
HAL Id: hal-04200195
https://hal.science/hal-04200195

Submitted on 9 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Real-Time Fixed Priority Scheduling Synthesis using
Affine DataFlow Graphs: from Theory to Practice

Alexandre Honorat, Hai Nam Tran, Thierry Gautier, Loïc Besnard, Shuvra S.
Bhattacharyya, Jean-Pierre Talpin

To cite this version:
Alexandre Honorat, Hai Nam Tran, Thierry Gautier, Loïc Besnard, Shuvra S. Bhattacharyya, et al..
Real-Time Fixed Priority Scheduling Synthesis using Affine DataFlow Graphs: from Theory to Prac-
tice. ACM Transactions on Embedded Computing Systems (TECS), 2023, pp.1-30. �10.1145/3615586�.
�hal-04200195�

https://hal.science/hal-04200195
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

1

Real-Time Fixed Priority Scheduling Synthesis using Affine
DataFlow Graphs: from Theory to Practice
ALEXANDRE HONORAT, Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP, LIG, France
HAI NAM TRAN, University of Brest, CNRS, Lab-STICC - UMR 6285, France

THIERRY GAUTIER, INRIA Research Centre at the Univ. of Rennes, France

LOÏC BESNARD, CNRS, Univ. of Rennes Research Centre, France

SHUVRA S. BHATTACHARYYA, University of Maryland, College Park, USA; INSA/IETR, Rennes,

France; INRIA, Rennes, France

JEAN-PIERRE TALPIN, INRIA Research Centre at the Univ. of Rennes, France

The major drawback of using static schedules to execute dataflow applications is their high inflexibility. In real-

time systems, periodic schedules make it easier to assert safety guarantees and to decrease the schedule size,

but their characteristics remain hard to compute. This article presents an approach to automatically generate

fixed priority schedules from a dataflow specification. To do so, precedence dependencies between actors in

the dataflow graphs are abstracted, as well as the task periods, by using affine relations. This abstraction allows

us to synthesize schedules efficiently considering two main objectives: the maximization of throughput and

the minimization of buffer sizes. Given a dataflow graph to execute in a real-time environment, we transform

it into an Affine DataFlow Graph (ADFG) and compute the task priorities, their mapping, the number of

delays in the buffers, and the buffer sizes. This article is the first to present an overview of both theoretical

and practical aspects of ADFG. On the theoretical side, it presents corrections and improvements on the

fixed priority case. On the practical side, benchmark evaluations demonstrate the robustness and maturity

of the approach that our scheduling synthesizer implements. Synthesized schedules are evaluated by using

scheduling simulation and real-time implementation. Last but not least, the synthesized periods reach the

optimal throughput if enough processors are available, and most of the time the periods reach the maximal

processor utilization factor in the uni-processor case. Moreover, execution time of the synthesis is about only

one second for the main proposed algorithms.

CCS Concepts: • Computer systems organization→ Real-time system specification.

Additional Key Words and Phrases: real-time systems, periodic scheduling, fixed priority, dataflow

ACM Reference Format:
Alexandre Honorat, Hai Nam Tran, Thierry Gautier, Loïc Besnard, Shuvra S. Bhattacharyya, and Jean-Pierre

Talpin. 2023. Real-Time Fixed Priority Scheduling Synthesis using Affine DataFlow Graphs: from Theory to

Practice. ACM Trans. Embedd. Comput. Syst. 1, 1, Article 1 (January 2023), 31 pages. https://doi.org/10.1145/

3615586

Authors’ addresses: Alexandre Honorat, Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP, LIG, France, alexandre.honorat@

inria.fr; Hai Nam Tran, University of Brest, CNRS, Lab-STICC - UMR 6285, France, hai-nam.tran@univ-brest.fr; Thierry

Gautier, INRIA Research Centre at the Univ. of Rennes, France, thierry.gautier@inria.fr; Loïc Besnard, CNRS, Univ. of

Rennes Research Centre, France, loic.besnard@irisa.fr; Shuvra S. Bhattacharyya, University of Maryland, College Park, USA;

and INSA/IETR, Rennes, France; and INRIA, Rennes, France, ssb@umd.edu; Jean-Pierre Talpin, INRIA Research Centre at

the Univ. of Rennes, France, jean-pierre.talpin@inria.fr.

Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee,

contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to

publish or reproduce this article, or to allow others to do so, for Government purposes only.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2023/1-ART1 $15.00

https://doi.org/10.1145/3615586

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

HTTPS://ORCID.ORG/0000-0001-5875-7258
HTTPS://ORCID.ORG/0000-0001-8358-0327
HTTPS://ORCID.ORG/0009-0001-8020-872X
HTTPS://ORCID.ORG/0000-0002-1964-4514
HTTPS://ORCID.ORG/0000-0001-7719-1106
HTTPS://ORCID.ORG/0000-0002-0556-4265
https://doi.org/10.1145/3615586
https://doi.org/10.1145/3615586
https://orcid.org/0000-0001-5875-7258
https://orcid.org/0000-0001-8358-0327
https://orcid.org/0009-0001-8020-872X
https://orcid.org/0009-0001-8020-872X
https://orcid.org/0000-0002-1964-4514
https://orcid.org/0000-0001-7719-1106
https://orcid.org/0000-0002-0556-4265
https://doi.org/10.1145/3615586

1:2 A. Honorat et al.

1 INTRODUCTION
The dataflow programming paradigm is widely used in embedded system design to describe

Digital Signal Processing (DSP) control [49] and stream processing [77] applications. Synchronous

DataFlow (SDF) graphs [48], for instance, provide automated code generation services to limit

the most problematic and error-prone tasks of programming parallel applications. However, DSP

applications are usually subject to additional constraints, such as throughput requirements or

limited available memory, which also need to be tackled.

Constraints on throughput or memory must be respected by the application schedule. While many

schedule types exist, some are easier to analyze in order to assert that all constraints are respected.

Assertions are easily checked on static schedules but on the other side static schedules eventually

require a high memory to store all execution times. Periodic schedules are a trade-off often used in

real-time systems: efficient algorithms exist to assert their schedulability [2, 43] and they have a

limited memory cost. Periodic scheduling is then divided in two complementary problems: first to

compute the periods of tasks, and second to check that all constraints are respected. In periodic

real-time systems, constraints also include the fact that every task meets its periodic deadline.

Although periodic schedules are still hard to synthesize in the general case, dataflow graphs provide

a programming abstraction well adapted to study throughput and memory constraints under

periodic real-time scheduling.

In this article, we describe and evaluate a method to solve the two aforementioned problems at

once: period synthesis and constraints assessment. Our method uses several abstractions and Integer

Linear Programming (ILP) formulations, and thus it is still limited by the NP-hard complexity of

ILP, just as in the general case of task scheduling [47]. However, and despite this computational

complexity limit, we demonstrate that our method runs in about one second for a scheduling

problem with hundred tasks. In contrast to many scheduling approaches, the Affine DataFlow

Graph (ADFG) tool [14] synthesizes near-optimal and always valid periods of the real-time tasks to

execute, without any simulation of the complete schedule. We say that the ADFG tool synthesizes a
schedule, which actually means that it computes all needed characteristics of the tasks to schedule:

period, priority, mapping. . .The periods are near-optimal in the sense that they are computed

with the objective to maximize the throughput of the scheduled application; they are valid since

the schedulability of the system is guaranteed by formal methods adapted from synchronous

languages [72]. Regarding optimality, the ADFG tool does not guarantee throughput optimality

especially if also considering the objective to minimize the total buffer size; nevertheless the

experiments show that the optimal periods are often reached. Regarding validity, the ADFG tool

guarantees schedulability in the considered periodic execution model, but other timing metrics

such as preemption costs are not taken into account in the ADFG synthesizer itself.

Yet, the scheduling can be highly impacted by extra factors such as preemption cost. So we also

present how the ADFG tool can be used in conjunction with other software to simulate and to

execute an application, for example in order to derive the amount of preemption needed. Moreover,

we highlight specific details that a designer has to be aware of to make effective use of the scheduler.

Simulations reveal in a few cases both pessimistic or optimistic behaviors, that a designer has to deal

with when using the ADFG tool. Pessimistic schedules may occur due to the Worst Case Execution

Times (WCETs) of actors in Cyclo-Static DataFlow (CSDF) graphs [9], while optimistic schedules

may occur due to underestimated preemption costs. In any case, the synthesized schedules are

inherently valid in the model of ADFG theory.

Concretely, given a Ultimately Cyclo-Static DataFlow (UCSDF) graph to execute in a periodic

real-time environment with known WCETs, the following schedule characteristics are computed

by the ADFG tool: the task priorities and periods, the mapping, the number of delays in the buffers,

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Real-Time Fixed Priority Scheduling Synthesis using Affine DataFlow Graphs: from Theory to Practice 1:3

and the buffer sizes. The application to schedule is modeled thanks to an UCSDF graph. The UCSDF

model is an extension of the CSDF model, being itself an extension of SDF. The tasks are periodic

with implicit deadline; they are scheduled by a Fixed Priority (FP) preemptive partitioned scheduler.

Synthesis algorithms are available for the uni-processor and the multi-processor cases; in the

multi-processor case, the number of homogeneous processors is given as an input by the designer.

Most of the provided algorithms try to maximize the throughput of the scheduled application,

although two of them allows to find trade-offs between throughput and total buffer size. Numerous

aspects of the ADFG theory have already been published over the past 12 years: while it started

with affine equations for synchronous languages [72], the main theory has been formalized in

the Bouakaz’ PhD thesis [14] for both FP scheduling [15, 18, 19] and Earliest Deadline First (EDF)

scheduling [16, 17, 40]. As a tool, ADFG has been used to validate a subset of Architecture Analysis

and Design Language (AADL) [7, 32] and to generate code compatible with the Real-Time Executive

for Multiprocessor Systems (RTEMS) real-time operating system [79]. This article is the first

to provide a general overview of both theoretical and practical aspects (up to the execution of

the synthesized code) and it describes and evaluates so far unpublished details of the synthesis

algorithms. In a decade a few bugs have been fixed, and updated evaluations still show the efficiency

of our approach.

The article is organized as follows. Next Section 2 introduces related work. Section 3 recalls

the main concepts of SDF graphs and FP scheduling. Then the Section 4 provides an overview of

the ADFG theory and the UCSDF graph model; and previously unpublished contributions are also

detailed. Regarding practice, the generation of the scheduling code of an application thanks to

the results provided by the ADFG tool is explained in Section 5. The evaluation of the schedules,

by metrics obtained directly or from simulations, is presented in Section 6 and precedes closing

remarks.

2 RELATEDWORK
The ADFG tool computes the periods of actors in a UCSDF graph, ensuring that all implicit deadlines

will be met, and that there is no buffer underflow or overflow when executing the graph. Thus the

ADFG tool can be seen as both an analysis and a synthesis tool. Both categories of tools, dedicated

to SDF or CSDF graphs, are reviewed in this section.

Many other models than SDF exist to check real-time properties but, to our knowledge, those

models make the analysis and especially the synthesis of buffer sizes more tedious. For example, a

real-time system implementation using Timed Automata may need one clock per buffer slot [76],

manually set for each possible buffer size. Conversely, the ADFG theory is not adapted to dynamic

real-time systems where, for example, some tasks could be enabled/disabled by other tasks results.

2.1 Generic analysis of SDF graphs
SDF graphs and their extensions, as CSDF [9], have been widely analyzed on several aspects includ-

ing: latency [34, 44, 60], throughput [25, 33], buffer size [35, 83], or liveness [57]. These analyses

often relax the available processors constraint (their number is considered as potentially infinite)

and use most often either static periodic scheduling (for [12, 35, 80]) or self-timed scheduling
1

(for [33, 60, 83]). Several combinations of the aforementioned aspects have been studied, such as

the minimization of the total buffer size under a throughput constraint [5, 12]. For instance the

SDF3 tool [74] provides trade-offs analysis between buffer size and throughput for SDF graphs [73]

and CSDF graphs [75]. The authors of SDF3 also proved that both metrics, throughput and buffer

1
In self-timed scheduling, each task is fired whenever available resources allow it, regarding to the consumed and produced

tokens to avoid buffer underflows and overflows, and regarding to the processors availability if not unlimited.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:4 A. Honorat et al.

size, cannot be optimized at the same time. However most of these analytic methods are purely

symbolic and do not compute a real-time schedule, including mapping and periods, or the number

of delays of the graph.

Besides, many tools are able to analyze SDF graphs, to derive a few schedule characteristics

(e.g. mapping and buffer size), and finally to generate the glue code of the schedule automatically:

DIF-GPU [53], PREESM [67], LabVIEW [1], MAPS [21], Diplomat [13], Gaspard [31], Ocarina [42],

PeaCE [37], and Ptolemy [29]
2
which includes the Metronomy tool [36] for timing verification.

But these tools either do not consider real-time executions (e.g. PREESM and LabVIEW), or do not

perform all the syntheses automatically (e.g. delay or periods are an input of the user). For example,

periods usually are an input of the problem [39, 45], instead of the output. Moreover, most tools

computing a schedule consider only one optimization objective, usually throughput maximization.

Periodic scheduling for throughput maximization [65] has been studied pretty early by Parhi and

Messerschmitt, and it is possible to derive the period achieving best throughput [4], but not taking

into account FP scheduling, nor preemption, nor the number of processors available.

2.2 Real-Time Schedule Synthesis of SDF graphs
To our knowledge, only the DARTS [3] and ADFG [14, 40] tools consider buffer size minimization

and throughput maximization at once, while being able to derive the periods of CSDF graph.

Whereas the DARTS tool considers unlimited available processors, the ADFG tool takes the number

of processors as an input. Other methods synthesize real-time characteristics such as periods [46],

but not for SDF graphs.

The DARTS [3]
3
tool allows to compute the strictly periodic schedule characteristics achieving

the best throughput under EDF or Rate Monotonic (RM) policies, with a maximum total buffer

size as a constraint. The DARTS tool considers only acyclic CSDF graphs and a non-constrained

number of available processors on the target system. The DARTS and ADFG tools differ in the input

constraints: ADFG accepts cyclic and acyclic UCSDF graphs, constrained and non-constrained buffer

sizes, and it requires the number of available processors in the target system. Indeed, throughput

maximization and buffer size minimization are two antagonistic objectives [75] and rather than

solving a difficult multi-objective optimization, both the ADFG and DARTS tools constrain one

of the objectives and then optimize the other. Constrained objective of the DARTS tool is the

total buffer size fixed by the user; buffers are used as much as possible in order to maximize the

throughput first, and then the DARTS tool minimizes the number of processors. Constrained

objective of the ADFG tool is the number of available processors fixed by the user; processors

are used as much as possible in order to maximize the throughput first, and then the ADFG tool

minimizes the total buffer size. Furthermore, the ADFG tool provides extra trade-offs between buffer

size and throughput objectives thanks to its internal algorithms SP_UNI_UDH and SP_MULT_MBS.

Like ADFG, several tools use ILP formulations to synthesize the buffer sizes. Previous ILP formu-

lations for CSDF graphs have been made in order to maximize the throughput and minimize the

total buffer size: under self-timed scheduling [83], under static periodic scheduling with maximum

number of processors constraint [80], or under static periodic scheduling with minimum throughput

constraint [5], but not under EDF and FP scheduling. Also, a synthesis tool has been developed [28]

for a mix of the periodic and self-timed scheduling policies, with priorities. Finally, buffer size

minimization can be improved when data access pattern of the SDF actors are known [81].

2
https://ptolemy.berkeley.edu/

3
https://daedalus.liacs.nl/daedalus-rt.html

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://ptolemy.berkeley.edu/
https://daedalus.liacs.nl/daedalus-rt.html

Real-Time Fixed Priority Scheduling Synthesis using Affine DataFlow Graphs: from Theory to Practice 1:5

3 BACKGROUND
Common knowledge and notations of this article, about the SDF graph model and about FP

scheduling, are reviewed in the following Section 3.1 and Section 3.2, respectively.

3.1 Synchronous DataFlow
A Synchronous DataFlow (SDF) graph [48] is a directed multi-graph𝐺 = (𝑉 , 𝐸) consisting of a finite
set of actors𝑉 = {𝑣1, ..., 𝑣𝑁 } and a finite set of one-to-one buffers 𝐸. A buffer 𝑒1→2 = (𝑣1, 𝑣2, 𝑝, 𝑞) ∈ 𝐸

connects the data producer 𝑣1 to the data consumer 𝑣2 such that the production (resp. consumption)

rate is given by an integer 𝑝 ∈ N∗
(resp. 𝑞 ∈ N∗

). The data unit is called a token. Every time an actor

is fired (i.e. is executed), it consumes as many tokens as specified by each input buffer connected to

it, and produces as many tokens as specified by each output buffer connected to it. SDF graphs

actually are a subset of weighted Petri nets, with only one incoming and one outgoing transition (i.e.

actor) per place (i.e. buffer). Figure 1 depicts a simple SDF graph with 3 actors. Figure 2 depicts the

h263decoder which is taken from a set of real applications provided by the SDF3 benchmark [74].

𝑣1

2

𝑣2

3 1

𝑣3

1

Fig. 1. A simple acyclic delayless SDF graph.

𝑣𝑙𝑑

594

𝑖𝑞

1 1

𝑖𝑑𝑐𝑡

1 1

𝑚𝑐

594

Fig. 2. SDF representation of h263decoder [74].

When implementing an SDF graph, it is common to impose statically-determined buffer sizes —

that is denoted 𝛿 (𝑒𝑎→𝑏) for a buffer 𝑒𝑎→𝑏 . If some buffer sizes are too small, the SDF graph could

deadlock. For example, with the graph in Figure 1, the buffer 𝑒1→2 connecting 𝑣1 to 𝑣2 needs a

minimum size of 4. The reason is that 𝑣1 must be fired at least 2 times before 𝑣2 has enough input

tokens to be fired. There can be a number of initial tokens present on each buffer. These initial

tokens are called the delays of a buffer since they can induce an offset in the execution of the

consumer in relation to the producer [8]. When scheduling an SDF graph, the buffer sizes are

always bounded since the production and consumption rates are fixed, however consistency checks

are needed when multiple buffers exist between two actors, and also for the undirected cycles

in the graph (not detailed here). If the graph is consistent, it is possible to compute a repetition
vector, defined in the following Definition 3.1. In this article, we study only consistent and weakly

connected
4
graphs.

Definition 3.1 (Repetition Vector [8]). The repetition vector of an SDF graph is an array of
length equal to the number of actors in the graph, such that each element of the array is a positive
integer, the greatest common divisor of all of the elements is 1, and if each actor is invoked for the
number of times equal to its entry, then the number of tokens on each edge of the graph remains
unchanged.

4
A directed graph is said to be weakly connected when its underlying undirected graph is connected.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:6 A. Honorat et al.

When each actor has been fired as many times as required by the repetition vector, this defines

a graph iteration, meaning that the whole application has been executed once. For the graph in

Figure 1, the repetition vector is ®𝑧 = [3, 2, 2]; actors 𝑣2 and 𝑣3 are fired the same number of times

since the buffer 𝑒2→3 connecting them has a consumption rate equal to its production rate. The

repetition vector can be computed efficiently by applying a depth-first search algorithm [8].

3.2 Fixed Priority Scheduling of Periodic Tasks
In this article, only partitioned preemptive fixed priority scheduling of asynchronous periodic

tasks is considered
5
. Each SDF actor corresponds to a hard real-time periodic task with implicit

deadline. The priority 𝑃𝑣 of each actor 𝑣 is unique and fixed over time; 𝑃𝑣 ∈ N∗
and the value 1

corresponds to the highest priority level. Auto-concurrency is not allowed: two firings of an actor

cannot occur in parallel. Moreover, an actor 𝑣 is permanently mapped to a single processor 𝑀𝑣

on homogeneous multi-processor architectures. Extension of the developments of this article to

more relaxed versions of the scheduling problem (e.g., considering heterogenous architectures) is a

useful direction for future work.

The period of an actor 𝑣 is denoted 𝑇𝑣 ∈ N∗
, as in the model of Liu and Layland [54]. This period

must be greater or equal to the WCET of 𝑣 , denoted 𝐶𝑣 ∈ N∗
. Each actor 𝑣 is released every 𝑇𝑣

time units and it must be executed completely before the next release; otherwise the implicit hard

deadline is missed and the schedule is not valid. Each actor 𝑣 may be initially released with an

offset𝑂𝑣 ∈ N; the offset is non negative and possibly greater than the period𝑇𝑣 . When an actor 𝑣 is

currently running, it is preempted by any released actor having a higher priority and mapped on

the same processor; 𝑣 resumes only when the actors of higher priority all finished their execution.

The preemption overhead is not modeled in our work.

Finally, the processor utilization factor𝑈 is defined as follows in Equation (1); it must be lower

than the number of processors𝑚 in the targeted homogeneous multi-processor [41].

𝑈 =
∑︁
𝑣∈𝑉

𝐶𝑣

𝑇𝑣
≤ 𝑚 (1)

4 FIXED PRIORITY SCHEDULING FROM AFFINE DATAFLOW GRAPHS
Before seeing the details of the theory, we recall the notations and depict the periodic scheduling

thanks to the following example. Considering the Synchronous DataFlow (SDF) graph in Figure 1,

and given the Worst Case Execution Times (WCETs) 𝐶𝑣1 = 10, 𝐶𝑣2 = 6 and 𝐶𝑣3 = 7, the Affine

DataFlow Graph (ADFG) tool computes the smallest possible actor periods to ensure safety of the

execution. For example, if the targeted system has 2 processors, the ADFG tool finds the periods

𝑇𝑣1 = 10, 𝑇𝑣2 = 15, 𝑇𝑣3 = 15 and offsets 𝑂𝑣1 = 0, 𝑂𝑣2 = 20, 𝑂𝑣3 = 20. Actor 𝑣1 is mapped alone on the

first processor, for a total processor utilization factor of𝑈 = 1.87 (over𝑚 = 2). Part of the resulting

schedule is depicted in Figure 3: the two dashed red lines delimit the indefinitely repeated schedule,

omitting the first two firings of 𝑣1. Actors 𝑣2 and 𝑣3 are released at the same time but the ADFG

tool assigns a higher priority to 𝑣2 and thus 𝑣2 is executed first.

The ADFG tool provides several algorithms to compute the schedule characteristics. Table 1

summarizes the available algorithms for uni-processor systems; the algorithms differ by the priority

assignment computation. Table 2 summarizes the available algorithms for multi-processor systems;

the algorithms differ by the mapping computation but all use the same priority assignment as

SP_UNI in Table 1. In order to understand how these algorithms work, an overview of the ADFG

tool is presented in Section 4.1; so far unpublished contributions, as priority assignment with

5
However, the ADFG tool also supports various EDF scheduling policies [40].

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Real-Time Fixed Priority Scheduling Synthesis using Affine DataFlow Graphs: from Theory to Practice 1:7

0 5 10 15 20 25 30 35 40 45 50

Proc. 1 𝑣
(1)
1

𝑣
(1)
1

𝑣
(1)
1

𝑣
(2)
1

𝑣
(2)
1

𝑣1 𝑣1 𝑣1 𝑣1 𝑣1

Proc. 2 𝑣
(1)
2

𝑣
(1)
3

𝑣
(1)
2

𝑣
(1)
3

𝑣2, 𝑣3 𝑣2, 𝑣3

Fig. 3. Real-time schedule synthesized by ADFG tool for the input graph in Figure 1without delays, considering
two processors.

graph topological ordering, are detailed in Section 4.2. Actor mapping, or more precisely graph
partitioning, is not addressed in this article, interested readers can refer to [40] (section 5.2 in ref.).

Name Priority assignment

SP_UNI Deadline Monotonic with graph topological ordering (see Section 4.2.1)

SP_UNI_LOP Priorities assigned by ILP, to minimize total buffer size (see Section 4.2.1)

SP_UNI_UDH Priorities assigned by combinatorial search with utilization distance heuristic

(see Section 4.2.1), to minimize total buffer size

Table 1. Uni-processor FP algorithms.

Name Mapping Complementary information

SP_MULT_MBS SCOTCH [68] Offers throughput vs total buffer size trade-offs [40]
SP_MULT_BF_FBBFFD Best Fit + FFD Uses demand bound function [30] for the mapping

SP_MULT_BF_SRTA Best Fit + SRTA Used for Figure 3, SRTA is detailed in Section 4.2.2

Table 2. Multi-processor FP algorithms.

4.1 ADFG theory overview
To synthesize preemptive periodic schedules under Fixed Priority (FP) policy, the ADFG tool takes

as input a weakly connected Ultimately Cyclo-Static DataFlow (UCSDF) graph with WCET of each

actor, the number of available identical processors in the target system, and the solving method.

The output of the ADFG tool includes the mapping (without auto-concurrency), the period and the

priority of each actor, the number of delays and each buffer size, and finally, several metrics as the

throughput or the processor utilization factor. This Section 4.1 recalls the workflow of the ADFG

tool to compute the aforementioned schedule characteristics, with the main equations already

presented in prior work and summed up in [40]. Hence, no proof is provided here.

4.1.1 Schedule abstraction. Affine DataFlow Graph (ADFG), the name of the tool, stands for the

internal representation of the UCSDF, Cyclo-Static DataFlow (CSDF), and SDF graphs. In UCSDF

graphs, the actors send data through buffers as in SDF and CSDF graphs, and Definition 3.1 for the

repetition vector is the same. The difference between these three models lies in the production and

consumption rates: static in SDF (one integer), cyclo-static in CSDF (a cyclic sequence of integers),

and ultimately cyclo-static in UCSDF (two sequences of integers, the first being used only once).

During its 𝑖-th firing, an actor receives and sends an amount of data equal to the 𝑖-th value of its

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:8 A. Honorat et al.

consumption/production rates; the cyclic sequence is iterated in a round-robin fashion. CSDF and

UCSDF graphs can always be converted into SDF graphs [66] but at the cost of introducing many

new nodes. In the graph depicted in Figure 4a, the production rate is of UCSDF form while the

consumption rate can be seen as either CSDF or UCSDF form, the latter with an empty first part.

Previous work on synchronous languages [72] made it possible to retrieve an affine function to

bound the buffer sizes [19], thanks to an abstraction of the production and consumption rates. In

this abstraction, exact time is not considered: the schedule abstracts events on buffers over time

rather than time itself.

In the ADFG tool, each buffer is abstracted by an affine relation on the two firing clocks of the
producer and the consumer actors. The firing clock is detailed in the next paragraph. In a buffer

𝑒1→2 = (𝑣1, 𝑣2, 𝑝, 𝑞), the production and consumption rates 𝑝 and 𝑞 are the concatenation of two

sequences of integers: 𝑝 = 𝑝0.𝑝𝑐 and 𝑞 = 𝑞0.𝑞𝑐 . The first initial sequence with 0 subscript may be

empty, then symbolized by 𝜖 . The second non empty sequence, cyclic and so identified by 𝑐 subscript
in the equations, will be repeated indefinitely during the execution of the producer/consumer actor.

The cyclic sequence is written inside parenthesis in Figure 4a and Figure 8. The two sequences of

integers associated with a computed average production or consumption rate will help to define

the affine relation. The average production (respectively consumption) rate 𝑎𝑝 ∈ Q+
(respectively

𝑎𝑞) per firing is defined as follows in Equation (2). In an SDF graph, average rate is the only integer

of the sequence; in CSDF and UCSDF graphs, the sum of the cyclic sequence is averaged by its

length. Let us first denote |𝑠 | the length of a sequence 𝑠 , and 𝑠 (𝑖) the 𝑖-th value of this sequence; if

𝑖 > |𝑠 |, 𝑖 is reassigned to ((𝑖 − |𝑠0 |)modulo |𝑠𝑐 |) + |𝑠0 |. The cyclic sequence sum is defined thanks

to the ⊕ operator, that is the cumulative sum over a given length, as defined in the right part of

Equation (2).

𝑎𝑝 =
| |𝑝𝑐 | |
|𝑝𝑐 |

, with | |𝑝𝑐 | | = ⊕𝑝𝑐 (|𝑝𝑐 |) =
∑︁

1≤𝑖≤ |𝑝𝑐 |
𝑝𝑐 (𝑖) (2)

While Equation (2) constitutes the linear part of the data production, the affine part comes from the

following lower bound 𝜆𝑙 ∈ Z and upper bound 𝜆𝑢 ∈ Z defined in Equation (3). In an SDF graph,

those two bounds 𝜆𝑙𝑝 and 𝜆𝑢𝑝 are equal to 0 because 𝑝0 = 𝜖 .

𝜆𝑙𝑝 = min

1≤𝑖≤ |𝑝0 |+|𝑝𝑐 |

{
⊕𝑝 (𝑖) − 𝑎𝑝𝑖

}
and 𝜆𝑢𝑝 = max

1≤𝑖≤ |𝑝0 |+|𝑝𝑐 |

{
⊕𝑝 (𝑖) − 𝑎𝑝𝑖

}
(3)

Then, the amount of data produced at the 𝑖-th firing (𝑖 without modulo reassignment) of an actor

𝑣1 is bounded thanks to the inequalities in Equation (4).

𝜆𝑙𝑝 + 𝑎𝑝𝑖 ≤ ⊕𝑥 (𝑖) ≤ 𝜆𝑢𝑝 + 𝑎𝑝𝑖 (4)

Firings themselves are abstracted over time by firing clocks which are related for a producer

actor and its consumer: an actor firing will occur every 𝑛 ticks for the producer 𝑣1, and every 𝑑

ticks for the consumer 𝑣2. Integers 𝑛 and 𝑑 are related such that
𝑛
𝑑
is the irreducible fraction of

𝑎𝑝

𝑎𝑞
.

Besides, the integer 𝜑 ∈ Z denotes the firing offset between the actors 𝑣1 and 𝑣2, i.e. there are 𝜑1→2

ticks between the first firing of 𝑣1 and the first firing of 𝑣2.

Finally, an affine relation is defined by a triple of integers (𝑛, 𝜑, 𝑑). Contrary to 𝑛 and 𝑑 , 𝜑 may

be negative. An example of all the aforementioned metrics is given in Figure 4 with two actors

connected by a single buffer. Figure 4a details the average rate and the bounds of both actor rates;

Figure 4b depicts their firing clocks.

Then the two affine Equations (5) and (6) enable to compute the buffer sizes 𝛿𝑒 , the delays 𝜃𝑒 ,

and all firing offsets 𝜑 thanks to an ILP solver where the objective is to minimize the sum of all

buffer sizes and firing offsets. However, as this ILP formulation only concerns the firing clocks

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Real-Time Fixed Priority Scheduling Synthesis using Affine DataFlow Graphs: from Theory to Practice 1:9

𝑣1 𝑣2
𝜑 = 0

Buffer2 (4 8) (12 8 10)
𝑛 = 3 𝑑 = 5

𝑝0 = 2, 𝑝𝑐 = 4 8 𝑞0 = 𝜖, 𝑞𝑐 = 12 8 10

𝑎𝑝 = 6, 𝜆𝑙𝑝 = −6, 𝜆𝑢𝑝 = −4 𝑎𝑞 = 10, 𝜆𝑙𝑞 = 0, 𝜆𝑢𝑞 = 2

(a) Buffer between 𝑣1 and 𝑣2, its affine metrics are above the buffer arrow and its derived affine relation is
below it.

𝑣1
𝑣2

𝑛 = 3 ticks

𝑑 = 5 ticks

. . .

. . .

(b) Firing clock representation over lcm(𝑛,𝑑) = 15 ticks, the two tasks start on the same tick because 𝜑 = 0.

Fig. 4. Affine metrics and corresponding task firing clocks.

linked by affine relations, there is no concrete time and the minimization objective on buffer sizes

and firing offsets has no impact on the final throughput. Moreover, Equations (5) and (6) of the

ILP formulation ensure the maximal throughput according to a previously computed priority

assignment and actor mapping. The ILP formulation also contains specific equations for cycles not

specified here, interested readers can refer to [14] (section 2.3.2 in ref.).

𝜃𝑒1→2
+ 𝑎𝑝

𝜑1→2

𝑛
≥ 𝜆𝑢𝑞 − 𝜆𝑙𝑝 + 𝑎𝑝 𝐶under (5)

𝜃𝑒1→2
+ 𝑎𝑞

𝜑1→2

𝑑
≤ 𝛿𝑒1→2

+ 𝜆𝑙𝑞 − 𝜆𝑢𝑝 − 𝑎𝑞 𝐶over (6)

As Equations (5) and (6) contain integer and rational numbers, every term is multiplied by the

least common multiplier of all denominators when generating the ILP formulation; this avoids

the floating point imprecision. 𝐶under and 𝐶over are two coefficients depending on the scheduling

policy and other characteristics as the producer and consumer priorities or the fact that 𝑣1 and 𝑣2
are mapped on the same processor or not [15] (end of section IV in ref.); their values are given later

in Equation (15). Actor mapping is not described in this article, however, priority assignment will

be discussed further, in Section 4.2.1.

The solution computed by the ILP solver closes the abstraction part of the ADFG theory, which

is then followed by the synthesis part in order to retrieve the periods of each actor.

4.1.2 Schedule synthesis. The goal of the schedule synthesis part is to compute the effective periods

and offsets of the actors. Offset and periods are computed in the same time unit as the WCETs

inputs. First, note that the input graph is weakly connected, so defining a period on one actor

induces a period for all other actors; thus only one basis period is considered during the synthesis.

Indeed, a producer actor must produce in average the same amount of data per time unit as the

consumers connected to it consume. This assumption is materialized into Equation (7) thanks to

the affine relations between any pair of actors connected by a buffer 𝑒1→2.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:10 A. Honorat et al.

𝑑 ·𝑇𝑣1 = 𝑛 ·𝑇𝑣2 (7)

Regular offsets of the actors are materialized in Equation (8), depending on the firing offsets 𝜑 .

𝑂𝑣2 −𝑂𝑣1 =
𝜑1→2

𝑛
𝑇𝑣1 (8)

Equation (7) induces a linear relation between any actor 𝑣 and an arbitrary actor basis of the

weakly connected graph, see Equation (9) with 𝛼basis = 1.

𝑇𝑣 = 𝛼𝑣𝑇basis, 𝛼 ∈ Q+
(9)

This linear relation allows performing standard Response Time Analysis (RTA) [2, 43] on the

actors, by setting only one period 𝑇basis. Also, the processor utilization factor𝑈 can be rewritten

with this single period 𝑇basis, as formalized in Equation (10).

𝑈 =
∑︁ 𝐶𝑣

𝛼𝑣𝑇basis
=

𝜎

𝑇basis
, with 𝜎 =

∑︁ 𝐶𝑣

𝛼𝑣
(10)

Equation (1) can be rewritten as Equation (11) and gives a minimal value of 𝑇basis.

𝑇basis ≥
𝜎

𝑚
(11)

Then, thanks to similar rewriting done on the lower and upper bounds of the response time [10,

71], a bisection search is performed on 𝑇basis with the RTA. The minimal period ensuring schedula-

bility according to RTA is denoted 𝑇 𝑙
basis

. This point is discussed further in Section 4.2.2. As basis

period and processor utilization are inversely related in Equation (10), throughput maximization

corresponds to processor utilization factor maximization; so the minimal period found by the

bisection search ensures the maximum throughput reachable with the given number of available

processors𝑚 and according to the previously computed priority assignment and actor mapping.

Finally, it is possible to compute all periods and offsets thanks to a second ILP formulation with

the goal of minimizing 𝑇basis. The ILP solver takes as inputs Equations (8), (9) and (12).

max(𝜎
𝑚
,𝑇 𝑙

basis
) ≤ 𝑇basis (12)

4.1.3 Workflow of the ADFG tool. Multiple algorithms can be used to compute the final schedule

and mapping, for both uni-processor or multi-processor. All implemented periodic scheduling

synthesis algorithms respect the following steps:

(1) decompose the graph: compute all firing relations (with undefined 𝜑);

(2) assign the priorities: see Section 4.2.1;

(3) partition tasks across available processors: this step may call internally step 5;

(4) compute all 𝜑 : thanks to an ILP formulation;

(5) perform symbolic synthesis: thanks to RTA, see Section 4.2.2;

(6) compute all task periods and offsets: thanks to an ILP formulation;

(7) refine buffer delay and buffer size computation: see Section 4.2.3.

Figure 5 details which schedule characteristics are computed by each of those steps, along with the

corresponding objective. Steps (2) and (3) offer trade-offs between the throughput maximization

and the total buffer size minimization objectives, according to the selected algorithm in Tables 1

and 2 and the input parameters. For steps (4) and (6), respectively, when the ILP problem is not

feasible or when the basis period is too large, the algorithms automatically state that the system is

not schedulable. Additionally, the ADFG tool computes a few metrics such as the throughput Θ,
this point is discussed in Section 4.2.4.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Real-Time Fixed Priority Scheduling Synthesis using Affine DataFlow Graphs: from Theory to Practice 1:11

UCSDF

graph

(1) graph

decomposition

set: 𝑛,𝑑, 𝜆

obj: —

(2) priority

assignment

set: 𝑃𝑣

obj: min𝛿/maxΘ

(3) actor

mapping

set:𝑀𝑣

obj: min𝛿/maxΘ

(4) offsets

resolution

set: 𝜑𝑒 , 𝜃𝑒 , 𝛿𝑒

obj: min𝛿+𝜑

(5) basis period

bisection

set: 𝑇basis

obj: maxΘ

(6) periods

concretization

set: 𝑇𝑣,𝑂𝑣

obj: maxΘ

(7) buffers

refinement

set: 𝜃𝑒 , 𝛿𝑒

obj: min𝛿

Fig. 5. Main steps of the ADFG tool: from input graph to concrete periods and buffer sizes, with intermediate
results and objectives.

The next Section 4.2 details a few aspects of the computation, including new contributions.

4.2 ADFG in details
Multiple improvements are presented in this section, they impact on different key points of the ADFG

theory: the computation of priorities, of periods, of delays, and of metrics. All those improvements

increase the accuracy or the usability of the ADFG tool and were unpublished so far.

4.2.1 Priority assignment, step (2). Regarding priorities, the first improvement is a heuristic to

break the tie when two actors have the same deadline in the SP_UNI algorithm (see Table 1) and in

all multi-processor schedule synthesis algorithms (see Table 2). The second improvement enables

to find trade-offs between total buffer sizes and throughput in the SP_UNI_UDH algorithm. We also

briefly recall how the SP_UNI_LOP algorithm assigns priorities, as a pretext to introduce the buffer

size approximation derived from Equations (5) and (6), which have been slightly modified. While

the first improvement only aims at decreasing the actor offsets and delays on buffers, the two other

priority assignment algorithms proposed by the ADFG tool try to minimize the buffer sizes.

Breaking the tie in Deadline Monotonic. The heuristic to break the tie with the Deadline or Rate

Monotonic priority assignment is based on a graph topological ordering. When two actors have

the same relative deadline or period, respectively, we assign different priorities for each of them,

according to their appearance order in the topological ordering. With this heuristic, a producer

actor has a higher priority than all its consumers having the same deadline or period. Thus, this

heuristic avoids the need for actor offsets or delays since the producer is always executed before its

consumers thanks to its higher priority. This phenomenon has been reproduced experimentally:

all test applications having only actors with equal periods have neither delays nor offset when

using this improvement on uni-processor, whereas some appear when not using the improvement.

However, the graph topological order is not computed on the original SDF graph, but on its reduction

to a Directed Acyclic Graph (DAG) of strongly connected components, as depicted in Figure 6. This

means that the heuristic does not break the tie between two actors having the same deadline when

both are present in the same strongly connected component (i.e. directed cycle): at least one actor

has to start the cycle execution, whatever is its priority.

In the context of implicit deadlines, the SP_UNI algorithm assigns increasing priorities to the

actors with increasing periods and the heuristic is used only when two actors have the same period.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:12 A. Honorat et al.

𝑣1

𝑣2

𝑣3 𝑣4

𝑣5

𝑣6

0
1 2

(a) Original directed graph with three strongly con-
nected components circled in dashed. The left one
has no incoming edges so it has the smallest topolog-
ical ordering number 0, the one having no outgoing
edges has the greatest number, here 2.

0 = {𝑣1, 𝑣2, 𝑣3}

1 = {𝑣4, 𝑣5}

2 = {𝑣6}

(b) Induced directed acyclic graph (DAG), each node
corresponding to a strongly connected component
of the graph on the left.

Fig. 6. Graph topological order for priority assignment.

Note that the priority assignment is performed before the period synthesis: this is possible since

the affine relations between the actors already hold the information of the relative firing clock

speed of the actors, see Figure 4. The real periods do not matter for the priority assignment, only

the natural ordering of the periods is important.

Configurable Utilization Distance Heuristic. The second improvement of the ADFG tool regarding

priority assignment is based on an algorithm of variable complexity, configurable by the designer,

called Utilization Distance Heuristic. A first version of this algorithm has been presented in the

original thesis on ADFG theory [14] (pages 96-97 in ref.) but was not configurable; it is used by the

SP_UNI_UDH algorithm. In this article, we explain how this algorithm can be configured by the

designer. The SP_UNI_UDH algorithm relies on a first priority assignment (Deadline Monotonic)

and period synthesis (see Section 4.2.2), and then its heuristic is to perform permutations on the

priorities of actors in order to select the priority assignment minimizing the total buffer size.

However, these permutations may increase the periods of actors since the response time of some

actors will inevitably be increased (see the following Section 4.2.2).

The new implementation allows the designer to configure an acceptable trade-off between the

buffer size decrease and the period increase. We redefine here the utilization distance in terms

of basis period and relative to the best one, 𝑇𝐷𝑀
basis , obtained with Deadline Monotonic priority

assignment. It is called utilization distance since the throughput (inversely proportional to the basis

period, see Section 4.2.4) is linear to the processor utilization factor, see Equation (10). Then the

utilization distance dist (𝑝) ∈ [0,∞[gives a measure of throughput loss for 𝑇basis (𝑝) obtained with

the permutation 𝑝 , see Equation (13). 𝑇basis (𝑝) is over-estimated for each permutation with a linear

complexity formula thanks to the actor response times (detailed in [14] pages 96-97). Now a 100%

throughput loss, i.e. dist (𝑝) = 1, means a throughput division by 2.

dist (𝑝) = 𝑇basis (𝑝)
𝑇𝐷𝑀
basis

− 1 (13)

In the ADFG tool, it is now possible to specify a maximum percentage loss in throughput (i.e.

period increase) and a minimum percentage gain in total buffer size minimization: a priority

permutation is selected only if the throughput loss is less than the maximum and the buffer size

gain greater than the minimum specified. To reduce the run time of the algorithm, it is also possible

to set the permutation length 𝜌 ; indeed the total number of permutations explodes with their

length: it is 𝜌!. If the permutation length is less than the number of actors, SP_UNI_UDH will

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Real-Time Fixed Priority Scheduling Synthesis using Affine DataFlow Graphs: from Theory to Practice 1:13

try all priority permutations of the specified length in a sliding window iterating over the actors

ordered by increasing Deadline Monotonic priorities. The factorial complexity of this algorithm

may limit its use; however note that the optimal priority assignment of real-time tasks with offsets

on homogeneous multi-processor also has a restrictive complexity: it is NP-hard [51].

A new approximation of buffer sizes. The SP_UNI_LOP algorithm also selects the best priority

assignment minimizing the total buffer size, but not taking into account the throughput loss. Its

complexity is theoretically less than SP_UNI_UDH but not configurable, since it relies on the

minimization by an ILP solver of a tournament matrix weighted by approximated buffer sizes [18]

(section 5.1 in ref.). Both SP_UNI_LOP and SP_UNI_UDH algorithms use the same approximation

of buffer sizes formalized in Equation (14)
6
. This approximation is an underestimation, obtained

from Equations (5) and (6).

𝛿𝑒1→2
≥ 𝜆 + 𝑎𝑝 𝐶under + 𝑎𝑞 𝐶over, with 𝜆 = (𝜆𝑢𝑞 − 𝜆𝑙𝑝) + (𝜆𝑢𝑝 − 𝜆𝑙𝑞) (14)

The values of the coefficients 𝐶over and 𝐶under are formalized in Equation (15); the optional +1
depends on the priorities and mapping of the producer actor 𝑣1 and the consumer actor 𝑣2 of the

buffer 𝛿𝑒1→2
, see [15] (section IV in ref.) for more details.

𝐶under =
𝑑 − 1

𝑛
(+1) and 𝐶over =

𝑛 − 1

𝑑
(+1) (15)

Although SP_UNI_LOP and SP_UNI_UDH algorithms are dedicated to the uni-processor case, those

coefficients are also used in the ILP formulation computing all firing offsets 𝜑 , which is generic for

both uni- and multi-processor cases.

Equation (14) is approximated by removing the −1 term in the numerator of the fractions, and by

considering the inequality as an equality, see Equation (16). Moreover,
𝑛
𝑑
is the irreducible fraction

of

𝑎𝑝

𝑎𝑞
per definition. So this approximation limits integer explosion in the resulting coefficient

rational number.

𝛿𝑒1→2
≈ 𝜆 + 𝑎𝑝 + 𝑎𝑞 (+𝑎𝑝) (+𝑎𝑞) (16)

Finally, the approximation of the buffer size used by the SP_UNI_LOP and SP_UNI_UDH priority

assignment algorithms is summarized in Table 3
7
.

𝑀𝑣1 = 𝑀𝑣2 𝑀𝑣1 ≠ 𝑀𝑣2

𝑃𝑣1 < 𝑃𝑣2 𝜆 + 𝑎𝑝 + 2𝑎𝑞 𝜆 + 2𝑎𝑝 + 2𝑎𝑞
𝑃𝑣1 > 𝑃𝑣2 𝜆 + 2𝑎𝑝 + 𝑎𝑞 𝜆 + 2𝑎𝑝 + 2𝑎𝑞

Table 3. Buffer size approximation for FP scheduling.𝑀𝑣 is the processor number of an actor 𝑣 and 𝑃𝑣 is its
priority.

Many other priority assignment algorithms exist [24], as robust priority assignment [23] or

assignment with threshold to limit the number of preemptions [82]. Unfortunately these two

algorithms are not suitable for the ADFG tool since they necessitate the actor periods which are

not known yet (only linear relation between the periods are known during this step).

To conclude this subsection, note that there are as many priority levels as actors, which may be

a constraint for some implementations. In the Real-Time Executive for Multiprocessor Systems

6
A bug in the implementation of the approximation was affecting both SP_UNI_LOP and SP_UNI_UDH in a previous

release of the ADFG tool: consumer and producer actors were exchanged in a function call. The bug has been fixed for the

evaluation of the present article.

7
Because of the new approximation in Equation (16), this table is slightly different than the original one in [14] (table 2.1):

all
−2
𝑑

terms are not present anymore.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:14 A. Honorat et al.

0 𝑅𝑙
𝑣

𝛼𝑣

𝑅𝑢
𝑣

𝛼𝑣

NOT schedulable schedulable?

𝑇basis

Fig. 7. Initial scheduling bounds on the basis period 𝑇basis based on the response time of actor 𝑣 . Considering

all actors, lower bound is max𝑣∈𝑉
𝑅𝑙
𝑣

𝛼𝑣
and upper bound is max𝑣∈𝑉

𝑅𝑢
𝑣

𝛼𝑣
.

(RTEMS) operating systems the number of tasks is unlimited, but the number of priority levels is

limited
8
to 255. Thus, in the ADFG tool, the code generation for the RTEMS operating systems

works only on SDF graphs having at most 255 actors. Besides, µC/OS-III is not anymore limiting

the number of tasks and priorities but the previous version µC/OS-II was limiting
9
the number of

tasks and priorities to 255.

4.2.2 Computation of periods, step (5). The computation of periods is based on RTA [2]: different

values of the periods are tested between two bounds by performing a bisection, and the smallest

valid period, i.e. greater than response time, is kept. As all actor periods can be expressed relatively

to the basis period𝑇basis , the algorithm is called Symbolic Response Time Analysis (SRTA). Figure 7

depicts the main idea of SRTA. The SRTA algorithm is iterative: it starts with a period in the middle

of the two bounds and tests if regular RTA ensures schedulability. If not, SRTA refines the bounds

by taking the tested period as new lower bound. If yes, SRTA refines the bounds by taking the

tested period as new upper bound. The algorithm stops when the two bounds are equal.

It has been stated in a previous article on the ADFG theory [18] (section 5.2 in ref.) that the lower

bound of the response time 𝑅𝑙𝑣 of a periodic actor 𝑣 is :

𝑅𝑙𝑣 =
𝐶𝑣 −

∑
𝑃𝑣<𝑃𝑣𝑖

𝐶𝑣𝑖 (1 −𝑈𝑣𝑖)
1 −∑

𝑃𝑣<𝑃𝑣𝑖
𝑈𝑣𝑖

by analogy with the upper bound [10]:

𝑅𝑢𝑣 =
𝐶𝑣 +

∑
𝑃𝑣<𝑃𝑣𝑖

𝐶𝑣𝑖 (1 −𝑈𝑣𝑖)
1 −∑

𝑃𝑣<𝑃𝑣𝑖
𝑈𝑣𝑖

However this is an underestimation of the lower bound since it has also been proved that 𝑅𝑣 ≥
𝐶𝑣

1−∑𝑃𝑣<𝑃𝑣𝑖
𝑈𝑣𝑖

[71], and yet
𝐶𝑣

1−∑𝑃𝑣<𝑃𝑣𝑖
𝑈𝑣𝑖

≥
𝐶𝑣−

∑
𝑃𝑣<𝑃𝑣𝑖

𝐶𝑣𝑖
(1−𝑈𝑣𝑖

)
1−∑𝑃𝑣<𝑃𝑣𝑖

𝑈𝑣𝑖

.

Thus the period synthesis algorithm SRTA has been updated with the new equations resulting

from the most accurate lower bounds: the aforementioned one [71] as well as 𝑅𝑣 ≥
∑

𝑃𝑣≤𝑃𝑣𝑖 𝐶𝑣𝑖 [43].

Indeed, schedulability is guaranteed when all periodic tasks (i.e. actors in the SDF case) have their

response time lower than the deadline: 𝑅𝑣 ≤ 𝐷𝑣 = 𝑇𝑣 . Let us consider that the deadline is relative

to the period: 𝐷𝑣 = 𝛽𝑣𝑇𝑣 with 𝛽𝑣 ∈ [0, 1]. In the context of implicit deadlines, all 𝛽𝑣 are equal to 1.

As 𝑇𝑣 = 𝛼𝑣𝑇basis , ensuring schedulability with RTA leads to the constraint 𝑇basis ≥ 𝑅𝑙
𝑣

𝛼𝑣𝛽𝑣
.

The response time lower bound 𝑅𝑙𝑣 = max{∑𝑃𝑣≤𝑃𝑣𝑖 𝐶𝑣𝑖 ,
𝐶𝑣

1−∑𝑃𝑣<𝑃𝑣𝑖
𝑈𝑣𝑖

} [43, 71] can be rewritten

knowing that 𝑈𝑣 =
𝐶𝑣

𝑇𝑣
=

𝐶𝑣

𝛼𝑣𝑇basis
. Thus the first part of the maximum of the response time lower

8
https://docs.rtems.org/releases/rtems-5.1/c-user/task_manager.html#task-priority

9
https://micrium.atlassian.net/wiki/spaces/osiiidoc/pages/131377/uC-OS+uC-OS-II+and+uC-OS-III+Features+

Comparison

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://docs.rtems.org/releases/rtems-5.1/c-user/task_manager.html#task-priority
https://micrium.atlassian.net/wiki/spaces/osiiidoc/pages/131377/uC-OS+uC-OS-II+and+uC-OS-III+Features+Comparison
https://micrium.atlassian.net/wiki/spaces/osiiidoc/pages/131377/uC-OS+uC-OS-II+and+uC-OS-III+Features+Comparison

Real-Time Fixed Priority Scheduling Synthesis using Affine DataFlow Graphs: from Theory to Practice 1:15

bound leads to:

∀𝑣 ∈ 𝑉 , 𝑇basis ≥
∑

𝑃𝑣≤𝑃𝑣𝑖 𝐶𝑣𝑖

𝛼𝑣𝛽𝑣

and the second part leads to:

∀𝑣 ∈ 𝑉 , 𝛼𝑣𝛽𝑣𝑇basis ≥
𝐶𝑣

1 −∑
𝑃𝑣<𝑃𝑣𝑖

𝐶𝑣𝑖

𝛼𝑣𝑖
𝑇basis

⇔

𝛼𝑣𝛽𝑣𝑇basis − 𝛼𝑣𝛽𝑣

∑︁
𝑃𝑣<𝑃𝑣𝑖

𝐶𝑣𝑖

𝛼𝑣𝑖
≥ 𝐶𝑣 ⇔ 𝑇basis ≥

𝐶𝑣

𝛼𝑣𝛽𝑣
+

∑︁
𝑃𝑣<𝑃𝑣𝑖

𝐶𝑣𝑖

𝛼𝑣𝑖

Finally, the new initial lower bound of the basis period
10
, used in the SRTA algorithm, is:

𝑇basis ≥ max

𝑣∈𝑉


𝐶𝑣

𝛼𝑣𝛽𝑣
+max


∑

𝑃𝑣<𝑃𝑣𝑖
𝐶𝑣𝑖

𝛼𝑣𝛽𝑣
,

∑︁
𝑃𝑣<𝑃𝑣𝑖

𝐶𝑣𝑖

𝛼𝑣𝑖


 (17)

When targeting a multi-processor, SRTA is called separately on each processor and considers the

only actors mapped on the current processor (the mapping has been performed previously): parti-

tioned scheduling is considered. Then the maximum of the basis period found over all processors is

kept as the new basis period. Alternatively, better response time analysis algorithms could be used,

such as a faster algorithm [56] which is kept for future work, or an algorithm for multi-processor

with global FP scheduling [6]. Holistic RTA [78], taking into account communication time in

distributed systems and already implemented in a few analysis tools [61], is also another possible

direction for future work. Finally, the SRTA algorithm does not take into account the offset of the

actors, although theoretically possible [63], because offsets will be computed thanks to the phases

in Equation (8).

4.2.3 Computation of delays and buffer sizes, steps (4) and (7). The ILP formulation solved in the

abstraction part of the ADFG tool (see Section 4.1.1) already has the delays and buffer sizes as

variables and computes them thanks to Equations (5) and (6), with the coefficients in Equation (15).

However, in order to refine the solution of the ILP formulation which relies on safe affine overes-

timation, delays and buffer sizes are computed again at the very end of the synthesis part, after

having computed the periods and offsets. Delays and buffer sizes are computed using a simulation

performed independently for each buffer on their abstract clock relation. Their behavior is simulated

during one hyperperiod 𝐻𝑒1→2
= 1

lcm(𝑇𝑣
1
,𝑇𝑣

2
) of the buffer 𝛿𝑒1→2

, plus the time of the offsets and the

time ensuring that the initial parts of the rates, 𝑝0 and 𝑞0, have been finished. Previous results [22]

show that this simulation length is sufficient. Yet, this simulation does not take into account the

WCETs of actors; nevertheless it may improve the result of the two affine Equations (5) and (6) for

CSDF and UCSDF graphs since the simulation avoids the affine overestimation. For SDF graphs, 𝜆

terms are already equal to 0 in Equations (5) and (6) and the simulation will not help to improve

the results.

During the simulation, the delay of a buffer is the maximum deficit of data observed (underflow).

For example in Figure 4, 𝑇𝑣1 < 𝑇𝑣2 so 𝑃𝑣1 < 𝑃𝑣2 , and as 𝜑 = 0, there is no offset between the actors,

then 𝑣1 is executed first, producing 2 tokens, followed by 𝑣2 consuming 12 tokens. At this point of

the simulation, the observed deficit is 12 − 2 = 10 tokens. Once the delay has been computed, the

simulation is performed a second time to compute the maximum number of tokens present at a

time on the buffer, that is its size.

10
This constraint is used in replacement of the former second order polynomial equation in [14] (page 97).

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:16 A. Honorat et al.

Unfortunately, this approach suffers an important drawback: the delays are a functional feature

of the application and it is in general not valid to assign or rearrange delay values in arbitrary ways.

For example, the ADFG tool does not respect retiming rules [50, 64] when computing the delays.

Retiming rules have originally been depicted for task graph representing processor circuits: added

delays must form a feed-forward graph cut of the graph. However, there is no generic retiming rule

for any UCSDF graph.

Hence, three options have been added to the ADFG tool to improve the placement of delays. The

first option keeps the delays or buffer sizes that the designer considers as fixed; the fixed values are

injected in the first ILP formulation and the simulation checks if they are coherent. If the simulation

finds higher value of delays or buffer sizes, it emits a warning. It is possible to keep only a part of

the delays and buffer sizes, and let the ADFG tool compute the others. The second option enforces

the delays to be a multiple of the lowest common multiple of the production and consumption rate

of the buffer. It ensures that the injected tokens are synchronized with the execution of the two

actors of the buffer. The third option enforces all delays to be zero, it is a specific case of the first

option. Note that this zero delay option leads to unfeasible ILP formulations of Equations (5) and (6)

if the UCSDF graph contains directed cycles, and leads to non-zero phases/offsets otherwise.

4.2.4 Computation of metrics, steps (1) and (6). Twomainmetrics are computed during the synthesis

part of the ADFG tool: the processor utilization factor, and the throughput. However, the algorithms

used to compute these two metrics where initially not consistent for CSDF and UCSDF graphs;

they have been improved in the new implementation. These modifications have no impact on the

SDF graphs.

First, the WCET of an actor may also be expressed in the form of a sequence of integers,

as supported by the SDF3 [74] file format, which is a supported input of the ADFG tool. This

representation allows the WCET to be specific to each firing of the actor and better fits the reality

where firings consuming or producing numerous data most probably have a different execution

time than firings of the same actor when consuming or producing only a few data. This situation

occurs in the Digital Radio Mondiale receiver CSDF application [59]: the CD actor has two different

WCETs, depending on its production rate. Unfortunately, the ADFG theory is not yet adapted to

consider the WCET as a sequence of integers, and instead considers only the maximum value of this

sequence. Thus, the processor utilization factor computed by the ADFG tool may be overestimated

when considering CSDF and UCSDF graphs. In order to give better information to the designer,

the processor utilization factor 𝑈 is now computed again at the end of the synthesis part, once

all periods are computed, with the average WCET over the sequence length. The second value is

not used by the ADFG tool and is solely intended to inform the designer. For the Digital Radio

Mondiale receiver, SP_UNI algorithm finds𝑈 = 0.99 whereas𝑈avg = 0.76.

Second, the computation of the average rates 𝑎𝑝 and 𝑎𝑞 (see Equation (2)) used in the abstraction

part may lead to incorrect computation of the repetition vector of the application for CSDF and

UCSDF graphs. Indeed, the ADFG tool stores all the fractions in the irreducible form and thus loses

the information of the minimal amount of firings needed to iterate over all the possible production

and consumption rates of CSDF and UCSDF actors. For example, the actor 𝑣1 in Figure 8 has the

average production rate of 1, as does actor 𝑣2. Thus, the repetition vector of the graph in Figure 8 is

[1, 1] according to the average rates, whereas it should be [2, 2] since the cyclo-static production
rate of 𝑣1 has a length of 2. Thus, the computation of the repetition vector has been extended to

the CSDF and UCSDF cases in the current version of the ADFG tool, and leads to a redefinition of

the throughput Θ using the repetition vector ®𝑧. The repetition vector is computed first using the

average rates, and is multiplied by a global factor ensuring that all firings are taken into account.

The global factor is the least common multiple of the first repetition factor of any actor, and of the

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Real-Time Fixed Priority Scheduling Synthesis using Affine DataFlow Graphs: from Theory to Practice 1:17

𝑣1 𝑣2
(2 0) (1)

Fig. 8. CSDF graph where repetition vector needs specific computation.

length of its sequences of production or consumption rate). The previous throughput computation

used the formula Θ = 1

lcm𝑣∈𝑉 {𝑇𝑣 } , and has been replaced by Θ = 1

®𝑧 [𝑣] ·𝑇𝑣 (equal for any 𝑣 ∈ 𝑉); this

new formula is used in the evaluation.

An evaluation of the ADFG tool is presented in Section 6, and includes results using these new

computation of the throughput and the processor utilization factor.

5 CODE GENERATION
The ADFG tool supports automated code generation of the computed buffer sizes and other

schedule characteristics for dataflow applications that are implemented in the Lightweight Dataflow

Environment (LIDE) [52]
11
running on the RTEMS real-time operating system

12
. The code generator

inputs are the characteristics computed using the ADFG theory, including: buffer sizes, periods,

offsets, priorities and mapping. The generated code is then cross-compiled and tested by using

the QEMU tool to emulate an ARM platform. A detailed evaluation of the code generator has

been conducted and presented in [79]. Interested readers can refer to this article for a complete

presentation of our approach to integrate the ADFG tool in a framework with scheduling simulation

and code generation. In this section, we summarize our approach of code generation and provide

an update on the implementation of the period characteristic compared to [79].

5.1 Actors and buffers in LIDE
LIDE [52] is a flexible, lightweight design environment that enables rapid experimentations with

dataflow-based implementations. The usage of LIDE allows a systematic approach to instantiate

dataflow graphs with the buffer sizes computed using the ADFG theory. Actors and buffers in LIDE

are designed and implemented as C-based abstract data types (ADTs). To implement a data-flow

application with LIDE we need to allocate buffers, instantiate actors, and connect them together.

A buffer is instantiated with the function lide_c_fifo_new which takes two input parameters:

capacity and token_size. It allows us to apply the buffer sizes computed using the ADFG theory

to the code generation step.

• Capacity: the computed buffer size is given as an input parameter of the following function

lide_c_fifo_new. It is the number of tokens of which sizes are given as the second input

parameter to the function.

• Token size: this information is given in the specification of the graph and passed directly to

the code generator. In case of complex types, we assume that their specifications in C are

also provided.

Each actor has an associated context, which encapsulates pointers to the FIFO buffers that

are associated with the edges incident to the actor. Four interface functions, namely new, enable,
invoke and terminate are required to implement an actor. Designers can develop their own actors

by appropriately specializing the prototype function templates. In this work, we assume that core

functions of actors are implemented and we only generate the code to instantiate actors.

An actor is instantiated with the function lide_c_<actor_name>_new. The input parameters

are buffers that are connected to the actor. An example of the generated code is given in Figure 9.

11
http://dspcad.umd.edu/projects/lide/lide.htm

12
https://www.rtems.org/

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

http://dspcad.umd.edu/projects/lide/lide.htm
https://www.rtems.org/

1:18 A. Honorat et al.

𝑣1

2

𝑣2

3 1

𝑣3

1

/* LIDE -C Buffers */
lide_c_fifo_pointer v1_v2 = lide_c_fifo_new (6, sizeof(int));
lide_c_fifo_pointer v2_v3 = lide_c_fifo_new (1, sizeof(int));
/* LIDE -C Actors */
lide_c_actor_context_type* actors[ACTOR_COUNT];
actors [0]=(lide_c_actor_context_type *) (lide_c_v1 (v1_v2));
actors [1]=(lide_c_actor_context_type *) (lide_c_v2 (v1_v2 , v2_v3));
actors [2]=(lide_c_actor_context_type *) (lide_c_v3 (v2_v3));

Fig. 9. An example of actors and buffers declaration with LIDE.

This example is the code generated for the SDF graph presented in Figure 1 with computed buffer

sizes. In the generated code, we declare the two buffers v1_v2 and v2_v3. These buffers are used as
input paramters of in the *_new functions to create the three actors v1, v2, and v3.

5.2 Schedule characteristics in RTEMS
RTEMS is an open source real-time operating system that supports open standard Application

Programming Interfaces (APIs) such as POSIX. We consider the usage of RTEMS to generate the

computed schedule characteristics. Actor invocations and fixed-priority periodic scheduling are

achieved by the usage of the POSIX thread library.

Besides buffer sizes, four schedule characteristics are computed using the ADFG theory, namely:

priority, core mapping (for processor mapping), period and offset. Code generation for these

characteristics is done by exploiting the POSIX pthread API supported by RTEMS. One thread

is generated per actor. The priority and core mapping attributes are natively supported. The

period and offset are taken into account by implementing a periodic release per actor.

• Priority: POSIX pthread_attr_setschedparam function is used to set thread priorities.

• Mapping: POSIX provides the cpu_set function that allows us to choose the set of processors

that a thread can execute on.

• Period: periodic release of a thread is implemented by using the clock_nanosleep function

with the flag TIMER_ABSTIME. It allows us to set the absolute time at which the thread shall

wake up again. The wake up time is computed as below:

𝑤𝑎𝑘𝑒_𝑢𝑝_𝑡𝑖𝑚𝑒 := 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 + (𝑟𝑒𝑙𝑒𝑎𝑠𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 × 𝑝𝑒𝑟𝑖𝑜𝑑) (18)

In [79], we used the nanosleep function to implement periodic tasks. It is because the function

clock_nanosleep was not in the list of directives provided by the clock manager in RTEMS

5.1
13
, which is the version targeted by our code generator. However, the authors in [11]

indicated that it is possible to use the clock_nanosleep function to implement periodic tasks

in RTEMS.

• Offset: is generated by adding an idle period to the first release of a thread.

An example of the generated code is given in Figure 10. We create a data structure named

rtems_actor that encapsulates a lide_c_actor_context and its schedule characteristics. Then,

these characteristics are passed to the attributes of a pthread accordingly. This example and its

code can be duplicated systematically for any actors in the graph and their corresponding threads

in order to apply schedule characteristics computed using the ADFG theory.

13
https://docs.rtems.org/releases/rtems-5.1/posix-users/clock.html

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://docs.rtems.org/releases/rtems-5.1/posix-users/clock.html

Real-Time Fixed Priority Scheduling Synthesis using Affine DataFlow Graphs: from Theory to Practice 1:19

rtems_actors [0]. context = actors [0];
rtems_actors [0]. name = "int_produce"
rtems_actors [0]. priority = 1;
rtems_actors [0]. period.tv_nsec = 500;
rtems_actors [0]. processor = 1;

param.sched_priority=rtems_actors [0]. priority; ;
pthread_attr_setschedparam (&attr ,¶m);
pthread_create (&id ,&attr ,lide_c_actor_start_routine ,& rtems_actors [0]);
CPU_ZERO (& cpuset);
CPU_SET(processors [0], &cpuset);
pthread_setaffinity_np(id, sizeof(cpu_set_t), &cpuset);

Fig. 10. Generated code configuring the schedule characteristics in RTEMS.

6 EVALUATION
This section presents an evaluation of the schedules synthesized by the ADFG tool. Results are

compared to the state-of-the-art theoretical methods to compute buffer sizes and throughput in Sec-

tion 6.1; optimum is reached for both metrics. Scheduling simulations have also been performed to

compute the number of preemptions and the usage of memory, see Section 6.2.

The code of the ADFG tool is open-source and can be accessed online
14
. Experiments using

Cheddar tool require its own installation; on the code repository, we provide a link to a virtual

machine with ADFG and Cheddar installed. In addition, all benchmarks, scripts, and instructions

to reproduce the results presented in this section are included in the code repository and in the

virtual machine. Old binaries are also available online
15
, but they are outdated and the website

hosting them is not maintained anymore.

The test applications come from StreamIt [77] and SDF3 [74] benchmarks, including pace-

maker [69], h263 video decoder [62]. Eleven applications
16

have been selected for their repre-

sentative characteristics detailed in Table 4: dataflow model, number of actors, and number of

firings.

6.1 Scheduling synthesis evaluation
In this subsection, the synthesized schedules are evaluated directly regarding several metrics:

processor utilization factor, sum of all buffer sizes, and throughput. Utilization factor and buffer

sizes are studied with uni-processor algorithms provided by the ADFG tool while the throughput is

studied with multi-processor algorithms and increasing number of available processors.

6.1.1 Impact of the priority in uni-processor. Figure 11 presents the utilization factor obtained for

all applications with all uni-processor algorithms listed in Table 1, plus an algorithm synthesizing

schedules for Earliest Deadline First (EDF) policy, given for reference. The maximum processor

utilization factor, 1.0, is reached for all applications except cd2dat, pacemaker and receiver, the

three CSDF applications. Despite the fact that cd2dat has 6 actors in its graph and more than a

thousand firings in total, its processor utilization factor is only about 0.2 over 1. This is due to

a limitation of our method: the SDF model imposes linear relation between all the actor integer
periods (see Equation (7)), enforcing a common divisor to all. For cd2dat, the ADFG tool finds that

the basis period must be a multiple of 160, which is already larger than the response time upper

14
https://gitlab.inria.fr/ADFG/adfg

15
http://polychrony.inria.fr/ADFG/

16
Digital Radio Mondial receiver [59] is not included since its average processor utilization factor is lower than computed in

ADFG, see Section 4.2.4.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://gitlab.inria.fr/ADFG/adfg
http://polychrony.inria.fr/ADFG/

1:20 A. Honorat et al.

Name #actors #firings

Beamformer 57 57

ChannelVocoder 55 55

DES 53 53

Filterbank 85 85

Serpent 120 120

Vocoder 114 114

(a) SDF test applications with repetition vector ®𝑧 = ®1.

Name model #actors #firings

cd2dat CSDF 6 1665

h263decoder SDF 4 1190

mp3decoder SDF 14 27

pacemaker CSDF 4 169

receiver CSDF 4 7687

(b) SDF and CSDF test applications with repetition vector ®𝑧 ≠ ®1.

Table 4. Main characteristics of test applications.

bound
17
. Thus, it is better to avoid using relatively prime numbers as production and consumption

rates in order to maximize the efficiency of the synthesized schedule. The processor utilization factor

drop of h263decoder, mp3decoder, pacemaker and receiver while using algorithm SP_UNI_LOP is

caused by another reason. The SP_UNI_LOP algorithm assigns priorities thanks to an extra ILP

formulation solely minimizing an approximation of total buffer size (see Section 4.2.1). Then, the

actor priorities assigned by the SP_UNI_LOP minimize the total buffer size at the cost of a lower

throughput: the synthesized periods are greater than for the other algorithms.

Figure 12 compares the sum of all buffer sizes synthesized by the ADFG tool, using the same

algorithms and application as in Figure 11. The last column of each cluster holds the minimum

achievable total buffer size, as computed with the tool SDF3. The ADFG tool reaches the minimum

total buffer size for all of its uni-processor algorithms and applications having ®𝑧 = ®1, but not always
for the five other applications on the right. As for the processor utilization factor, h263decoder,

mp3decoder, pacemaker and receiver applications have lower total buffer size while using algorithm

SP_UNI_LOP. However while the drop factor seems constant for buffer sizes among all applications

(see Figure 12), the processor utilization factor loses multiple order of magnitudes for h263decoder

and receiver but remains similar for mp3decoder (see Figure 11). Besides, the complexity of the

extra ILP formulation of SP_UNI_LOP is quite high (number of variables is quadratic to the number

of actors), so this algorithm should be considered only at last resort by users of the ADFG tool.

Instead one can use the SP_UNI_UDH algorithm described previously in Section 4.2.1: it enables to

find trade-offs between the application throughput and its minimum total buffer size.

We briefly evaluate the SP_UNI_UDH algorithm on the receiver application, because this appli-

cation has the highest drop of throughput for SP_UNI_LOP: it is divided by about 300 compared

with the SP_UNI algorithm. At the same time, the total buffer size is divided by about 2. Thus, we

17
In comparison, a simplification of the CSDF production rate on the last buffer of cd2dat, from (0101011) to (1111111) ,

makes the related affine relation become
𝑛
𝑑
= 1

1
instead of

4

7
. With such simplifaction, the basis period must be a multiple

of only 40 instead of 160 initially and the utilization factor increases to 0.96 instead of 0.2.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Real-Time Fixed Priority Scheduling Synthesis using Affine DataFlow Graphs: from Theory to Practice 1:21

 0

 0.2

 0.4

 0.6

 0.8

 1

B
eam

form
er

C
hannelVocoder

D
ES

Filterbank

Serpent

Vocoder

cd2dat_csdf
h263decoder
m

p3decoder
pacem

aker
receiver

U
ti

liz
a
ti

o
n
 f

a
ct

o
r

EDF_UNI SP_UNI SP_UNI_LOP SP_UNI_UDH

Fig. 11. Processor utilization factor of test applications.

 0

 2

 4

 6

 8

 10

 12

 14

B
eam

form
er

C
hannelVocoder

D
ES

Filterbank

Serpent

Vocoder

cd2dat_csdf
h263decoder
m

p3decoder
pacem

aker
receiver

To
ta

l
b

u
ff

e
r

si
ze

 (
lo

g
2
)

EDF_UNI SP_UNI SP_UNI_LOP SP_UNI_UDH minBS

Fig. 12. Total buffer size of test applications.

expect that SP_UNI_UDH helps to find possible trade-offs for receiver between the two extrema

found by SP_UNI and SP_UNI_LOP. With the default configuration of 10 percent throughput loss

allowed against 10 percent total buffer size decrease with permutation of length 4, denoted 10-10-4,
SP_UNI_UDH cannot find better than SP_UNI: both throughput and total buffer size are identical on

Figure 11 and Figure 12, respectively. However, the designer can specify manually the allowed loss

and, for example, the SP_UNI_UDH configuration 6000-30-3 leads to a trade-off with throughput

divided by about 35 and total buffer size divided by about 1.5. An automated exploration of possible

trade-offs is kept for future work, but due to the approximation used to compute the periods in

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:22 A. Honorat et al.

SP_UNI_UDH, the throughput loss is overestimated (indeed, 6000 percent is even larger than the

maximum observed ratio of 300).

Results of Figures 11 and 12 are similar with the zero delay option. Indeed, to compensate the

zero delay option, the firing offset of the actors increases according to Equations (5) and (6). In

turns, the zero delay option results in an increase of the regular offsets
18
of the actors according to

Equation (8), whereas they are most often equal to zero without the zero delay option. Moreover

all six applications with equal actor periods (Beamformer to Vocoder, with ®𝑧 = ®1) reach the same

processor utilization factor and total buffer size independently to the algorithm used to assign

actor priorities. In such case the priorities only impact on the actor offsets or on the delays, and

their presence is completely avoided thanks to the first improvement presented in Section 4.2.1.

Note that with the zero delay option enabled, all graphs with directed cycles deadlock and the ILP

formulations of the ADFG theory are infeasible. However, the selected applications do not have

directed cycles and so the ADFG tool finds a solution.

6.1.2 A closer look to SRTA bisection. All synthesis algorithms provided by the ADFG tool for FP

scheduling use the SRTA algorithm described in Section 4.2.2, and some of them call it multiple

times
19
; hence, it is important to check its efficiency. As SRTA performs a bisection between the

response time lower and upper bound, it is especially important to measure the gap between these

bounds and so the number of bisection steps.

Figure 13 depicts the number of bisection steps of SRTA for SP_MULT_BF_FBBFFD and SP_UNI

algorithms. For the multi-processor algorithm, 4 processors were considered and the reported

number of bisection is actually the sum of all the 4 SRTA calls (one per partition). The number of

steps per processor is quite stable, slightly below 20, for all applications having more than 10 actors.

This number of steps decreases for the applications having only a few actors, cd2dat, h263decoder,

pacemaker and receiver. In only one case, h263decoder, the number of bisection steps is reduced

for the multi-processor algorithm compared with the uni-processor one. Most probably, this is due

to the high amplitude of actor firings and WCETs in h263decoder. However, more applications and

a proper statistical analysis are needed to assert the causes of this phenomenon.

Last but not least, the bisection steps plotted in Figure 13 were actually counted separately when

going up or down in the search interval. Surprisingly, the bisection is always going down towards

the response time lower bound, which could mean that the lower bound is close to be optimal. The

first six applications (from the left) all have equal periods, it is a plausible cause of the response

time lower bound being sufficient for checking schedulability. For cd2dat, the cause is the high

value of the common divisor to all integer periods. But again, a more extensive analysis is needed

to assert the causes of this phenomenon, especially for the four last applications (to the right).

6.1.3 A closer look to (U)CSDF applications. ADFG tool supports two extensions of the SDF model:

CSDF and UCSDF, especially thanks to an approximation of the evolution of tokens in buffers

with an average rate (see Equation (2)). However, this approximation is safe regarding to processor

utilization factor and buffer sizes but makes the synthesized periods and buffer sizes suboptimal. Two

independent refinements performed at the end of the synthesis part of the ADFG theory partially

overcome this problem. First, for the processor utilization factor, as described in Section 4.2.4:

actor periods are not updated and eventually remain suboptimal, but a more accurate value of the

metric is given to the designer. Second, the buffer sizes, as described in Section 4.2.3: the ADFG

18
See examples of regular offset in Figures 3 and 16.

19
SP_UNI_UDH calls SRTA twice. All multi-processor algorithms call it𝑚 times, that is once per partition. Additionally

SP_MULT_BF_SRTA calls it𝑚 × |𝑉 | extra times, when selecting the partition of each actor.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Real-Time Fixed Priority Scheduling Synthesis using Affine DataFlow Graphs: from Theory to Practice 1:23

 0

 10

 20

 30

 40

 50

 60

 70

B
eam

form
er

C
hannelVocoder

D
ES

Filterbank

Serpent

Vocoder

cd2dat_csdf
h263decoder
m

p3decoder
pacem

aker
receiver

N
u
m

b
e
r

o
f

d
ic

h
o
to

m
y
 s

te
p

s
(S

R
TA

)

SP_UNI SP_MULT_BF_FBBFFD_p4

Fig. 13. Number of bisection steps of the SRTA algorithm in the ADFG tool.

tool simulates each buffer over the logical clock abstraction of its producer and consumer firings,

and updates the sizes to the simulated smallest value.

The two aforementioned refinements have been evaluated on the three considered CSDF test

applications: cd2dat, pacemaker and receiver. Figure 14a plots the average refined processor uti-

lization factor (left column) against the overestimated one used in the schedule synthesis (right

column). The refinement is useful only for CSDF applications specifying different WCET per firing,

which is only the case of the receiver application. Figure 14b plots the overestimated buffer size

computed in the schedule abstraction ILP (left column) against the refined one simulated after the

schedule synthesis (middle column) and the minimum possible without any resource constraint

(right column). Only cd2dat benefits from the buffer size refinement because two of its actors (fir3
and fir4) alternatively produce one or zero token on their outgoing buffers. The buffer size reduction

is 50%: from a total size of 16 to 8 for the SP_UNI algorithm.

6.1.4 Impact of multi-processor. The authors of the DARTS [3] tool proved that maximum through-

put is obtained for the Beamformer application with a minimum of 29 processors for any partitioned

scheduling, and 51 processors is an upper bound for the partitioned EDF policy [55] (which is close

to the number of firings equal to 57). To evaluate the efficiency of the schedule characteristics

computed using the ADFG theory, we synthesized the schedule of Beamformer for an increasing

number of processors, as shown in Figure 15.

On Figure 15, line plots of EDF_MULT_BF_UF_ID, SP_MULT_BF_FBBFFD and

SP_MULT_BF_SRTA algorithms are actually the same, above all other lines. They are close to the

maximum throughput from 28 processors, and actually reach the maximum possible throughput

for 44 processors, before the upper bound of 51. Only the SP_MULT_MBS-BUFFER_MIN algorithm

does not reach the maximum, even with 52 processors. This is expected since this latter algorithm

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:24 A. Honorat et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

cd2dat_csdf

pacem
aker

receiver

U
ti

liz
a
ti

o
n
 f

a
ct

o
r

U_avg U_max

(a) Processor utilization factor.

 0

 2

 4

 6

 8

 10

 12

 14

cd2dat_csdf

pacem
aker

receiver

To
ta

l
b

u
ff

e
r

si
ze

 (
lo

g
2
)

ARS_ILP SSA_simu minBS

(b) Total buffer size.

Fig. 14. Refinement of processor utilization and buffer size for CSDF applications.

minimizes the total buffer size instead of maximizing the throughput [40]
20
; previous results proved

that both objectives cannot be optimized at the same time [75]. The execution time of the synthesis

is not impacted by the number of processors: it is stable for all number of processors, around

one second for all algorithms except the SP_MULT_MBS ones, which needs up to three minutes

when minimizing the buffer sizes of the Serpent application (with an Intel i7-3740QM @2.70GHz

processor).

Note that even if EDF scheduling policy is considered better than FP policy [20], the ADFG

tool synthesizes periods with the same utilization factor for both policies in the uni-processor

case, and reaches the maximum throughput at the same time as the SP_MULT_BF_FBBFFD and

SP_MULT_BF_SRTA synthesis algorithms for FP policy.

Finally, we recall that the ADFG theory always synthesizes the periods so that the application is

schedulable. Hence, the ADFG tool is inherently safe to the Dhall’s effect [27]. Moreover, as we

use partitioned scheduling and best fit mapping with SRTA
21
, the ADFG tool synthesizes efficient

period even when the WCET of an actor is the double of all others for example, as illustrated

in Figure 16.

6.1.5 Impact of the graph. Different kinds of graph topology are present in the test applications. For
example, Beamformer is symmetrical with at most 12 actors in parallel paths, while DES is long and

thin with at most 3 parallel paths. Vocoder is a mix: widely parallel at the beginning and sequential

at the end. Despite these differences of topology, we do not observe substantial differences in the

efficiency of the synthesized schedules. Yet the efficiency can be severely decreased by the integer

properties of the rates, as seen for the cd2dat application in Section 6.1.1.

20
SP_MULT_MBS-BUFFER_MIN algorithm actually minimizes the number of memory transfer between processors when

mapping the actors, but to do so it may avoid using all available processors. Indeed, in the Table 3 used by the SP_MULT_MBS-

BUFFER_MIN algorithm, buffers are larger if producer and consumer actors are not on the same processor. In practice

SP_MULT_MBS-BUFFER_MIN uses only half of the available processors.

21
The mapping algorithm maps the actors, sorted by increasing priority, to the processor ensuring the highest throughput.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Real-Time Fixed Priority Scheduling Synthesis using Affine DataFlow Graphs: from Theory to Practice 1:25

 0

 2x10-5

 4x10-5

 6x10-5

 8x10-5

 0.0001

 0.00012

 0.00014

 0.00016

 0.00018

 0.0002

4 8 12 16 20 24 28 32 36 40 44 48 52

T
h
ro

u
g

h
p

u
t

EDF_MULT_BF_UF_ID
SP_MULT_BF_FBBFFD

SP_MULT_BF_SRTA

SP_MULT_MBS-BALANCED
SP_MULT_MBS-BUFFER_MIN

SP_MULT_MBS-THROUGHPUT_MAX

Fig. 15. Throughput of Beamformer synthesized by the ADFG tool, in function of the number of processors.

𝑣3

1

𝑣2

1

𝑣1

1

2

(a) SDF graph with repetition vector
®𝑧 = [1, 2, 1] and WCETs 𝐶𝑣1 = 1,
𝐶𝑣2 = 2, 𝐶𝑣3 = 4.

0 2 4 6 8 10 12

Proc. 1 𝑣
(1)
2

𝑣
(1)
2

𝑣2 𝑣2

Proc. 2 𝑣
(1)
1

𝑣
(1)
3

𝑣
(2)
1

𝑣
(2)
3

𝑣1, 𝑣3 𝑣1, 𝑣3

(b) Schedule of graph 16a synthesized by the ADFG tool on two pro-
cessors. Given periods 𝑇𝑣1 = 6, 𝑇𝑣2 = 3, 𝑇𝑣3 = 6. Computed priorities
𝑃𝑣1 = 2, 𝑃𝑣2 = 1, 𝑃𝑣3 = 3 and offset 𝑂𝑣2 = 6.

Fig. 16. Real-time schedule synthesized by SP_MULT_BF_SRTA algorithm,𝑈 = 1.5.

One can think that the ADFG theory restriction to weakly connected graphs is too limiting. Yet

this restriction is easily overcome by adding a dummy source actor having virtual dependencies to

the unconnected actors. For example, one can consider in the graph of Figure 16a that the actor 𝑣1
is a dummy actor (with the smallest possible WCET equal to 1), present only in order to connect

the graph consisting of actors 𝑣2 and 𝑣3.

Another drawback of the ADFG theory could be the absence of auto-concurrency. However, it

can be overcome by duplicating actors in the input graph, as it is done in the Beamformer SDF

graph with the symmetrical parallel paths corresponding to the same kernel applied to different

data.

6.2 Simulation with CHEDDAR
Scheduling simulation is used in order to provide a thorough evaluation of the schedules synthe-

sized by the ADFG tool. It allows us not only to verify the correctness of the results but also to

obtain additional information on the application execution. The ADFG tool can inter-operate with

Cheddar [70], which is an open source scheduling analyzer. The CSDF graph model and the buffer

verification (i.e. overflow and underflow) are already supported by the simulator. The additional

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:26 A. Honorat et al.

 0

 2

 4

 6

 8

 10

 12

 14

B
eam

form
er

C
hannelVocoder

D
ES

Filterbank

Serpent

Vocoder

cd2dat_csdf
h263decoder
m

p3decoder
pacem

aker
receiver

N
u
m

b
e
r

o
f

p
re

e
m

p
ti

o
n
s

(l
o
g

2
)

EDF_UNI SP_UNI SP_UNI_LOP SP_UNI_UDH

Fig. 17. Number of preemptions per single execution, in the uni-processor case.

information obtained by scheduling simulation includes the number of preemptions and the buffer

utilization. The simulation is performed over one hyperperiod plus the maximum of all offsets.

Figure 17 presents the number of preemptions measured in the uni-processor case. There is no

preemption for all six applications in which each actor is fired only once (see Table 4a). Indeed, these

actors all have the same period, and the heuristic to break priority tie presented in Section 4.2.1

avoids offsets; all firings are released at the same time and executed completely one after the other in

the order of their priorities being the graph topological order. The number of preemptions is of the

same order of magnitude as the total number of firings for the five other applications (see Table 4b).

Moreover, when minimizing the total buffer size with SP_UNI_LOP algorithm, it also reduces the

number of preemptions especially for h263decoder, mp3decoder and receiver applications.

Buffer simulation is even more interesting. Figure 18 details the buffer utilization 𝐵𝑇𝑚𝑎𝑥 , which

is computed by taking into account the maximum number of tokens that are present in all buffers

during the simulation length divided by the total buffer size. Equation 19 defines 𝐵𝑇𝑚𝑎𝑥 .

𝐵𝑇𝑚𝑎𝑥 =

(
max

∀𝑡,0≤𝑡≤𝑡𝑠𝑐ℎ𝑒𝑑

(∑︁
𝑒∈𝐸

𝑛𝑏_𝑡𝑜𝑘𝑒𝑛𝑡𝑒

))
/
∑︁
𝑒∈𝐸

𝛿𝑒 (19)

For each time unit 𝑡 during the simulation length from 0 to 𝑡𝑠𝑐ℎ𝑒𝑑 , the number of tokens stored in

every buffer 𝑒 at time 𝑡 , denoted 𝑛𝑏_𝑡𝑜𝑘𝑒𝑛𝑡𝑒 , is summed. Then, the maximum value over time is

divided by the sum of buffer sizes. Tokens are popped from the input buffers of an actor at its start

time, and pushed to its output buffers at its finish time. When two or more actors write or read at

the same time from different processors, the simulation analysis reorders all the write operations

before the reads. Buffers are all statically and independently allocated: they do not share memory.

In average of the applications and synthesis algorithms plotted in Figure 18, the memory con-

taining all buffers is used at most to only 56% of its capacity. This percentage is similar for all

applications and algorithms, except for the cd2dat CSDF application which uses approximately

68% of memory. The SP_MULT_MBS-BUFFER_MIN algorithm reaches a slightly better buffer

utilization, but at the cost of a throughput loss (see Footnote 20). The fact that buffers are never

filled to their maximum size is not surprising knowing that their size is refined by the ADFG tool

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Real-Time Fixed Priority Scheduling Synthesis using Affine DataFlow Graphs: from Theory to Practice 1:27

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

B
eam

form
er

C
hannelVocoder

D
ES

Filterbank

Serpent

Vocoder

cd2dat_csdf
h263decoder
m

p3decoder
pacem

aker
receiver

Pe
rc

e
n
ta

g
e
 o

f
m

a
x
m

im
u
m

 t
o
ta

l
b

u
ff

e
r

si
ze

 u
ti

liz
a
ti

o
n

EDF_MULT_BF_UF_ID
SP_MULT_BF_FBBFFD

SP_MULT_BF_SRTA

SP_MULT_MBS-BALANCED
SP_MULT_MBS-BUFFER_MIN

SP_MULT_MBS-THROUGHPUT_MAX

Fig. 18. Maximum number of token present at a time in all buffers, in the multi-processor case (4 processors).

(see Section 4.2.3) without taking into account the execution time. Such refinement may be useful

for CSDF applications but has no impact otherwise. Moreover while one buffer is full, others may

be empty.

The h263decoder application having only 4 actors is a simple enough example to explain why

the buffer size is overestimated. Its source actor vld produces 594 token and has a WCET more than

10 times smaller than its period. vld is executed once while its only consumer, iq actor consuming

1 token, is executed 594 times. In such case the ADFG tool safely approximates the number of

delays to 594 (that are all the ones consumed by iq between two executions of vld) and doubles the

buffer size accordingly because vld has a lower priority than iq. However the optimal number of

delays is only 44 (if fully partitioned) due to the small WCET of vld compared to its period: after 44

executions of iq, vld has already finished its execution and thus has produced 594 new token.

In any case, the buffer simulation done by Cheddar demonstrates that our synthesized buffer

sizes and delays are correct but that an important ratio of memory is wasted (see Figure 12). The

memory waste is due to the ADFG theory overestimation and to the independent buffer allocation

model itself. Thus, other techniques to reduce the memory footprint used for static scheduling,

such as the computation of a mutual exclusion graph of all firing dependencies and buffer merging

techniques [26], would be interesting to adapt to our periodic scheduling case.

7 CONCLUSION
In this article, we have presented an overview of the ADFG tool, which uses affine relations

as a model abstraction to efficiently map actors in dataflow graphs to real-time tasks. This tool

synthesizes multiple schedule characteristics, and generates code for the RTEMS operating system.

The ADFG tool applies an original and efficient combination of formal methods, and the correctness

of the implementation has been evaluated through extensive synthesis experiments and simulations.

Moreover, inter-operability between tools (scheduling synthesizer, simulator, code generator) was a

key property to perform these experiments, and it greatly helps the system designers. Finally, the 12-

years work done on the ADFG tool has shown that the theory it relies on is mature enough to go up

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:28 A. Honorat et al.

to code generation and execution
22
, although some important timing metrics (as preemption delay)

are still not taken into account. Future work includes connecting our framework with a WCET

analysis tool, such as Heptane [38], to provide a holistic analysis. In addition, more theoretical

investigations lie ahead, such as employing cyclo-static WCETs for CSDF actors with a multiframe

model [58], or improving the effectiveness of the delay computation with retiming techniques [50].

REFERENCES
[1] H. Andrade, J. Correll, A. Ekbal, A. Ghosal, D. Kim, J. Kornerup, R. Limaye, A. Prasad, K. Ravindran, T. N. Tran, M.

Trimborn, G. Wang, I. Wong, and G. Yang. 2012. From Streaming Models to FPGA Implementations. In Proceedings of
the International Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA). WORLDCOMP’12, 1.

[2] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings. 1993. Applying New Scheduling Theory to Static

Priority Pre-emptive Scheduling. Software Engineering Journal 8 (1993), 284–292.
[3] M. Bamakhrama and T. Stefanov. 2011. Hard-real-time scheduling of data-dependent tasks in embedded streaming

applications. In International Conference on Embedded Software (EMSOFT).
[4] A. Benabid-Najjar, C. Hanen, O. Marchetti, and A. Munier-Kordon. 2012. Periodic Schedules for Bounded Timed

Weighted Event Graphs. IEEE Trans. Automat. Control 57, 5 (May 2012), 1222–1232. https://doi.org/10.1109/TAC.2012.

2191871

[5] M. Benazouz, O. Marchetti, A. Munier-Kordon, and T. Michel. 2010. A new method for minimizing buffer sizes for

Cyclo-Static Dataflow graphs. In 8th IEEE Workshop on Embedded Systems for Real-Time Multimedia.
[6] M. Bertogna and M. Cirinei. 2007. Response-Time Analysis for Globally Scheduled Symmetric Multiprocessor Platforms.

In 28th IEEE International Real-Time Systems Symposium (RTSS 2007). 149–160. https://doi.org/10.1109/RTSS.2007.31

[7] Loïc Besnard, Adnan Bouakaz, Thierry Gautier, Paul Le Guernic, Yue Ma, Jean-Pierre Talpin, and Huafeng Yu. 2015.

Timed behavioural modelling and affine scheduling of embedded software architectures in the AADL using Polychrony.

Sci. Comput. Program. 106 (2015), 54–77. https://doi.org/10.1016/j.scico.2014.05.014

[8] S. S. Bhattacharyya, E. A. Lee, and P. K. Murthy. 1996. Software Synthesis from Dataflow Graphs. Kluwer Academic

Publishers, Norwell, MA, USA.

[9] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. 1996. Cycle-static Dataflow. Trans. Sig. Proc. 44, 2 (Feb. 1996),
397–408. https://doi.org/10.1109/78.485935

[10] E. Bini, T. Huyen Chau Nguyen, P. Richard, and S. K. Baruah. 2009. A Response-Time Bound in Fixed-Priority Scheduling

with Arbitrary Deadlines. IEEE Trans. Comput. 58, 2 (Feb 2009), 279–286. https://doi.org/10.1109/TC.2008.167

[11] Gedare Bloom, Joel Sherrill, Tingting Hu, and Ivan Cibrario Bertolotti. 2020. Real-time systems development with RTEMs
and multicore processors. CRC Press.

[12] B. Bodin, A. Munier-Kordon, and B. D. de Dinechin. 2013. Periodic schedules for Cyclo-Static Dataflow. In The 11th IEEE
Symposium on Embedded Systems for Real-time Multimedia. 105–114. https://doi.org/10.1109/ESTIMedia.2013.6704509

[13] B. Bodin, L. Nardi, P. H. J. Kelly, and M. F. P. O’Boyle. 2016. Diplomat: Mapping of Multi-kernel Applications Using

a Static Dataflow Abstraction. In 2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS). 241–250. https://doi.org/10.1109/MASCOTS.2016.35

[14] Adnan Bouakaz. 2013. Real-time scheduling of dataflow graphs. Theses. Université Rennes 1.
[15] A. Bouakaz and T. Gautier. 2014. An abstraction-refinement framework for priority-driven scheduling of static

dataflow graphs. In 2014 Twelfth ACM/IEEE Conference on Formal Methods and Models for Codesign (MEMOCODE).
2–11. https://doi.org/10.1109/MEMCOD.2014.6961838

[16] A. Bouakaz, T. Gautier, and J. P. Talpin. 2014. Earliest-deadline first scheduling of multiple independent dataflow

graphs. In 2014 IEEE Workshop on Signal Processing Systems (SiPS). 1–6. https://doi.org/10.1109/SiPS.2014.6986102

[17] Adnan Bouakaz and Jean-Pierre Talpin. 2013. Buffer Minimization in Earliest-deadline First Scheduling of Dataflow

Graphs. In Proceedings of the 14th ACM SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded
Systems (Seattle, Washington, USA) (LCTES ’13). ACM, New York, NY, USA, 133–142. https://doi.org/10.1145/2465554.

2465558

[18] A. Bouakaz and J.-P. Talpin. 2013. Design of Safety-Critical Java Level 1 Applications Using Affine Abstract Clocks. In

International Workshop on Software and Compilers for Embedded Systems. St. Goar, Germany, 58–67. https://doi.org/10.

1145/2463596.2463600

[19] A. Bouakaz, J.-P. Talpin, and J. Vitek. 2012. Affine Data-Flow Graphs for the Synthesis of Hard Real-Time Applications.

In Proceedings of the 2012 12th International Conference on Application of Concurrency to System Design. ACM, Hamburg,

Germany, 183–192. https://doi.org/10.1109/ACSD.2012.16

[20] Giorgio C Buttazzo. 2005. Rate monotonic vs. EDF: judgment day. Real-Time Systems 29, 1 (2005), 5–26.

22
For research purpose only, since our implementation is not certified.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.1109/TAC.2012.2191871
https://doi.org/10.1109/TAC.2012.2191871
https://doi.org/10.1109/RTSS.2007.31
https://doi.org/10.1016/j.scico.2014.05.014
https://doi.org/10.1109/78.485935
https://doi.org/10.1109/TC.2008.167
https://doi.org/10.1109/ESTIMedia.2013.6704509
https://doi.org/10.1109/MASCOTS.2016.35
https://doi.org/10.1109/MEMCOD.2014.6961838
https://doi.org/10.1109/SiPS.2014.6986102
https://doi.org/10.1145/2465554.2465558
https://doi.org/10.1145/2465554.2465558
https://doi.org/10.1145/2463596.2463600
https://doi.org/10.1145/2463596.2463600
https://doi.org/10.1109/ACSD.2012.16

Real-Time Fixed Priority Scheduling Synthesis using Affine DataFlow Graphs: from Theory to Practice 1:29

[21] J. Castrillon, R. Leupers, and G. Ascheid. 2013. MAPS: Mapping Concurrent Dataflow Applications to Heterogeneous

MPSoCs. IEEE Transactions on Industrial Informatics 9, 1 (Feb 2013), 527–545. https://doi.org/10.1109/TII.2011.2173941

[22] L. Cucu and J. Goossens. 2006. Feasibility intervals for fixed-priority real-time scheduling on uniform multiprocessors.

In IEEE Conference on emerging Technologies and Factory Automation, 2006. 397–404.
[23] R. I. Davis and A. Burns. 2007. Robust priority assignment for fixed priority real-time systems. In Proceedings of the

28
𝑡ℎ IEEE International Real-Time Systems Symposium (RTSS). 3–14.

[24] R. I. Davis, L. Cucu-Grosjean, M. Bertogna, and A. Burns. 2016. A review of priority assignment in real-time systems.

Journal of systems architecture 65 (2016), 64–82.
[25] R. de Groote, J. Kuper, H. Broersma, and G. J. M. Smit. 2012. Max-Plus Algebraic Throughput Analysis of Synchronous

Dataflow Graphs. In 2012 38th Euromicro Conference on Software Engineering and Advanced Applications. 29–38.
https://doi.org/10.1109/SEAA.2012.20

[26] K. Desnos, M. Pelcat, J.-F. Nezan, and S. Aridhi. 2016. On Memory Reuse Between Inputs and Outputs of Dataflow

Actors. ACM Transactions on Embedded Computing Systems (TECS) 15, 2 (Feb. 2016), 30. https://doi.org/10.1145/2871744
[27] Sudarshan K. Dhall and C. L. Liu. 1978. On a Real-Time Scheduling Problem. Operations Research 26, 1 (1978), 127–140.

[28] A. Dkhil, X. Do, P. Dubrulle, S. Louise, and C. Rochange. 2014. Self-timed Periodic Scheduling for a Cyclo-static

DataFlow Model. In Procedia Computer Science, Vol. 29.
[29] J. Eker, J.W. Janneck, E.A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and Yuhong Xiong. 2003. Taming

heterogeneity - the Ptolemy approach. Proc. IEEE 91, 1 (2003), 127–144. https://doi.org/10.1109/JPROC.2002.805829

[30] N. Fisher, S. Baruah, and T. P. Baker. 2006. The Partitioned Scheduling of Sporadic Tasks According to Static-Priorities.

In Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS ’06). IEEE Computer Society, Washington,

DC, USA, 118–127. https://doi.org/10.1109/ECRTS.2006.30

[31] A. Gamatié, S. Le Beux, É. Piel, R. Ben Atitallah, A. Etien, P. Marquet, and J.-L. Dekeyser. 2011. A Model-Driven Design

Framework for Massively Parallel Embedded Systems. ACM Trans. Embed. Comput. Syst. 10, 4, Article 39 (Nov. 2011).
https://doi.org/10.1145/2043662.2043663

[32] Thierry Gautier, Clément Guy, Alexandre Honorat, Paul Le Guernic, Jean-Pierre Talpin, and Loïc Besnard. 2019.

Polychronous automata and their use for formal validation of AADL models. Frontiers of Computer Science 13, 4 (Aug.
2019), 677–697. https://doi.org/10.1007/s11704-017-6134-5

[33] A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, B. D. Theelen, M. R. Mousavi, A. J. M. Moonen, and M. J. G.

Bekooij. 2006. Throughput Analysis of Synchronous Data Flow Graphs. In Proceedings of the Sixth International
Conference on Application of Concurrency to System Design (ACSD ’06). IEEE Computer Society, Washington, DC, USA,

25–36. https://doi.org/10.1109/ACSD.2006.33

[34] A. H. Ghamarian, S. Stuijk, T. Basten, M. C. W. Geilen, and B. D. Theelen. 2007. Latency Minimization for Synchronous

Data Flow Graphs. In 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007).
189–196. https://doi.org/10.1109/DSD.2007.4341468

[35] R. Govindarajan, Guang R. Gao, and Palash Desai. 2002. Minimizing Buffer Requirements under Rate-Optimal Schedule

in Regular Dataflow Networks. Journal of VLSI signal processing systems for signal, image and video technology 31, 3

(2002), 207–229. https://doi.org/10.1023/A:1015452903532

[36] L. Guo, Q. Zhu, P. Nuzzo, R. Passerone, A. Sangiovanni-Vincentelli, and E. A. Lee. 2014. Metronomy: A function-

architecture co-simulation framework for timing verification of cyber-physical systems. In 2014 International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS). 1–10. https://doi.org/10.1145/2656075.2656093

[37] S. Ha, S. Kim, C. Lee, Y. Yi, S. Kwon, and Y.-P. Joo. 2008. PeaCE: A Hardware-software Codesign Environment for

Multimedia Embedded Systems. ACM Trans. Des. Autom. Electron. Syst. 12, 3, Article 24 (May 2008), 24:1–24:25 pages.

https://doi.org/10.1145/1255456.1255461

[38] D. Hardy, B. Rouxel, and I. Puaut. 2017. The Heptane Static Worst-Case Execution Time Estimation Tool. In 17th
International Workshop on Worst-Case Execution Time Analysis (WCET 2017) (International Workshop on Worst-Case
Execution Time Analysis, Vol. 8). Dubrovnik, Croatia. https://doi.org/10.4230/OASIcs.WCET.2017.8

[39] Joost P. H. M. Hausmans, Stefan J. Geuns, Maarten H. Wiggers, and Marco J. G. Bekooij. 2014. Temporal Analysis Flow

Based on an Enabling Rate Characterization for Multi-Rate Applications Executed on Mpsocs with Non-Starvation-

Free Schedulers. In Proceedings of the 17th International Workshop on Software and Compilers for Embedded Systems
(Sankt Goar, Germany) (SCOPES ’14). Association for Computing Machinery, New York, NY, USA, 108–117. https:

//doi.org/10.1145/2609248.2609262

[40] A. Honorat, H. N. Tran, L. Besnard, T. Gautier, J.-P. Talpin, and A. Bouakaz. 2017. ADFG: a scheduling synthesis tool

for dataflow graphs in real-time systems. In International Conference on Real-Time Networks and Systems . Grenoble,
France, 1–10. https://doi.org/10.1145/3139258.3139267

[41] W. A. Horn. 1974. Some simple scheduling algorithms. Naval Research Logistics Quarterly 21, 1 (1974), 177–185.

https://doi.org/10.1002/nav.3800210113

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.1109/TII.2011.2173941
https://doi.org/10.1109/SEAA.2012.20
https://doi.org/10.1145/2871744
https://doi.org/10.1109/JPROC.2002.805829
https://doi.org/10.1109/ECRTS.2006.30
https://doi.org/10.1145/2043662.2043663
https://doi.org/10.1007/s11704-017-6134-5
https://doi.org/10.1109/ACSD.2006.33
https://doi.org/10.1109/DSD.2007.4341468
https://doi.org/10.1023/A:1015452903532
https://doi.org/10.1145/2656075.2656093
https://doi.org/10.1145/1255456.1255461
https://doi.org/10.4230/OASIcs.WCET.2017.8
https://doi.org/10.1145/2609248.2609262
https://doi.org/10.1145/2609248.2609262
https://doi.org/10.1145/3139258.3139267
https://doi.org/10.1002/nav.3800210113

1:30 A. Honorat et al.

[42] J. Hugues, B. Zalila, L. Pautet, and F. Kordon. 2008. From the prototype to the final embedded system using the Ocarina

AADL tool suite. ACM Transactions on Embedded Computing Systems (TECS) 7, 4 (2008), 42.
[43] M. Joseph and P. Pandya. 1986. Finding Response Times in a Real-Time System. Comput. J. 29, 5 (1986), 390.

https://doi.org/10.1093/comjnl/29.5.390

[44] J. Khatib, A. Munier-Kordon, E. C. Klikpo, and T.-C. Kods. 2016. Computing latency of a real-time system modeled by

Synchronous Dataflow Graph. In Real-Time Networks and Systems RTNS. Brest, France, 87 – 96. https://doi.org/10.

1145/2997465.2997479

[45] Enagnon Cédric Klikpo and Alix Munier-Kordon. 2016. Preemptive scheduling of dependent periodic tasks modeled

by synchronous dataflow graphs. In Real-Time Networks and Systems RTNS. Brest, France, 77 – 86. https://doi.org/10.

1145/2997465.2997474

[46] Hee-Hwan Kwak, Insup Lee, Anna Philippou, Jin-Young Choi, and Oleg Sokolsky. 1998. Symbolic schedulability

analysis of real-time systems. In Real-Time Systems Symposium, 1998. Proceedings., The 19th IEEE. IEEE, 409–418.
[47] Yu-Kwong Kwok and Ishfaq Ahmad. 1999. Static Scheduling Algorithms for Allocating Directed Task Graphs to

Multiprocessors. ACM Comput. Surv. 31, 4 (Dec. 1999), 406–471. https://doi.org/10.1145/344588.344618

[48] E. A. Lee and D. G. Messerschmitt. 1987. Synchronous data flow. Proc. IEEE 75, 9 (Sept 1987), 1235–1245. https:

//doi.org/10.1109/PROC.1987.13876

[49] E. A. Lee and T. M. Parks. 1995. Dataflow process networks. Proc. IEEE 83, 5 (May 1995), 773–801. https://doi.org/10.

1109/5.381846

[50] C. E. Leiserson and J. B. Saxe. 1991. Retiming synchronous circuitry. Algorithmica 6, 1 (01 Jun 1991), 5–35. https:

//doi.org/10.1007/BF01759032

[51] Joseph Y-T Leung and Jennifer Whitehead. 1982. On the complexity of fixed-priority scheduling of periodic, real-time

tasks. Performance evaluation 2, 4 (1982), 237–250.

[52] S. Lin, Y. Liu, K. Lee, L. Li, W. Plishker, and S. S. Bhattacharyya. 2017. The DSPCAD framework for modeling and

synthesis of signal processing systems. In Handbook of Hardware/Software Codesign, Soonhoi Ha and Jürgen Teich

(Eds.). Springer, Netherlands, Chapter 36, 1185–1219. https://doi.org/10.1007/978-94-017-7267-9_36

[53] S. Lin, J. Wu, and S. S. Bhattacharyya. 2018. Memory-constrained Vectorization and Scheduling of Dataflow Graphs

for Hybrid CPU-GPU Platforms. ACM Transactions on Embedded Computing Systems 17, 2 (January 2018), 50:1–50:25.

[54] Chung Laung Liu and James W Layland. 1973. Scheduling algorithms for multiprogramming in a hard-real-time

environment. Journal of the ACM (JACM) 20, 1 (1973), 46–61.
[55] J. M. López, J. L. Díaz, and D. F. García. 2004. Utilization Bounds for EDF Scheduling on Real-Time Multiprocessor

Systems. Real-Time Systems 28, 1 (01 Oct 2004), 39–68. https://doi.org/10.1023/B:TIME.0000033378.56741.14

[56] Wan-Chen Lu, Jen-Wei Hsieh, Wei-Kuan Shih, and Tei-Wei Kuo. 2006. A faster exact schedulability analysis for fixed-

priority scheduling. Journal of Systems and Software 79, 12 (2006), 1744 – 1753. https://doi.org/10.1016/j.jss.2006.03.023

[57] O. Marchetti and A. Munier-Kordon. 2009. A sufficient condition for the liveness of weighted event graphs. European
Journal of Operational Research 197, 2 (Sept. 2009), 532–540. https://doi.org/10.1016/j.ejor.2008.07.037

[58] A. K. Mok and D. Chen. 1997. A multiframe model for real-time tasks. IEEE Transactions on Software Engineering 23,

10 (Oct 1997), 635–645. https://doi.org/10.1109/32.637146

[59] A. Moonen, M. Bekooij, R. van den Berg, and J. van Meerbergen. 2008. Cache Aware Mapping of Streaming Applications

on a Multiprocessor System-on-Chip. In 2008 Design, Automation and Test in Europe. 300–305. https://doi.org/10.1109/

DATE.2008.4484696

[60] Orlando M. Moreira and Marco J. G. Bekooij. 2007. Self-Timed Scheduling Analysis for Real-Time Applications.

EURASIP Journal on Advances in Signal Processing 2007, 1 (2007), 083710. https://doi.org/10.1155/2007/83710

[61] Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin. 2011. Implementation of Holistic Response-time Analysis in

Rubus-ICE. In proceeding of: The 32nd IEEE Real-Time Systems Symposium (RTSS), WIP Session (2011).

[62] Hyunok Oh and Soonhoi Ha. 2002. Fractional Rate Dataflow Model and Efficient Code Synthesis for Multimedia

Applications. SIGPLAN Not. 37, 7 (June 2002), 12–17. https://doi.org/10.1145/566225.513834

[63] José Carlos Palencia and M González Harbour. 1998. Schedulability analysis for tasks with static and dynamic offsets.

In Real-Time Systems Symposium, 1998. Proceedings., The 19th IEEE. IEEE, 26–37.
[64] Keshab K. Parhi. 2007. VLSI digital signal processing systems : design and implementation. John Wiley \& Sons.

[65] K. K. Parhi and D. G. Messerschmitt. 1991. Static rate-optimal scheduling of iterative data-flow programs via optimum

unfolding. IEEE Trans. Comput. 40, 2 (Feb 1991), 178–195. https://doi.org/10.1109/12.73588

[66] T. M. Parks, J. L. Pino, and E. A. Lee. 1995. A comparison of synchronous and cycle-static dataflow. In Signals, Systems
and Computers, 1995. 1995 Conference Record of the Twenty-Ninth Asilomar Conference on, Vol. 1. IEEE, 204–210.

[67] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan, and S. Aridhi. 2014. Preesm: A dataflow-based rapid prototyping

framework for simplifying multicore DSP programming. In Education and Research Conference (EDERC), 2014 6th
European Embedded Design in. 36–40. https://doi.org/10.1109/EDERC.2014.6924354

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.1093/comjnl/29.5.390
https://doi.org/10.1145/2997465.2997479
https://doi.org/10.1145/2997465.2997479
https://doi.org/10.1145/2997465.2997474
https://doi.org/10.1145/2997465.2997474
https://doi.org/10.1145/344588.344618
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1109/5.381846
https://doi.org/10.1109/5.381846
https://doi.org/10.1007/BF01759032
https://doi.org/10.1007/BF01759032
https://doi.org/10.1007/978-94-017-7267-9_36
https://doi.org/10.1023/B:TIME.0000033378.56741.14
https://doi.org/10.1016/j.jss.2006.03.023
https://doi.org/10.1016/j.ejor.2008.07.037
https://doi.org/10.1109/32.637146
https://doi.org/10.1109/DATE.2008.4484696
https://doi.org/10.1109/DATE.2008.4484696
https://doi.org/10.1155/2007/83710
https://doi.org/10.1145/566225.513834
https://doi.org/10.1109/12.73588
https://doi.org/10.1109/EDERC.2014.6924354

Real-Time Fixed Priority Scheduling Synthesis using Affine DataFlow Graphs: from Theory to Practice 1:31

[68] F. Pellegrini. 2012. Scotch and PT-Scotch Graph Partitioning Software: An Overview. In Combinatorial Scientific
Computing, Uwe Naumann and Olaf Schenk (Eds.). CRC Press, 373–406. https://doi.org/10.1201/b11644-15

[69] R. Pellizzoni, P. Meredith, M.-Y. Nam, M. Sun, M. Caccamo, and L. Sha. 2009. Handling Mixed-criticality in SoC-based

Real-time Embedded Systems. In Proceedings of the Seventh ACM International Conference on Embedded Software
(Grenoble, France) (EMSOFT ’09). ACM, New York, NY, USA, 235–244. https://doi.org/10.1145/1629335.1629367

[70] Frank Singhoff, Jérôme Legrand, Laurent Nana, and Lionel Marcé. 2004. Cheddar: a flexible real time scheduling

framework. In ACM SIGAda Ada Letters, Vol. 24. ACM, 1–8.

[71] M. Sjödin and H. Hansson. 1998. Improved response-time analysis calculations. In Proceedings 19th IEEE Real-Time
Systems Symposium (Cat. No.98CB36279). 399–408. https://doi.org/10.1109/REAL.1998.739773

[72] Irina Smarandache, Thierry Gautier, and Paul Le Guernic. 1999. Validation of Mixed Signal-Alpha Real-Time Systems

through Affine Calculus on Clock Synchronisation Constraints. InWorld Congress on Formal Methods in the Development
of Computing Systems (FM’99) (LNCS vol. 1709). Springer, Toulouse, France, 1364–1383. https://doi.org/10.1007/3-540-

48118-4_22

[73] S. Stuijk, M. Geilen, and T. Basten. 2006. Exploring trade-offs in buffer requirements and throughput constraints for

synchronous dataflow graphs. In 2006 43rd ACM/IEEE Design Automation Conference. 899–904. https://doi.org/10.

1145/1146909.1147138

[74] S. Stuijk, M.C.W. Geilen, and T. Basten. 2006. SDF
3
: SDF For Free. In Application of Concurrency to System Design, 6th

International Conference (ACSD ’06) (Turku, Finland).
[75] S. Stuijk, M. Geilen, and T. Basten. 2008. Throughput-Buffering Trade-Off Exploration for Cyclo-Static and Synchronous

Dataflow Graphs. IEEE Trans. Comput. 57, 10 (Oct 2008), 1331–1345. https://doi.org/10.1109/TC.2008.58

[76] Youcheng Sun, Étienne André, and Giuseppe Lipari. 2015. Verification of two real-time systems using parametric

timed automata. http://waters2015.inria.fr/program/ Waters 6th International Workshop on Analysis Tools and

Methodologies for Embedded and Real-time Systems ; Conference date: 07-07-2015 Through 07-07-2015.

[77] W. Thies, M. Karczmarek, and S. P. Amarasinghe. 2002. StreamIt: A Language for Streaming Applications. In Proceedings
of the 11th International Conference on Compiler Construction (CC ’02). Springer-Verlag, London, UK, UK, 179–196.

[78] Ken Tindell and John Clark. 1994. Holistic schedulability analysis for distributed hard real-time systems. Microprocessing
and microprogramming 40, 2-3 (1994), 117–134.

[79] Hai Nam Tran, Alexandre Honorat, Shuvra S. Bhattacharyya, Jean-Pierre Talpin, Thierry Gautier, and Loïc Besnard.

2021. A Framework for Fixed Priority Periodic Scheduling Synthesis from Synchronous Data-flow Graphs. In 21th
International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS).

[80] W. F. J. Verhaegh, E. H. L. Aarts, P. C. N. van Gorp, and P. E. R. Lippens. 2001. A two-stage solution approach to

multidimensional periodic scheduling. In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
Vol. 20.

[81] G.Q. Wang, R. Allen, H.A. Andrade, and A. Sangiovanni-Vincentelli. 2014. Communication Storage Optimization for

Static Dataflow with Access Patterns Under Periodic Scheduling and Throughput Constraint. Comput. Electr. Eng. 40, 6
(Aug. 2014), 1858–1873. https://doi.org/10.1016/j.compeleceng.2014.05.002

[82] Yun Wang and Manas Saksena. 1999. Scheduling fixed-priority tasks with preemption threshold. In Sixth IEEE
International Conference on Real-Time Computing Systems and Applications (RTCSA). 328–335.

[83] M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit. 2007. Efficient Computation of Buffer Capacities for Cyclo-Static

Dataflow Graphs. In 2007 44th ACM/IEEE Design Automation Conference. 658–663.

accepted 22 July 2023

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.1201/b11644-15
https://doi.org/10.1145/1629335.1629367
https://doi.org/10.1109/REAL.1998.739773
https://doi.org/10.1007/3-540-48118-4_22
https://doi.org/10.1007/3-540-48118-4_22
https://doi.org/10.1145/1146909.1147138
https://doi.org/10.1145/1146909.1147138
https://doi.org/10.1109/TC.2008.58
http://waters2015.inria.fr/program/
https://doi.org/10.1016/j.compeleceng.2014.05.002

	Abstract
	1 Introduction
	2 Related Work
	2.1 Generic analysis of SDF graphs
	2.2 Real-Time Schedule Synthesis of SDF graphs

	3 Background
	3.1 Synchronous DataFlow
	3.2 Fixed Priority Scheduling of Periodic Tasks

	4 Fixed Priority scheduling from affine dataflow graphs
	4.1 ADFG theory overview
	4.2 ADFG in details

	5 Code generation
	5.1 Actors and buffers in LIDE
	5.2 Schedule characteristics in RTEMS

	6 Evaluation
	6.1 Scheduling synthesis evaluation
	6.2 Simulation with CHEDDAR

	7 Conclusion
	References

