (MP) shows that, in more

than 65% of the replications, the ANOVEX procedure is able detect whether a sample over 5 has a

slightly lower tail-index (0.8 vs 1 for the 4 other samples). The result drops at 50% when a sample

has a slightly greater tail-index (1.2 vs 1). The ANOVEX test is thus efficient to discriminate samples

with different tail indices. However, the latter is less efficient when all the samples share the same

tail-index, but have different scale parameters. Indeed, example (CP) shows that, when the mixture

parameter π is slightly lower than 1 (0.8), the test is rejected with a rate of only 10% (when J = 5, 10

or 15). This rate is obviously much better when π = 0.5 (more than 25 % when J = 5) and π = 0.2

(almost 100%).

6 Applications on real data

6.1 Analysis of stock market indices

In this first real data example, we study log-returns for J = 10 stock market indices, namely AEX

(Netherlands), CAC40 (France), Cboe UK 100 (United Kingdom), DAX (Germany), S&P MERVAL

(Argentina), MOEX (Russia), NASDAQ (United States), Nikkei 225 (Japan), SSE Composite (China)

and TA-125 (Israel). Since financial markets have strong connections, we expect to observe similar

performances across different stock indices. Similarly to Jondeau and Rockinger [2003] and Mougeot

and Tribouley [2010], we focus on the tail behaviour of log-returns for different stock indices and apply

the ANOVEX procedure to test whether their tails are equal. Data were collected on Yahoo Finance by

taking the last 1,001 adjusted closing prices before June 16, 2023 (included), leading to 10 samples of

n = 1, 000 log-returns. An overview of the data is provided in Figure B.2 and Table 1. Figure B.3 also

shows the exponential QQ-plot of the weighted log-spacings i log(X
(j)
n−i+1,n/X

(j)
n−i,n), for i = 1, . . . , 100

and j = 1, . . . , 10. The heavy-tail assumption seems valid here since all QQ-plots are close to a straight

line with slope ξj , the worst linear fit being observed for NASDAQ and MOEX indices. We consider

βn = 0.9, αℓ,n = 1− ℓ/n for all ℓ = 1, . . . , L, and a confidence level of 95%, such that γ = 0.05.

A first naive ANOVEX test with L = 2 and J = 10 shows that (H0) is clearly rejected, the p-value

being 1.51 × 10−4. Since the rejection rate is increasing with L (see Section 5), one can reasonably

conclude that all tails are not equal. In Table 1, the S&P MERVAL index appears to be significantly
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Mean
10−4

Var.
10−4 ξ̂Hj (βn)

q̂Hj (βn)

10−2

AEX 2.81 1.67 0.343 1.40

CAC 40 2.63 1.99 0.417 1.40

Cboe UK 100 0.23 1.42 0.439 1.17

DAX 2.78 2.06 0.454 1.37

S&P MERVAL 24.7 188 0.382 3.28

Mean
10−4

Var.
10−4 ξ̂Hj (βn)

q̂Hj (βn)

10−2

MOEX 0.70 4.30 0.442 1.48

NASDAQ 5.55 2.92 0.376 1.85

Nikkei 225 4.70 1.58 0.356 1.51

SSE Composite 1.06 1.10 0.401 1.16

TA-125 2.14 1.44 0.334 1.32

Table 1: Application to stock market indices. Columns report empirical mean, variance, tail-index

and intermediate βth
n quantile of the n = 1, 000 log-returns for each financial index.

different from the others. This is confirmed by separately testing the S&P MERVAL against all the

other indices: all bivariate ANOVEX tests are rejected with L = 2.

In the following, we exclude S&P MERVAL from the study and test the equality of the remaining

J = 9 tails. With L = 2, the ANOVEX test is no longer rejected, the p-value being 0.132, but we find

that it is strongly rejected when L is increased to larger values. As suggested in Section 5, we propose

to select L so as to calibrate the type I error. First, note that Table 1 reports the tail indices estimated

around 0.3-0.4 for all of the 9 samples. Moreover, using the R function mop in the Expectrem package,

the second-order parameter ρ is estimated at ρ̂ ≃ −0.7 in all 9 samples. To choose an appropriate

value of L, we perform a simulation study with 9 samples of size 1, 000 following a Burr distribution

with γ = 0.35 and ρ = −0.7. We obtain that L = 30 provides a type I error around γ = 0.05, and

we therefore set L = 30. With this choice, (H0) is rejected for the stock indices, with a p-value of

2.3× 10−3, and we conclude that the log-return tails are significantly different.

AEX CAC 40 Cboe UK 100 DAX MOEX NASDAQ Nikkei 225 SSE Composite

AEX ×
CAC 40 0.161 ×

Cboe UK 100 0.511 0.364 ×
DAX 0.064 0.638 0.200 ×
MOEX 0.030 0.453 0.111 0.764 ×

NASDAQ 0.004 0.165 0.021 0.334 0.503 ×
Nikkei 225 0.359 0.544 0.478 0.281 0.175 0.047 ×

SSE Composite 0.567 0.102 0.481 0.044 0.019 0.002 0.192 ×
TA-125 0.496 0.043 0.268 0.015 0.005 0.0003 0.110 0.641

Table 2: Application to stock market indices. Pairwise ANOVEX-based p-values for 9 indices, here

obtained with L = 25. Results smaller than 0.05 are reported in red.

To study more precisely which groups of stock indices show different tail behaviour, we study the p-

values of the ANOVEX tests for pairs of samples reported in Table 2. The log-returns of the European

stock market indices (AEX, CAC 40, Cboe UK 100 and DAX) could be gathered in a first group

with homogeneous tail behaviour by further including Nikkei 225. Indeed, none of the pairwise tests

is rejected for this group of 5 samples, and the p-value for the test of the whole group with J = 5 is

0.335). These results are in line with results in Jondeau and Rockinger [2003], where one of the groups

is composed of France, Germany, Japan, UK and US. The only difference here is that the ANOVEX

test excludes the US index NASDAQ from this group. In the study of Mougeot and Tribouley [2010],

the CAC 40, FTSE 100 (another UK stock market index) and Nikkei 225 are gathered together, i.e.,
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they share similar tail indices. Based on the pairwise p-values, we can also pool the NASDAQ (which

is significantly different from the AEX and Cboe UK 100) and the MOEX (which is also very different

from the AEX) in a second group, and a last group could be composed of the SSE Composite, with

tail behaviour different from DAX, MOEX and the NASDAQ, present in the other two groups) and

TA-125, for which (H0) is most of the time rejected.

To sum up, the ANOVEX test allows us to split the stock market indices into four clusters based

on the tail behaviour of their log-returns:

• Cluster 1: AEX, CAC 40, Cboe UK 100, DAX and Nikkei 225.

• Cluster 2: NASDAQ and MOEX.

• Cluster 3: SSE Composite and TA-125.

• Cluster 4: S&P MERVAL.

In view of the exponential QQ-plots of Figure B.3, Cluster 2 is composed of the two indices NASDAQ

and MOEX, for which heavy-tail behaviour of log-returns may be questionable. Finally, we have

compared the right-tail of the log-return distributions. For risk management issues, it may also be

interesting to compare the left-tails (i.e. the losses). By doing the same approach, we find similar

results (and almost the same clusters), with one difference: the Nikkei 225 belongs to Cluster 3 (with

SSE Composite and TA-125) instead of Cluster 1.

6.2 Analysis of daily precipitation in Germany

To illustrate the behaviour of ANOVEX for J > 2 groups, we use the test to detect nonstationary be-

haviour in extremes of daily accumulated precipitation across J = 6 decades for observations collected

at weather stations in Germany. Heavy-tailedness is generally accepted for daily precipitation mea-

surements. We consider two periods: 1961–2020 with only few missing observations at 4342 weather

stations, and 1901–1960 with sparser spatial coverage through 920 stations with few missing obser-

vations. For each combination of an observation series and period with available data, the different

samples consist of the observations for the different decades, either (1901+(j−1)×10)−(1901+(j×10))

or (1961 + (j − 1) × 10) − (1961 + (j × 10)), with j ∈ {1, 2, . . . , 6} and J = 6. We test (H0) using

the asymptotic χ2-distribution under (H0) with γ = 0.05 and L = 10, and βj,n = βn is chosen to

retain kj,n = k = 100 extreme order statistics for each sample j = 1, . . . , 6. Figure 3 reports results

where we highlight gauges with significant nonstationarity across decades, and we also report rela-

tively low p-values larger than γ = 0.05. For the 1961–2020 period, the proportion of gauges with

(H0) rejected is around 5% and therefore of the order of γ, which corresponds to the expected number

of type I errors under H0. For 1901–1960, a higher proportion of 16% of stations has (H0) rejected.

Unreported results for other choices of k and L show relatively stable behaviour of p-values over a

range of k between 50 and 250 for fixed L, with slightly higher values for larger values of k for which

estimation uncertainty is lower, thus indicating no strong sensitivity to the choice of k. p-values tend

to be relatively lower when increasing L for fixed k, which is natural since the test then considers a

larger number L of extreme quantiles, some of them estimated at lower probability levels, such that

statistical uncertainty decreases and the power of the test increases; however, we would then test for

differences in the distribution of events that may be less extreme than those considered with L = 10.
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Figure 3: Application to German precipitation series. Left: 1901–1960 period; right: 1961–2020

period. Obtained p-values are shown differently according to intervals [0.0, 0.05] (dark red, big points),

(0.05, 0.5] (lighter red, smaller points), and (0.5, 1] (grey, small points).

Follow-up work will include expert interpretations by climatologists in terms of observation biases and

existing knowledge about local climate systems and potential climate-change effects.

7 Conclusion

We have introduced a new simple test for heterogeneity in the upper distribution tail, based on a

decomposition of variability of extreme log-quantiles. This approach is called ANOVEX and draws

inspiration from classical ANOVA. It allows putting focus on differences arising for the distribution of

the most extreme possible events, for which uncertainties are usually high, especially with naive ap-

proaches not making use of extreme-value statistics for extrapolation. The simulation study highlighted

that our test is an easy-to-use, interpretable and efficient tool for detecting different tail behaviours.

It is a valuable complement to existing tests that focus on more specific alternative hypotheses, such

as differences in the tail-index or, provided that tail indices coincide, in the tail scale. Our test is

particularly powerful for detecting different tail scales in the case of small tail indices. We have thor-

oughly investigated its asymptotic properties, including the limit distribution of the test statistic, and

we provide highly accurate second-order approximations of type I and type II errors for the class of

Pareto distributions. Overall, ANOVEX shows promising capability in identifying tail heterogeneity

and can be used for applications in various statistical analyses involving heavy-tailed data.
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In future work, we aim to investigate how an automatic choice of L could be achieved, for example

by establishing an explicit link between L and the second-order parameter ρ. We also plan to relax

certain assumptions, notably by considering dependent data (dependence across groups, and/or serial

dependence within groups). In the current study, we have considered samples with equal sizes in the

error approximations and the simulation study. Although our theoretical result (Theorem 3.1) allows

samples to have different sizes, biases may arise in practice, particularly when dealing with relatively

small samples and strongly unbalanced sample sizes, resulting in type I error probabilities deviating

significantly from the test level.

Furthermore, we plan to leverage the ANOVEX test statistic for change point detection. More

generally, our test statistic provides a valuable tail dissimilarity measure for machine-learning tools,

such as for making splits in regression trees and random forests. In recent related work, Maillart and

Robert [2023] proposed estimation of a tree but they focus solely on the tail-index. Farkas et al. [2021]

adopted a model-based approach for inferring trees by using the Generalized Pareto Distribution (GPD)

for exceedances above a high threshold. Gnecco et al. [2022] developed GPD-based random forests;

however, the tree structure and likelihood weights are computed in a preliminary step using traditional

quantile regression forests. To extend these existing approaches, an ANOVEX-based procedure could

offer a rapid and robust likelihood-free method for tail prediction, applicable to both trees and random

forests.
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Appendix

A Proofs of the theoretical results

Some technical lemmas are collected in Paragraph A.1, they will reveal useful to prove the main results

in Paragraph A.2.

A.1 Preliminary results

We first show that, under (H0), if all cumulative distribution functions F1, . . . , FJ are heavy-tailed,

then, necessarily, their tail-indices are the same.

Lemma A.1. Assume (H0) holds. If Fj ∈ C1(ξj) for j = 1, . . . , J then

(i) ξ1 = · · · = ξJ =: ξ.

(ii) log qj(α) = −ξ log(1− α)(1 + o(1)) for all j = 1, . . . , J as α → 1.

Proof of Lemma A.1. (i) Let us recall that Fj ∈ C1(ξj) implies that there exists a slowly-varying

function Lj such that

qj(α) = (1− α)−ξjLj(1/(1− α)). (15)

It straightforwardly follows that qj0(α)/qj(α) → 0 as α → 1 if ξj > ξj0 and qj0(α)/qj(α) → +∞ as

α → 1 if ξj < ξj0 . The result (i) is thus proved.

(ii) From Lemma A.1(i), one has ξ1 = · · · = ξJ =: ξ and therefore (15) can be rewritten as

log(qj(α)) = −ξ log(1− α) + log(Lj(1/(1− α))) = −ξ log(1− α)(1 + o(1)),

which proves the result.

The second lemma provides an asymptotic equivalent of ∆1,n (defined in Proposition 2.1) as n → ∞.

Lemma A.2. Assume Fj ∈ C1(ξj) for j = 1, . . . , J .

• For all n ≥ 1 and ℓ = 1, . . . , L, let αℓ,n ∈ (0, 1) such that αℓ,n → 1 as n → ∞.

• Let q̃j(αℓ,n) be an estimator of the extreme quantile qj(αℓ,n) computed on the nj-sample Ej such

that nj/n → λj > 0 as n → ∞ and

σ−1
j,ℓ,n (log q̃j(αℓ,n)− log qj(αℓ,n))

d−→ N (0, ξ2j ),

for some σj,ℓ,n → ∞ as n → ∞, and for all j = 1, . . . , J and ℓ = 1, . . . , L.

Then, under (H0),

∆1,n =
ξ2

L

L∑
ℓ=1

 1

J

J∑
j=1

σ2
j,ℓ,nZ

2
j −

(
1

J

J∑
k=1

σk,ℓ,nZk

)2
 (1 + oP(1)),

where Z1, . . . , ZJ follow independent standard Gaussian distributions.
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Proof of Lemma A.2. Let us first recall that for all ℓ = 1, . . . , L,

∆1,ℓ,n =
1

J

J∑
j=1

(
log q̃j(αℓ,n)− µ(ℓ)

α,n

)2
with µ(ℓ)

α,n =
1

J

J∑
j=1

log q̃j(αℓ,n).

Under (H0), we have in view of Lemma A.1(i):

log q̃j(αℓ,n) = log qj(αℓ,n) + σj,ℓ,nξZj(1 + oP(1)),

where Z1, . . . , ZJ follow independent standard Gaussian distributions. Lemma A.1(ii) entails

log q̃j(αℓ,n) = −ξ log(1− αℓ,n)(1 + o(1)) + σj,ℓ,nξZj(1 + oP(1)),

and therefore,

(
log q̃j(αℓ,n)− µ(ℓ)

α,n

)2
= ξ2

(
J∑

k=1

κk,jσk,ℓ,nZk

)2

(1+oP(1)), with κj,j = 1− 1

J
and κk,j = − 1

J
if k ̸= j,

so that

∆1,ℓ,n =
J − 1

J2
ξ2

J∑
j=1

σ2
j,ℓ,nZ

2
j (1 + oP(1))−

2

J2
ξ2

∑
1≤j<k≤J

σj,ℓ,nσk,ℓ,nZjZk(1 + oP(1))

= ξ2

 1

J

J∑
j=1

σ2
j,ℓ,nZ

2
j −

(
1

J

J∑
k=1

σk,ℓ,nZk

)2
 (1 + oP(1)).

Finally, without any further assumption, the term ∆1,n may be written as follows:

∆1,n =
ξ2

L

L∑
ℓ=1

 1

J

J∑
j=1

σ2
j,ℓ,nZ

2
j −

(
1

J

J∑
k=1

σk,ℓ,nZk

)2
 (1 + oP(1)),

which is the desired result.

The third lemma provides an asymptotic equivalent of ∆2,n (defined in Proposition 2.1) as n → ∞.

Lemma A.3. Assume Fj ∈ C1(ξj) for j = 1, . . . , J .

• For all n ≥ 1 and ℓ = 1, . . . , L, let αℓ,n ∈ (0, 1) such that αℓ,n → 1 as n → ∞.

• Let q̃j(αℓ,n) be an estimator of the extreme quantile qj(αℓ,n) computed on the nj-sample Ej such

that nj/n → λj > 0 as n → ∞ and

log q̃j(αℓ,n)/ log qj(αℓ,n)
P−→ 1, (16)

for all j = 1, . . . , J and ℓ = 1, . . . , L.

Then, under (H0),

∆2,n = ξ2 varlog((1− αn)1:L)(1 + oP(1)).

23



Proof of Lemma A.3. Combining (16) with Lemma A.1(ii) yields

log q̃j(αℓ,n) = (log qj(αℓ,n)) (1 + oP(1)) = −ξ log(1− αℓ,n)(1 + oP(1))

so that

µ(ℓ)
α,n =

1

J

J∑
j=1

log q̃j(αℓ,n) = −ξ log(1− αℓ,n)(1 + oP(1)),

for all ℓ = 1, . . . , L, and consequently,

µα,n − µ(ℓ)
α,n = −ξ

1

L

L∑
k=1

κ̃k,ℓ log(1− αk,n)(1 + oP(1)),

where κ̃ℓ,ℓ = 1− L and κ̃k,ℓ = 1 if k ̸= ℓ. Some straightforward calculations lead to

∆2,n =
1

L

L∑
ℓ=1

(
µα,n − µ(ℓ)

α,n

)2
= ξ2

L− 1

L2

L∑
ℓ=1

log (1− αℓ,n)
2 − 2

L2

∑
1≤ℓ<ℓ′≤L

log (1− αℓ,n) log (1− αℓ′,n)

 (1 + oP(1))

= ξ2

(
1

L

L∑
ℓ=1

log (1− αℓ,n)
2 − 1

L2

L∑
ℓ=1

L∑
ℓ′=1

log (1− αℓ,n) log (1− αℓ′,n)

)
(1 + oP(1))

= ξ2

 1

L

L∑
ℓ=1

log (1− αℓ,n)
2 −

(
1

L

L∑
ℓ=1

log (1− αℓ,n)

)2
 (1 + oP(1)),

which is the expected result.

The next lemma provides precise asymptotic representations associated with Hill estimators and

intermediate quantiles computed on Pareto samples.

Lemma A.4. Consider two independent samples E1 = {X(1)
1 , . . . , X

(1)
n } and E2 = {X(2)

1 , . . . , X
(2)
n },

both distributed from a Pareto distribution P(1/ξ), ξ > 0. Let (βn) be an intermediate probability

level, q̂j(βn) := X
(j)
⌊n(1−βn)⌋,n and let ξ̂Hj (βn) be the associated Hill estimators (3), j = 1, 2. Then, the

following asymptotic representations hold:

ξ̂Hj (βn)
d
= ξ +

ξ√
n(1− βn)

Γξ,j

(
1 +OP

(
1√

n(1− βn)

))
, (17)

log

(
q̂j(βn)

qj(βn)

)
d
=

ξ√
n(1− βn)

Γq,j

(
1 +OP

(
1√

n(1− βn)

)
+OP(1− βn)

)
, (18)

ξ̂H1 (βn)− ξ̂H2 (βn)
d
=

√
2ξ√

n(1− βn)
Γξ

(
1 +OP

(
1

n(1− βn)

))
, (19)

log

(
q̂1(βn)

q1(βn)

)
− log

(
q̂2(βn)

q2(βn)

)
d
=

√
2ξ√

n(1− βn)
Γq

(
1 +OP

(
1

n(1− βn)

)
+OP(1− βn)

)
, (20)

where Γq,j, Γξ,j, Γq and Γξ are standard Gaussian random variables, j = 1, 2. Moreover, Equa-

tions (19) and (20) also hold for two Pareto samples with different scale parameters: X
(2)
i

d
= λX

(1)
i ,

λ > 0, i = 1, . . . , n.
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Proof of Lemma A.4. Let us introduce kn = ⌊n(1−βn)⌋ to simplify the notations. Let j ∈ {1, 2}. First,
Rényi’s representation entails that the log-spacings

(
log(X

(j)
n−i,n)− log(X

(j)
n−kn,n

)
)
, i = 0, . . . , kn − 1

are independent and exponentially distributed. Hill estimators are thus Gamma distributed:

ξ̂Hj (βn)
d
=

1

kn

kn∑
i=1

E(j)
i ,

where {E(j)
1 , . . . , E(j)

kn
} are i.i.d. realisations of an exponential distribution with mean ξ. Berry-Esseen

Theorem thus yields

ξ̂Hj (βn)− ξ
d
=

ξ√
kn

Γξ,j

(
1 +OP

(
1√
kn

))
,

and (17) is proved. Second, one has, in view of Rényi’s representation:

log

(
q̂j(βn)

qj(βn)

)
d
= E(j)

n−kn,n
− ξ log(n/kn)

d
=

n∑
i=kn+1

E(j)
i

i
− ξ log(n/kn),

and thus, introducing Y
(j)
i = (E(j)

i − ξ)/(ξi), the following expansion holds

√
kn log

(
q̂j(βn)

qj(βn)

)
d
= ξ
√
kn

n∑
i=kn+1

Y
(j)
i + ξ

√
kn

(
n∑

i=kn+1

1

i
− log(n/kn)

)
=: ξ(A(j)

n +Bn).

The well-known formula
n∑

i=1

1

i
= log(n) + γ − 1

2n
(1 + o(1)),

(where γ is Euler’s constant) entails that the non-random term can be controlled as Bn = O(1/
√
kn).

Letting σ2
i = E((Y (j)

i )2) and ρi = E(|Y (j)
i |3), Berry-Esseen Theorem for non identically distributed

random variables shows that∑n
i=kn+1 Y

(j)
i√∑n

i=kn+1 σ
2
i

= Γq,j +OP

 max
i=kn+1,...,n

ρi/σ
2
i√∑n

i=kn+1 σ
2
i

 ,

or equivalently,

A(j)
n =

√√√√kn

n∑
i=kn+1

σ2
i Γq,j +OP

(√
kn max

i=kn+1,...,n
ρi/σ

2
i

)
.

Moreover, σ2
i = 1/i2, ρi = c/i3 with c > 0 so that

n∑
i=kn+1

σ2
i =

1

kn

(
1 +O

(
1

kn

))
− 1

n

(
1 +O

(
1

n

))
=

1

kn

(
1 +O

(
1

kn

)
+O

(
kn
n

))
,

max
i=kn+1,...,n

ρi/σ
2
i = O

(
1

kn

)
,

and therefore A
(j)
n = Γq,j +OP(1/

√
kn) +OP(kn/n). All in all,

√
kn log

(
q̂j(βn)

qj(βn)

)
d
= ξΓq,j +O(1/

√
kn) +OP(kn/n),
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and (18) is proved. Moreover, one has

ξ̂H1 (βn)− ξ̂H2 (βn)
d
=

(E(1)
1 − E(2)

1 ) + . . .+ (E(1)
kn

− E(2)
kn

)

kn

d
=

L1 + . . .+ Lkn

kn
,

where {L1, . . . ,Lkn} are i.i.d. realisations of a centered Laplace distribution with variance 2ξ2. Since

the Laplace distribution is log-concave, centered and symmetric, [Klartag, 2009, Theorem 1] may be

applied to refine the Berry-Esseen bound with kn (or equivalently n(1 − βn)) instead of
√
kn (or

equivalently
√
n(1− βn)), hence the third result (19). Similarly,

log

(
q̂1(βn)

q̂2(βn)

)
= log

(
q̂1(βn)

q1(βn)

)
− log

(
q̂2(βn)

q2(βn)

)
d
=

n∑
i=kn+1

(E(1)
i − E(2)

i )

i

d
=

n∑
i=kn+1

Li

i
,

and the second result of [Klartag, 2009, Theorem 1] can be used to establish the Berry-Esseen bound.

Rewriting √
kn log

(
q̂1(βn)

q̂2(βn)

)
d
=
√
kn

√√√√ n∑
i=kn+1

1

i2

n∑
i=kn+1

θi,nLi,

with θi,n = 1

i
√∑n

j=kn+1 1/j2
and

∑n
i=kn+1 θ

2
i,n = 1, it thus follows:

n∑
i=kn+1

θi,nLi =
√
2ξΓq

(
1 +OP

(
n∑

i=kn+1

θ4i,n

))
.

Straightforward calculations on Riemann series lead to

n∑
i=kn+1

θ4i,n =

n∑
i=kn+1

1
i4(

n∑
i=kn+1

1
i2

)2 =

∞∑
i=kn+1

1
i4 −

∞∑
i=n+1

1
i4(

∞∑
i=kn+1

1
i2 −

∞∑
i=n+1

1
i2

)2 =
O
(

1
k3
n

)
(

1
kn

+O
(

1
k2
n

)
+O

(
1
n

))2 = O

(
1

kn

)
,

√√√√kn

n∑
i=kn+1

1

i2
=
√
kn

√
1

kn
+O

(
1

k2n

)
+O

(
1

n

)
= 1 +O

(
1

kn

)
+O

(
kn
n

)
.

Combining the previous expansions yields the expected result (20). To conclude, since the Hill estima-

tor is scale invariant, Equation (19) also holds if X
(2)
i ∼ λP(1/ξ), for all λ > 0 and i = 1, . . . , n. By

noticing that, in this case, q̂2(βn)/(λq1(βn))
d
= q̂1(βn)/q1(βn), Equation (20) holds true as well.

A.2 Proofs of main results

Proof of Proposition 2.1. The representation follows from the usual way of decomposing sums of

squares in ANOVA-like analyses:

∆n =: ∆1,n +∆2,n +∆3,n

=
1

JL

J∑
j=1

L∑
ℓ=1

(
log q̃j(αℓ,n) + µ(ℓ)

α,n − µ(ℓ)
α,n − µα,n

)2
=

1

JL

J∑
j=1

L∑
ℓ=1

(
log q̃j(αℓ,n)− µ(ℓ)

α,n

)2
+

1

JL

J∑
j=1

L∑
ℓ=1

(
µ(ℓ)
α,n − µα,n

)2
+

2

JL

J∑
j=1

L∑
ℓ=1

(
µ(ℓ)
α,n − µα,n

)(
log q̃j(αℓ,n)− µ(ℓ)

α,n

)
. (21)
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The interaction term in (21) satisfies ∆3,n = 0, which can be shown by switching the summations with

respect to j and ℓ:

∆3,n =
2

JL

L∑
ℓ=1

J∑
j=1

(
µ(ℓ)
α,n − µα,n

)(
log q̃j(αℓ,n)− µ(ℓ)

α,n

)

=
2

L

L∑
ℓ=1

(
µ(ℓ)
α,n − µα,n

) 1

J

J∑
j=1

(
log q̃j(αℓ,n)− µ(ℓ)

α,n

)
= 0,

following the definition of µ
(ℓ)
α,n.

Proof of Theorem 3.1. First, (5) and Lemma A.2 entail

∆1,n =
ξ2

L

L∑
ℓ=1

σ̄2
ℓ,n

 1

J

J∑
j=1

Z2
j −

(
1

J

J∑
k=1

Zk

)2
 (1 + oP(1))

d
=

ξ2

J

(
1

L

L∑
ℓ=1

σ̄2
ℓ,n

)
χ2
J−1(1 + oP(1))

=
ξ2

J
σ̄2
nχ

2
J−1(1 + oP(1)),

where Z1, . . . , ZJ follow independent standard Gaussian distributions. Second, remark that (5) and

σ̄ℓ,n → 0 imply (16) so that Lemma A.3 yields ∆2,n = ξ2 varlog((1 − αn)1:L)(1 + oP(1)), and conse-

quently,
J varlog((1− αn)1:L)

σ̄2
n

∆1,n

∆2,n

d
= χ2

J−1(1 + oP(1)),

which proves the result.

Proof of Corollary 3.1. Under (H0), [de Haan and Ferreira, 2006, Theorem 4.3.8] entails the following

representation for all j = 1, . . . , J and ℓ = 1, . . . , L:

log
(
q̂Wj (αℓ,n |βj,n)

)
= log (qj(αℓ,n)) +

log
(

1−βj,n

1−αℓ,n

)
√
nj(1− βj,n)

ξjZj(1 + oP(1)), (22)

where Z1, . . . , ZJ are independent standard Gaussian random variables. Moreover, taking account of

ξj = ξ from Lemma A.1(i), nj/n → λj and (1− βj,n)/(1− βn) → 1/λj as n → ∞ for all j = 1, . . . , J

yields

log
(
q̂Wj (αℓ,n |βj,n)

)
= log (qj(αℓ,n)) +

log
(

1−βn

1−αℓ,n

)
√
n(1− βn)

ξZj(1 + oP(1)),

since log
(

1−βj,n

1−αℓ,n

)
∼ log

(
1−βn

1−αℓ,n

)
as n → ∞. As a conclusion, (5) holds with σ̄ℓ,n =

log
(

1−βn
1−αℓ,n

)
√

n(1−βn)
and

the result follows from Theorem 3.1.

Proof of Proposition 4.1. In the case where J = 2, ∆1,n can be simplified as

∆1,n =
1

4L

L∑
ℓ=1

(log q̃1(αℓ,n)− log q̃2(αℓ,n))
2
.
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Using the Weissman estimator (2) and the Hill estimator (3), we have, for j = 1, 2:

log q̂Wj (αℓ,n |βn) = log qj(αℓ,n) + log

(
1− βn

1− αℓ,n

)(
ξ̂Hj (βn)− ξ

)
+ log

(
q̂j(βn)

qj(βn)

)
, (23)

and therefore

log q̂W1 (αℓ,n |βn)− log q̂W2 (αℓ,n |βn) = log

(
1− βn

1− αℓ,n

)(
ξ̂H1 (βn)− ξ̂H2 (βn)

)
+ log

(
q̂1(βn)

q1(βn)

)
− log

(
q̂2(βn)

q2(βn)

)
. (24)

Since X
(1)
i and X

(2)
i are Pareto distributed for i = 1, . . . , n, Equations (19) and (20) of Lemma A.4

yield

ξ̂H1 (βn)− ξ̂H2 (βn)
d
=

√
2ξ√

n(1− βn)
Γξ

(
1 +OP

(
1

n(1− βn)

))
, (25)

log

(
q̂1(βn)

q1(βn)

)
− log

(
q̂2(βn)

q2(βn)

)
d
=

√
2ξ√

n(1− βn)
Γq

(
1 +OP

(
1

n(1− βn)

)
+OP(1− βn)

)
, (26)

where Γq and Γξ are two independent standard Gaussian random variables. Hence, plugging (25)

and (26) into (24), it follows that

log q̂W1 (αℓ,n |βn)− log q̂W2 (αℓ,n |βn)
d
=

log
(

1−βn

1−αℓ,n

)
√
n(1− βn)

√
2ξΓξ

(
1 +OP

(
1

n(1− βn)

))
+

√
2ξ√

n(1− βn)
Γq

(
1 +OP

(
1

n(1− βn)

)
+OP(1− βn)

)
.

Taking account of αℓ,n = 1− τℓ/n, the above equality can be rewritten as

log q̂W1 (αℓ,n |βn)− log q̂W2 (αℓ,n |βn)

d
=

1√
n(1− βn)

{
log

(
n(1− βn)

τℓ

)√
2ξ Γξ

(
1 +OP

(
1

n(1− βn)

))
+

√
2ξΓq

+ OP

(
1

n(1− βn)

)
+OP(1− βn)

}
d
=

1√
n(1− βn)


√
1 + log

(
n(1− βn)

τℓ

)2√
2ξΓ +OP

(
log(n(1− βn)

n(1− βn)

)
+OP(1− βn)

 ,

where Γ is a standard Gaussian random variable, and consequently,

∆1,n
d
=

1

4L

L∑
ℓ=1

 √
2ξ√

n(1− βn)

√
1 + log

(
n(1− βn)

τℓ

)2

Γ

2(
1 +OP

(
1

n(1− βn)

)
+OP

(
1− βn

log(n(1− βn))

))
d
=

ξ2Γ2

2

1 + Sn(βn, τ1:L)

n(1− βn)

(
1 +OP

(
1

n(1− βn)

)
+OP

(
1− βn

log(n(1− βn))

))
.
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Similarly, one can easily prove, thanks to the choice αℓ,n = 1− τℓ/n, that

∆2,n =
1

L2

L L∑
ℓ=1

(
log q̂W1 (αℓ,n |βn) + log q̂W2 (αℓ,n |βn)

2

)2

−

(
L∑

ℓ=1

log q̂W1 (αℓ,n |βn) + log q̂W2 (αℓ,n |βn)

2

)2


= varlog(τ1:L)

(
ξ̂H1 (βn) + ξ̂H2 (βn)

2

)2

= ξ2 varlog(τ1:L)

(
1 +OP

(
1√

n(1− βn)

))
. (27)

Combining the two previous results, we get the following first-order approximation of ∆1,n/∆2,n:

∆1,n

∆2,n

d
=

Γ2

2 varlog(τ1:L)

1 + Sn(βn, τ1:L)

n(1− βn)

(
1 +OP

(
1√

n(1− βn)

)
+OP

(
1− βn

log(n(1− βn))

))
,

and, in view of (9) the test statistic Tn becomes, under the condition (1− βn) log(n) → 0 as n → ∞:

Tn = Γ2

(
1 +

1

Sn(βn, τ1:L)

)(
1 +OP

(
1√

n(1− βn)

)
+OP

(
1− βn

log(n(1− βn))

))

=:

(
1 +

1

Sn(βn, τ1:L)

)
Γ2
n,

where Γn
d−→ Γ. Then,

pn(γ) := PH0

(
Tn > χ2

1,1−γ

)
= 2PH0

(
Γn > Φ̄−1(γ/2)

(
1 +

1

Sn(βn, τ1:L)

)−1/2
)

= 2Φ̄

(
Φ̄−1(γ/2)

(
1 +

1

Sn(βn, τ1:L)

)−1/2
)

(28)

+ 2(Φ− Φn)

(
Φ̄−1(γ/2)

(
1 +

1

Sn(βn, τ1:L)

)−1/2
)
, (29)

where Φn is the cumulative distribution function of Γn. Clearly, Sn(βn, τ1:L) → ∞ as n → ∞ and

thus (28) converges to γ. Moreover, Dini’s Theorem states that Φn converges uniformly to Φ on

compact sets, and thus (29) converges to 0. As a conclusion, one has

pn(γ) = 2Φ̄

(
Φ̄−1(γ/2)

(
1 +

1

Sn(βn, τ1:L)

)−1/2
)
(1 + o(1)),

and the result is proved.

Proof of Proposition 4.2. As a consequence of (23) in the proof of Proposition 4.1, one has

log q̂W1 (αℓ,n |βn)− log q̂W2 (αℓ,n |βn) = log

(
q1(αℓ,n)

q2(αℓ,n)

)
+ log

(
1− βn

1− αℓ,n

)(
ξ̂H1 (βn)− ξ̂H2 (βn)

)
+ log

(
q̂1(βn)

q1(βn)

)
− log

(
q̂2(βn)

q2(βn)

)
.
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Besides, q2(αℓ,n) = λnq1(αℓ,n) and Equations (19), (20) in Lemma A.4 entail:

ξ̂H1 (βn)− ξ̂H2 (βn)
d
=

√
2ξ√

n(1− βn)
Γξ

(
1 +OP

(
1

n(1− βn)

))
,

log

(
q̂1(βn)

q1(βn)

)
− log

(
q̂2(βn)

q2(βn)

)
d
=

√
2ξ√

n(1− βn)
Γq

(
1 +OP

(
1

n(1− βn)

)
+OP(1− βn)

)
,

where Γξ and Γq are standard Gaussian random variables. Taking account of αℓ,n = 1 − τℓ/n and

introducing kn = n(1− βn) to simplify the notations yields

log q̂W1 (αℓ,n |βn)− log q̂W2 (αℓ,n |βn)

=− log(λn) +

√
2ξ log (kn/τℓ)√

kn
Γξ

(
1 +OP

(
1

kn

))
+

√
2ξ√
kn

Γq

(
1 +OP

(
1

kn

)
+OP(1− βn)

)

=− log(λn) +

√
2ξ

√
1 + log (kn/τℓ)

2

kn
Γ

(
1 +OP

(
1

kn

)
+OP

(
1− βn

log(kn)

))
,

where Γ is a standard Gaussian random variable. Then, recalling that

Sn(βn, τ1:L) =
1

L

L∑
ℓ=1

log

(
kn
τℓ

)2

and sn(βn, τ1:L) =
1

L

L∑
ℓ=1

√
1 + log

(
kn
τℓ

)2

,

it follows:

∆1,n =
1

4L

L∑
ℓ=1

(
log q̂W1 (αℓ,n |βn)− log q̂W2 (αℓ,n |βn)

)2
=

log(λn)
2

4
− ξ√

2

log(λn) sn(βn, τ1:L)√
kn

Γ

(
1 +OP

(
1

kn

)
+OP

(
1− βn

log(kn)

))
+

ξ2

2

(1 + Sn(βn, τ1:L))

kn
Γ2

(
1 +OP

(
1

kn

)
+OP

(
1− βn

log(kn)

))
.

Assumption (i) entails log(kn)
2/k2n ∨ log(kn)/n = o(log(λn)

2) while log(n)(1 − βn) → 0 implies

log(kn)/n = o(1/kn). Remarking that Sn(βn, τ1:L) ∼ log(kn)
2 and sn(βn, τ1:L) ∼ log(kn) as n → ∞

yields

∆1,n =
log(λn)

2

4
− ξ√

2

log(λn) sn(βn, τ1:L)√
kn

Γ +
ξ2

2

(1 + Sn(βn, τ1:L))

kn
Γ2

+OP

(
log(kn)

2

k2n

)
+OP

(
log(kn)

n

)
+OP

(
log(λn) log(kn)

k
3/2
n

)
+OP

(
log(λn)

√
kn

)
.

Assumption (i) implies in particular log(λn) = O(log(kn)/
√
kn) which, in turn, entails that the third

and fourth OP(·) are respectively bounded above by the first and second ones. The above expansion

can thus be simplified as

∆1,n =
log(λn)

2

4
− ξ√

2

log(λn) sn(βn, τ1:L)√
kn

Γ+
ξ2

2

(1 + Sn(βn, τ1:L))

kn
Γ2+OP

(
log(kn)

2

k2n

)
+OP

(
log(kn)

n

)
.

Similarly to (27) in the proof of Proposition 4.1, one has

∆2,n = ξ2 varlog(τ1:L)

(
1 +OP

(
1√
kn

))
.
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Combining the previous two results, and since (log kn)
2/k

3/2
n = o(log(λn)

2), in view of (i), we get the

following asymptotic expansion of ∆1,n/∆2,n:

∆1,n

∆2,n
=

log(λn)
2

4ξ2 varlog(τ1:L)

(
1 +OP

(
1√
kn

))
− 1√

2ξ

log(λn) sn(βn, τ1:L)√
kn varlog(τ1:L)

Γ

(
1 +OP

(
1√
kn

))
+

1

2

(1 + Sn(βn, τ1:L))

kn varlog(τ1:L)
Γ2

(
1 +OP

(
1√
kn

))
+OP

(
log(kn)

2

k2n

)
+OP

(
log(kn)

n

)
=

log(λn)
2

4ξ2 varlog(τ1:L)
− 1√

2ξ

log(λn) sn(βn, τ1:L)√
kn varlog(τ1:L)

Γ +
1

2

(1 + Sn(βn, τ1:L))

kn varlog(τ1:L)
Γ2

+OP

(
log(kn)

2

k
3/2
n

)
+OP

(
log(kn)

n

)
+OP

(
log(λn)

2

√
kn

)
+OP

(
log(λn) log(kn)

kn

)
.

The third and fourth OP(·) are bounded above by the first one since log(λn) = O(log(kn)/
√
kn) in

view of condition (ii), and consequently,

∆1,n

∆2,n
=

log(λn)
2

4ξ2 varlog(τ1:L)
− 1√

2ξ

log(λn) sn(βn, τ1:L)√
kn varlog(τ1:L)

Γ +
1

2

(1 + Sn(βn, τ1:L))

kn varlog(τ1:L)
Γ2

+OP

(
log(kn)

2

k
3/2
n

)
+OP

(
log(kn)

n

)
=

1

ξ2 varlog(τ1:L)

(
log(λn)

2

4
− ξ√

2

log(λn)sn(βn, τ1:L)√
kn

Γ +
ξ2

2

(1 + Sn(βn, τ1:L))

kn
Γ2

)

×

1 +
OP

(
log(kn)

2

k
3/2
n

)
+OP

(
log(kn)

n

)
log(λn)2

4 − ξ√
2

log(λn)sn(βn,τ1:L)√
kn

Γ + ξ2

2
(1+Sn(βn,τ1:L))

kn
Γ2

 .

Focusing on the denominator of the above term, condition (ii) shows that
√
kn log(λn) → 0 as n → ∞

leading to

log(λn)
2

4
− ξ√

2

log(λn)sn(βn, τ1:L)√
kn

Γ +
ξ2

2

(1 + Sn(βn, τ1:L))

kn
Γ2 =

ξ2

2

log(kn)
2

kn
Γ2(1 + oP(1)),

and thus

∆1,n

∆2,n
=

1

ξ2 varlog(τ1:L)

(
log(λn)

2

4
− ξ√

2

log(λn)sn(βn, τ1:L)√
kn

Γ +
ξ2

2

(1 + Sn(βn, τ1:L))

kn
Γ2

)
×
(
1 +OP

(
1√
kn

)
+OP

(
1− βn

log(kn)

))
,

or equivalently,

Tn =
2varlog(τ1:L) kn
Sn(βn, τ1:L)

∆1,n

∆2,n

=

(
log(λn)

2kn
2ξ2Sn(βn, τ1:L)

−
√
2kn log(λn)sn(βn, τ1:L)

ξSn(βn, τ1:L)
Γ +

1 + Sn(βn, τ1:L)

Sn(βn, τ1:L)
Γ2

)
×
(
1 +OP

(
1√
kn

)
+OP

(
1− βn

log(kn)

))
.

The result follows.
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Proof of Remark 2. From Proposition 4.2, one has P
(
Tn ≤ χ2

1,1−γ

)
= P

(
anΓ

2 + bnΓ + Cn ≤ 0
)
where

an =
1 + Sn(βn, τ1:L)

Sn(βn, τ1:L)
,

bn =−
√
2kn log(λn)sn(βn, τ1:L)

ξSn(βn, τ1:L)

are two non random sequences and

Cn =
log(λn)

2kn
2ξ2Sn(βn, τ1:L)

− χ2
1,1−γ(1 + εn),

εn = OP

(
1√
kn

)
+OP

(
1− βn

log(kn)

)
are two random variables. It straightforwardly follows that

Ω1,n := − bn
2an

=

√
kn log(λn)sn(βn, τ1:L)√
2ξ (1 + Sn(βn, τ1:L))

and
b2n
4a2n

=
kn log(λn)

2sn(βn, τ1:L)
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Moreover, in view of (i) and log(n)(1− βn) → 0, one has:
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Besides, (i′) is equivalent to log(kn)
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where
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A second-order Taylor expansion shows that sn(βn, τ1:L)
2 − 1− Sn(βn, τ1:L) → 0 as n → ∞. Besides,

since Sn(βn, τ1:L) ∼ (log kn)
2 as n → ∞, it follows from (ii) that Ω2,n → χ2

1,1−γ as n → ∞. As a

consequence, Ωn is positive for n large enough. Hence,
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and the proposed approximation follows.

Proof of Proposition 4.3. Following the steps of the proof of Proposition 4.2, one has:
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First, we establish a result similar to those of Lemma A.4 adapted to our setting. Equations (17)

and (18) yield:
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,

since {E(2)
1 , . . . , E(2)

kn
} are i.i.d. realisations of an exponential distribution with mean ξ. It thus comes
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Similarly,

log

(
q̂2(βn)

q2(βn)

)
d
= θn

{
E(2)
n−kn,n

− ξ log(n/kn)
}

d
=

θnξ√
n(1− βn)

Γq,j

(
1 +OP

(
1√

n(1− βn)

)
+OP(1− βn)

)
,

and one thus has
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Moreover, q2(αℓ,n) = q1(αℓ,n)
θn and q1(αℓ,n) = (τℓ/n)

−ξ, hence
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and replacing in (30) yields
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where we have introduced kn = n(1− βn). Using (i), one has log(kn)/k
3/4
n ∨

√
log(kn)/n = o(log(θn))

and taking account of log(n)(1− βn) → 0 as n → ∞, it follows
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where it is recalled that

sn(βn, τ1:L) =
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L
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.

Note that the condition log(θn) = o(1/
√
kn) in (ii) ensures that the first and second OP are bounded

from above by the two others, hence
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In addition, straightforward calculations lead to
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Combining the previous two results, the following asymptotic expansion of ∆1,n/∆2,n follows:
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Therefore, the test statistics can be written as
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and the result is proved.

Proof of Remark 3. Let us introduce the two non-random sequences
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as well as the two random variables
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leading to the proposed approximation.

B Additional figures

This section gathers some additional figures related to the numerical experiments conducted in Sec-

tions 5 and 6.
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Figure B.1: From left to right, top to bottom: examples (MF), (MM), (MP) with θ = 0.8 (solid

curves) and θ = 1.2 (dashed curves), and (CP) with π = 0.2 (dotted curves), π = 0.5 (dashed curves)

and π = 0.8 (solid curves). In all examples, n = 1, 000, βn = 0.9 and J = 5 (blue curves), J = 10

(green curves) and J = 15 (red curves).
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Figure B.2: n = 1, 000 log-returns associated with J = 10 stock market indices.
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Figure B.3: Exponential QQ-plots of the weighted log-spacings associated with the daily log-returns

computed from 10 financial indices.
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