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Desingularizing functions in convex programming and convergence of an
abstract gradient descent algorithms∗

A. Balhag and A. Jourani†

Abstract Over the past years, the idea of the KL property has become increasingly common in the optimisation area. It was
used as tool guarantees that every sequence generated by many different descent algorithms enjoys finite length property.
When verifying the KL property, one needs to find a desingularizing function, which is usually considered difficult. In light of
this, our paper provides a desingularizing function that can be regarded as the smallest among all potential desingularizing
functions. We investigate continuity, Lipschitz continuity, differentiability and subdifferentiability properties of this function
as well as different characterizations of the so-called Kurdyka-Lojasiewicz-Hoffman constant by introducing a new class of
functions with nonsmooth moderate behaviour. Based on these attributes, we provide a convergence analysis and an esti-
mation of the convergence rate of an inexact descent methods for convex differentiable functions that covers a wide class of
gradient descent methods. We also delves the complexity property of this method and its relationship with λ-one-dimensional
worst-case proximal sequences.

Keywords: Desingularizing function, Error bounds, Kurdyka-Lojasiewicz-Hoffman constant, Convex minimization, Inexact
descent methods, Complexity.

Mathematics Subject Classification: 90C06, 90C25, 90C60, 65K05

1 Introduction
Continuous optimization problems are prevalent across diverse domains, including machine learning, signal processing, and
data analytic. Recently, there has been a lot of interest in using the Kurdyka-Lojasiewicz (KL) inequality in many applications
to solve these problems. Roughly speaking, this inequality states that for a differentiable function f, there is a smooth concave
function µ such that the following inequality holds

∥∇ (µ ◦ (f −min f)) (x)∥ ≥ 1, (1)

for all x in a compact neighborhood of the set of critical points of f, see [16]. Its extension to the nonsmooth case [15, 17]
has opened up unexpected pathways in the nonconvex world and enabled us to conduct convergence rate for a number of
significant optimisation algorithms , see, e.g. [1, 3, 2, 10, 19, 24, 41] and the references therein.
In the KL inequality (1), the desingularizing function µ is a witness to the fact that f is asymptotically well-behaved, in
matter of fact, the faster µ′ (derivative of µ) tends to infinity at 0, the flatter is f around critical points. However, it is
important to note that the desingularizing function is not necessary unique. So, it is natural for us to ponder what the
optimal option would be.
Given an extended real-valued function f defined on a Banach space X, such that m := infX f and S := Argminf is
nonempty. The function µf : R+ → R+ given by

µf (t) = sup{d(x, S) : f(x)−m ≤ t}, (2)
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has been recognized as the canonical conditioner for f in [43, 7]. This value function serves as the most smallest non-decreasing
conditioner. In another terms, it is the the smallest function µf that satisfies the following error bound inequality:

∀x ∈ X d(x, S) ≤ µf (f(x)−m).

It is important to note that error bounds, as indicated in [18], can provide the KL inequality. This implies that a conditioner
can be regarded as a desingularizing function, and further µf might be the best optimal desingularizing one.
By using either techniques from convex analysis or tools from nonsmooth analysis, we study different properties of µf includ-
ing continuity, Lipschitz continuity, differentiability and subdifferentiability. Indeed, these properties constitute the heart of
our study of a gradient descent algorithms that we propose in this work to solve unconstrained smooth optimization problems.

The gradient descent method is certainly among the most fundamental and simple algorithms to solve smooth optimization
problems. Actually, many of gradient descent method algorithm convergence results have been analyzed within the broader
framework of KL functions and established within an abstract scheme of descent methods as in [2, 18, 28] . In matter of
fact, an abstract descent scheme is a set of abstract properties ensuring the convergence of a generic iterative scheme to a
stationary point if combined with the KL inequality. It is noteworthy that several specific algorithms may be derived from
the abstract scheme. The first abstract descent scheme was considered by Attouch and co-authors in [2] for nonsmooth,
nonconvex functions. Later, several authors adopted and developed this method, to be able to analyze and build new and
existing algorithms,see for instance, [2, 18, 28] with references therein.
Meanwhile, over the past few decades, the gradient method has been modified in many ways. As a way to speed gradient
descent procedures is inertial methods, which provide an alternative strategy for accelerating the rate of convergence. It
differs from the usual gradient method by adding an inertial term that is computed by the difference of the two preceding
iterations. It may be challenging to estimate the rate of convergence in a nonconvex case, but from a numerical perspective,
it is still favourable. One of the noteworthy techniques in the field of inertial gradient descent is Polyak’s heavy ball method
[44]. The method’s name derives from the fact that it may be regarded as an explicit finite difference discretization of the
so-called Heavy-ball with friction dynamical see [5, 29]. Another popular inertial method that shows some similarities with
the heavy ball method is Nesterov’s accelerating gradient method [35], Indeed, both of them can accelerate convergence rate
while keeping the cost of each iteration relatively constant. However, while the Heavy-ball method uses gradients based on
the current iterate, Nesterov’s accelerated gradient method evaluates the gradient at points that are extrapolated by the
inertial force.
Many authors modify the abstract scheme proposed in [2] in order to include a lot of inertial algorithms, among which we
list the works of Ochs [41] and his co-authors, who studied what is called iPiano (proximal inertial algorithm for nonconvex
optimization) and which can be considered as a generalization of the Heavy-Ball method [44, 45]. Similarly, Lazlo in [38]
adapted an abstract descent scheme to his proposed Nesterov Gradient type inertial algorithm. We refer the reader to the ref-
erences [42, 20, 21] among others. The interesting aspect is that the convergence rates of many of these previously mentioned
methods depend on the KL inequality rather than the nature of the algorithm. That is, it depends on the desingularizing
function µ. For an abstract first-order descent method in convex minimization. The authors in [18] have shown that the
inverse µ−1 of a desingularization function µ of f on a convenient domain contains almost all the information provided by
their approach about the complexity of descent methods. They proved that for a convex objective f and a descent sequence
fulfills the following two conditions:

(i) a∥xk − xk∥2 + ∥2 ≤ f(uk)− f(uk+1);

(ii) ∥wk)∥ ≤ ∥b∥xk − xk−1∥, where wk ∈ ∂f(xk) for all k ∈ N∗,

where a and b are positive real numbers, the rate of convergence of the value is

|f(xk)−minf | ≤ µ−1 (αk) , k ≥ 0.

where αk is sequence what’s called a worst case one dimensional proximal method that is defined by

αk+1 = argmin{µ−1(αk) +
1

2
(s− αk)

2
: s > 0}, α0 = µ−1 (f(x0)) .
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Motivated by this concept, our goal is to unify and extend the frameworks delineated in the previous mentioned works. To
this end, after giving different properties of our desingularizing µf defined in (2), and through the utilization of the following
regularization function of f in Hilbert space H,

H : H×H → R, H(u, v) = f(u) +
1

2
∥u− v∥2,

we consider an abstract descent gradient method in a way that generates a link between sequences (xk)k∈N in H and
(zk)k∈N := (uk, vk)k∈N in H×H, through the following hypotheses:

(H1) For each k ∈ N∗, for some ak > 0 and bk > 0,

ak∥xk+1 − xk∥2 + bk∥xk − xk−1∥2 ≤ H(zk)−H(zk+1);

(H2) For each k ∈ N∗, for some ck > 0 and εk ≥ 0,

ck∥∇H(zk)∥ ≤ ∥xk+1 − xk∥+ ∥xk − xk−1∥+ εk;

(H3) For each k ∈ N∗, for every z = (x, x) ∈ H ×H, and with fixed c1, c2 ≥ 0,

∥zk − z∥ ≤ c1∥xk − x∥+ c2∥xk−1 − x∥;

(H4) The sequences (ak)k∈N, (bk)k∈N, (εk)k∈N, and (ck)k∈N satisfy

εk /∈ l1, inf
k≥0

ckak > 0, and inf
k≥0

ckbk > 0.

Indeed, for convex differential function f, we analyse the asymptotic behaviour of our abstract algorithm and we prove as in
[18] that the convergence rate dependent on the inverse the desingularizing function µH .
We present now the paper’s structure and highlight its important contributions:
In section 2, we provide some notations and results from (nonsmooth) variational analysis in general Banach space. Following
that, we present our main results. In section 3, after giving the definition of the KL property, we exploit a general different
feather of µf . We prove different properties of µf including continuity, Lipschitz continuity as well as subdifferentiability.
Actually, our desingularizing function may be neither differentiable nor concave. However, surprisingly, for smooth convex
function f, we show in Theorem 3.9, that the function µf is differentiable, and further, for all x /∈ Argminf , the following
equality holds

µ′f (f(x))∥∇f(x)∥ = 1. (3)

We conclude this section by giving different characterization of the so-called Kurdyka-Lojasiewicz-Hoffman constant by
introducing a new class of functions with nonsmooth moderate behaviour in the sprit of that considered in [18] and refrences
therein.
In the last section, for smooth convex objective function f defined in Hilbert space H, we present our inertial inexact abstract
descent gradient schema satisfying the hypotheses (H1)− (H4), which is inspired by [38] but extending their setting in order
to take into account additive computational errors,which gives a more flexibility in the choice of the parameters. Instead of
using KL, we use the equality (3) for µH related to the regularization function H. We prove, under certain hypotheses, that
the iterates have finite length and strong convergence. Finally, similar to the work in [18], we show that general convergence
rates depend also on a parameter αk which is the sequence of the one dimensional worst case defined by

αk+1 = argmin{µ−1H (αk) +
1

2
(s− αk)

2
: s > 0}, α0 = µ−1H (H(z0)) .

The methodologies and findings presented in our work open the door to improve convergence results of a broad range of
algorithms that adopt the KL property.
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2 Notation and preliminaries
In order to make the paper as short as possible, some definitions and the complete wording of the results will not be repeated
here, and as needed, will be referenced to [39]-[40] and [25]. Throughout, we shall assume that X is a Banach space endowed
with some norm denoted by ∥ · ∥ to which we associate the distance function dC(·) to a set C.
We write x

f→xo, and x
S→xo to express x → x0 with f(x) → f(x0) and x → x0 with x ∈ S, respectively.

Let f be an extended-real-valued function on X. The limiting Fréchet subdifferential of f at x0 in x is the set

∂f(x0) = w∗ − seq − lim sup
x

f
→x0

ε→0+

∂ε
F f(x)

where
∂ε
F f(x) = {x∗ ∈ X∗ : lim inf

h→0

f(x+ h)− f(x)− ⟨x∗, h⟩
∥ h ∥

≥ −ε}

is the ε−Fréchet subdifferential of f at x.
The limiting Fréchet normal cone to a closed set S ⊂ X at a point x ∈ S is given by

N(S, x) = ∂δS(x)

where δS denotes the indicator function of S.
In the so-called Asplund spaces, the limiting Fréchet subdifferential takes the following form (which is in fact a characterization
of this class of spaces):

∂f(x0) = w∗ − seq − lim sup

x
f→x0

∂F f(x)

where
∂F f(x) = {x∗ ∈ X∗ : lim inf

h→0

f(x+ h)− f(x)− ⟨x∗, h⟩
∥ h ∥

≥ 0}

is the Fréchet subdifferential of f at x.

If f is an extended-real-valued function on X, the function

f−(x, h) = lim inf
u→h
t↓0

t−1(f(x+ tu)− f(x))

is the lower Dini directional derivative of f at x. To this directional derivative, it is associated the so called Dini-subdifferential
defined as

∂−f(x) = {x∗ ∈ X∗ : ⟨x∗, h⟩ ≤ f−(x, h)∀h ∈ X}.

It tunrs out that this subdifferential coincides with the Fréchet subdifferential in finite dimension.
Note that when f is locally Lipschitz at x

f−(x, h) = lim inf
t↓0

t−1(f(x+ th)− f(x)).

If f is locally Lipschitz at x, the function

f0(x, h) = lim sup
u→x
t↓0

t−1(f(u+ th)− f(u))

is the Clarke’s directional derivative of f at x. The Clarke’s subdifferential is then defined by

∂Cf(x) = {x∗ ∈ X∗ : ‘⟨x∗, h⟩ ≤ f0(x, h)∀h ∈ X}.
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Having in mind this definition for locally Lipschitz functions, the Clarke normal cone to a closed set S at x0 ∈ S can be
defined as

NC(S, x0) = R+∂CdS(x0).

Here dS denotes the distance function to a set S, that is,

dS(x) = inf
u∈S

∥u− x∥.

As usual, this allows to define the Clarke’s subdifferential for any extended real-valued lower semicontinuous f in terms of
the Clarke’s normal cone to the epigraph epif of the function f

∂Cf(x0) = {x∗ ∈ X∗ : (x∗,−1) ∈ NC(epif, (x0, f(x0))}.

If X is Asplund and f is locally Lipschitz at x0, then

∂Cf(x0) = cl∗co(∂f(x0)).

Finally we recall that the function f is Clarke regular at x if

f−(x, h) = f0(x, h)∀h ∈ X.

Taking into account the previous remarks in finite dimension, the Clarke regularity of f at x is equivalent to say that

∂F f(x) = ∂Cf(x).

To close this section, let us recall that for lower semicontinous convex functions all theses subdifferentials coincide with the
Fenchel subdifferential which will be denoted as

∂f(x0) = {x∗ ∈ X∗ : x∗, x− x0⟩ ≤ f(x)− f(x0) ∀x ∈ X}

or equivalently
∂f(x0) = {x∗ ∈ X∗ : x∗, h⟩ ≤ f ′(x0, h) ∀h ∈ X}.

Here f ′(x0, ·) stands for the directional derivative in the sense of convex analysis, that is,

f ′(x0, h) = lim
s↓0

f(x0 + sh)− f(x0)

s
.

3 Kurdyka-Lojasiewicz desingularizing function

3.1 Kurdyka-Lojasiewicz desingularizing function
Let r > 0 and consider the sets

K0 (0, r) :=
{
ω ∈ C0[0, r) : ω is increasing and ω(0) = 0

}
,

K (0, r) :=
{
ω ∈ C0[0, r) ∩ C1(0, r) : ω(0) = 0, ∃β > 0; ω(t) ≤ βω′(t)t ∀t ∈ (0, r)

}
and

K :=
{
ω ∈ C0[0,+∞) ∩ C1(0,∞) : ω(0) = 0, ∃β > 0; ω(t) ≤ βω′(t)t ∀t > 0

}
.

The function f satisfies the local Kurdyka-Łojasiewicz inequality at x̄ ∈ S if there exist r > 0, s > 0 and ω ∈ K (0, r) such
that

ω′(f(x))d(0, ∂f(x)) ≥ 1 ∀x ∈ B(x̄, s) ∩ [0 < f < r], (4)
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where [0 < f < r] := {x ∈ X : 0 < f(x) < r}.

The function f satisfies the global Kurdyka-Łojasiewicz inequality if there exists ω ∈ K such that

ω′(f(x))d(0, ∂f(x)) ≥ 1 ∀x ∈ X\S. (5)

The function ω is called a desingularizing function for f at x̄. One of the important questions is :

How to compute ω?

Its calculus depends on the geometry of f and may be computed in some special situations. One of them is the case (see
Theorem 3 in [18]) where f is a semi-algebraic coercive convex function. More precisely, it is established that the function
ω is defined by

ω(t) = α(t+ t
1
p )

for some α > and a rational number p ≥ 1.
In 1963, Lojasiewicz [37] proved that any real analytic function F : H → R has the Lojasiewicz property, after that, in 1998
Kurdyka presented a more general construction which applies to differentiable functions definable in an o-minimal structure
[35]. The extension to nonsmooth functions has been presented in [3, 12, 16]

Definition 3.1 (The Kurdyka-Lojasiewicz property) Let F : H → R be a differentiable function. F has the Kurdyka-
Lojasiewicz property (for short KL-property) at x̄ ∈ H if there exist η > 0, a neighborhood U of x̄, and a continuous concave
function µ ∈ Kη where

Kη = {µ ∈ C0[0, η) ∩ C1(0, η), µ(0) = 0, µ is concave and µ′ > 0}

such that: for all x in the intersection U ∩ {x ∈ H : F (x̄) < F (x) < F (x̄) + η}, the following inequality holds

µ′(F (x)− F (x̄))∥∇F (x)∥ ≥ 1.

The Lojasiewicz inequality or property is a special case of the KL-property when µ(s) = s1−θ, θ ∈ [ 12 , 1] It is automatically
satisfied for non-critical points, so it is in fact a condition on critical points. We will need the following result which was
given in [19].

Lemma 3.2 Let F : H → R be a differentiable function and let K ⊆ H be compact. Suppose F is constant on K and has
the KL-property at every x̄ ∈ K. Then there exists ε > 0, η > 0 and a real function µ ∈ Kη where

Kη = {µ ∈ C0[0, η) ∩ C1(0, η), µ(0) = 0, µ is concave and µ′ > 0}

such that:
µ′(F (x)− F (x̄))∥∇F (x)∥ ≥ 1.

for every x̄ and every x such that dis(x,K) ≤ ε and F (x̄) < F (x) < F (x̄) + η.

3.2 Desingularizing function of f
We may also ask for the existence of such function in the absence of differentiablity. One natural candidate should be (see
[43]) the function µf : R+ → R+ defined by

µf (t) = sup{d(x, S) : f+(x) ≤ t}.

This function is increasing with µf (0) = 0 and

d(x, S) ≤ µf (f+(x)) ∀x ∈ X.
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Note that when µf is increasing, then the last inequality can be formulated as follows :

d(x, {u ∈ X : (µf ◦ f)(u) ≤ 0}) ≤ (µf ◦ f)((x)) ∀x /∈ S.

This inequality is nothing else that the so-called Hoffman error bound for the inequality system given by g := µf ◦ f(see [9]
and references therein).

One very important issue of the function µf is when does it satisfy the following inequality

lim sup
t→0+

µf (t)

t
< ∞? (6)

This question is very important in optimization since it characterizes the so called error bound. Indeed, it is not difficult to
see that relation (6) is equivalent to say that

∃α > 0, ∃δ >; d(x, S) ≤ αf+(x) ∀x ∈ [0 ≤ f ≤ δ]. (7)

This last one is satisfied in many situation including the case when f is a polyhedral function (see [9] for furher results).

Let S(t) = {x ∈ X : µf (t) = d(x, S), f(x) ≤ t} be the solution set of the optimization problem{
max d(x, S)
f(x) ≤ t

The function µf can be expressed as the supremum of the difference of two convex function whenever f is convex. More
precisely, we obtain the following result which is a consequence of Proposition 2.4.3 in [25].

Proposition 3.3 Let t ≥ 0 be such that S(t) ̸= ∅. Then

µf (t) = sup
x∈X

{d(x, S)− d(x, Sf (t))}. (8)

Moreover for all K > 1 and t > 0, µf (t) = max
x∈X

(d(x, S)−Kd(x, Sf (t))) and S(t) = SK(t), where

SK(t) = argmax{d(x, S)−Kd(x, Sf (t))}.

Recall that f is said to be starshaped at x̄ ∈ S if, for any x ∈ X and any s ∈ [0, 1], one has

f((1− s)x̄+ sx) ≤ (1− s)f(x̄) + sf(x)

it is said to be starshaped on S if it is starshaped at any x̄ ∈ S . Note that the starshapeness of f on S ensures automatically
the convexity of S.
Under the inf-compactness of f , we will have the following result.

Proposition 3.4 Suppose that f : X → R∪ {+∞} is lower semicontinuous and starshaped on S, where X is a real Banach
space, and that S coincides with the set of critical point of f with respect to the Mordukhovich subdifferential. Then µf is
lower semicontinuous and lower-starshaped at 0 (i.e. µf (αt) ≥ αµf (t) for every t > 0 and α ∈ [0, 1]) . Therefore, µf is
subadditive, and t ∈]0,+∞[ 7→ µf (t)

t is decreasing. If moreover, f is inf-compact then µf is continuous.

Proof. The lower semicontinuity is obvious for t = 0. So suppose t > 0 and let tk → t be such that lim inf
t′→t

µf (t
′) =

lim
k→∞

µf (tk). For ε > 0, pick x ∈ X such that µf (t) ≤ d(x, S) + ε. If f+(x) < t, then for k sufficiently large, f+(x) < tk, and

hence µf (t) ≤ µf (tk) + ε. Thus µf (t) ≤ lim
k→∞

µf (tk). Now, suppose that f+(x) = t. Then, since S coincides with the set
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of critical point of f with respect to the Mordukhovich subdifferential, 0 /∈ ∂f(x). Corollary 4 in [?] asserts the existence of
a > 0 and r > 0 such that

d (u, {v ∈ X : f+(v) ≤ s}) ≤ a (f+(u)− s)+ ∀v ∈ B(x, r), s ∈]t− r, t+ r[.

Then tk ∈]t− r, t+ r for k sufficiently and there exists xk, with f+(xk) ≤ tk, such that

∥x− xk∥ ≤ a (f+(x)− tk)+

and hence

µf (t) ≤ d(x, S) + ε

≤ d(xk, S) + ∥x− xk∥+ ε

≤ µf (tk) + a (f+(x)− tk)+ + ε.

Since (f+(x)− tk)+ → 0 and ε is arbitrary, we get µf (t) ≤ limk→∞ µf (tk).
Now, let us show µf that lower-starshaped at 0. By contradiction, let t > 0 and α ∈]0, 1[. Suppose that µf (αt) < αµf (t). So,
one can find x ∈ X such that

µf (αt) < αd(x, S), and f+(x) ≤ t.

Let us take ε > 0, with µf (αt) < αd(x, S)− αε, and u ∈ S such that ∥x− u∥ ≤ d(x, S) + αε. Since

d(x, S) ≤ (1− α)∥x− u∥+ d(αx+ (1− α)u, S),

then α∥x− u∥ ≤ αε+ d(αx+ (1− α)u, S) and

µf (αt) + αε < αd(x, S) ≤ α∥x− u∥ ≤ αε+ d(αx− (1− α)u, S).

As f is starshaped at u, we have
f(αx+ (1− α)u) ≤ αf(x) ≤ αt,

which implies that µf (αt) +αε < αε+µf (αt), a contradiction. Hence, µf is starshaped at 0. The subadditivity of µf comes

from the fact that for every t, s > 0, we have µf (t) ≥ t
t+sµf (t + s) and µf (s) ≥ s

t+sµf (t + s). The function t → µf (t)

t
is

nonincreasing due to fact that for 0 < t ≤ s, we have

µf (t) = µf (
t

s
s) ≥ t

s
µf (s).

⊠

Remark 3.5 1. Using the monotonicity of t → µf (t)
t , we easily see that

∀t ∈ [0, 1], tµf (1) ≤ µf (t) and ∀t ≥ 1, µf (t) ≤ tµf (1). (9)

2. The strict monotony of µf combined with the convexity of f does not ensure the concavity nor the convexity of µf . To
see this, consider the function f defined by

f(x) =

 x4 if x < 0
0 if x ∈ [0, 1]
(x− 1)2 if x > 1.

Then
µf (t) = max(

√
t,

4
√
t)

which is not concave nor convex.
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Proposition 3.6 Let f be as in Proposition 3.4 and set t̄ = sup
x∈domf

f(x). Suppose in addition that f is continuous on

domf . Then the following assertions hold:

1. If t̄ ∈ R,
µf (t) = µf (t̄) ∀t ≥ t̄.

2. For all t ∈ [0, t̄), the set S(t) is nonempty and for all t ∈ (0, t̄), S ∩ S(t) = ∅.

3. For all t0 ∈ (0, t̄), the set-valued mapping t 7→ Sf (t) := {x ∈ X : f(x) ≤ t} is Lipschitz near t0, that is, there exist real
numbers γ > 0 and α > 0 such that

Sf (t) ⊂ Sf (t
′) + γ|t− t′|B ∀t, t′ ∈]t0 − α, t0 + α[.

Moreover µf is locally lipshitz on (0, t̄).

4. Let t0 ∈ (0, t̄) and x0 ∈ S(t0) at which f is continuous. Then

(a) For all x∗ ∈ ∂dSf (t0)(x0), with x∗ ̸= 0, then there exists t∗ ∈ (0,K) such that x∗ ∈ t∗∂f(x0).

(b) ∂dS(x0) ⊂ (0,K)∂f(x0).

Proof.
1. This item is obvious.

2. Let t ∈ [0, t̄). By the inf-compactness of the function f , the set [f ≤ t] is compact and then there exists x ∈ [f ≤ t] such
that, µf (t) = d(x, S) which asserts that S(t) ̸= ∅. We will prove that S ∩ S(t) = ∅. We will argue by contradiction. So let
x ∈ S ∩ S(t). Then f+(x) = 0 and hence f+(x) < t. Using the definition of t̄, there exists y ∈ domf such that f(y) > t. Set

γ(s) = f(sx+ (1− s)y), ∀s ∈ [0, 1].

We have γ(1) < t < γ(0) and γ is continuous on [0, 1], there exists therefore s ∈ (0, 1) such that t = γ(s) = f(sx+ (1− s)y).
It follows that d(x, S) = µf (t) ≥ d(sx + (1 − s)y, S) > 0 and hence x ̸∈ S and this contradicts our assumption. So that
S ∩ S(t) = ∅.

3. To establish this item, let us consider the function

g : X × R → R ∪ {+∞}
(x, t) 7→ f(x)− t

(10)

Given t0 ∈ (0, t̄) and x0 ∈ S(t0), because S ∩ S(t0) = ∅, we have 0 ̸∈ ∂xg(x0, t0)(= ∂f(x0)), where ∂xg is the partial
subgradient of g with respect to x. According to Theorem 7.1 of [34], there exist r > 0 and a > 0 such that

d(x, {u : g(u, t) ≤ 0}) ≤ ag+(x, t), ∀x ∈ B(x0, r), ∀t ∈ B(t0, r) (11)

Now suppose for contradiction that there exist sequences (tk) and (t′k) both converging to t0, with tk ̸= t′k for all k, and
xk ∈ Sf (tk) with xk /∈ Sf (t

′
k) + k|tk − t′k|. By separation theorem, there exists x∗k ∈ X∗, with ∥x∗k∥ = 1, such that

⟨x∗k, xk⟩ ≤ −k|tk − t′k|+ inf
x∈Sf (t′k)

⟨x∗k, x⟩. (12)

By the inf-compactness, extracting subsequence if necessary, we may assume that (xk) converges to x0 with f(x0) ≤ t0.
Relation (11) asserts that for k large enough, there exists x′k ∈ Sf (t

′
k) such that

∥xk − x′k∥ ≤ ag(xk, t
′
k) = a(g(xk, t

′
k)− g(xk, tk)) = a|tk − t′k|.

9



Using this inequality and relation (12), we obtain

k|tk − t′k| ≤ a|tk − t′k|

which leads to a contradiction because k is arbitrary.
The local Lipschitzness of µf follows from that of the set-valued mapping Sf and relation (8).

4. Let t0 ∈ (0, t̄), x0 ∈ S(t0) and x∗ ∈ ∂dSf (t0)(x0), with x∗ ̸= 0. Then

∥x∗∥ ≤ 1 and ⟨x∗, x− x0⟩ ≤ 0 ∀x ∈ Sf (t0).

As the set-valued mapping Sf is Lipschitz with constant K, we have for all t near t0 and x ∈ Sf (t) there exists b ∈ B such
that

x+K|t− t0|b ∈ Sf (t0)

and hence
⟨x∗, x+K|t− t0|b− x0⟩ ≤ 0.

Thus, because of the convexity of f ,
⟨x∗, x− x0⟩ ≤ K|t− t0| ∀(x, t) ∈ epif.

So that there exists t∗ ∈ [−K,K] such that (x∗,−t∗) ∈ N(epif, (x0, t0)). Since f is continuous at x0 then f(x0) = t0 and
t∗ > 0 (otherewise x∗ = 0 and this contradicts our hypothesis on x∗), and hence x∗ ∈ t∗∂f(x0). The last inclusion uses the
last inclusion and some tools from DC-programming ([31]) namely, because x0 ∈ S(t0), the following inclusion holds

∂dS(x0) ⊂ ∂dSf (t0)(x0).

⊠
Now that we have studied the Lipschitz continuity of µf , we will focus on its differentiability as well as its subdifferentiability
properties. Before doing so, we start with some elementary properties of µf :

1. If x0 ∈ S(t0), with f+(x0) < t0, then

∀t ∈ [f+(x0), t0], µf (t) = µf (t0). (13)

2. So that the following inclusion holds

∂d(x, S) ⊂ ∂F (µf ◦ f)(x) ∀x ∈ S(t), ∀t ≥ 0. (14)

3. Consequently

d(0, ∂F (µf ◦ f)(x)) ≤ 1 ∀x ∈ S(t), ∀t > 0. (15)

Now, we may state the desired result on the differentiability of µf .

Proposition 3.7 Let f : X 7→ R be a convex and inf-compact function. Then the following assertions hold true:

1. For all t0 > 0, x0 ∈ S(t0) and x∗ ∈ ∂dS(x0) we have

⟨x∗, h⟩ ≤ µ−f (t0; f
′(x0, h)) ∀h ∈ X. (16)
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2. When X is a Hilbert space then for all t0 > 0 and x0 ∈ S(t0) we have ∂dS(x0) = {∇dS(x0)} and

1 ≤ µ−f (t0; f
′(x0,∇dS(x0))), (17)

which shows that f ′(x0,∇dS(x0)) > 0. If moreover, f is differentiable on S(t0), the following relations hold

⟨∇f(x0),∇dS(x0)⟩ > 0 and
1

⟨∇f(x0),∇dS(x0)⟩
,
⟨∇f(x0),∇dS(x0)⟩

∥∇f(x0)∥2
∈ ∂Fµf (t0). (18)

Consequently, if ∂F (−µf )(t0) ̸= ∅, which is the case whenever µf is concave or more generally when −µf is Clarke
regular at t0, then µf is differentiable at t0.

Proof. 1. Let t0 > 0, x0 ∈ S(t0), h ∈ X and sn ↓ 0 be such that µ−f (t0, f
′(x0, h)) = lim

n→+∞

µf (t0 + snf
′(x0, h))− µf (t0)

sn
.

Note that as f is convex, f ′(x0, h) = lim
n→+∞

f(x0 + snh)− f(x0)

sn
. Set αn = f(x0+snh)−f(x0)

sn
. Since µf is locally Lipschitz, it

follows that µ−f (t0, f
′(x0, h)) = lim

n→+∞

µf (t0 + snαn)− µf (t0)

sn
= lim

n→+∞

µf (f(x0 + snh)− µf (t0)

sn
. Thus for all x∗ ∈ ∂dS(x0)

we have

µ−f (t0, f
′(x0, h)) = lim

n→+∞

µf (f(x0 + snh)− µf (t0)

sn

≥ lim
n→+∞

dS(x0 + snh)− dS(x0)

sn
≥ ⟨x∗, h⟩.

2. As x0 /∈ S, ∥∇dS(x0)∥ = 1 and 1 ≤ µ−f (t0, f
′(x0,∇dS(x0))) (take h = ∇dS(x0) in 1.), which shows, by the monotonicity

of µf , that f ′(x0,∇dS(x0)) > 0.
Taking into account the inclusion in 1., we can easily see ([36]) that if ∂F (−µf )(t0) ̸= ∅ then µf is differentiable at t0.

⊠
Now, may state subdifferential estimates of −µf .

Theorem 3.8 Suppose that f : X → R is convex continuous and inf-compact, where X is a real Banach space, and let
t0 > 0. Then

1.

∂(−µf )(t0) ⊂
⋃

x0∈S(t0)

{−t∗ ∈ R : t∗ > 0, ∂dS(x0) ⊂ t∗∂f(x0)}. (19)

2.

∂F (−µf )(t0) ⊂
⋂

x0∈S(t0)

{−t∗ ∈ R : t∗ > 0, ∂dS(x) ⊂ t∗∂f(x0)}. (20)

Hence if ∂F (−µf )(t0) ̸= ∅ and f is differentiable on S(t0) then µf is differentiable at t0 and for all x0 ∈ S(t0),
µ′f (t0) =

1
∥∇f(x0)∥ . If moreover, f is of class C1,0, then so is µf on ]0,+∞[ and

lim
t→0+

µ′f (t) = +∞.
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3. When X is a Hilbert space, the inclusion in relation (19) can be written as

∂(−µf )(t0) ⊂
⋃

x0∈S(t0)

{−t∗ ∈ R : t∗ > 0, ∇dS(x0) ∈ t∗∂f(x0)}. (21)

If moreover f is differentiable on S(t0), then⋃
x0∈S(t0)

{−t∗ ∈ R : t∗ > 0, ∇dS(x0) = t∗∇f(x0)} ⊂ −∂Fµf (t0) (22)

and consequently

∂Cµf (t0) = ∂Fµf (t0) = ∂µf (t0), (23)

that is, µf is Clarke regular at t0.

4. For all t ≥ 0,

S(t) = M(t) := {x ∈ X : µf (t) = dS(x), f(x) = t}. (24)

Proof. Let t0 > 0. Since f is inf-compact, then there exists kf > and γ > 0 such that

|f(x)− f(x′)| ≤ kf∥x− x′∥ ∀x, x′ ∈ S(t0) + γB.

1. Set w = −µf . By Proposition 3.6, S ∩ S(t0) = ∅ and hence for all x0 ∈ S(t0), 0 /∈ ∂f(x0). Theorem 7.2 in [34] ensures the
following inclusion

∂w(t0) ⊂
⋃

x0∈S(t0)

{−t∗ ∈ R : t∗ ≥ 0, 0 ∈ t∗∂f(x0)− ∂d(x0, S)}.

If 0 ∈ ∂w(t0), then we get 0 ∈ ∂d(x0, S), which contradicts the fact that x0 ∈ S(t0), beacause by Proposition 3.6, S∩S(t0) = ∅.
Hence,

∂w(t0) ⊂
⋃

x0∈S(t0)

{−t∗ ∈ R : t∗ > 0, 0 ∈ t∗∂f(x0)− ∂d(x0, S)}.

2. Let t∗ ∈ ∂F (−µf )(t0). Then for all ε > 0 there exists γ > δ > 0 such that

−µf (t) + µf (t0)− t∗(t− t0) + ε|t− t0| ≥ 0 ∀t ∈ [t0 − δ, t0 + δ].

So that for all x0 ∈ S(t0), we have

−d(x, S) + d(x0, S)− t∗(f(x)− f(x0)) + εkf∥x− x0∥ ≥ 0 ∀x ∈ B(x0,
δ

kf
).

Thus for all x∗ ∈ ∂dS(x0),

⟨x∗, x0 − x⟩ − t∗(f(x)− f(x0)) + εkf∥x− x0∥ ≥ 0 ∀x ∈ B(x0,
δ

kf
)

or equivalently, because t∗ < 0 and f and S are convex,

⟨x∗, x0 − x⟩ − t∗(f(x)− f(x0)) + εkf∥x− x0∥ ≥ 0 ∀x ∈ X.

As ε is arbitrary
⟨x∗, x0 − x⟩ − t∗(f(x)− f(x0)) ≥ 0 ∀x ∈ X

12



or equivalently x∗ ∈ (−t∗)∂f(x0). So that

∂F (−µf )(t0) ⊂
⋂

x0∈S(t0)

{−t∗ ∈ R : t∗ > 0, ∂d(x0, S) ⊂ t∗∂f(x0)}.

Now, suppose that ∂F (−µf )(t0) ̸= ∅ and f is differentiable on S(t0). Proposition 3.7 ensures that µf is differentiable at t0
and since f is differentiable on S(t0), then for all −t∗ ∈ ∂F (−µf )(t0) and x0 ∈ S(t0), each x∗ ∈ ∂dS(x0) is equal to t∗∇f(x0).
This means that ∂dS(x0) is a singleton {∇dS(x0)}. Since x0 /∈ S, ∥∇dS(x0)∥ = 1. Thus t∗ = 1

∥∇f(x0)∥ and this holds for all
x0 ∈ S(t0). This asserts that µ′f (t0) =

1
∥∇f(x0)∥ for all x0 ∈ S(t0).

3. Let x0 ∈ S(t0) and t∗ > 0 be such that ∇dS(x0) = t∗∇f(x0). Let τ ∈ R and h = τ∇dS(x0). Proposition 3.7 ensures that

⟨∇dS(x0), τ∇dS(x0)⟩ ≤ µ−f (t0, τ⟨∇f(x0),∇dS(x0)⟩).

Note that x0 /∈ S and ∥∇dS(x0)∥ = 1. Since ∇dS(x0) = t∗∇f(x0), we obtain

t∗τ ≤ µ−f (t0, τ) ∀τ ∈ R

or equivalently t∗ ∈ ∂−µf (t0) = ∂Fµf (t0). As −∂Cµf (t0) = ∂C(−µf )(t0) = co∂(−µf )(t0) ⊂ −∂Fµf (t0) ⊂ −∂µf (t0) and
∂Fµf (t0) is convex, we obtain the desired equality.

4. The first items ensures that µf is increasing. Taking into account relation (13), we deduce that S(t) ⊂ M(t).

⊠

Theorem 3.9 Let f be as in Theorem 3.8. Then

1. For all r > 0 there exists γ > 0 such that

∀t ∈]0, r], ∂cµf (t) ⊂ [γ,
µf (t)

t
[.

Consequently,
µf (t)− µf (t̄)

t− t̄
≥ γ, ∀t, t̄ ∈ [0, r] with t ̸= t̄

and

∀t ∈]0, r], γt ≤ µ−f (t, t) ≤ µ0
f (t, t) ≤ µf (t). (25)

2. For all r > 0 and α ∈]0, r] there exists β ≥ 1 such that

∀t ∈ [α, r], µf (t) ≤ βµ−f (t, t). (26)

3. For all r > 0 and α ∈]0, r] there exists c > 0 such that

d(0, ∂(µf ◦ f)(x)) ≥ c ∀x ∈ [α ≤ f ≤ r]

where [α ≤ f ≤ r] = {x ∈ X : α ≤ f(x) ≤ r}.

4. lim
t→0+

µf (t)

t
= lim sup

t→0+
µ−f (t, 1) = lim sup

t→0+
µ0
f (t, 1).
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Proof. 1. Suppose that this item is not true. Then there exists r > 0 such that for n ∈ N∗ there exists tn ∈]0, r] and
−t∗n ∈ ∂(−µf )(tn) such that t∗n → 0+. Theorem 3.8 asserts the existence of xn ∈ M(tn), x∗n ∈ ∂d(xn, S), with ∥x∗n∥ = 1
(because xn /∈ S), and u∗n ∈ ∂f(xn) such that

x∗n = t∗nu
∗
n. (27)

Now, since f is inf-compact, the sequence (xn) lives in some compact of X and, extracting subsequence if necessary, we may
assume that xn → x̄. As f is locally Lipschitz at x̄, then the sequence (u∗n) is necessarily bounded, which contradicts relation
(27). Indeed, by taking the norm on both sides of (27), one gets 1 = t∗n∥u∗n∥ and since t∗n → 0+, then ∥u∗n∥ → +∞.
Let t, t0 ∈ (0, r], with t < t̄. By the Lebourg mean value theorem, there exists t′ ∈ (t, t̄) and t∗ ∈ ∂Cµf (t

′) such that
µf (t)− µf (t̄) = t∗(t− t̄). Since t∗ ≥ γ, then µf (t)−µf (t̄)

t−t̄ ≥ γ. As t, t̄ play a symetric role, we obtain the desired inequality.

2. Suppose that our assertion is not true. Then there exist r > 0 and α ∈]0, r] and a sequence (tn) ⊂ [α, r]

∀n ∈ N µf (tn) > nµ−f (tn, tn)

and relation (25) ensures

∀n ∈ N µf (tn) > nγtn.

Extracting subsequence if necessary, we may assume that tn → t̄ ∈ [α, r]. So that

lim
n→+∞

µf (tn)

tn
=

µf (t̄)

t̄
= +∞

and this contradiction completes the proof of this item.

3. As in the first item, we will argue by contradiction. Suppose there exist r > 0 and α ∈]0, r[ and sequences (xn) ⊂ [α ≤
f < r] and (x∗n) such that

x∗n ∈ ∂(µf ◦ f)(xn) and ∥x∗n∥ → 0.

Using subdifferential calculus rules, on gets t∗n ∈ ∂µf (f(xn)) and u∗n ∈ ∂f(xn) such that x∗n = t∗nu
∗
n. Item 1 ensures the

existence of β > 0 such that t∗n ≥ β, for all n ∈ N. Combining this with the fact that ∥x∗n∥ → 0, one obtains that ∥u∗n∥ → 0.
Now, by the inf-compactness of f , one may assume that xn → x̄. So that 0 ∈ ∂f(x̄) and consequently x̄ ∈ S. This contradicts
the fact that (xn) ⊂ [α ≤ f < r].

4. Note that since the function t 7→ µf (t)
t is nonincreasing, the limit lim

t→0+

µf (t)

t
exists in R ∪ {+∞}. Relation (25) ensures

the inequality lim
t→0+

µf (t)

t
≥ lim sup

t→0+
µ0
f (t, 1) ≥ lim sup

t→0+
µ−f (t, 1). Let us establish the reverse inequality. Let t > 0. Since µf is

continuous on [0, t], Diewert mean value theorem [27], ensures the existence of θ ∈ (0, 1) such that

µf (t)

t
≤ µ−f (θt, 1).

So that lim
t→0+

µf (t)

t
≤ lim sup

t→0+
µ−f (t, 1), which completes the proof of the theorem.

⊠
It follows from Theorems 3.8 and 3.9 that µf is locally Lipchitzian and increasing on (0, t̄) and so it is bijective from [0,+∞[

onto µf

(
[0,+∞[

)
. We can ask how to compute its inverse. In [43], Penot introduced the function φf : [0,+∞[→ [0,+∞] by

φf (t) = inf{f+(x) : dS(x) ≥ t}.
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He shows that µf and φf are quasi-inverses in the following sense: for any r, s ∈ [0,+∞[ one has r ≤ µf (s), whenever
φf (r) < s, and s ≤ φf (r), whenever µf (s) < r. The aim of the following result is to show that φf is exactly the inverse of
µf , that is,

µf ◦ φf (τ) = τ ∀τ ∈ µf ([0,+∞[) and φf ◦ µf (t) = t, ∀t ∈ [0,+∞[.

Theorem 3.10 For each τ ∈ µf [0,+∞[), we set D(τ) = argmin{f+(x) : dS(x) ≥ τ}. Then under the assumption of
Theorem 3.9, we have

1. For all t ∈ [0,+∞[, D(t) ̸= ∅ and the function t 7→ φf (t)
t is nondecreasing on ]0,+∞[.

2.

φf ◦ µf (t) = t ∀t ∈ [0,+∞[ and µf ◦ φf (τ) = τ ∀τ ∈ µf ([0,+∞[) (28)

and hence φf is increasing on µf ([0,+∞[).

3. For all τ ∈ µf ([0,+∞[)

φf (τ) = inf{f+(x) : dS(x) = τ}, (29)

and hence D(τ) = {u ∈ X : φf (τ) = f+(u), dS(u) = τ}.

4. φf is locally Lipschitzian on µf (]0,+∞[).

5. For all τ0 ∈ µf (]0,+∞[)

∂φf (τ) ⊂
⋃

x0∈D(τ0)

{τ∗ ∈ R : τ∗ > 0, 0 ∈ ∂f(x0)− τ∗∂dS(x0)}. (30)

6. For all τ ∈ µf (]0,+∞[)

∂Fφf (τ) ⊂
⋂

x0∈D(τ0)

{τ∗ ∈ R : τ∗ > 0, 0 ∈ ∂f(x0)− τ∗∂dS(x0)}. (31)

Moreover if ∂Fφf (τ) ̸= ∅ and f is differentiable on D(τ), then φf is differentiable at τ and φ′f (τ) = ∥∇f(x0)∥ for all
x0 ∈ D(τ) and φf is of class C1,0 whenever f is. Hence φ′f (0) = 0.

Proof. 1. By definition, φf is nondecreasing. Let τ ∈ µf ([0,+∞[). Since f is inf-compact, the set D(τ) ̸= ∅. The mono-
tinicity of t → φf (t)

t follows from Proposition 5.1 in [26].

2. By the definitions of µf and φf , we have

µf ◦ φf (τ) ≥ τ ∀τ ∈ µf ([0,+∞[), and φf ◦ µf (t) ≤ t∀t ∈ [0,+∞[

or equivalently
µf ◦ φf (µf (t)) ≥ µf (t) and φf ◦ µf (t) ≤ t∀t ∈ [0,+∞[.

Suppose that φf ◦µf (t) < t for some t ∈ [0,+∞[. As µf is increasing, µf ◦φf ◦µf (t) < µf (t), which contradicts µf ◦φf (τ) ≥ τ
for τ = µf (t). We thus obtain the equality

φf ◦ µf (t) = t.

The strict monotony of φf follows from that of µf .

3. This follows from the fact that for τ ∈ µf (]0,+∞[) and u ∈ D(τ) such that

φf (τ) = f+(u)
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with dS(u) > τ , then for all s ∈ [τ, dS(u)], it hlods φf (s) = φf (dS(u)) = φf (τ). This contradicts the strict monotony of φf .
The proof of the other items is similar to those of Theorems 3.8 and 3.9.

⊠

3.3 Kurdyka-Lojasiewicz-Hoffman constant
The aim of this section is to characterize the so called Kurdyka-Lojasiewicz-Hoffman constant in the spirit of the Hoffman
one. There are three types of constants :

• The global Kurdyka-Lojasiewicz-Hoffman constant of the pair (f, µf ) is defined by

inf
x∈[f>0]

d(0, ∂(µf ◦ f)(x)). (32)

• The bounded Kurdyka-Lojasiewicz-Hoffman constant of the pair (f, µf ) is defined by

inf
x∈[0<f<r]

d(0, ∂(µf ◦ f)(x)), for some r > 0. (33)

• The local Kurdyka-Lojasiewicz-Hoffman constant of the pair (f, µf ) at x̄ is defined by

inf
x∈[f>0]∩B(x̄,δ)

d(0, ∂(µf ◦ f)(x)), for some δ > 0. (34)

We introduce the following classes of functions which correspond to the two first inequalities: a function h :]0, r[×R+ 7→ R+

belong to the class Kµf
r if it satisfies the following conditions:

1. for all t ∈]0, r[, the function s 7→ h(t, s) is positively homogeneous;

2. for all t ∈]0, r[, µf (t) ≤ h(t, t).

For r = +∞, we denote Kµf
r by Kµf

∞ . As we will see in the last section, that it is more useful to compute h(·, ·) instead of µf .
First note that, based on Theorem 3.9, we may assert that when, we are far from the origin, then such function satisfying
the last two items exists and is equal to βµ−f (·, ·) for some β ≥ 1.
In what follows, we will give a large class of functions f showing the nonemptiness of Kµf

r in finite dimension. This class is
the so-called subanalytic functions (see references [30], [32], [47], [13] for more details).

Proposition 3.11 Suppose that f is a subanalytic function which is convex and inf-compact. Then for all r > 0, the function
µf is subanalytic on [0, r] and there exist p ∈ N∗ and β > 0 such that

µf (t) ≤ βt
1
p , ∀t ∈ [0, r].

So that the function h :]0,+∞[×R+ → R+ defined by

h(t, s) = βst
1−p
p

belong to Kµf
r .

Proof. By Proposition 1.3.7 in [47], the function µf is subanalytic. To conclude, it remains to use the Lojasiewic inequality
(see Theorem 6.4 in [13].

⊠
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Now, we will give an other class of problems showing the nonemptiness of Kµf
r in Banach spaces. Consider the minimization

problem

min
x∈C

g(Ax) + ⟨x∗, x⟩ (35)

where C is a closed convex and compact polyhedral subset of X, A : X 7→ Y is a linear continuous operator between two
Banach spaces X and Y with closed range, x∗ ∈ X∗ and g : Y 7→ R is strongly convex continuous function. The compactness
property of C and the local Lipschitzness of g imply immediately the following relation:

∃K > 0; sup
x∈C

sup
y∗∈∂g(Ax)

∥y∗∥ ≤ K. (36)

Using the strong convexity of g, one can easily show that the solution set S of the problem (35) is closed convex and compact
polyhedral. More precisely, there exists y ∈ Y and s ∈ R such that

S = {x ∈ C : Ax = y, ⟨x∗, x⟩ = s⟩}. (37)

The classical Hoffman error bound (see [33], [34] and references therein) ensures the existence of a constant a >, depending
only on A, x∗ and C, such that

d(x, S)2 ≤ a(∥Ax− y∥2 + (⟨x∗, x⟩ − s)2)∀x ∈ C. (38)

Combining the last three facts, we obtain the following proposition whose proof is similar to Lemma 14 in [48] where the
proof is established in finite dimension and g is differentiable.

Proposition 3.12 Let t̄ = supx∈Cg(Ax) + ⟨x∗, x⟩ and define f : X 7→ R ∪ {+∞} by

f(x) =

{
g(Ax)− g(Ax̄) + ⟨x∗, x− x̄⟩ if x ∈ C
+∞ otherwise,

where x̄ ∈ S. Then

• there exists α > 0 such that

µf (t) ≤ α
√
t ∀0 ≤ t ≤ t̄; (39)

• for all t ≥ t̄, µf (t) = µf (t̄).

Proof. Note that x̄ ∈ S IFF there exists y∗ ∈ ∂g(Ax̄) such that

⟨A∗y∗ + x∗, x− x̄⟩ ≥ 0∀x ∈ C (40)

and hence, by (36),

⟨x∗, x̄− x⟩ ≤ K∥Ax−Ax̄∥ ∀x ∈ C. (41)

Since g is strongly convex, there exists ρ > 0 such that

g(y1) ≥ g(y2) + ⟨z∗, y1 − y2⟩+ ρ∥y1 − y2∥2, ∀y1, y2 ∈ Y, ∀z∗ ∈ ∂g(y2). (42)

So that for all x ∈ C

ρ∥Ax−Ax̄∥2 ≤ ⟨A∗y∗ + x∗, x− x̄⟩+ ρ∥Ax−Ax̄∥2 ( because of (40))

= ⟨y∗, Ax−Ax̄⟩+ ⟨x∗, x− x̄⟩+ ρ∥Ax−Ax̄∥2

≤ g(Ax)− g(Ax̄) + ⟨x∗, x− x̄⟩ ( because of (42))
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As ∂(g ◦ A + ⟨x∗, ·⟩)(x̄) = A∗∂g(Ax̄) + x∗, then x∗ + A∗y∗ ∈ ∂(g ◦ A + ⟨x∗, ·⟩)(x̄), where y∗ is given by (40). Thus, for all
x ∈ C, we obtain

⟨x∗, x− x̄⟩ ≤ g(Ax)− g(Ax̄) + ⟨x∗, x− x̄⟩+ ⟨y∗, Ax̄−Ax⟩
≤ g(Ax)− g(Ax̄) + ⟨x∗, x− x̄⟩+K∥Ax̄−Ax∥ (because of (36)).

As for all x ∈ C, g(Ax)− g(Ax̄) + ⟨x∗, x− x̄⟩ ≥ 0, then

(⟨x∗, x− x̄⟩)2 ≤ (g(Ax)− g(Ax̄) + ⟨x∗, x− x̄⟩+K∥Ax̄−Ax∥)2

≤ (g(Ax)− g(Ax̄) + ⟨x∗, x− x̄⟩)2 +K2∥Ax̄−Ax∥)2 + 2K(g(Ax)− g(Ax̄) + ⟨x∗, x− x̄⟩)∥Ax̄−Ax∥
.

Now, since C is compact, there exists γ1 such that max(supx∈C ∥Ax̄ − Ax∥, supx∈C g(Ax) − g(Ax̄) + ⟨x∗, x − x̄⟩) ≤ γ1. So
that for all x ∈ C

(⟨x∗, x− x̄⟩)2 ≤ γ1(1 + 2K)(g(Ax)− g(Ax̄) + ⟨x∗, x− x̄⟩) +K2∥Ax̄−Ax∥)2

≤ [γ1(1 + 2K) +
K2

ρ
](g(Ax)− g(Ax̄) + ⟨x∗, x− x̄⟩).

By (38), we obtain for all x ∈ C

d(x, S)2 ≤ a(∥Ax−Ax̄∥2 + (⟨x∗, x− x̄⟩)2)

≤ a(
1

ρ
+ [γ1(1 + 2K) +

K2

ρ
])(g(Ax)− g(Ax̄) + ⟨x∗, x− x̄⟩).

Put α =
√
a( 1ρ + [γ1(1 + 2K) + K2

ρ ]). Then

∀t ∈ [0, t̄], µf (t) ≤ α
√
t.

⊠
As a particular case of the problem (35), we consider the following generalized Lasso problem

min
x∈Rn

g(Ax) + J(x) (43)

where g : Rn 7→ R is a strongly convex function and A is a real m × n matrix and J : Rn 7→ R+ is a convex continuous
function with compact and polyhedral sublevel sets. We will write this problem in the form of (35). It is obvious that
γ := infx∈Rn g(Ax) ∈ R and the set S := argmin{g(A·) + J(·)} is not empty. Let R > g(0) + J(0)− γ. Then ([18])

min
x∈Rn

g(Ax) + J(x) = min{g(Ax) + J(x) : J(x) ≤ R}

= min
(x,y)∈Rn×R

{g(Ax) + y : J(x)− y ≤ 0, y ≤ R}

= min
(x,y)∈C

{g(Ã(x, y)) + ⟨x∗, (x, y)⟩},

where Ã =

(
A 0
0 0

)
is a (m + 1 × (n + 1)-matrix, x∗ = (0, 1) ∈ Rn × R and C = {(x, y) ∈ Rn × R : J(x) − y ≤ 0, y ≤ R}

which is convex compact and polyhedral set. This equivalent formulation allows us to say that the solution set S of the
problem (43) is a convex compact and polyhedral set. More precisely, there exist y ∈ Rm and s ∈ R such that

S = {x ∈ Rn : J(x) ≤ R, Ax = y, J(x) = s}.
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As a classical examples of these problems, we can also quote the following well known situation of the LASSO and SLOPE
problems

g(z) =
1

2
∥z − b∥22, J(x) = λ∥x∥1, (44)

or more generally (see [14])

g(z) =
1

2
∥z − b∥22, J(x) =

n∑
i

λi|x|↓i, (45)

where λ1 > 0, λ1 ≥ · · ·λn ≥ 0 and |x|↓1 ≥ · · · ≥ |x|↓n are the sorted components of x with respect to the absolute value.

3.3.1 Global characterizations

In this section we compute the Kurdyka-Lojasiewicz-Hoffman constant in terms of an abstract subdifferential. This later one
satisfies the following axioms: For any lower semicontinuous function f : X → R ∪ {∞}, and any locally Lipschitz function
g : X → R ∪ {∞} and any x ∈ X:

1. ∂f(x) ⊂ X∗ and ∂f(x) = ∅ if f(x) = ∞;

2. ∂g(x) coincides with the subdifferential in the sense of convex analysis whenever g is convex, that is

∂g(x) = {x∗ ∈ X∗ : ⟨x∗, u− x⟩ ≤ g(u)− g(x), ∀u ∈ X};

3. 0 ∈ ∂f(x) whenever x is a local minimum for f ;

4. ∂f(x) = ∂w(x) whenever f and w coincide around x;

5. ∂(f + g)(x) ⊂ ∂f(x) + ∂g(x).

Now, we may state our main theorem in this section on global characterization of the Kurdyka-Lojasiewicz-Hoffman constant.

Theorem 3.13 Let f : X → R ∪ {∞} be a lower semi-continuous function and let S be the solution set of the following
inequality system

f(x) ≤ 0. (46)

Suppose that S is nonempty. Then

inf
x/∈S

d(0, ∂f(x)) ≤ inf
x/∈S

f(x)

d(x, S)
. (47)

Moreover, if f is convex and h ∈ Kµf
∞ then

inf
x/∈S

h(f(x), d(0, ∂f(x))) ≥ inf
x/∈S

(µf ◦ f)(x)
d(x, S)

. (48)

Proof. The proof of the first part follows that of [9] or [34]. We will give it for completeness. Suppose that our relation
(61) does not hold, that is, there exists α > 0 such that

inf
x/∈S

d(0, ∂f(x)) > α > inf
x/∈S

f(x)

d(x, S)
. (49)
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Then there exists x′ /∈ S, such that

αd(x′, S) > f(x′). (50)

Set ε = f(x′) and λ = ( 1
α + γ)f(x′) where γ > 0 is such that λ < d(x′, S). Then

f+(x
′) ≤ inf

x∈X
f+(x) + ε.

By the lower semi-continuity of f , the Ekeland’s variational principle ensures the existence of x ∈ X satisfying

∥x− x′∥ ≤ λ, f(x) ≤ f(x′) (51)

f+(x) ≤ f+(u) +
ε

λ
∥u− x∥ ∀u ∈ X. (52)

Note that, by (50)-(51), x /∈ S. Since f is lower semicontinous it coincides with f+ in a neighbourhood of x and hence, by
(53) and properties1.− 5., we get

0 ∈ ∂f(x) +
1

( 1
α + γ)

BX∗

and this contradicts relation (49).
Suppose for the second part that there exists α > 0 such that

inf
x/∈S

h(f(x), d(0, ∂f(x))) < α < inf
x/∈S

(µf ◦ f)(x)
d(x, S)

. (53)

There exists u /∈ S and u∗ ∈ ∂f(u) such that

h(f(u), ∥u∗∥) < α < inf
x/∈S

(µf ◦ f)(x)
d(x, S)

(54)

and hence

αd(u, S) < (µf ◦ f)(u). (55)

As u /∈ S, Lemma 2.1 in [11] ensures that for all ε > 0 there exist uε ∈ S, x∗ε ∈ X∗ and b∗ε ∈ B∗ such that

(a) ∥uε − u∥ ≤ d(u, S) + ε2,

(b) x∗ε + εb∗ε ∈ (1 + ε)∂d(uε, S),

(c) ⟨x∗ε, u− uε⟩ = ∥uε − u∥.

By relation (55) and (b), we get

⟨αx∗ε + εb∗ε
1 + ε

, u− uε⟩ ≤ αd(u, S) ≤ (µf ◦ f)(u). (56)

Since u∗ ∈ ∂f(u) and h ∈ Kµf
∞ , we get

f(u) ≤ ⟨u∗, u− uε⟩

and
µf (f(u)) ≤ h(f(u), f(u)) ≤ h(f(u), ⟨u∗, u− uε⟩).

20



Combining relation (56) with the last one, we get

⟨αx∗ε + εb∗ε
1 + ε

, u− uε⟩ ≤ h(f(u), ⟨u∗, u− uε⟩)

≤ h(f(u), ∥u∗∥ · ∥u− uε∥).

Now, by using assertion (c), we obtain

α
(1− ε)

1 + ε
∥u− uε∥ ≤ ⟨αx∗ε + εb∗ε

1 + ε
, u− uε⟩

≤ h(f(u), ∥u∗∥ · ∥u− uε∥).

Thus
α
(1− ε)

1 + ε
≤ h(f(u), ∥u∗∥)

and as ε is arbitrary, it follows that α ≤ h(f(u), ∥u∗∥) and this contradicts relation (54).
⊠

Similar argument leads to the following result.

Theorem 3.14 Let r > 0, f : X → R∪{∞} be a lower semicontinuous function and let S be the solution set of the following
inequality system

f(x) ≤ 0. (57)

Suppose that S is nonempty. Then

inf
x∈[0<f<r]

d(0, ∂f(x)) ≤ inf
x∈[0<f<r]

f(x)

d(x, S)
. (58)

Moreover, if f is convex and h ∈ Kµf
r then

inf
x∈[0<f<r]

h(f(x), d(0, ∂f(x))) ≥ inf
x∈[0<f<r]

(µf ◦ f)(x)
d(x, S)

. (59)

3.3.2 Local characterizations

Similar argument leads also to the following local result.

Theorem 3.15 Let r > 0, f : X → R ∪ {∞} be a lower semi-continuous function and let S be the solution set of the
following inequality system

f(x) ≤ 0. (60)

Let x̄ ∈ X be such that f(x̄) = 0. Then for all s > 0,

inf
x∈[0<f<r]∩B(x̄,2s)

d(0, ∂f(x)) ≤ inf
x∈[0<f<r]∩B(x̄,s)

f(x)

d(x, S)
. (61)

Moreover, if f is convex and h ∈ Kµf
r then

inf
x∈[0<f<r]∩B(x̄,s)

h(f(x), d(0, ∂f(x))) ≥ inf
x∈[0<f<r]∩B(x̄,s)

(µf ◦ f)(x)
d(x, S)

. (62)

Proof. We duplicate the proof of the previous theorem by taking the precaution of staying in the ball.

⊠
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4 Convergence analysis of an inexact descent methods for convex functions
In this section, we present a convergence analysis for an abstract inexact descent methods in convex minimization, and we
demonstrate how our desingularizing function µf may be used as a tool for obtaining results on the complexity of such
algorithms. Let H be (real) Hilbert space and f : H → R be a convex function, which is continuously differentiable. Consider
the following regularization of f which will play a central role in our study,

H : H×H → R, H(x, y) = f(x) +
1

2
∥x− y∥2, (63)

In order not to make the notation more cumbersome, we denote the norm of the product H×H in the same maner as that
of the space H itself, that is,

∥(x, y)∥ =
√

∥x∥2 + ∥y∥2 ∀x, y ∈ H.

In the following, consider sequences (xk)k∈N in H and (zk)k∈N := (uk, vk)k∈N in H × H, and (εk)k∈N be an 1−summable
sequence of non-negative real numbers. Further, fix c1, c2 ≥ 0 with c1+ c2 ̸= 0, and assume that there are sequences (ak)k∈N,
(bk)k∈N, and (ck)k∈N of non-negative real numbers such that all the previously mentioned sequences are linked together
through the following hypotheses:

(H1) For each k ∈ N∗, it holds
ak∥xk+1 − xk∥2 + bk∥xk − xk−1∥2 ≤ H(zk)−H(zk+1);

(H2) For each k ∈ N∗, one has
ck∥∇H(zk)∥ ≤ ∥xk+1 − xk∥+ ∥xk − xk−1∥+ εk;

(H3) For each k ∈ N∗, for every z = (x, x) ∈ H ×H, one has

∥zk − z∥ ≤ c1∥xk − x∥+ c2∥xk−1 − x∥;

(H4) It holds that
inf
k≥0

ckak =: α > 0, and inf
k≥0

ckbk =: β > 0.

In the smooth setting, these conditions can be seen as a further extension of the those proposed in [38], and also those used
in [41], for nondifferentiable case. Let us examine how our conditions (H1) − (H4) are connected to the abstract methods
developped in [38, 2, 41, 28].

• Our condition (H1) and (H2) encompass those in the paper [38] in which the authors took the sequences considered
are in fact constant, namely, bk = εk = 0, ak = a > 0, and ck = c > 0.

• In [2, 28], they considered zk = (xk, xk), where f(xk) = H(zk), and also with the parameters bk = 0, c1 =
√
2 and

c2 = 0. Meanwhile, the condition (H2) in [2, 28] has the form

ck∥∇H(zk)∥ ≤ ck∥xk+1 − xk∥+ dk;

where dk = 0 and ck = c > 0 in [2], and dk ≥ 0 in [28].

• The sequence that is being examined in [41] is zk = (xk, xk−1), making it a special case for our study if f is differentiable.

We also emphasize that in [2, 41], a continuity condition is introduced when the function is lower semicontinuous only.
However, the presence of such a condition is unnecessary in our case as the function is continuous.

Remark 4.1 One can observe that our conditions differ from that of [2, 28]. This distinction arises from their lack of
consideration for a two-step algorithm.
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By adopting this intuitive description of descent methods, our framework encompasses several inertial gradient algorithms,
such as the following examples:

Example 4.2 Polyak-like algorithm
Let f : H → R be a continuously differentiable convex function, whose gradient is Lipschitz continuous with constant Lf . For
all k > 0, we consider the following Polyak-like algorithm:

xk+1 = xk + γk (xk − xk−1)− s∇f(xk), where, s > 0, and γk ∈ (0, 1). (64)

In this case, one can take (zk)k∈N such that uk = xk and vk = xk +

√
δγk
s

(xk − xk−1) for all k ≥ 1, with δ > 0. Moreover,

we have for every k > 0, H(zk) = f(uk) +
δγk
2s

∥xk − xk−1∥2.

Proposition 4.3 Suppose that the real number δ > 1 and satisfies

inf
k>0

γk > 0, sup
k>0

γk <
2

1 + δ
and 0 < s <

2− (1 + δ) supk>0 γk
Lf

.

Then (H1)− (H4) are satisfied where for all k > 0 :

• ak =
1

2s
(2− sLf − γk − δγk+1) ;

• bk =
γk
2s

(δ − 1) ;

• ck =

[
max

(
2

s
,
(
√
γk)√
s

√(
2γk
s

+ 3δ

))]−1
and εk = 0;

• c1 =
√
(1 + 2(1 + supk>0 γk)

2) and c2 =

√
2δ supk>0 γk

s
.

Proof. Let k ∈ N, with k > 0. First of all, let us show that the hypothesis (H1) holds. Using Descent Lemma (see[46]), we
obtain

f(xk+1)− f(xk) ≤ ⟨∇f(xk), xk+1 − xk⟩+
Lf

2
∥xk+1 − xk∥2. (65)

Using relation (64), we get

f(xk+1)− f(xk) ≤
1

s
γk⟨xk − xk−1, xk+1 − xk⟩+

(
Lf

2
− 1

s

)
∥xk+1 − xk∥2.

Which leads to

H(zk+1)−H(zk) ≤ γk
s
⟨xk − xk−1, xk+1 − xk⟩+

(
Lf

2 − 1
s

)
∥xk+1 − xk∥2 +

δ

2s

(
γk+1∥xk+1 − xk∥2 − γk∥xk − xk−1∥2

)
.

≤ γk
2s

(1− δ) ∥xk − xk−1∥2 +
1

2s
(γk + sLf − 2 + δγk+1) ∥xk+1 − xk∥2.

Therefore, the condition (H1) is satisfied with bk =
γk
2s

(δ − 1) > 0 and

ak =
1

2s
(2− sLf − γk − δγk+1) >

1

2s

(
2− (1 + δ) sup

k>0
γk − sLf

)
> 0.
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Next, for the hypothesis (H2), it’s simple to confirm that for any x, y ∈ H, one can have

∇H(x, y) = (∇f(x) + (x− y) , y − x) . (66)

Equation (64) implies that

∇f(xk) =
1

s
[(xk − xk+1) + γk (xk − xk−1)] , (67)

and hence

∥∇H(zk)∥2 = ∥

(
∇f(xk) +

√
αγk
s

(xk − xk−1) ,

√
δγk
s

(xk − xk−1)

)
∥2

≤ ∥∇f(xk) +

√
δγk
s

(xk − xk−1) ∥2 +
δγk
s

∥xk − xk−1∥2

≤ 2∥∇f(xk)∥2 +
3δγk
s

∥xk − xk−1∥2

≤ 4
s2 ∥xk+1 − xk∥2 +

γk
s

(
2γk
s

+ 3δ

)
∥xk − xk−1∥2.

Thus

∥∇H(zk)∥ ≤ 2

s
∥(xk+1 − xk∥+

√
γk
s

√(
2γk
s

+ 3δ

)
∥xk − xk−1∥.

Then (H2) is fulfilled , with εk = 0 and ck =

[
max

(
2

s
,
(
√
γk)√
s

√(
2(γk)

s
+ 3δ

))]−1
.

To verify (H3), note that for every z = (x, x) ∈ H ×H, we have

∥zk − z∥2 ≤ ∥xk − x∥2 + ∥xk +

√
δγk
s

(xk − xk−1)− x∥2

= ∥xk − x∥2 + ∥(1 +
√

δγk
s

) (xk − x)−
√

δγk
s

(xk−1 − x) ∥2

≤
(
1 + 2(1 + γk)

2
)
∥xk − x∥2 + 2δγk

s
∥xk1

− x∥2.

(68)

Thus, the condition (H3) holds with c1 =
√
(1 + 2(1 + supk>0 γk)

2) and c2 =

√
2δ supk>0 γk

s
.

Finally, one can easily confirm that (H4) is true. Indeed, we have

ck >
s

2
> 0 and ak >

1

2s

(
2− (1 + δ) sup

k>0
γk − sLf

)
> 0, bk >

infk>0 γk
2s

(δ − 1) > 0.

Therefore,
inf
k≥0

ckak > 0, and inf
k≥0

ckbk > 0.

⊠

Example 4.4 Nesterov-like algorithm
Let f : H → R be a continuously differentiable convex function, whose gradient is Lipschitz continuous with constant Lf . For
all k > 0, we consider the following Nesterov-like algorithm:

xk+1 = xk + γk (xk − xk−1)− s∇f (xk + γk (xk − xk−1)) , where, s > 0, and γk ∈ (0, 1). (69)

It can be regarded as a general instance of the one in [38], where γk =
βk

k + α
for all k > 0. By selecting (zk)k∈N such that

uk = xk + γk (xk − xk−1) and vk = xk + (δ + 1) γk (xk − xk−1) for all k ≥ 1, with δ > 0, we shall see under what condition
on s, γk and δ > 0, the hypotheses (H1)− (H4) are fulfilled.
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Proposition 4.5 Suppose there exists δ > Lf , γ > 0 and 0 < γ̄ < 1 such that 0 < γ < γk < γ̄ for all k ≥ 0, and

1

δ
< s ≤ min

(
1

Lf
,

1− γ̄2

1 + δ2γ̄2

)
.

Then (H1)− (H4) are satisfied with the following sequences:

• ak =
1

2s

(
1− γ2

k+1 − s
(
1 + δ2γ2

k+1

))
;

• bk =
γ2
k

2s2
(
s+ s2δ2 − 1

)
;

• ck =
√
2s

γk(2+
√
3sδ)

and εk = 0;

• c1 =
√
2

√
(1 + γ̄)

2
+ (1 + (1 + δ)γ̄)

2 and c2 =
√
2γ̄
√
1 + (1 + δ)2.

Proof. Let (zk) be defined as above. Then, for every k > 0, we have H(zk) = f(uk) +
δ2γ2

k

2 ∥xk − xk−1∥2. First, let us
examine the necessary condition on the parameters that satisfy (H1). We have

H(zk+1)−H(zk) = f(uk+1)− f(uk) +
δ2γ2

k+1

2
∥xk+1 − xk∥2 −

δ2γ2
k

2
∥xk − xk−1∥2. (70)

By using Descent Lemma (see[46]), we get

f(uk+1)− f(uk) ≤⟨∇f(uk), uk+1 − uk⟩+
Lf

2
∥uk+1 − uk∥2. (71)

By equation (69), we have also

∇f(uk) =
1

s
[(xk − xk+1) + γk (xk − xk−1)] . (72)

By using the fact that uk = xk + γk (xk − xk−1) , the following inequalities hold:

⟨∇f(uk), uk+1 − uk⟩ =
1

s
⟨xk − xk+1, uk+1 − uk⟩+

γk
s
⟨xk − xk−1, uk+1 − uk⟩

=
1

s
⟨xk − xk+1, (1 + γk+1) (xk+1 − xk)− γk (xk − xk−1)⟩

+
γk
s
⟨xk − xk−1, (1 + γk+1) (xk+1 − xk)− γk (xk − xk−1)⟩

=
γk
s
⟨xk+1 − xk, xk − xk−1⟩+

γk (1 + γk+1)

s
⟨xk+1 − xk, xk − xk−1⟩ −

(1 + γk+1)

s
∥xk+1 − xk∥2

− γ2
k

s
∥xk − xk−1∥2.

Since
γk
s
⟨xk+1 − xk, xk − xk−1⟩ ≤

1

2
∥xk+1 − xk∥2 +

γ2
k

2s2
∥xk − xk−1∥2,

and
γk (1 + γk+1)

s
⟨xk+1 − xk, xk − xk−1⟩ =

(1 + γk+1)
2

2s
∥xk+1 − xk∥2 +

γ2
k

2s
∥xk − xk−1∥2 −

1

2s
∥uk+1 − uk∥2,

then the following equalities hold:
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⟨∇f(uk), uk+1 − uk⟩ =
1

2s

(
s+ (1 + γk+1)

2 − 2 (1 + γk+1)
)
∥xk+1 − xk∥2 +

γ2
k

2s2
(1− s) ∥xk − xk−1∥2 −

1

2s
∥uk+1 − uk∥2

=
1

2s

(
s+ γ2

k+1 − 1
)
∥xk+1 − xk∥2 +

γ2
k

2s2
(1− s) ∥xk − xk−1∥2 −

1

2s
∥uk+1 − uk∥2

(73)
Returning to the fundamental inequalities (70) and (71), we deduce that

f(uk+1)− f(uk) ≤
1

2s

(
s+ γ2

k+1 − 1
)
∥xk+1 − xk∥2 +

γ2
k

2s2
(1− s) ∥xk − xk−1∥2 +

1

2s
(sLf − 1) ∥uk+1 − uk∥2,

which leads to, because 0 < s ≤ 1

Lf
,

H(zk+1)−H(zk) ≤
1

2s

(
s
(
1 + δ2γ2

k+1

)
+ γ2

k+1 − 1
)
∥xk+1 − xk∥2 +

γ2
k

2s2
(
1− s− s2δ2

)
∥xk − xk−1∥2 +

1

2s
(sLf − 1) ∥uk+1 − uk∥2.

Hence

H(zk+1)−H(zk) ≤
1

2s

(
s
(
1 + δ2γ2

k+1

)
+ γ2

k+1 − 1
)

︸ ︷︷ ︸
=−ak

∥xk+1 − xk∥2 +
γ2
k

2s2
(
1− s− s2δ2

)
︸ ︷︷ ︸

=−bk

∥xk − xk−1∥2

Since
1

δ
< s ≤ 1− γ̄

1 + δ2γ̄
, then the sequences (ak)k∈N, (bk)k∈N are both positive, and condition (H1) is met.

Now, let’s check the fulfillment of (H2). Using equation (66) as in the previous example, we have for k > 0

∇H(uk, vk) = (∇f(uk) + (uk − vk) , vk − uk) ,

hence, for every k > 0
∥∇H(uk, vk)∥ ≤

√
∥∇f(uk) + (uk − vk) ∥2 + ∥vk − uk∥2

≤
√
2∥∇f(uk)∥2 + 2∥ (uk − vk) ∥2 + ∥vk − uk∥2

=

√
2∥∇f(uk)∥2 +

3δ2γ2
k

2
∥xk − xk−1∥2

≤
√
2∥∇f(uk)∥+

√
3δγk√
2

∥xk − xk−1∥.

(74)

Combining this last one with equation (72) yields

∥∇H(uk, vk)∥ ≤
√
2
s ∥ (xk − xk+1) + γk (xk − xk−1) ∥+

√
3δγk√
2

∥xk − xk−1∥

≤
√
2
s ∥xk − xk+1∥+ γk

(√
2

s
+

√
3δ√
2

)
∥xk − xk−1∥

≤ γk

(√
2

s
+

√
3δ√
2

)
[∥xk − xk+1∥+ ∥xk − xk−1∥] .

(75)

Therefore, by taking ck =
√
2s

γk(2+
√
3sδ)

and εk = 0 for all k > 0, our condition (H2) is satisfied. As in the previous example in

(68), we note that (H3) can be easily verified with c1 =
√
2

√
(1 + γ̄)

2
+ (1 + (1 + δ)γ̄)

2 and c2 =
√
2γ̄
√

1 + (1 + δ)2. Indeed,
for every z = (x, x) ∈ H ×H, and for all k > 0, we have

∥zk − z∥2 ≤ 2
(
(1 + γk)

2
+ (1 + (1 + δ)γ̄)

2
)
+ ∥xk − x∥2 + 2γ2

k

(
1 + (1 + δ)2

)
∥xk−1 − x∥2. (76)
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Finally, assuming that 0 < γ < γk < γ̄, and
1

δ
< s ≤ min

(
1

Lf
,

1− γ̄2

1 + δ2γ̄2

)
, it is straightforward to observe that (H4), is met

too.
⊠

Remark 4.6 It is worth mentioning that when it comes to choose the sequences (uk)k∈N, and (vk)k∈N there are several
possibilities. As mentioned in [38], the sequence (H(zk))k∈N can be considered as a discretization of the total energy E of the
continuous dynamical systems in [4, 22, 23, 28] which is given by

E : [t0,+∞) → R, E(t) = f(x(t)) +
1

2
∥ẋ(t)∥2.

In fact, the explicit discretization of E gives for k > 0

Ek = f(xk) +
1

2
∥xk − xk−1∥2 = H (xk, xk−1) ,

which is a special case of our approach , and it was the main focus in [41]. Indeed, the choice of (uk)k∈N and (vk)k∈N, depends
on the type of discretization of E(t). In matter of fact, the various choices of (uk)k∈N and (vk)k∈N arise from the fact that
one can take each one of them as linear combinations of xk and xk−1, which opens the door to numerous possibilities.

Remark 4.7 Suppose that f : H → R is a convex function, which is continuously differentiable and argminf ̸= ∅, then H
is also continuously differentiable and convex. Besides, we have

argminH = {(x, y) ∈ H ×H : ∇H(x, y) = (0, 0)} = {(x̄, x̄) ∈ H ×H : x̄ ∈ argmin(f)}.

4.1 Convergence results
In this subsection„ we use the desingularising function µH to ensure that the algorithm of interest has a finite length, which

means that
+∞∑
k=1

∥xk−xk−1∥ < +∞, and so the sequences produced by the procedure in (H1)−(H3) exhibit strong convergence

to minimum points of f.

Theorem 4.8 Assume that f : H → R is a convex and inf-compact function, which is continuously differentiable, argminf ̸=
∅ and minHf = 0. Let H be the convex function defined in (63) . Consider the sequences (xk)k∈N , (uk)k∈N , (vk)k∈N and let
(zk)k∈N = (uk, vk)k∈N be a sequence that satisfies the conditions (H1), (H2), (H3) and (H4). Suppose that infk>0 ck > 0, and

that there exists r > 0 such that µH is concave on ]0, r[ and H(u0, v0) < r. Then,
+∞∑
k=1

∥xk−xk−1∥ < +∞, and (xk) converges

strongly to some x̄ ∈ argminf. Furthermore, for all k ≥ 0,

∥xk − x̄∥ ≤ 3

min (α, β)
µH(H(zk)). (77)

Proof. Using (H1), one can deduce that the sequence (H(zk))k∈N , is nonincreasing, thus zk ∈ [0 ≤ H < r]. Suppose that
there exists k̄ > 0 such that H(zk̄) = 0, since (H(zk))k∈N , is nonincreasing, then

H(zk) ≤ H(zk̄) = 0, ∀k ≥ k̄,

hence
H(zk) = 0, ∀k ≥ k̄.

which leads, by (H1), to
∥xk+1 − xk∥ = 0, ∀k ≥ k̄,
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Consequently,
∑
k>1

∥xk − xk−1∥ < +∞, and the sequence (xk))k∈N , is constant for all k ≥ k̄.

Now, let us suppose that for k > 0, H(zk) > 0. which means that zk ∈ [0 < H < r]. Since f is differentiable, then by
Theorem 3.9, for all x /∈ ArgminH, µH is differentiable at H(x), besides

µ′H(H(x))∥∇H(x)∥ = 1. (78)

Using the concavity assumption on µH , together with the last equality, we get for k > 0

µH(H(zk))− µH(H(zk+1) ≥ µ′H(H(zk)) (H(zk)−H(zk+1))

=
(H(zk)−H(zk+1))

∥∇H(zk)∥
.

By combining this last inequality with (H1) and (H2), we obtain for k > 0

ckak∥xk+1 − xk∥2 + ckbk∥xk − xk−1∥2

∥xk+1 − xk∥+ ∥xk − xk−1∥+ εk
≤ [µH(H(zk))− µH(H(zk+1)] .

By condition (H4), infk≥0 ckak =: α > 0, and infk≥0 ckbk =: β > 0. By taking a = min (α, β) , we get

∥xk+1 − xk∥2 + ∥xk − xk−1∥2

∥xk+1 − xk∥+ ∥xk − xk−1∥+ εk
≤ 1

a
[µH(H(zk))− µH(H(zk+1)] .

Using the fact that
1

3
(∥xk+1 − xk∥+ ∥xk − xk−1∥+ εk)

2 ≤ ∥xk+1 − xk∥2 + ∥xk − xk−1∥2 + ε2k,

one can conclude that for k > 0

∥xk+1 − xk∥+ ∥xk − xk−1∥+ εk ≤ 3
a [µH(H(zk))− µH(H(zk+1)] +

3ε2k
∥xk+1 − xk∥+ ∥xk − xk−1∥+ εk

≤ 3
a [µH(H(zk))− µH(H(zk+1)] + 3εk.

(79)

Hence,

∥xk+1 − xk∥+ ∥xk − xk−1∥ ≤ 3

a
[µH(H(zk))− µH(H(zk+1)] + 2εk. (80)

Thus, for all n ∈ N∗
n∑

k=1

∥xk+1 − xk∥ ≤ 3

a
[µH(H(z1))− µH(H(zk+1)] + 2

n∑
k=1

εk.

Therefore, by letting n → +∞, and since
∑+∞

k=1 εk < +∞, we conclude that
+∞∑
k=1

∥xk+1 − xk∥ < +∞, and so, by the Cauchy

criterion, the sequence (xk)k∈N is convergent. Let x̄ ∈ H be the limit of (xk). Using condition (H3) we have for z = (x̄, x̄)

lim
k←+∞

∥zk − z∥ ≤
(
c1 lim

k←+∞
∥xk − x̄∥+ c2 lim

k←+∞
∥xk−1 − x̄∥

)
= 0.

Hence, (zk)k∈N converges to z = (x̄, x̄). Now, by conditions (H2), and (H4), we have infk>0 ck > 0, and so one can conclude
that

∥∇H(z)∥ = lim
k←+∞

∥∇H(zk)∥ = 0.

28



Therefore z = (x̄, x̄) ∈ argminH, thus x̄ ∈ argminf.
By summing in (79) from i = k to i = k +m, we obtain

k+m∑
i=k

∥xi+1 − xi∥ ≤ 3

a
(µH(H(zk))− µH(H(zk+m)) .

By letting m going to infinity, we get for k > 0

∥xk − x̄∥ ≤ 3

a
µH(H(zk)).

The proof is then complete.

⊠

4.2 Complexity for inertial gradient descent sequences and λ-one-dimensional worst-case
proximal sequence

This subsection delves into the complexities of inertial gradient descent algorithms and its relationship with λ-one-dimensional
worst-case proximal sequences as in [18]. Let us begin with a definition and some properties of proximal mapping.

Definition 4.9 [12] Let g : H → R be a lower semi-continuous convex function and let λ be a positive real. The proximal
mapping proxλg : H → H of g is defined by

proxλg(x) = argminu∈H

{
g(u) +

1

2λ
∥u− x∥2

}
.

Let r > 0 such that µH : [0, r] → R+ is concave. Set r0 = µ−1H (r) and consider the function (see Theorem 3.10) φH =(
µH |[0,r]

)−1
: [0, r0] →, [0, r] which is increasing and convex. Starting from α0 = µH(r0) > 0, and for λ > 0, and k ≥, 0 we

define the λ- one-dimensional worst-case proximal sequence inductively by

αk+1 = argmin

{
φH(u) +

1

2λ
(u− αk)

2 : u ≥ 0

}
(81)

According to Theorem 3.10, for t ∈ [0, r0] the function φH is exactly φH(t) = inf{H(x) : dSH
(x) = t}, is continuous

convex, and φH(0) = 0 then the sequence is well defined and positive for each for k ≥ 0. Moreover, for all k ≥ 0, the sequence
can be written as

αk+1 = proxλφH
(αk)

and so αk is decreasing and converges to zero. For the following Theorem, we will need to following Lemma :

Lemma 4.10 Let φ : [0, r̄] →, [0, r] be a continuous convex function, and λ1, λ2 > 0 such that λ1 > λ2, then, for t > 0 we
have

proxλ1φ(t) ≤ proxλ2φ(t).

Theorem 4.11 Assume that f : H → R is a convex and inf-compact function, which is continuously differentiable. Let H be
the convex function defined in (63) , and consider the sequences (xk)k∈N , (uk)k∈N , (vk)k∈N and (zk)k∈N = (uk, vk)k∈N satisfying
conditions (H1), (H2), (H3), and (H4). Furthermore, suppose that for all k > 0, εk = 0, and there exists r > 0, such that
µH is concave on ]0, r[, and H(u0, v0) := r0 < r. Then, (xk)k∈N

converges strongly to some x∗ ∈ argminf. Moreover, for all
k ≥ 0 we have ∑

k>0

ck∥∇H(zk)∥2 < +∞. (82)
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H(zk+1) ≤ φH(αk+1), (83)

∥xk+1 − x̄∥ ≤ 2c

min (α, β)
αk+1. (84)

Where αk is the λ-one-dimensional worst-case proximal sequence defined above in (81), with λ = min(α,β)
2c .

Proof. With some modifications, we will follow the same steps as in [18]. Let us set rk = H(zk) and z = (x̄, x̄). If there
exists k̄ ≥ 1 such that rk̄ = 0, then one can prove using condition (H1) that the sequence (xk)k≥k̄ is constant.
For all k ≥ 0, let rk̄ > 0. Set βk := µH(rk) = φ−1H (rk) and sk+1 = (βk − βk+1)µ

′
H (rk+1) , which means that

βk+1 = proxsk+1φH
(βk) . (85)

We need to prove that λ ≤ sk, where λ = min(α,β)
2c . In doing so, we use condition (H2) combined with (78), with εk = 0, we

get for all k ≥ 0,
ck = µ′H (rk) ck∥∇H(zk)∥ ≤ µ′H (rk) (∥xk+1 − xk∥+ ∥xk − xk−1∥) ,

consequently,
ck ≤ µ′H (rk) (∥xk+1 − xk∥+ ∥xk − xk−1∥) ,

hence
c2k ≤ 2µ′H (rk)

2 (∥xk+1 − xk∥2 + ∥xk − xk−1∥2
)
. (86)

By (H1), we have

min (α, β)
(
∥xk+1 − xk∥2 + ∥xk − xk−1∥2

)
≤ ckak∥xk+1 − xk∥2 + ckbk∥xk − xk−1∥2 ≤ ck (H(zk)−H(zk−1)) ,

which yields to
∥xk+1 − xk∥2 + ∥xk − xk−1∥2 ≤ ck

min (α, β)
(H(zk)−H(zk+1)) . (87)

Hence, by merging this inequality with equation (86), we conclude that

ck min (α, β)

2
≤ µ′H (rk)

2
(H(zk)−H(zk+1)) , (88)

and hence for all n ∈ N∗,
n∑

k=1

ck

µ′H (rk)
2 ≤ 2

min (α, β)

n∑
k=1

[µH(H(zk))− µH(H(zk+1)] ,

by letting n → +∞, we conclude that
∑
k>0

ck∥∇H(zk)∥2 =
∑
k>0

ck

µ′H
(
H(zk)

)2 < +∞.

On the other hand, taking into account that infk>0 ck = c > 0, we obtain from (88),

cmin (α, β)

2
≤ µ′H (rk)

2
(φH(βk)− φH(βk+1)) .

Using the convexity of φH , and the fact that µ′H (rk) =
1

φ′H(βk)
, we have for all k ≥ 0,

cmin (α, β)

2
≤ µ′H (rk)

2
(φH(βk)− φH(βk+1)) ,

≤ µ′H (rk) (βk − βk+1) .
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Since µH is concave , and rk is non increasing, then, by the monotonicity of µ
′

H , we have µ′H (rk)
2 ≤ µ′H (rk+1)

2
. Therefore

cmin (α, β)

2
≤ µ′H (rk+1) (βk − βk+1) . (89)

Hence
cmin (α, β)

2
≤ sk+1.

By Lemma 4.10, we conclude that proxsk+1
(βk) ≤ proxmin(α,β)

2c
(αk), that is

βk+1 ≤ αk+1,

which implies that for all k ≥ 0,
H(zk+1) ≤ φH(αk+1),

and so, by Theorem 4.8,

∥xk+1 − x̄∥ ≤ 3

min (α, β)
αk+1. (90)

Where αk is
cmin (α, β)

2
-one-dimensional worst-case proximal sequence defined above in (81). ⊠

In case when (εk)k∈N ̸= 0, one can get the same results (82),(83) and (84), but the sequence αk will be cmin(α,β)
2 -one-

dimensional worst-case proximal sequence defined by

αk+1 = proxλφH

(
αk +

(
φ

′

H(αk)
)−1

ε2k

)
, ∀k > 0.

Proposition 4.12 Let (εk)k∈N ̸= 0. Under assumptions of the last Theorem and if further,
∑
k>0

εk < +∞, then, we have for

k > 0, ∑
k>0

ck∥∇H(zk)∥2 < +∞ (91)

H(zk+1) ≤ φH(αk+1), (92)

∥xk+1 − x̄∥ ≤ 2c

min (α, β)
αk+1. (93)

where αk is
cmin (α, β)

2
-one-dimensional worst-case proximal sequence defined for all k ≥ 0, by

αk+1 = proxλφH

(
αk +

(
φ

′

H(αk)
)−1

ε2k

)
.

Proof. For all k ≥ 0, let rk̄ > 0. Set βk = φ−1H (rk), we take this time sk+1 =

(
βk +

(
φ

′

H(βk)
)−1

ε2k − βk+1

)
µ′H (rk+1) , this

means that
βk+1 = proxsk+1φH

(
βk +

(
φ

′

H(βk)
)−1

ε2k

)
. (94)

Following the same step of the proof of last theorem, the inequality (86) becomes,

c2k ≤ 3µ′H (rk)
2 (∥xk+1 − xk∥2 + ∥xk − xk−1∥2 + ε2k

)
. (95)
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Combining with inequality (87), we obtain

ck min (α, β)

3
≤ µ′H (rk)

2

(
H(zk)−H(zk+1) +

ε2k
min (α, β) ck

)
, (96)

Consequently, we obtain,
cmin (α, β)

3
≤ µ′H (rk)

2

(
H(zk)−H(zk+1) +

ε2k
min (α, β) c

)
.

Similar to inequality (89), one can conclude that

cmin (α, β)

2
≤ µ′H (rk+1)

(
βk + ε2kµ

′
H (rk)− βk+1

)
= µ′H (rk+1)

(
βk +

(
φ

′
(βk)

)−1
ε2k − βk+1

)
= sk+1.

As a result, as demonstrated previously in the proof of Theorem 4.11, the three inequalities are fulfilled where αk is cmin(α,β)
2 -

one-dimensional worst-case proximal sequence defined in (94).

Remark 4.13 The inequalities in the final proposition do not provide insight into the speed of convergence, except if the
convergence sequence αk converge to the unique minimum of φH .

4.3 Conclusion
In this paper, we have presented different properties of the desingularizing function µf , and showed that this function
may be neither concave nor convex even if f is convex differentiable. This, in turn, motivates further researchs aimed at
understanding conditions on f that lead to µf to be concave.
Section 3 mainly focuses on convex differentiable functions in order to exploit the advantageous qualities of µH when f is
differentiable, but it is crucial to point out that similar results can also be applied to convex nondifferentiable functions.
Thus, the pursuit of extending our method to nondifferentiable convex (nonconvex) functions has the potential to improve
theory as well as practical applications in optimisation and related domains.
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