Mayank Shekhar Jha
email: mayank-shekhar.jha@univ-lorraine.fr

Didier Theilliol Philippe Weber

Model-free optimal tracking over finite horizon using adaptive dynamic programming

Keywords: Adaptive dynamic programming, model free, optimal tracking, actor critic, neural networks, nonlinear Hamilton Jacobi bellman

Adaptive dynamic programming (ADP) based methods have emerged as effective approach for solving nonlinear HJB in an approximative sense. This paper develops a new iterative ADP algorithm in that the focus is on minimizing the consecutive changes in control inputs over a finite horizon to solve optimal tracking problems for completely unknown discrete time systems. To that end, the optimization considers withing the cost function: tracking performance, energy consumed and as a novelty, consecutive changes in control inputs. Through suitable system transformation, the optimal tracking problem is transformed to a regulation problem with respect to the state tracking error. The latter leads to a novel performance index function over finite horizon and corresponding nonlinear Hamilton-Jacobi-Bellman (HJB) equation that is solved in approximative iterative sense using a novel iterative ADP based algorithm. A suitable architecture is proposed to learn the initial admissible one step zero control law. The proposed iterative ADP is implemented using heuristic dynamic programming technique based on actor-critic Neural Network structure. Finally, simulation studies are presented to illustrate the effectiveness of the proposed algorithm.

Introduction

Optimal control for nonlinear systems requires solving the nonlinear Hamilton-Jacobi-Bellman (HJB) equation analytically which is usually too difficult [START_REF] Lewis | Optimal control[END_REF][START_REF] Li | LQ control of unknown discrete-time linear systems-A novel approach and a comparison study[END_REF] . To that end, the usefulness of dynamic programming (DP) for solving HJB equation is well established [START_REF] Bellmann | Dynamic programming princeton university press[END_REF]45 . Adaptive dynamic programming (ADP) based methods have emerged as effective approach for solving nonlinear HJB in approximative sense and solve the optimal control problems forward-in-time [START_REF] Werbos | Approximate dynamic programming for realtime control and neural modelling[END_REF][START_REF] Werbos | Intelligence in the brain: A theory of how it works and how to build it[END_REF][START_REF] Sokolov | Complete stability analysis of a heuristic approximate dynamic programming control design[END_REF] . Several variants of adaptivecritic designs have been developed to implement ADP based methods including heuristic dynamic programming (HDP), dual HDP and globalized-dual HDP [START_REF] Prokhorov | Adaptive critic designs: A case study for neurocontrol[END_REF] . While HDP employs a critic NN to approximate the optimal cost function, dual HDP uses critic NN to approximate the derivative of the optimal cost function, and globalized-dual HDP employs critic NN to estimate both of the optimal cost function as well as its derivative [START_REF] Prokhorov | Adaptive critic designs[END_REF] . In a broad sense, the actor-critic structures are both included in most ADP based methods. For dynamical systems, it is usually required to the optimize the energy consumed (keeping control input to zero) along with desired performance, but it is also significantly important to minimize the consecutive changes in control inputs i.e., t u  where u is the control input at time t. For time varying tracking problems, the control input values depend on the desired trajectory. As such, the latter remain sensitive to the trajectory generator output and associated perturbations. Under constrain free conditions (non-saturating actuators) as considered in this paper, the control inputs are sensitive to severe changes in control values (depending on the reference trajectory). Thus, it becomes important to account for such changes in control inputs often brought in by trajectory generators, while designing optimal control for tracking. In fact, one of the undesirable effects of large control input change (frequent actuator) solicitation is actuator degradation [START_REF] Langeron | A modeling framework for deteriorating control system and predictive maintenance of actuators[END_REF][START_REF] Khelassi | Fault-tolerant control design with respect to actuator health degradation: An LMI approach[END_REF] . ADP based approaches are being extensively developed in various domains where smoothness in the control input profile is often desirable. This includes fault tolerant control [START_REF] Zhang | Dual heuristic programming with just-in-time modeling for selflearning fault-tolerant control of mobile robots[END_REF] , smart buildings [START_REF] Chen | Online and hard constrained adaptive dynamic programming algorithm for energy storage control in smart buildings[END_REF] , robust control [START_REF] Liu | Data-based robust optimal control of discrete-time systems with uncertainties via adaptive dynamic programming[END_REF] , time-delay systems [START_REF] Liang | A novel neural network discrete-time optimal control design for nonlinear time-delay systems using adaptive critic designs[END_REF] , health sector [START_REF] Ali | Optimal blood glucose regulation of diabetic patients using single network adaptive critics[END_REF] , spacecraft rendezvous [START_REF] Gu | An off-policy approach for model-free stabilization of linear systems subject to input energy constraint and its application to spacecraft rendezvous[END_REF] etc. Much of the existing work stands on the view of infinite horizon designs and seek to satisfy the required system properties including system stability over an infinite time horizon [START_REF] Al-Tamimi | Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof[END_REF] provided an important proof of convergence for iterative ADP algorithm to solve discrete-time nonlinear HJB, [START_REF] Zhang | A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm[END_REF] considered consecutive changes in control inputs within the cost function (infinite horizon) and provided the convergence proof, [START_REF] Dierks | Optimal control of unknown affine nonlinear discretetime systems using offline-trained neural networks with proof of convergence[END_REF] extended the analysis to unknown affine systems, [START_REF] Wang | Optimal control of unknown nonaffine nonlinear discrete-time systems based on adaptive dynamic programming[END_REF] extended the treatment for nonaffine nonlinear systems, [START_REF] Liu | A boundedness result for the direct heuristic dynamic programming[END_REF] and 8 gave a holistic treatment and provided boundedness result for online HDP approach. Most of these works have considered known system models. Finite horizon control design seeks to satisfy various required properties within a finite horizon limit and remains closer to the reality and hence more pertinent for physical systems [START_REF] Amato | Finite-time control of discrete-time linear systems[END_REF][START_REF] Haimo | Finite time controllers[END_REF] . Recent years have seen significant rise in finite horizon-based control [START_REF] Zattoni | Structural invariant subspaces of singular Hamiltonian systems and nonrecursive solutions of finite-horizon optimal control problems[END_REF] . In [START_REF] Wang | Adaptive Dynamic Programming for Finite-Horizon Optimal Control of Discrete-Time Nonlinear Systems With $\varepsilon $-Error Bound[END_REF] , adaptive epsilon-ADP algorithm was proposed to solve near optimal control problem, [START_REF] Wang | Finite-horizon neuro-optimal tracking control for a class of discretetime nonlinear systems using adaptive dynamic programming approach[END_REF] provided finite horizon iterative ADP based optimal control, [START_REF] Heydari | Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics[END_REF] considered a non-quadratic cost function and provided convergence proofs. However, the aforementioned works have considered the system models that are either fully known [START_REF] Zhang | A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm[END_REF] or partially known (knowledge of control matrix)). [START_REF] Huang | Neural-network-based optimal tracking control scheme for a class of unknown discrete-time nonlinear systems using iterative ADP algorithm[END_REF] presented an iterative ADP based optimal control under fully unknown conditions but over infinite horizon. The recent works of [START_REF] Mu | Data-Driven Finite-Horizon Approximate Optimal Control for Discrete-Time Nonlinear Systems Using Iterative HDP Approach[END_REF] and [START_REF] Song | Data-driven finite-horizon optimal tracking control scheme for completely unknown discrete-time nonlinear systems[END_REF] present finite horizon optimal tracking design under unknown model conditions using iterative HDP conditions with convergence proofs. Although, complete unknown conditions are assumed, the knowledge of inverse system dynamics (imperative for feedforward control) is assumed to be available a priori and the inverse system dynamics problem is not addressed which is usually very difficult to obtain analytically. In this context, [START_REF] Zhang | A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm[END_REF] considered changes in control input within the cost function but over infinite time horizon and under known system conditions. To the best knowledge of authors, none of the existing works have focused on minimizing the consecutive changes in control inputs over a finite horizon under complete unknown conditions within the ADP framework. To bridge the existing scientific gap, this paper:

 develops a novel ADP iterative algorithm by accounting for consecutive changes in control inputs within the cost function and provides novel proofs of convergence. It is noted that similar formulation was proposed in [START_REF] Zhang | A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm[END_REF] but over infinite horizon for optimal regulation problem under known conditions while this paper proposes the latter over finite horizon and optimal tracking problem under complete unknown conditions.  To initialize the iterative algorithm under the assumptions of admissibility, an initial one step zero control law is required. This paper proposes a suitable NN based algorithm to obtain the initial admissible one step zero control.

This section is followed by section 2 that presents problem formulation taking into account consecutive changes in control input in the cost function and deriving the corresponding nonlinear HJB equation, section 3 it is noted that unknown system dynamics as well as inverse dynamics need to be identified, section 4 present the two novel contribution of the paper: novel algorithm to derive an initial one step zero control law, and the principal contribution in form of novel iterative ADP algorithm under finite horizon conditions with complete convergence analysis and proofs, section 5, implements the proposed iterative ADP using actor-critic structure based iterative HDP technique and finally, section 6 presents a simulation study and section 7 draws the conclusions.

Problem statement

The dynamic system is considered unknown, nonlinear, control affine in discrete time as:

1 , , (, ()) () () ()
k k p k k k k p k k x F x u x f x g x u x     (1)
where k x ℝ is the global system state vector determining the system state trajectory, () p u x  ℝ is the control vector, () f  and () g  are nonlinear functions differentiable with respect to its arguments, () g x satisfies ()

M F g x g x   ℝ where 0 M g  is any positive constant. Moreover, f gu
 is considered Lipschitz continuous on a compact set Ω in ℝ containing the origin, system (1) is stabilizable so that there exists a control sequence on compact set Ω that asymptotically stabilizes the system. For notational purposes, we denote the feedback control  

k k r r    (2)
Assumption 1: Mapping between the state k x and the desired trajectory ()

k r 
is one to one. The steady state desired control , d k u corresponding to reference trajectory k r can be defined as:

  1 , () () () d k k k k u g r r f r     (3)
where the inverse of control matrix 1 () k g r  is unknown but exits so that 1 () () k k g r g r I   ℝ × with I being an identity matrix. A reference control generator function , d k u depends on unknown inverse dynamics which must be identified (see section 3.2) to generate the desired reference control.

System transformation and nonlinear HJB optimality

The tracking error is defined as:

k k k e x r  
(4) The augmented error dynamics can be obtained from (1)-(3) as [START_REF] Park | An optimal tracking neuro-controller for nonlinear dynamic systems[END_REF] :

  1 , 1 () () () () () k k k k k d k k k k k k k
e f e r g e r u r g e r u r r

                         (5)
where ,

d k
u is obtained from (3). Considering the augmented system (5), k e and k r can be treated as system variables and k u is seen as feedback control input at k, given as:

, , k p k d k u u u   (6
) Moreover, considering the fact the reference evolution does not depend on other system variables, (5) can be represented as:

  1 , k e k k e F e u   (7)
where k k k e x r   , k e ℝ . Now, starting from k, considering the initial state of the system at discrete time k as k e , let the control sequence over finite horizon be noted as

1 N k u  =   1 1
, ,....  . The cardinality of the control sequence that determines its length is denoted as

1 N k u  . Then, 1 N k u N
  and the final state under the control sequence

1 N k u  is denoted as   () 1 , final N k k e e u  . Then,   () 1 , final N k k N e e u e   .

Cost function penalizing consecutive changes in control input

For finite horizon optimal control problem, the optimality of the control sequence is assessed by a cost function that must penalize consecutive changes in control inputs i.e., t u  where u is the control input at time t. To that end, the cost function in this paper seeks to penalize the consecutive changes in control inputs

1 k k u u  
. It is considered as:

  1 1 1 , η(, ,) N N k k i i i i k J e u e u u       (8)
where η (•) is the utility function and   η 0,0,0 0  ,

1 1 η(, ,) 0 , , i i i i i i e u u e u u    
. The utility function is chosen as:

    1 1 1 0 η(, ,) e 0 0 T i x T T T i i i i i i i i i i i i e Q e u u r u S u u u R u u r                         (9)
where x Q , S and R are symmetric and positive definite matrices of appropriate dimensions. The first term in the quadratic function penalizes system errors, the second term penalizes the control error and while the third term penalizes the consecutive changes in the control input. Remark 1: From (6) it is observed that tracking control , p k u to the original system (1) consists of a feedback control k u and a pre-determined desired control , d k u associated with the desired reference trajectory k r . Remark 2: By considering the augmented error system (5) in the cost function (8), the optimal tracking problem of (1) has been transformed to an optimal regulation problem. Defining

1 v k k k u u   
and noting the fact that 0 0 v u  and v 0 0

k k u k    
, one can obtain:

1 0 1 0 v vv v v k k k k k l l u          (10)
where, l k   , control value at l is denoted as v l . Moreover, for notational simplicity,

1 0 v k l l    is de- noted as 1 0 v k l l   
. Then, the control action at any k, k u becomes:

1 0 v v k k k l l u  
  (11) Accordingly, the utility function in (9) becomes:

      1 1 1 0 0 0 η , v , (v v) v v v v v v T i i T T T i i i i i l l i i i i i l l i l l i e e e r Q R S r                                       (12)
where

0 0 0 x Q Q       
. After having defined control actions in (10), the control sequences are represented in accordance to (10). Then, consider

  1 1 1 v v , v ,..v N k k k N    
as the sequence of control inputs from any

0 k  to N-1.
Then, the sequence of control actions starting from k as defined in (10) can be denoted as:

1 0 v N l l k       1 1 1 0 1 0 1 2 0 (v v), (v v v),..., (v v ... v) k k k k l l k k l l N N l l                  
. Additionally, the corresponding cumulative cost function (cf. (8)) can be defined as:

      1 1 1 1 0 0 , v , v η , v , v v N N N p i k k k l l i i p k p l l k i k J e e                (13
) Remark 3: The difference of control errors in cost function (9) has been incorporated systematically in cost function (13). The problem is then transformed to that of finding control law * v () k e starting at k , that is optimal in sense of (13) and produces optimal control value * v k at k .

Remark 4

From * v k , the optimal control value * k u for the system (5) can be constructed as , v , v

1 * * 0 =v v k k k l l u     .
N N k k l l k J e     is finite with the final state   () 1 , v 0 final N k k e e   .
Assumption 2: In this work, the nonlinear augmented error system (5) is considered stabilizable on a compact set n  i.e. for all initial conditions k e   , there exists a control sequence

1 v N k  such that the final state   () 1 , v 0 final N k k e e   .

Associated nonlinear HJB optimality

    () 1 () 1 1 v : , v 0, v k i k i final k i k i e k k k k e e i         
 be the set of all admissible finite horizon control sequences starting at k of length i. Then, the optimal cost function with respect to these admissible control sequences over the finite horizon [k,N-1] is:

    1 1 1 1 () v 0 *() inf , v , v : v N k k N N N N k k k k l k e l k J e J e           (14)
It must be noted that cost function (13) can be written as combination of immediate one stage cost at k and cost due to rest of the remaining N-k-1 stages as :

          1 1 1 1 1 1 0 0 0 0 1 , v , v v v v v v v η , v , v v N T N k N T T T k k i k k k l k k k k k l l k l l i i p k p l l l k i k k e J e e r Q R S e r                                              (15)
According to Bellman's optimality principle [START_REF] Bellmann | Dynamic programming princeton university press[END_REF][START_REF] Bertsekas | Dynamic programming and optimal control[END_REF] , the optimal cost function satisfies the Discrete time Hamilton Jacobi Bellman (DTHJB) optimal equation:

        * 1 1 * 0 0 1 v min v v v v v v k T k T T T k k k k k k k k l l k l l k k e J e e r Q R S J e r                                  (16)
This leads to the optimal control from k e starting at k, * v (e)

k
given by the gradient of the right hand side of (16) with respect to v k as:

  * * 1 1 1 0 , 1 () 1 v () () 2 v () 2 k T k k l l x k k k J e e R S S g e r e                    (17)
Substituting the value of optimal control in (16), the optimal cost can be derived as:

        * * 1 1 0 , 1 * 1 1 1 1 0 , 1 * 1 1 1 1 0 , 0 1 () 1 2 v () 4
() () 2 v () () () 1 () 2 v () v 2 T k T T k T k k k k l l x k k k k k T k l l x k k k T k T k k l l x k k l l k e J
                                                                     * 1 1 1 1 0 , 0 1 * 1 () 1 () 2 v () v 2 () k T k k l l x k k l l k k J e S R S S g e r e J e                           (18)
This equation cannot be solved exactly as no closed form solution exists. Thus, the problem addressed in this paper is in two folds. Firstly, the completely unknown dynamics problem of (1)-(3) is addressed by using NNs in Section 3. Secondly, the optimal control problem of (18) is solved using a novel iterative ADP method and convergence analysis over the respective finite horizon is provided in Section 4.

3 System identifier-NN and Feedforward controller NN For the completely unknown systems, the challenge lies in obtaining the complete or even the partial knowledge of the system dynamics. In this work, NNs are used to identify the complete system dynamics of (1) and a system identifier-NN (SI-NN) is constructed for that purpose. Additionally, to obtain tracking control , p k u , the knowledge of pre-determined desired reference control , d k u is needed (see Remark 1), which requires the knowledge of inverse mapping of the system as shown in (3). To that end, a feedforward controller neural network (FCN-NN) is proposed to identify the inverse mapping of the system that leverages the already trained SI-NN.

System identifier-NN

Input-output data is used to identify the system dynamics using multi-layered feedforward NNs.

According to the universal approximation property of NNs over compact set, system (1) has an NN based representation on a compact set S. Denoting the weights between input layer and hidden layer as m  , ideal weights between the hidden layer and output layer as m  , a three-layer NN with

1
n number of neurons in each hidden layer is considered as:

* * 1 , , ()
T T k m m m m k m k x z        (19) where * m  ℝ × and * m  ℝ ()×
are the constant ideal weight matrices of system (model) NN,    so that () [START_REF] Lewis | Optimal control[END_REF][START_REF] Lewis | Optimal control[END_REF]

, , [] T T T m k k p k z x u  is the input to the NN, ,
  • m M    and   . . T T k k m k m k M x x    
for some non-negative constants M  and M  . Assumption 4. For the ease of analysis, only the output weights of NN are updated and the hidden weights are kept fixed [START_REF] Dierks | Optimal control of unknown affine nonlinear discretetime systems using offline-trained neural networks with proof of convergence[END_REF] . Using Assumption 4 and considering

* , , T m k m m k z z   , (19)
can be rewritten as:

* 1 , , () T k m m m k m k x z       (20)
The training procedure of SI-NN is very well established in the literature and major steps are provided in the Appendix A in Algorithm A1. After a sufficiently long training process, the system dynamics of (1) can be written as:

1 1 , ˆ() T k k m m m k x x z       (21)
where ˆm  , is the estimation of ideal weight matrix * m  . Next, the augmented system in (5) requires knowledge of the desired control (3).

Feedforward controller neural network (FCN-NN)

To generate a desired control , d k u with respect to a given desired reference k r (see (3)), the inverse mapping of system must be learnt. Under completely unknown conditions, this task is non-trivial. For this purpose, this work uses the feedforward neuro-control learning approach [START_REF] Wang | Finite-horizon neuro-optimal tracking control for a class of discretetime nonlinear systems using adaptive dynamic programming approach[END_REF] . In this work, a feedforward controller neural network (FCN-NN) is constructed to learn the inverse mapping using a feedforward NN. It is observed that the desired control can be obtained by setting in the original system (1), ,

, p k d k u u  , k k x r  for all k i.e. 1 , 1 , 1 (,) (,)
k k d k d k k k r F r u u F r r      (22)
where 1 F  is the inverse dynamics of the system which is in general, very difficult to obtain, if not impossible. To that end, a fully connected feedforward NN structure is adopted for FCN-NN to learn the inverse dynamics 1 F  by employing the structure shown in Figure 1 [START_REF] Huang | Neural-network-based optimal tracking control scheme for a class of unknown discrete-time nonlinear systems using iterative ADP algorithm[END_REF] . The details of the architecture and major steps of NN training is provided in Appendix B. After a sufficiently long training, the inverse dynamics identification error approaches zero, the FCN-NN weights approach their ideal value in an asymptotic sense (the proof can be provided in sense of Theorem A3 in Appendix A and it is omitted here). Then, the inverse dynamics 1 F  is learnt by the FCN-NN and the desired control , d k u in (22) can be expressed as:

1 1 1 , , , ˆ()
T d k d k F F F k u u z        (23)
Figure 1 The feedforward neuro-controller NN training architecture The desired control learnt here is needed in Section 5 to implement the optimal tracking based on actor-critic structure. Next, section presents the major contributions of the paper.

Finite horizon tracking using iterative ADP algorithm

This section presents the principal contribution of this paper. A novel finite-horizon iterative ADP algorithm is proposed to solve (18) and the convergence to optimality is proved through convergence analysis. However, the aforementioned algorithm requires presence of one-step zero control [START_REF] Wang | Adaptive Dynamic Programming for Finite-Horizon Optimal Control of Discrete-Time Nonlinear Systems With $\varepsilon $-Error Bound[END_REF][START_REF] Mu | Data-Driven Finite-Horizon Approximate Optimal Control for Discrete-Time Nonlinear Systems Using Iterative HDP Approach[END_REF] . This section proposes a procedure, inspired from the one in Figure 1, to learn the one step zero control law using a NN. The novel architecture serves as a minor contribution of the paper, can be used obtain an initial one step control value OS u for the error system (7) thus, avoiding the requirement of an analytical solution as in [START_REF] Mu | Data-Driven Finite-Horizon Approximate Optimal Control for Discrete-Time Nonlinear Systems Using Iterative HDP Approach[END_REF] .

Initial one step-zero control

The objective is to learn an initial admissible control law. Using a one-step zero control law, the equivalent system (7) states are driven to zero (origin), i.e. u is the control value that drives the system states to origin in one step. [START_REF] Mu | Data-Driven Finite-Horizon Approximate Optimal Control for Discrete-Time Nonlinear Systems Using Iterative HDP Approach[END_REF] used a similar strategy to assure presence of initial admissible control law for regulation purposes. However, a trained system network was used to get the initial one step control in form of a least square solution.

Here, a feedforward one step-zero controller NN (FOSC-NN) is introduced to learn the one step zero control law using a feedforward NN. The training of FOSC-NN is done using the structure shown in Figure 2 which comprises of trainable FOSC-NN, the already-trained SI-NN and system origin (where system states are zero) k  ℝ . Without the loss of generality, in this paper,

0 k k    .
The error ,k e   ℝ is generated using original system states k x ℝ and the system-origin(s) n k    . Consider FOSC-NN as a three-layer NN with 3 n number of neurons in each hidden layer as:

* * , , , * , , ˆ() ()
T T OS k OS OS OS k OS k T OS OS OS k OS k u e z             (24)
with ,k e   ℝ as input and

T T T m k k OS k z x u 
, so that the estimated output is 1 ˆk x  . The output error is estimated as: , 1

1 1 ˆk k k e x       
Step 4: FOSC-NN is trained using the error: , 1 ˆk e   by minimizing the error function:

, 1 , 1 , 1 ˆ(1 / 2) T OS k k k E e e       (25) so that , 1 1 1 ˆk k k e x       
is minimized in iterative sense. The weights of FCN-NN are adapted using a gradient descent-based optimization scheme:

, 1 , 1 , , , 1 , 1 , , 1 , , , 1 , , , 1 ˆˆˆˆˆ(
) ˆOS k OS k OS k OS OS k k OS k OS k OS k OS k OS k OS k k T OS k OS OS OS k k k E e E u e u e z e u                                    (26)
where 0 OS   is the learning rate. It should be noted that the error , 1

1 1 ˆk k k e x        is propagated through the trained SI-NN and , 1 1 , , ˆk k OS k OS k e x u u        
is obtained through application of backpropagation algorithm from output of SI-NN 1 ˆk

x  to its input , ˆOS k u .

Figure 2 The feedforward one step-zero controller NN training architecture After a sufficiently long training procedure, the FOSC-NN identification error approaches zero and the network weights approach their ideal values in an asymptotic sense (the proof can be provided in sense of Theorem A3 in Appendix A and it is omitted here). Then, the one-step zero control law is learnt by the FOSC-NN that drives system states to zero (origin). (24) can be approximated as: F e u  is applicable. However, in practice, as remarked in [START_REF] Mu | Data-Driven Finite-Horizon Approximate Optimal Control for Discrete-Time Nonlinear Systems Using Iterative HDP Approach[END_REF] , the states are driven to the origin but remain deviated from the origin due to inertia of the control. In practice, a finetuning behavior can be applied to regulate the states to zero after the initial one step zero control.

, , ˆ()
T OS k OS OS OS k u z    (

Derivation of iterative ADP algorithm

This section presents the principal contribution of this paper. For notational simplicity, at i th iteration () i V shall denote the cost function value and () i v denotes the minimum control input value. Firstly, consider the initial iterative index 0 i  , such that initial cost function for all states (0) () 0 V   . Then, from (27), an initial admissible control law of single (cardinality of one) control vector (0) () OS k u e can be obtained from trained FOSC-NN as: (0) ()

(0) () () T T OS k OS OS OS k u e e     (28
V  :             (1) 1 (0) 0 1 v 1 0 v (0) (0) 1 0 () min , v , (v v) () min , v , (v v) 0 , (), () v k k k k k k k l l k k k k k l l k k k k l l V e e V e e e v e v e                   η η η
subject to:

(0) (, ()) 0 e k OS k F e u e  (29)
Secondly, consider the iterative index 1 i  , the iterative control law (1) () k v e is calculated using the iterative cost function (1) () k V e as:

      (1) 1 (1) 0 1
(1)

1 1 1 0 1 v () argmin , v , (v v) () () 1 () 2 v () 2 k k k k k l l k k T k l l k k k k v e e V e
V e R S S g e r e

                          η (30)
followed by update of iterative cost function (2) () k V e using (1) ()

k v e as                 (2) 1 (1) 0 1 v (1) (1) 1 (1) (1) 1 0 0 () min , v , v v () , (), () v , () v k k k k k k l l k k k k k k l l e k k l l V e e V e e v e v e V F e v e                  η η (31)
In general, the closed form solutions are very difficult to obtain. To that end, for i=2,3,…, the above iterative procedure can be implemented as shown in (32):

      () 1 () 0 1 () 1 1 1 0 1 v () argmin , v , (v v) () () 1 () 2 v () 2 i k i k k k k l l k i k T k l l k k k k v e e V e
V e R S S g e r e

                          η (32
)
followed by cost function as shown in (33).

                (1) 1 () 0 1 v () () 1 () () 1 0 0 () min , v , v v () , (), () v , () v k
i k i k k k k l l k i i k i i k k k k l l e k k l l V e e V e
e v e v e V F e v e

                  η η (33
) Remark 6: In the iterative ADP algorithm (32) and (33), superscript (i) denotes iteration index of control law and cost function, subscript k denotes the time index of augmented system's state and control trajectory.

Convergence analysis of iterative ADP algorithm

In this section, convergence proofs for iterations between (32) and (33) is provided such that cost function () * i V J

 and the control law ()

* v i v  as i   . Lemma 1: Let () { ()} i k
V e be the sequence of cost functions defined by (33). If there exists an initial one step zero control (0) () k u e such that

      (1) 1 () 0 1 v () min , v , v v () k i k i k k k k l l k V e e V e         η (34) with 1 2 0 v , v ,...v k k  
being any control actions before k. Then, it can be written over a time horizon of length i as :

                       (1) 1 1 (1) 0 1 1 1 0 2 1 1 0 1 1 1 0 1 (1) 1 1 1 0 1 1 () min , v , v v , v , v v v () v , v , v v , v , v v v v ... , v , v ... v v () min i k k i k k k k l l k k k k l l k k k k k k l l k k k k l l k k i k i k i k l l k i k i k k i k V e e e V e
e e e V e

                                                    η η η η η  (35)
where

    (1) 1 0 () , v , v ... v v v min k k i k i k i k i k l l k i V e e             η is subject to     1 0 , v ... v v 0 k e k i k i k l l F e         
Then, we have

1 (1) 0 0 0 () min , v , v v v j i k i k k j k j k p l j p l k i k V e e                             η (36)
Moreover, applying the definition of finite horizon cost function (c.f.(13)), we have:

1 1 (1) 0 () min , v , v v v k k i k i k k k p l p k l k i k V e J e                          subject to     1 0 , v ... v v 0 k e k i k i k l l F e          (37) Thus, (1)
: 0 ()

i k i V e Y     for some 0 Y  .
 Moreover, taking into account the iteration between (32) and (33) at each stage starting at k until some k+i, this can be written in terms of minimum control value obtained at any iteration j ,

() () i-j k j v
e  as: V obtained using iteration (32) and (33) is a monotonically non-increasing sequence such that

1 (1) () () () 0 0 0 () , (), v j i k i i -j i p k k j k j k + p l j p l V e e v e v e                            η (38
    (1) () i i k k V e V e   for 1 i   .
Proof: The proof is developed using mathematical induction. First, let i=1, the cost function

v e  and the corresponding utility function is

    (0) (0) 1 0 , (), () v k
k k k l l e v e v e     η
. Now, it can be shown that there exists a finite horizon admissible control of length 2 so that corresponding cumulative cost (2) () k V e is related to [START_REF] Lewis | Optimal control[END_REF] () k V e . To that end, we construct finite horizon admissible control of length 2:

1 vk k  , so that     1 (0) (0) 1 0 v (), () v k k k k k l l v e v e       
.

Then, using condition on final state we have

    (0) 1 1 0 , () v 0 k k e k k l l e F e v e       
and applying the 2 nd control action in

1 vk k  , we get: the       (0) 1 (0) 1 2 1 0 0 , () v () v (0,0) 0 k k k e k k l l k l l e F e v e v e                , which implies that 1 vk k  is an admissible control.
Then, the corresponding utility function

        (0) 1 (0) 1 (0) 1 1 0 0 0 , () v , 0 () v () v T k k k k k l l k l l k l l e v e v e R v e                η
. Now, we can obtain the cumulative cost function as:

                1 1 1 (0) (0) 1 (0) 1 0 0 1 0 (1) (0) 1 (0) 1 0 0 , v , v v , (), () v , () v , 0 () () v () v k k k k k k k p k p l l k k k l l k k l l T k k k k l l k l l J e e v e v e e v e V e v e R v e                               η η
On the other hand, according to (37), we have:

          (2) 1 1 1 0 (1) (0) 1 (0) 1 0 0 1 1 () min , v , v v v min () () v () v v k k k k k k p k p l l T k k k k l l k l l k k k k V e J e V e v e R v e                      (39
)
As R is an arbitrarily chosen non-negative matrix, it can be taken as small as desired, which leads us to conclusion that

    (2) 1 1 (1) 0 1 () min , v , v v () v k k i k k k k p k p l l k k k V e J e V e           
. Therefore, theorem is valid for i=1. Now, let us assume that the theorem holds for some i=q, where 1 q  . Then, using (38) we get:

1 1 () (1) (1) () 0 0 0 () , (), v q j k q q -j q p k k j k j k + p l j p l V e e v e v e                              η (40)
with the corresponding control sequence

  1 (1) (2) (0) 1 1 v (), (),... () k q q q q k k k q v e v e v e        
. Then, for i=q+1, a control sequence of length q+1 can be constructed as

1 1 (1) (2) (0) (1) 1 1 () 0 0 v (), (),... (), v q k k q q q q p q k k k q k+ p l p l v e v e v e v e                               
such that the corresponding system trajectory is given as:

1 (1) 1 0 , () v k q k e k k l l e F e v e                    ; 1 (1) (2) 2 1 1 0 , () () v , k q q k e k k k l l e F e v e v e                        1 (1) (0) 1 1 0 ..., , () ... () v k q k q e k q k k q l l e F e v e v e                         
. Now, as this is an admissible control, it leads to

0 k q e   .
Then, last control from sequence vk q q  leads to:

1 1 1 1 (1) (1) 1 () () 0 0 0 0 , v v (0, 0) 0 q q k k q p q p k q e k q k+ p l k+ p l e p l p l e F e v e v e F                                                
. This shows vk q q  is a finite horizon admissible control. The corresponding utility function is:

1 1 1 1 1 1 (1) (1) (1) () ()
() 0 0 0 0 0 0 , v ,0 v v T q q q k k k q p q p q p k q k+ p l k+p l k+p l p l p l p l e v e v e R v e                                                         η (41)
Now, we can obtain the cumulative cost function as:

1 1 1 1 (1) (1) (0) (1) 1 1 () 0 0 0 0 1 (1) () 0 0 , v , v v , (), () v ... , (), v , v k q q k k k k q q q q p k k p l k k k l k q k q k + p l p k l l p l q k q p k q k + p l p l
J e e v e v e e v e v e e v e 40) and (41), it can be seen that:

                                                                                 η η η 1 , 0                From (
1 1 1 1 1 () (1) (1) () () 0 0 0 0 0 , v , v v () v v T k q q q k k k k q q q p q p k k p l k k+ p l k+ p l p k l p l p l J e V e v e R v e                                                       (42)
On the other hand, according to (37), we have:

1 (1) 0 1 0 () min , v , v v v , v , v v k q k q k q k k k p l p k l k q k k q k k p l p k l k q k V e J e J e                                                 (43)
This implies:

1 1 1 1 (1) () (1) (1) () () 0 0 0 0 () () v v T q q k k q q q p q p k k k+ p l k+ p l p l p l V e V e v e R v e                                  . Now, as R is an
arbitrarily chosen non-negative matrix. Without loss of generality, it can be taken as small as desired. This leads us to the conclusion that [START_REF] Lewis | Optimal control[END_REF] () () ()

q q k k V e V e  
and completes the proof by mathematical induction.  Thus,  

() i V
is a monotonically nonincreasing sequence bounded below and as such the limit

() () lim () () i i k k V e V e
   exists. Theorem 2: Assuming there exists an initial one step zero finite-horizon admissible control law as in (33) with initial value (0) () 0 V   , if k e is controllable, then as i   , the sequence converges towards the optimal cost function * J , i.e.

() () * lim () () () i i k k k V e V e J e    
. Proof: From (14) and (37) or Lemma 1, we get

    1 1 * 1 1 () v 0 1 1 1 () 0 () () inf , v , v : v min , v , v v : v v () N k k k N N N N k k k k l k e l k k k k i k i i k k p l k e p k l i k k i k J e J e J e V e                                                  (44) From (44), we have * () () () i k k J e V e 
. Letting i   , we get:    such that

* () () () k k J e V e   (
1 * 0 , , v () k k k p l k p k l J e J e                          (46)
Now, if

() k q k e
   such that control sequence k  is of length q i.e. k q   . Then, on one hand, from

Theorem 1, we obtain:

() () 1 1 1 1 () 0 1 () () min , v , v v : v v k q k k k q k k q k q q k k p l k e p k l k q k V e V e J e                                            (47)
On the other hand, as

k k e
   is an arbitrary admissible control sequence, we get:

1 1 1 1 1 1 () 1 0 0 1 min , v , v v : v , , v v k k q k q k k k q k q q k q k k p l k e k k p l p k l p k l k q k J e J e                                                                    (48)
Then, from (46),(47)and(48), we get

1 () () * 0 () * () () , , v () , () ()
k q k k k k p l k p k l k k V e V e J e J e or V e J e                                 (49) As 0
  is chosen arbitrarily, we have: as in (33) with initial value (0) () 0

() * () () k k V e J e   (
V   and corresponding control sequence   () i v as in (32). Then, for k  , following holds true:

    1 () () 1 v 0 min , v , v v k k k k k k l k l V e e V e                                η
The proof follows directly from Theorem 2 and Bellman's optimality principle (c.f. (16)).

Corollary 2: Let the sequence of cost function  

() i V
as in (33) with initial value (0) () 0 V   and the corresponding control sequence  

() i
v as in (32). Then as i   , the sequence converges towards the optimal control law * v , i.e. as i  

() * lim () v () i i k k v e e  
. According to Theorem 2 and Corollary 1 and 2, the iterative procedure needs to be run until i   to obtain the optimal cost function * () k J e and optimal control law * v () k e . In practice, it is impossible to implement this strategy.

To that end, an   optimal approach can be adopted such that iterative strategy is followed till a pre-defined tolerable error  is reached. The algorithm is stopped when iterative cost function satisfies the prescribed error, i.e.:

() * () () i k k V e J e   
(51) The length of the control sequence depends on the initial states of the system and tolerable error. However, as * () k J e is not known a priori, it is difficult to implement (51) as the stopping criteria. Thus, an alternative stopping criterion can be formulated as:

() (1) () () i i k k V e V e    
(52) The equivalence of (52) to (51) can be shown in the sense of [START_REF] Wang | Finite-horizon neuro-optimal tracking control for a class of discretetime nonlinear systems using adaptive dynamic programming approach[END_REF][START_REF] Mu | Data-Driven Finite-Horizon Approximate Optimal Control for Discrete-Time Nonlinear Systems Using Iterative HDP Approach[END_REF] and it is omitted in this paper.

Actor critic structure-based implementation

The optimal(sub) control law is learnt using iterations (32) and (33), which can be executed using adaptive-critic structures 10 by approximating value function [START_REF] Lewis | Optimal control[END_REF] i V  and control policy function () i v using NNs. In this paper, the HDP architecture is used the execute the iterative ADP algorithm using actorcritic NNs. To that end, four feedforward fully connected NNs are used to execute the iterative ADP algorithm. As shown in Figure 3 , the four NNs are: SI-NN model (trained a priori, see(21)), FCN-NN ((trained a priori, see (23)), critic network (critic-NN) and action network (action-NN). All NNs are chosen as fully connected feedforward NNs. It is noted that training of SI-NN and FCN-NN is done before implementing the iterative algorithm and weights of the SI-NN and FCN-NN are kept unchanged (frozen) during the implementation of proposed iterative ADP algorithm. * CRAN, France. E-mail: mayank-shekhar.jha@univ-lorraine.fr

The trained SI-NN (with ideal weight sets) outputs the next state as ((21)): u and the feedback component () ()

* * 1 ,

ˆ()

T T k m m m m k x z      with , , [] T T T m k k p k z x u  as inputs.
i k v e + 1 0 v k l l   
with respect to state k e at an iteration i . While the former feedforward component is generated from trained FCN-NN network, the latter feedback component comprises of actor output:

() ()

i k
v e and the accumulated control value till time k-1:

1 0 v k l l   
. The actor output at any iteration is learnt in iterative sense by the actor-NN structure using the HDP actor critic training scheme and accumulated control value

1 0 v k l l    is stored in a buffer till time k. Then, with ˆk k k x e r   and   () 1 , 0 , () v i k p k k l l d k u v e u      
, the state estimation at successive instant can be obtained from the trained SI-NN, as:

1 1 1 ˆk k k x e r     
. While the feedforward component is generated from trained FCN-NN network at any time k, the feedback component is learnt in iterative sense using critic-NN and action-NN structure using the HDP architecture.

Critic-NN

The critic-NN is used for approximating the cost function (1) ()

i k V e  .
The output of the critic network is denoted as:

(1) (1) (1) ˆ() () i T i
T i k C c C k V e e        (53
) However, from (33) we have:

      (1) () () 1 () 0 1 () , (), () v i
i i k i k k k k l l k V e e v e v e V e         η (54)
which can be constructed using the summation of immediate cost value   η  and estimated cost value from critic-NN. Moreover,

1 0 v k l l  
 is generated at k by summing the stored control values till k-1 in a buffer memory of appropriate size. Thus, the target error for critic-NN can be generated as:

(1) (1) (1) , ˆ() ()
i i i c k k k e V e V e     
(55) with [START_REF] Lewis | Optimal control[END_REF] , i c k e  denoting the error at (i+1) th iteration at time index k. Then, the critic-NN minimizes the error function:

(1) (1) (1) , , , (1/ 2)
i T i i c k c k c k E e e   



(56) and the weights are adapted according to gradient based scheme as:

(1) , (1) (1) (1) (1) (1) (1) , , (1) (1) (1) (1) , (1) , (1) (1) (1) (1) , (1) (1)
() () ˆ() () ˆ() () (1) () () ()
i c k i i C C c i C i i i c k c k i k C c i i i c k C k i c k i i C C c i C i c k i C c c E j j j E e V e j e j V e E j j j E j e                                                     (1) (1)
(1) , (1) (1)

(1) (1) , ˆ() () ˆ() () () i i T i c k k c C k i T i i i k c C k C k e V e e e j V e                   (57)
where 0 c   is the learning rate and j is the weight updating/training inner loop iterative index.

Remark 7: It is noted that each iteration (outer loop) i, consists of a set of weight updating cycles indexed by j (inner loop) to learn the critic weights for the value function at that given ADP iteration step i, with respect to the error at time k.

Actor-NN

Actor-NN is used to calculate the control value () () i k v e that minimizes the cost function with respect to k e at iterative step i in accordance to (32). To that end, consider actor-NN as:

() () () ˆ() () i T i T i k a a a k
v e e     (58) The target value is given by (32) as:

  () () 1 1 1 0 1 ˆ() 1 () () 2 v () 2
()

i i k T k k l l k k k V e v e R S S g e r e                      (59)
where

() 1 ˆ() i k V e  
can be produced the trained critic-NN (57) and

1 0 v k l l   
is generated from the buffer memory at k . Moreover, (59) requires control matrix ˆ()

k k g e r
 which cannot be obtained directly for unknown systems. To that end, the trained SI-NN can be used (see (1) and (21)) as:

  i a k i i a a c i a i i i a k a k i k a c i i i a k k a i c k i i a a a i a i i i a k a k i k a a i i a k k E j j j E e v e j e v e j E j j j E e v e j e v e                                        (1) () ()) () () ()

Simulation study

In this section, two examples are presented to demonstrates the theoretical result and assess the performance of the HDP algorithm. Following nonlinear system is considered as

1 , () () () k k k p k k x f x g x u x   
. Example 1: The nonlinear system is considered from 28 with some modifications:) .

k k k p k k k sin x x u cos x sin x                  x (64) such that 2 2 1 2 1 0 5 1 4 0 9 T k k k k k f x sin x x cos x sin x      , , , () (.) , (.) (.
) ,

  u  as control variable. The reference trajectory for the above system is considered as: and the training is done for 1000 epochs. Figure 4 shows the estimation of 100 random data samples along with training errors which clearly remains close to zero and bounded. The SI-NN successfully learns the unknown nonlinear system dynamics (see Appendix A, Algorithm A1). Next, training of FCN-NN is done using the trained SI-NN (see Algorithm A1). To that end, the FCN-NN is set up as shown in Figure 1 using a four layered fully connected NN with 16 hidden nodes in each layer, 2 input neurons, and one output neuron (2-16-16-1), with weights initialized in the interval [-0.1,0.1] and learning rate 1 0.001 is the one-step zero control value is learnt (see (27)and (28)). FOSC-NN structure consists of five layered fully connected NN 2-32-16-8-1 with 3 hidden layers, 2 node input and one node output, with all activation functions chosen as nonlinear hyperbolic tangent function. The FOSC-NN is trained with randomly chosen 1000 data samples. Figure 5 shows the performance of trained FOSC-NN using 100 randomly sampled data. It is observed that FOSC-NN can learn the control law that drives the states near the origin (zero) in an approximative sense. n n   internal weight updating cycles. First, the critic-NN is trained to approximate the iterative cost function (33) . The weights of critic NN are kept frozen while training the actor NN that approximates the iterative control law (32). This training procedure is repeated until the iterative cost function converges to an approximate optimal value i.e., ()

(1) 12 0 0 () () 10

i i V x V x    
. The convergence shown in Fig. 6 is attained in nearly 19 iterations.

Figure 6 Cost function value with respect to number of iterations i for Example 1 This also leads to learning of the approximate optimal control law * 0 v ()

x . The learnt approximate control law is applied to the system. Next, the state of the controlled system is initialized to be

  0 0 9 0 9 T   .
. x and the learnt control law is applied to the controlled system for 50-time steps. The reference trajectory is generated using (65) and the system state curves are shown in Figure 7 (a) and (b). The system is effectively able to track the reference trajectories. This demonstrates the effectiveness of the proposed method. To further assess the efficiency of the overall procedure, Figure 7 (c) shows tracking of a sinusoidal reference with 4 different arbitrary frequencies by the state 1

x .

(a) (b) (c) Figure 7 Reference tracking by system states of Example 1 Example 2: To further check the effectiveness of the proposed algorithm, the control coefficient matrix is changed from a constant matrix to a function matrix. Consider the system inspired from [START_REF] Mu | Data-Driven Finite-Horizon Approximate Optimal Control for Discrete-Time Nonlinear Systems Using Iterative HDP Approach[END_REF] with some modifications as:

2 2 2 1 2 1 1 2 1 0 0 5 0 6 0 2 0 1 0 4 1 0 1 1 4 0 9 0 , , , , , , (.) .
(. .) . (

)) (.

) (.)

k k k k p k k k k sin x x sin x u cos x cos x sin x                      x (66) with   2 1 2 T k k k x x    x as state variables 2 , p k
u  as control variables. A similar approach is adopted wherein the SI-NN learns the unknown dynamics using Algorithm A1 (see Fig. 8) FCN-NN is trained using SI-NN (Algorithm 1) and learns desire control profiles with respect to a given number of tracking references profiles. x is learnt and applied to the system initialized at   0 0 5 0 9 . .

T

  x

for 100 time steps. The tracking performance as shown in Fig. 10 demonstrates the effectiveness of the proposed approach.

Conclusions

The paper proposes a novel approach by considering consecutive changes in control inputs within the cost function whilst solving the optimal tracking problem for completely unknown discrete time nonlinear systems over a finite horizon. The latter leads to a novel performance index function over finite horizon and corresponding nonlinear Hamilton-Jacobi-Bellman equation that is solved in approximative iterative sense using a novel iterative ADP based algorithm. The convergence of the novel algorithm to optimality(sub) over a finite horizon is established under the admissibility conditions through mathematically rigorous proofs. To find an initial one step zero control policy, a novel architecture is proposed to learn the one step zero control law which successfully brings the states near their origin (zero) in an approximative sense. The proposed iterative ADP is implemented using heuristic dynamic programming technique based on actor-critic NN structure. Finally, simulation studies are presented over two nonlinear systems with constant as well as varying control matrix to demonstrate the effectiveness of the proposed algorithm.

Appendix A Consider the estimated system state vector 1 ˆk

x  , estimated NN weights , ˆm k  and the ideal weight matrix * m  at k. Then, the estimated system state can be expressed as: (67) Further, the system identification error 1 k x   can be expressed as:

    * 1 1 1 , , , , , , ˆ() ()
The weights are adapted to minimize the identification error

  1 1
(1/ 2)

T k k m E x x   
using gradient descent scheme [START_REF] Dierks | Optimal control of unknown affine nonlinear discretetime systems using offline-trained neural networks with proof of convergence[END_REF] :

  1 , 1 , 1 , 1 , 1 ,

ˆˆ(

)

k m k m k m k m k m k T k m k m m k E x x z x                      (70
)
where, 0 m   is the learning rate of the SI-NN. Theorem A1: Consider the SI-NN defined by (69) to identify the system (1), with weights being updated by (70). Under Assumption 3, the system identification error is asymptotically stable  k

x and weight identifier error

 m
 is uniformly ultimately bounded.

Proof: [START_REF] Dierks | Optimal control of unknown affine nonlinear discretetime systems using offline-trained neural networks with proof of convergence[END_REF][START_REF] Huang | Neural-network-based optimal tracking control scheme for a class of unknown discrete-time nonlinear systems using iterative ADP algorithm[END_REF] The following positive definite Lyapunov candidate is considered: (71) The first order change in time of the candidate is given as:

    , , , (1/
          1 1 , 1 , 1 , , , (1 /
)tr{ }

T T T T k k k k m k m k m k m k m k m G x x x x              (72)
From (69) and (70):

     , , , , , , , 1 1 1 , 2 () () 2 T
T T m k m k m k m k m k m k m k T T T T k k k k k m m k m k m k G z z x x x x x                     (73)
Applying Cauchy-Schwarz inequality, it is noted that

      1 1 , , , , , , , , 2()
m k m k m k m k m k m k G z z x x                      (74)
As (.) , is generated randomly (see (19)) and the corresponding array of states 1 k x  is considered available for supervised training.

Step 2: The system identifier NN is trained by minimizing the error function using stochastic gradient descent scheme (70), until the error (68) converges to zero or remains inferior to a certain constant tolerance (set a priori). E

Step 3: The trained SI-NN is tested against a test set to assess overfitting and underfitting issues and retrained if required.

Appendix B The procedure comprises of trainable FCN-NN as input to an already-trained SI-NN in a cascading manner. Consider FCN-NN as a three-layer NN with 2 n number of neurons in each hidden layer as:

1 1 1 1 1 1 1 1 1 * * , , , * , , ˆ() ()
T T d k F F F F k F k T F F F k F k u z z                     (
/ 2) T F k F k F k E r r          1 , 1 , 1 (1
(77) Step 4: The weights of FCN-NN are adapted using a gradient descent-based optimization scheme.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 , 1 , 1 , 1 , , , 1 , 1 , , , , 1 , , 1 , , , ˆˆˆ(
) ˆF k F k F k F k F F k F k F k d k F k F d k F k F k F k T F k F F F k d k E r E u r u r z r u                                                      (

Definition 1 :

 1 The control sequence starting from k,



 be the set of all finite horizon admissible control sequences starting at k and let



 is the NN function approximation error and m  (•) is the NN activation function chosen as the hyperbolic tangent function i.e.

21 :

 21 The activation function  (•)and NN function approximation error , m k  are considered upper bounded as



) which is subject to the final state condition constraint (see Assumption 1):(0) (, ()) 0 e k OS k F e u e  or 1 0 k e  . Now, considering the transformation of control input in(11) that takes into account the cumulated control value till k-1:  , the transformed control law at k, (0) () k v e can be expressed as : . The cost function can be updated iteratively using(0)

 e  , then there exits an upper bound Y such that Given time index k, from(33) we can get cost function with respect to state at k as:

) Theorem 1 :

 1 Assuming there exists an initial one step zero finite-horizon admissible control law e  , the cost function sequence   () i

 the corresponding sequence of finite horizon admissible control starting at k be denoted as: vk k . Then,  

 e  , given the sequence of cost function   () i V

 45) Now, using definition of * () k J e for any arbitrary 0   , there exists an admissible control sequence (not necessarily a minimizing one) k k e

 50) Combining (45) and(50), we can conclude that sequence () i   i.e.

.Corollary 1 :

 1 Hence, the theorem is proved.  Assuming there exists an initial one step zero finite-horizon admissible control law e  , given the sequence of cost function   () i V

Figure 3

 3 Figure 3 The actor critic-based implementation using iterative HDP

 is trained using Algorithm B1 (see Appendix B). With trained FCN-NN, the desired control , d k u can be generated with respect to any given reference value k r . The input control , p k u (see (6)) consists of two components: feedforward component , d k

e

 denotes the error at (i) th iteration at time index k, 0 c   is the learning rate and j is the weight updating/training inner loop iterative index.

  where I denotes identity matrix of suitable dimensions.

Figure 4

 4 Figure 4 System states and training errors

F

   . A set of reference trajectories in the practical tracking region are generated comprising of 2000 data randomly generated. Next, the initial control policy is obtained by training FOSC-NN (see Algorithm 1) such that

Figure 5

 5 Figure 5 Learning of one step zero control law using FOSC-NN: (a)state prediction using initial control policy is obtained by training FOSC-NN, (b) randomly sampled data used for training FOSC-NN

Figure 8

 8 Figure 8 System states and training errors

Figure 9 Figure 10

 910 Figure 9 Cost function value with respect to number of iterations i for Example 2



 is the weight identification error at time k. Now, considering

.

 For SI-NN training, following steps are followed: Algorithm A1: SI-NN training ([START_REF] Dierks | Optimal control of unknown affine nonlinear discretetime systems using offline-trained neural networks with proof of convergence[END_REF][START_REF] Huang | Neural-network-based optimal tracking control scheme for a class of unknown discrete-time nonlinear systems using iterative ADP algorithm[END_REF] for detailed seps)Step1: An array of system states, control input at time k ,

u

 as the estimate output of desired control from FCNN, × are the constant ideal weight matrices of FCNN, 1 ,F k z  is the input, 1 , F k  is the NN function approximation error and 1 () F    is the NN activation function chosen as the hyperbolic tangent function i.e.

 is trained by feeding-in set of reference values 1 k r  as input and optimizing the FCN-NN weights such that SI-NN (trained a priori) outputs the true estimate of 1 k r  : 1 ˆk r  . To that end, following steps are taken. Algorithm B1: FCN-NN training.Step 1: A set of reference trajectories are generated using a known reference generator (2)Step 2: FCN-NN is fed with input 1

78) where 1 0 F 1 F

 01    is the learning rate. It should be noted that the error 1 , application of backpropagation algorithm from output of SI-NN 1 ˆk r  to its input , ˆd k u .

 An array of the system origin values k  ℝ (in this paper,

								, ˆOS k u	as the estimated one step control from FOSC-NN, * OS  ℝ × and
															OS k	is the NN function approxima-
	tion error and OS									
		() (OS z e e z  		z) / (e e z  	z)	so that		() [1,1] OS z  	and		() OS z	ℝ . FOSC-NN is trained by feeding-in
	set of inputs k x ℝ and k						
															0,   ), system states k k k x are
	considered. Corresponding errors ,k k k e x     are generated.
	Step 2: FOSC-NN is fed with input ,k e  , such that the output estimated the desired one step zero
	control value , OS k u : , ˆOS k u .							

* OS

 ℝ × are the constant ideal weight matrices of FOSC-NN, ,  is the NN activation function chosen as the hyperbolic tangent function i.e.  ℝ , followed by adaptation of FOC-NN weights such that SI-NN (trained a priori) outputs zero error, i.e., 1 ˆ0 k e   . To that end, following steps are taken. Algorithm 1: FOSC-NN training Step 1: Step 3: The trained SI-NN with frozen weights is fed with inputs , , []

 27) Thus, it is noted that given tracking error k e ℝ , the trained FOSC-NN outputs control action

	, ˆOS k u	such that	, (e k OS k , F e u) 0  .
	Remark 5: In theory, since	, OS k T  can be enough small, if	, ˆOS k 	is appropriately set, then
	, (e k OS k , F e u) 0  can be assured. Therefore, in the theoretical analysis that follows, it will be consid-
	ered that	, (e k OS k ,) 0

It is clear that ˆ() k g x can be obtained using backpropagation from outputs of SI-NN 1 ˆk

x  and input , p k u . Further, the target error for actor-NN can be generated (61), followed by minimization of error function (62) and actor -NN weight update (63).

ˆ(()

ˆ()

Acknowledgement

The authors are grateful to the anonymous reviewers for their inputs.