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Abstract: Classical inference methods notoriously fail when applied to data-driven test
hypotheses or inference targets. Instead, dedicated methodologies are required to obtain
statistical guarantees for these selective inference problems. Selective inference is partic-
ularly relevant post-clustering, typically when testing a difference in mean between two
clusters. In this paper, we address convex clustering with ℓ1 penalization, by leveraging
related selective inference tools for regression, based on Gaussian vectors conditioned
to polyhedral sets. In the one-dimensional case, we prove a polyhedral characterization
of obtaining given clusters, than enables us to suggest a test procedure with statistical
guarantees. This characterization also allows us to provide a computationally efficient
regularization path algorithm. Then, we extend the above test procedure and guarantees
to multi-dimensional clustering with ℓ1 penalization, and also to more general multi-
dimensional clusterings that aggregate one-dimensional ones. With various numerical
experiments, we validate our statistical guarantees and we demonstrate the power of our
methods to detect differences in mean between clusters. Our methods are implemented
in the R package poclin.

MSC 2010 subject classifications: Primary: 62F03, 62H30.
Keywords and phrases: Selective inference, clustering, regularization path, hypothesis
test, truncated Gaussian.

1. Context and objectives

The problem of selective inference occurs when the same dataset is used (i) to detect a
statistical signal and (ii) to evaluate the strength of this signal [27]. In this article, we focus
on the problem of post-clustering testing, where step (i) corresponds to a clustering of the
input data, and step (ii) to an hypothesis test stemming from the clustering step. In such a
situation, the naive application of a test that does not account for the data-driven clustering
step is bound to violate type I error control [6].

This problem occurs in several applications. For instance, it is well-identified in the analysis
of single-cell RNA-seq data (see [12]) where the genes expression is measured for several cells:
we want to test if each gene has a differential expression between two cells clusters, which
are determined beforehand with a clustering procedure on the same expression matrix. This
practical question has motivated numerous recent statistical developments to address this
post-clustering testing problem.

A data splitting strategy has been studied by [36], but the assignment of labels (from the
clustering of the first sample) to the second sample before the test procedure is not taken into
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account in the correction. A conditional testing approach has been proposed by [6] for the
problem of the difference in mean between two clusters. The authors condition by the event
“the two compared clusters are obtained by the random clustering” and by an additional one,
allowing p-values to be exactly computed in the case of agglomerative hierarchical clustering.
This approach has been extended to the test of the difference in mean between two clusters
for each fixed variable [9]. A strategy to aggregate these p-values, and another approach using
tests of multimodality (without statistical guarantees) are also suggested in [9]. In the context
of single-cell data analysis, a count splitting approach under a Poisson assumption [19] and
a more flexible Negative Binomial assumption [20] have recently been proposed. In the same
line of work, a data thinning strategy is explored in [5, 18], that consists in generating two
(or more) independent random matrices that sum to the initial data matrix. This idea can
be applied to various distributions belonging to the exponential family.

The present contribution takes a different route from the above references and builds on [14],
where a Gaussian linear model is considered, and test procedures are provided, together with
associated guarantees post-selection of variables based on the Lasso. The nature of the Lasso
optimization problem is carefully analyzed in [14], and conditionally valid test procedures are
obtained, based on properties of Gaussian vectors conditioned to polyhedral sets.

We will extend this approach and its statistical guarantees to clustering procedures based
on solving a convex optimization problem with ℓ1 penalization.

Let us now describe the setting of the paper in more details. We observe, for n observations
of p variables (or features), a matrix Y = (Yij)i∈[|n|],j∈[|p|], where [|u|] := {1, . . . , u} for any
positive integer u. We assume that vec(Y ) is a np-dimensional Gaussian vector with mean
vector β and np× np covariance matrix Γ, where vec(.) denotes the vectorization by column
of a matrix. The vector β is unknown but the matrix Γ is assumed to be known (as in several
of the articles cited above, we will discuss this hypothesis in Section 4.3). Note that this
setup covers in particular the case considered e.g. in [6], where Y follows the matrix normal
distribution MN n×p(u,Σ,∆) where u is the n × p mean matrix, Σ is the n × n covariance
matrix among rows and ∆ is the p×p covariance matrix among variables. Indeed, this matrix
normal setup is equivalent (by definition) to that vec(Y ) is a np-dimensional Gaussian vector
with mean vector β := vec(u) and np× np covariance matrix Γ = ∆⊗Σ, where ⊗ denotes
the Kronecker product.

Under this framework, as announced, we will develop test procedures that extend the line
of analysis of [14] to a clustering counterpart of the Lasso in linear models. Thus we consider
the convex clustering problem [10, 15, 24] which consists in solving the following optimization
problem

B̂(Y ) ∈ argmin
B=(B⊤

1.,...,B
⊤
n.)

⊤∈Rn×p

1

2
||B − Y ||2F + λ

n∑
i,i′=1
i<i′

||Bi′. −Bi.||1 (1)

where || · ||F is the Frobenius norm and Bi. denotes the i-th row of B. The quantity λ > 0 is a
tuning parameter that we consider fixed here (as for the covariance matrix Γ, this assumption
is further discussed in Section 4.3). We can immediately notice that Problem (1) is separable,
and can be solved by addressing, for j ∈ [|p|], the one-dimensional problem

B̂.j(Y .j) ∈ argmin
B.j=(B1j ,...,Bnj)⊤∈Rn

1

2
||B.j − Y .j ||22 + λ

n∑
i,i′=1
i<i′

|Bi′j −Bij |, (2)
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where B.j is the j-th column of B. It is worth pointing out that if the norm ∥ · ∥1 is replaced
by another norm ∥ · ∥q, q ∈ (0,∞)\{1} in (1), then the optimization problem is no longer
separable. Hence, it becomes more challenging from a computational perspective. This topic
has been the object of a fair amount of recent work, see [4, 25, 31, 33, 37] and our discussions
at the end of Section 2.4 and in Section 4.4.

The solution B̂.j(Y .j) of (2) naturally provides a one-dimensional clustering C(j) of the
observations for the variable j, by affecting i and i′ to the same cluster if and only if
B̂ij = B̂i′j . Similarly, the solution of (1) provided by the matrix B̂ = (B̂.1, . . . , B̂.p) nat-
urally yields a multi-dimensional clustering of the observations, by affecting i and i′ to the
same cluster if and only if B̂i. = B̂i′.. In this article, we will consider more general multi-
dimensional clusterings that can be obtained by aggregation of the one-dimensional clusterings
C(1), . . . , C(p) (see Section 3.1). A clustering of the rows of Y in K clusters will be denoted by
C = C(Y ) = (C1(Y ), . . . , CK(Y )). Of course these clusters and the number of clusters K are
random (depending on Y ).

Our goal is to provide test procedures for a (data-dependent) hypothesis of the form

κ⊤β = 0,

where κ = κ(C(Y )) is a deterministic function of the clustering C(Y ) and where we recall
that β is the np× 1 mean vector of vec(Y ). We refer to Section 4.2 for further discussions on
the merits and interpretations of the tests considered in this paper.

Example 1 (feature-level two-group test). The following typical example of a choice of κ
enables to compare, for a variable j0 ∈ [|p|], the average signal difference between two clusters
Ck1 and Ck2, k1, k2 ∈ [|K|], k1 ̸= k2. We write, for i ∈ [|n|] and j ∈ [|p|],

κi+(j−1)n =

(
1i∈Ck1
|Ck1 |

−
1i∈Ck2
|Ck2 |

)
1j=j0 , (3)

where |A| denotes the cardinality of any finite set A. This yields

κ⊤β =
1

|Ck1 |
∑
i∈Ck1

βi+(j0−1)n −
1

|Ck2 |
∑
i∈Ck2

βi+(j0−1)n. (4)

In the particular matrix normal setup discussed above,

κ⊤β =
1

|Ck1 |
∑
i∈Ck1

ui,j0 −
1

|Ck2 |
∑
i∈Ck2

ui,j0 .

Rejecting this hypothesis corresponds to deciding that the clusters Ck1 and Ck2 have a discrim-
inative power for the variable j0, since their average signal indeed differs.

The separation of Problem (1) into p one-dimensional optimization problems in (2) will be
key for the testing procedures we develop in this paper. In Section 2, we will thus develop
our methodology and theory related to the one-dimensional Problem (2). A test procedure
is proposed and its statistical guarantees are established in Section 2.3. In Section 2.4, a
discussion of the existing optimization procedures to solve Problem (2) is given and an original
regularization path algorithm is also provided, specifically for this problem (obtained by
leveraging our theoretical results in Section 2.2). In Section 3, the proposed test procedure
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and its guarantees are extended to the p-dimensional framework. Numerical experiments are
presented in Sections 2.5 for p = 1 and 3.3 for p > 1. In Section 4, we provide a detailed
overview of our contributions, together with various conclusive discussions regarding them
and remaining open problems. The proofs are postponed to Appendices A to C. Appendix D
contains additional material regarding the computational aspects of convex clustering, in
particular with our suggested regularization path. Appendix E contains additional numerical
illustrations.

2. The one-dimensional case

2.1. Setting and notation

In this section, for notational simplification, we consider a single Gaussian vector X of size
n× 1, with unknown mean vector µ and known covariance matrix Σ. This vector X should
be thought of as an instance of Y .j in (2) for some fixed j ∈ [|p|].

We consider the convex clustering procedure (as Problem (2)) obtained for a given λ > 0
by

B̂(X) ∈ argmin
B=(B1,...,Bn)∈Rn

1

2
||B −X||22 + λ

n∑
i,i′=1
i<i′

|Bi′ −Bi|. (5)

Solving this optimization problem defines a clustering of the n observations, each cluster
corresponding to a distinct value of B̂(X). This mapping is formalized by the following
definition.

Definition 1. For B = (B1, . . . , Bn) ∈ Rn, let b1 > b2 > · · · > bK be the sorted distinct
values of the set {Bi : i ∈ [|n|]}. The clustering associated to B is C = (Ck)k∈[|K|], where
Ck = {i : Bi = bk} for k ∈ [|K|].

Note that, indifferently, we address clusterings of a set of elements (x1, . . . , xn) (for instance
scalars or vectors) either with clusters that are subsets of (x1, . . . , xn) or subsets of [|n|]. It
is convenient to point out the following basic property of the optimization of Problem (5),
implying in particular that the clusters are composed by successive scalar observed values,
which is very natural.

Lemma 1. Consider a fixed x = (x1, . . . , xn) ∈ Rn. Consider B̂ = B̂(x) given by Problem
(5). Then, for i, i′ ∈ [|n|], i ̸= i′,

1. xi = xi′ implies B̂i = B̂i′

2. xi ≥ xi′ implies B̂i ≥ B̂i′.

Similarly as discussed in Section 1, for the clustering C = C(X) = (C1(X), . . . , CK(X))
obtained from (5), we will provide a valid test procedure for an hypothesis of the form η⊤µ =
0, where η = η(C(X)).

2.2. Polyhedral characterization of convex clustering in dimension one

As in [14], we will suggest a test procedure (see Section 2.3) based on analyzing Gaussian
vectors conditioned to polyhedral sets. At first sight, one could thus aim at showing that the
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observation vector X yields a given clustering with (5) if and only if it belongs to a corre-
sponding polyhedral set. However, this does not hold in general. Hence, we will characterize
a more restricted event with a polyhedral set. This event is that (i) a given clustering is
obtained and (ii) the scalar observations are in a given order. The same phenomenon occurs
in [14], where variables are selected in a linear model. There, it does not hold that a given set
of variables is selected by the Lasso if and only if the observation vector belongs to a given
polyhedral set. Nevertheless, the event that can be characterized with a polyhedral set is that
(i) a given set of variables is selected and (ii) the signs of the estimated coefficients for these
variables take a given sequence of values. We refer to Section 4.6 for further discussion on
conditioning also by the observations’ order.

Before stating the polyhedral characterization, let us provide some notation. We let Sn be
the set of permutations of [|n|]. Consider observations x1, . . . , xn, ordered as xσ(1) ≥ · · · ≥
xσ(n) for σ ∈ Sn. When these observations are clustered into K clusters of successive values,
the clustering is in one-to-one correspondence with the positions of the cluster right-limits
t1, . . . , tK , where 0 = t0 < t1 . . . < tK = n, and where for k ∈ [|K|], cluster Ck is composed by
the indices σ(tk−1 + 1), . . . , σ(tk), for k ∈ [|K|]. This corresponds to the following definition.

Definition 2. For n ∈ N and K ∈ [|n|], let

TK,n := {(tk)0≤k≤K ; 0 = t0 < t1 < · · · < tK = n} .

For any σ ∈ Sn and any vector t ∈ TK,n, the clustering associated to (t, σ) is defined as
C(t, σ) = {C1, . . . , CK}, where for k ∈ [|K|], nk = tk − tk−1 and Ck = {σ(tk−1 + i)}i∈[|nk|].

In particular, let us consider the clustering C = (Ck)k∈[|K|] obtained from Definition 1 by
solving Problem (5) for a given x ∈ Rn. This clustering can be written as C(t, σ), for any σ
such that xσ(1) ≥ · · · ≥ xσ(n), t0 = 0 and tk =

∑
j∈[|k|] |Cj | for k ∈ [|K|].

Example 2. To illustrate Definition 2 and Lemma 1, let x = (2, 6, 11, 10, 7, 1, 6.5, 7) be
observed data. A permutation reordering the values of x by decreasing order is

σ : (1, . . . , n = 8) 7→ (3, 4, 5, 8, 7, 2, 1, 6).

For the clustering C = (C1, C2, C3) with C1 = {11, 10}, C2 = {7, 7, 6.5, 6} and C3 = {2, 1}, the
associated vector t is t0 = 0, t1 = 2, t2 = 6 and t3 = 8, as shown in Figure 1. Note that
the clustering C of observations is equivalent to the clustering of indices C1 = {σ(1), σ(2)} =
{3, 4}, C2 = {σ(3), σ(4), σ(5), σ(6)} = {5, 8, 7, 2} and C3 = {σ(7), σ(8)} = {1, 6}. The regu-
larization path (see Section 2.4) associated to the convex clustering problem on the observed
values x is represented in Figure 2. The vertical line at x = λ intersects the regularization
path at y = B̂i. The order property between xi and B̂i stated in Lemma 1 is observed all
along the regularization path. For λ = 0.5, we find the clustering in three clusters where the
B̂i values take three distinct values b̂k (b̂1 = 7.5, b̂2 = 6.625 and b̂3 = 4.5).

Next, we can provide the announced polyhedral characterization of obtaining a given clus-
tering, together with a given order of the observations.

Theorem 2. Let t be a fixed vector in TK,n with K ∈ [|n|], and let σ ∈ Sn be a fixed
permutation of [|n|]. Let C = C(t, σ) be the clustering obtained from Definition 2, with cluster
cardinalities n1, . . . , nK . Consider a fixed x = (x1, . . . , xn) ∈ Rn. Let B̂ = B̂(x) be the
solution of Problem (5) for some fixed λ > 0, with X replaced by x. From Definition 1, B̂
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Figure 1: Illustration of Definition 2 for one clustering with K = 3 clusters of the observed
values x = (2, 6, 11, 10, 7, 1, 6.5, 7)
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Figure 2: Regularization path (see Section 2.4) associated to the convex clustering problem
for the observed values x = (2, 6, 11, 10, 7, 1, 6.5, 7).
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yields a clustering. Then the set of conditions

C(t, σ) is the clustering given by B̂, (6)

xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(n) (7)

is equivalent to the set of the three following conditions

for k ∈ [|K − 1|] :

1

nk

nk∑
i=1

xσ(tk−1+i) −
1

nk+1

nk+1∑
i=1

xσ(tk+i) > λ(tk+1 − tk−1), (8)

for k ∈ [|K|] such that nk ≥ 2, for ℓ ∈ [|nk − 1|] :

1

nk

nk∑
i=1

xσ(tk−1+i) −
1

ℓ

ℓ∑
i=1

xσ(tk−1+i) ≥ λ(ℓ− nk), (9)

xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(n). (10)

Finally, when (6) and (7) hold, then for i ∈ [|n|], for k ∈ [|K|] with i ∈ Ck, we have

B̂i =
1

nk

∑
i′∈Ck

xi′ + λ
k−1∑
k′=1

nk′ − λ
K∑

k′=k+1

nk′ . (11)

In (11), note that by convention
∑b

k′=a · · · = 0 for a, b ∈ Z, a > b. We will use this
convention in the rest of the paper. Note also that, apart from the polyhedral characterization
given by (8) to (10), Theorem 2 also provides the explicit expression of the optimal B̂, solution
of Problem (5). This expression depends of the optimal clustering, so it cannot be directly
computed to optimize (5) in practice. Nevertheless, Theorem 2 is the basis of a regularization
path algorithm provided in Section 2.4.

Next, the following lemma provides a formulation of (8) to (10) in Theorem 2 as an explicit
polyhedral set. In this lemma and in the rest of the paper, for a ∈ N, we let 0a be the a× 1
vector composed of zeros.

Lemma 3. Consider the setting of Theorem 2. Let Pσ be the n × n permutation matrix
associated to σ ∈ Sn: Pσx = (xσ(1), . . . ,xσ(n))

⊤, for a n× 1 vector x. Then, Conditions (8),
(9) and (10) can be written as

{M(t)Pσx ≤ λ m(t)} (12)

where M(t) ∈ R2(n−1)×n and m(t) ∈ R2(n−1) are given by:

M(t) =

 M1

M2(t)
M3(t)

 and m(t) =

 m1

m2(t)
m3(t)

 ,

with M1 ∈ Rn−1×n, M2(t) ∈ RK−1×n and M3(t) ∈ Rn−K×n, explicitly expressed in Ap-
pendix B (Equations (25), (27) and (29) respectively); m1 = 0n−1, m2(t) ∈ RK−1 and
m3(t) ∈ Rn−K , explicitly expressed in Appendix B (Equations (26) and (28) respectively).
Furthermore, the inequality M2(t)Pσx ≤ λm2(t) is strict in (12).
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2.3. Test procedure and its guarantees

In this section, we construct the test procedure and provide its theoretical guarantees, based
on Theorem 2 and Lemma 3. Since the polyhedral characterization has been shown from
these two results, the construction and guarantees here are obtained similarly as in [14]. We
nevertheless provide the full details, for the sake of self-completeness.

2.3.1. Construction of the test procedure

We want to test
η⊤µ = 0,

where η = η(C(X)) and C(X) is obtained from Problem (5) and Definition 1. The test
statistic is naturally

η⊤X,

and we will construct an invariant statistic from it, based on the polyhedral lemma (Lemma
5.1) of [14], that we restate in our setting for convenience. In the next statement, Ia is the
identity matrix in dimension a ∈ N and we use the conventions that the minimum over an
empty set is +∞ and the maximum over an empty set is −∞.

Proposition 4 (Polyhedral lemma, adapted from [14]). Let t be a fixed vector in TK,n with
K ∈ [|n|]. Let σ ∈ Sn be a fixed permutation of [|n|], and Pσ be the n× n associated permu-
tation matrix.

Let X ∼ N (µ,Σ) with Σ invertible and let η be a fixed non-zero n× 1 vector (allowed to
depend on t and σ).
Let Z := Z(X) := [In − cη⊤]X with c = Ση(η⊤Ση)−1. Let M := M(t) and λm := λm(t)
defined in (12). Then, for any fixed λ > 0, we have the following properties:

• Z is uncorrelated with, and hence independent of, η⊤X.
• The conditioning set can be written as follows

{MPσX ≤ λ m} = {V−(Z) ≤ η⊤X ≤ V+(Z),V0(Z) ≥ 0} (13)

where

– V−(Z) := max
l:(MPσc)l<0

λml−(MPσZ)l
(MPσc)l

– V+(Z) := min
l:(MPσc)l>0

λml−(MPσZ)l
(MPσc)l

– V0(Z) := min
l:(MPσc)l=0

λml − (MPσZ)l.

Note that V−(Z), V+(Z) and V0(Z) are independent of η⊤X. Finally, when the event in
(13) has non-zero probability, conditionally to this event, the probability that V−(Z) = V+(Z)
is zero.

From Proposition 4, it is shown in [14] that, for any fixed z0 with V−(z0) < V+(z0),
under the null hypothesis η⊤µ = 0, conditionally to {MPσX ≤ λ m,Z = z0}, the following
invariant statistic based on the test statistic η⊤X fulfills

T (X, t, σ) := F
[V−(z0),V+(z0)]

0,η⊤Ση
(η⊤X) ∼ U [0, 1], (14)
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where U [0, 1] denotes the uniform distribution and F
[a,b]
ν,τ2

(.) is the cumulative distribution

function (cdf) of a Gaussian distribution N (ν, τ2) truncated on the interval [a, b].
The p-value, corresponding to considering two-sided alternative hypotheses to η⊤µ = 0, is

then

pval(x, t, σ) = 2min [T (x, t, σ), 1− T (x, t, σ)] (15)

for a n×1 observation vector x. Note that the two definitions (14) and (15) require V−(z0) <
V+(z0), which holds almost surely conditionally to MPσX ≤ λ m, as stated in Proposition
4.

2.3.2. Conditional level

Next, we show that the suggested test is conditionally valid. That is, conditionally to a clus-
tering and a data order, when the null hypothesis (that is fixed by the clustering) holds, the
p-value is uniformly distributed. In particular, the probability of rejection is equal to the pre-
scribed level. Conditional validity naturally yields unconditional validity, as shown in Section
2.3.3. Hence conditional validity is mathematically a stronger property than unconditional
validity. A statistical benefit of conditional validity is that the null hypothesis is fixed after
conditioning; in particular η⊤µ becomes a fixed target of interest, which is beneficial for in-
terpretability. In the related context of linear models, for instance, the tests obtained from
the confidence intervals of [2, 3] are unconditionally valid while the tests provided in [14, 29]
are conditionally (and unconditionally) valid. The interpretability benefit we discuss above is
also discussed in [14].

Proposition 5. Let t be a fixed vector in TK,n with K ∈ [|n|]. Let σ ∈ Sn be a fixed
permutation of [|n|], and Pσ be the n × n associated permutation matrix. Let C = C(t, σ) be
the clustering obtained from Definition 2, with cluster cardinalities n1, . . . , nK .

Let X ∼ N (µ,Σ) with Σ invertible. Consider a fixed n × 1 non-zero vector η ∈ Rn (that
is only allowed to depend on (t, σ)). Assume that

η⊤µ = 0.

Let B̂ = B̂(X) from Problem (5) for some fixed λ > 0. Assume that with non-zero probability,
the event

Et,σ :=
{
C(t, σ) is the clustering given by B̂, Xσ(1) ≥ Xσ(2) ≥ · · · ≥ Xσ(n)

}
holds. Then, conditionally to Et,σ, pval(X, t, σ) is uniformly distributed on [0, 1]:

Pη⊤µ=0

(
pval(X, t, σ) ≤ t

∣∣Et,σ

)
= t ∀t ∈ [0, 1].

2.3.3. Unconditional level

We now show that pval(X, t, σ) is unconditionally uniformly distributed, which we call un-
conditional validity. Here, “unconditionally” means that the clustering is not fixed, but it is
still necessary to condition by the fact that the null hypothesis η⊤µ = 0 is well-defined and
true. Regarding well-definiteness, the vector η = η(C(X)) may indeed not be well-defined
for all clusterings C(X). In the next proposition, we thus introduce the set E of clusterings,
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indexed by an ordering σ and a sequence of right-limits t as in Definition 2, that make η
well-defined.

For instance, in the case of the two-group test of Example 1, η can be defined similarly as
in (4), with

η⊤µ =
1

|Ck1(X)|
∑

i∈Ck1 (X)

µi −
1

|Ck2(X)|
∑

i∈Ck2 (X)

µi. (16)

In this case, E is the set of clusterings for which the number of clusters is larger than or equal
to max(k1, k2), enabling η to be well-defined. When k1 = 1 and k2 = 2, this definition is
possible for all clusterings, except the one with only one cluster. In this case, E should thus be
defined as restricting t to have at least 3 elements 0 = t0 < t1 < t2 = n, that is to correspond
to a clustering with at least two clusters.

Then, Proposition 6 shows that conditionally to E and to η⊤µ = 0, the p-value is uniformly
distributed, which we call unconditional validity, in the sense that we do not condition by a
single clustering, as commented above.

Proposition 6. Let E be a subset of the set of all possible values of (t, σ) in Proposition 5.
Consider a deterministic function η : E → Rn, outputing a non-zero column vector. Assume
that Σ is invertible. Let B̂ as in (5). Let S = S(X) be a random permutation obtained by
reordering X as: XS(1) ≥ · · · ≥ XS(n) (uniquely defined with probability one). Let C(X) = C
be the random clustering given by B̂ (Definition 1), of random dimension K(X) = K. Let
T(X) = T ∈ TK,n be the random vector, such that T and S yield C as in Definition 2.

Assume that

P
(
(T, S) ∈ E ,η(T, S)⊤µ = 0

)
> 0.

Then, conditionally to the above event, pval(X,T, S) is uniformly distributed on [0, 1]:

P
(
pval(X,T, S) ≤ t

∣∣(T, S) ∈ E ,η(T, S)⊤µ = 0
)
= t ∀t ∈ [0, 1].

2.4. Regularization path

At first sight, (5) is a convex optimization problem, whose (unique) minimizer does not
have any explicit expression, and thus (5) requires numerical optimization to approximate
its solution. Furthermore, this numerical optimization would be repeated for different values
of λ. However, thanks to the polyhedral characterization of Theorem 2, we can provide a
regularization path for solving (5). This regularization path is an algorithm, only performing
elementary operations, that provides the entire sequence of exact solutions to (5), for all values
of λ. This algorithm is exposed in Algorithm 1. Then, Theorem 7 shows that this algorithm
is well-defined and indeed provides the set of solutions to Problem (5).

Theorem 7. Algorithm 1 stops at a final value of r that we write rmax, such that rmax ≤
n − 1 and we have K(0) > · · · > K(rmax) = 1. Let λ(rmax+1) = +∞ by convention. For

r ∈ {0, . . . , rmax} and λ ∈ [λ(r), λ(r+1)), (B̂
(r)
i (λ))i∈[|n|] minimizes Problem (5)1.

1Even if Algorithm 1 stops at r = rmax, we can still define (B̂
(rmax)
i (λ))i∈[|n|] there, with (17), with the

convention that
∑0

k′=1 n
(rmax)

k′ = 0 and
∑1

k′=2 n
(rmax)

k′ = 0. This vector has all its components equal to∑n
i=1 xi/n.
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Algorithm 1: Regularization path for one-dimensional convex clustering
Input: x = (x1, . . . , xn) ∈ Rn

Initialization

r ← 0; λ(0) ← 0;

x̃1 > · · · > x̃K(0) : the K(0) distinct values in x;

C(0) = (C(0)1 , . . . , C(0)
K(0))← clustering of [|n|] where C(0)k = {i ∈ [|n|] : xi = x̃k};

n
(0)
k ← |C(0)k | for k ∈ [|K(0)|];

b̂
(0)
k (λ(0))← x̃k for k ∈ [|K(0)|];
B̂

(0)
i (λ(0))← b̂

(0)
k (λ(0)) if i ∈ C(0)k (k is unique) for i ∈ [|n|];

while K(r) ≥ 2 do

For all λ ≥ λ(r) we define

b̂
(r)
k (λ) := b̂

(r)
k (λ(r)) +

(
λ− λ(r)

) k−1∑
k′=1

n
(r)

k′ −
K(r)∑

k′=k+1

n
(r)

k′

 ∀k ∈ [|K(r)|] (17)

B̂
(r)
i (λ) := b̂

(r)
k (λ) if i ∈ C(r)k (k is unique) for i ∈ [|n|];

λ(r+1) ← λ(r) + min
k∈[|K(r)−1|]

b̂
(r)
k (λ(r))− b̂

(r)
k+1(λ

(r))

n
(r)
k + n

(r)
k+1

; (18)

(b̂
(r+1)
k (λ(r+1)))k∈[|K(r+1)|] ← distinct values of (b̂

(r)
k (λ(r+1)))k∈[|K(r)|], sorted decreasingly;

C(r+1) ← clustering of [|n|] obtained from
(
B̂

(r)
i (λ(r+1))

)
i∈[|n|]

by Definition 1;

n
(r+1)
k ← |C(r+1)

k | for k ∈ [|K(r+1)|];
r ← r + 1;

end

11



By way of illustration, Algorithm 1 was applied to the observations of Example 2, and the
resulting regularization path is shown in Figure 2. In Algorithm 1, since r 7→ K(r) is strictly
decreasing during the execution, there are at most n − 1 induction steps. A straightforward
implementation of (18) can lead to a time complexity of order O(K(r)) for each step, and
thus a total time complexity of order O(n2) in the worst case. The space complexity is linear
(O(n)). Indeed, in order to recover the entire regularization path, it is sufficient to record
at each step r the labels of the clusters merged at this step. We have implemented this
algorithm in the open source R package poclin (which stands for “post convex clustering
inference”), which is available from https://plmlab.math.cnrs.fr/pneuvial/poclin. The
empirical time complexity of our implementation is substantially below O(n2) for n ≤ 105,
as illustrated in Appendix D. In this appendix, we also explain that the time complexity of
Algorithm 1 could be further decreased to O(n log(n)) without compromising the linear space
complexity by storing merge candidates more efficiently using a min heap.

Remark 1 (Final value of the regularization parameter). As a consequence of Theorem 2
(see in particular (9)), the final value of λ in Algorithm 1 is obtained analytically as:

λ(rmax) = max
i∈[|n−1|]

1
i

∑i
i′=1 x(i′) −

1
n

∑n
i′=1 x(i′)

n− i
. (19)

It corresponds to the smallest value of λ for which the convex clustering yields exactly one
cluster. The range of values for which there are two or more clusters has also been studied by
[26] for convex clustering procedures that include Problem (5). We note that in the specific
case of Problem (5), λ(rmax) can be computed using (19) in linear time after an initial sorting
of the input vector. Our numerical experiments below make use of (19) to choose λ in a non
data-driven way, see also Appendix E.1.

Relation to other existing regularization path algorithms. Algorithm 1 has similar-
ities with the following two more general regularization path algorithms, that can be applied
to Problem (5). First, for the generalized lasso, a penalization term of the form ∥DB∥1 is
studied in [30], for a general matrix D. It is then simple to find a n(n − 1)/2 × n (sparse)
matrix D leading to the penalization term λ

∑n
i,i′=1,i<i′ |Bi′ − Bi| of (5). The benchmarks

that we have conducted in Appendix D show that the procedure based on the generalized
lasso has a very large memory footprint and is very slow (more than 10 seconds for n = 50),
as it relies on the matrix D, whose total number of entries is O(n3). Second, the fused lasso
signal approximator (FLSA) suggested by [11] can handle a penalization term of the form
λ
∑n

i,i′=1,(i,i′)∈E |Bi′ − Bi|, where E is a set of pairs of indices. Similarly as before, taking E
as the complete set of pairs recovers the penalization term of (5). The theoretical time com-
plexity of the regularization path for FLSA has been shown in [10] to be O(n log(n)) in this
case. The benchmarks that we have conducted in Appendix D show that the procedure based
on FLSA is much more efficient than the one based on the generalized lasso. Nevertheless,
our implementation of Algorithm 1 remains preferable, as it can address larger dataset sizes
(see Figure 6).

On top of these numerical performances, the benefit of Algorithm 1, relatively to these two
general procedures, is that its description and proof of validity (Theorem 7) are self-contained
and specific to the one-dimensional convex clustering problem (5). Furthermore, the proof of
validity exploits the specific analysis of (5) given by Theorem 2.
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2.5. Numerical experiments

In order to illustrate the behaviour of our post-clustering testing procedure, we have performed
the following numerical experiments in the one-dimensional framework. The code to reproduce
these numerical experiments and the associated figures is available from https://plmlab.

math.cnrs.fr/pneuvial/poclin-paper.
We consider a Gaussian sample X = (X1, . . . , Xn) with mean vector µ = (ν1⊤n/2,0

⊤
n/2)

⊤

and known covariance matrix Σ = In. Here and in the rest of the paper, for a ∈ N, we let 1a
be the a× 1 vector composed of ones.

We set n = 1000 and λ = 0.0025. This value of λ has been chosen to ensure that with high
probability, the convex clustering finds at least two clusters under the null hypothesis. The
procedure that we have used in our numerical experiments to achieve this property relies on
(19) and is described in Appendix E.1. Let C = (Ck)k∈[|K|] be the result of the one-dimensional
convex clustering obtained from Algorithm 1 with λ = 0.0025. If K > 2, we merge adjacent
clusters in to obtain a 2-class clustering of the form C1 := C1 ∪ · · · ∪ Cq, C2 := Cq+1 ∪ · · · ∪ CK ,
where q is chosen so that the sizes of C1 and C2 are as balanced as possible. We then the test
procedure introduced in Section 2.3.1 to compare the means of C1 and C2, as in Example 1.
Note that this yields ηi = 1i∈C1

/|C1| − 1i∈C2
/|C2| for i ∈ [|n|], which is indeed a deterministic

function of C1, . . . , CK and thus in the scope of the guarantees obtained in Section 2.3. For
each signal value ν ∈ {0, 1, 2, 3, 4, 5}, we retain N = 1000 numerical experiments for which
K ≥ 2. Note that the event K ≥ 2 corresponds to the set E in Proposition 6.

Figure 3 (left) gives the empirical density of η⊤µ, the difference between the true means
of the estimated clusters, for each value of ν considered. This plot quantifies the performance
of the clustering step: for a perfect clustering, we would have η⊤µ = ν, corresponding to the
diagonal line. As expected, the larger the signal (ν increases), the easier the clustering step.

Figure 3 (right) shows the empirical p-value distribution of the proposed test (see (15)).
For ν = 0 (no signal), the curve illustrates the uniformity of the distribution of the p-values: it
shows that the level of the test is appropriately controlled. Another simulation to control the
level of the test is available in Appendix E.2. As expected, the power of the test is an increasing
function of the distance between the null and the alternative hypotheses (as encoded by the
parameter ν). Our conditional test is able to detect the signal only for ν > 1.

3. The p-dimensional case

3.1. Aggregating one-dimensional clusterings

Consider the p-dimensional setting of Section 1. For j ∈ [|p|], consider the one-dimensional

clustering C(j) = C(j)(Y .j) = (C(j)
1 (Y .j), . . . , C(j)

K(j)(Y .j)) obtained by computing B̂.j by solv-
ing (2) and with Definition 1. We consider a p-dimensional clustering C obtained by aggrega-
tion of the one-dimensional clusterings C(1), . . . , C(p) as follows.

For i ∈ [|n|] and j ∈ [|p|], let Ỹij be the class index of Yij in the clustering C(j), rescaled from
{1, 2, . . . ,K(j)} to {0, 1/(K(j)−1), . . . , 1}. We obtain a p-dimensional clustering C by applying
a clustering procedure to the rows of the n×p matrix Ỹ , for instance a hierarchical clustering
[17] with the Euclidean distance. We are then in a position to test an hypothesis κ⊤β = 0,
where κ = κ(C), as motivated in Section 1. In particular, we can test the signal difference for
the column j0 between two clusters Ck1 and Ck2 in the multi-dimensional clustering C, as in
(4).
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Figure 3: Left: empirical density of η⊤µ for each ν. Right: empirical cumulative distribution
functions of the p-value of the test of equality between the means of two clusters.

Remark 2. Above, we focus on a specific aggregation using the hierarchical clustering with
the Euclidean distance for simplicity. However, we can construct more general p-dimensional
clusterings C by more general aggregations of C(1), . . . , C(p). Indeed, our statistical framework
(see Section 3.2) encompasses any case where κ = κ(C), as long as C is a function of the one-
dimensional clusterings and orderings. In particular, one could also consider the hierarchical
clustering with the Hamming distance, or the “unanimity” clustering, (i and i′ are in the same
cluster of C if and only if they are in the same cluster for each C(j)). This latter clustering is
actually the one provided by Problem (1). For more background on clustering aggregation, we
refer for instance to [7, 21, 32] and references therein.

3.2. Test procedure and its guarantees

3.2.1. Construction of the test procedure

The test procedure for the hypothesis κ⊤β = 0 is constructed similarly as in Section 2.3.1.
We consider p permutations σ(1), . . . , σ(p) that provide the orderings of the columns of the
n× p observation matrix Y . As in Definition 2, we identify the p clusterings C(1), . . . , C(p) by
their numbers of classes K(1), . . . ,K(p) ∈ [|n|] and by the right-limit sequences t(j) ∈ TK(j),n

for j ∈ [|p|].
For j ∈ [|p|], we consider the matrix M(t(j))Pσ(j) of size 2(n − 1) × n and the vector

λm(t(j)) of size n, defined in Lemma 3. Recall from Section 2 that, if only the variable j
and its clustering C(j) and order σ(j) were considered, then the conditioning event would be{
M(t(j))Pσ(j)Y .j ≤ λm(t(j))

}
.

We then explicit the conditioning constraints in dimension p, corresponding to all the
clusterings C(1), . . . , C(p) and orders σ(1), . . . , σ(p). We define the matrixM of size 2(n−1)p×np
in the following block-wise fashion. There are p2 rectangular blocks (corresponding to dividing
the rows into p groups and the columns into p groups). The block indexed by row-group j
and column-group j′ has size 2(n − 1) × n. It is zero if j ̸= j′ and it is equal to M(t(j)) if
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p = 1 x X Σ η Pσ M λm Z c

size n n n× n n n× n 2(n− 1)× n n n n

p > 1 vec(y) vec(Y ) Γ κ Dσ M λm vec(Z) vec(c)

size np np np× np np np× np 2(n− 1)p× np np np np

Table 1
Correspondence between the notation of Section 2.3.1 (dimension one) and the notation of Sections 3.2.1 and

3.2.2 (dimension p).

j = j′. Define also Dσ as the np×np block diagonal matrix with p diagonal blocks and block
j equal to Pσ(j) , for j ∈ [|p|]. With these definitions, we have

MDσvec(Y ) =

M(t(1))Pσ(1)Y .1
...

M(t(p))Pσ(p)Y .p

 .

We let λm be the vector obtained by stacking the column vectors λm(t(j)), j ∈ [|p|], one
above the other. The conditioning constraints in dimension p are then {MDσvec(Y ) ≤ λm}.

Consider a column vector κ of size np, that is allowed to depend on (t(j), σ(j)), j ∈ [|p|].
This includes the setting κ = κ(C(1), . . . , C(p)) of Section 3.1, with the additional mathematical
flexibility that κ is allowed to depend on the orderings of the columns, besides their clusterings.

Recall that Γ is the np × np covariance matrix of vec(Y ). Note that in the definition
of pval(x, t, σ) in Section 2.3.1 (one-dimensional case), the values of x, Σ, η, MPσ and
λm are sufficient to determine the invariant statistic T (X, t, σ) in (14) and the p-value
pval(x, t, σ) in (15). Thus we can define the test statistic κ⊤vec(Y ), then the invariant statistic
T (Y ) = T (Y , t(1), . . . , t(p), σ(1), . . . , σ(p)) in the same way as T (X, t, σ) in (14) and conse-
quently the p-value pval(y), for a n× p realization y of Y , in the same way as pval(x, t, σ) in
(15). The explicit correspondence between the notation of the one-dimensional case and the
present notation is given in Table 1. The next section provides additional explanations on the
computation of the invariant statistic T (Y ), in the special case of independent variables, for
the sake of exposition.

3.2.2. A detailed example: testing the signal difference along a variable j0 with independent
variables

Consider testing the signal difference for the column j0 between two clusters Ck1 and Ck2 in the
multi-dimensional clustering C, as in Example 1. It is interesting to explicit the construction
of the invariant statistic in the special case of the matrix normal distribution (see Section 1)
where ∆ is diagonal, that is the p n-dimensional observation vectors corresponding to the p
variables are independent. For the sake of simplicity, let us even consider that ∆ = Ip.

Observe first that the test statistic satisfies κ⊤vec(Y ) = η⊤Y .j0 , where ηi = 1i∈Ck1/|Ck1 |−
1i∈Ck2/|Ck2 |. That is, the test statistic is constructed as it would be in the one-dimensional

case (Section 2.3.1), except that the one-dimensional clustering C(j0) is replaced by the ag-
gregated one C. The variance of the test statistic (unconditional to the clusterings and orders
of observations) is thus η⊤Ση and is as in the one-dimensional case (up to the distinction
between C(j0) and C). Then, the next proposition specifies the computation of the invariant
statistic.
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Proposition 8. In the context of Section 3.2.2, computing the invariant statistic as described
in Section 3.2.1 is equivalent to proceed as described in Section 2.3.1 (one-dimensional case),
with η defined by ηi = 1i∈Ck1/|Ck1 | − 1i∈Ck2/|Ck2 | for i ∈ [|n|], with X replaced by Y .j0 and

with the conditioning set {MPσX ≤ λ m} replaced by
{
M(t(j0))Pσ(j0)Y .j0 ≤ λm(t(j0))

}
.

In Proposition 8, the observations corresponding to the variables j ̸= j0, for which the
average signal difference is not tested, have an impact on the clusterings C(j), j ̸= j0, and
thus have an impact on the multi-dimensional clustering C and thus on η. Besides η, these
observations have no other influence on the construction of the invariant statistic, which is
computed only from Y .j0 and its conditioning set {M(t(j0))Pσ(j0)Y .j0 ≤ λm(t(j0))} as in
the one-dimensional case. This fact can be interpreted in light of the general properties of
conditioning and independence. Indeed, we are studying events of the form Ej on Y .j , j ∈ [|p|]
and we are studying a test statistic η(E1, . . . , Ep)

⊤Y .j0 conditionally to these events. Here Ej
encodes the event corresponding to (6) and (7) in Theorem 2 for variable j. By independence
of Y .j , j ∈ [|p|], the events Ej , j ̸= j0 simply have an influence on η, while the event Ej0 also
has an impact on the conditional distribution of Y .j0 given Ej0 .

3.2.3. Conditional level

For j ∈ [|p|], let B̂.j be obtained from (2). The next proposition is similar to Proposition 5
and proves that the p-value pval(Y ) in Section 3.2.1 is uniformly distributed, conditionally to
the one-dimensional clusterings and orders, when the null hypothesis is true. We remark that
in the context of Section 3.1, this implies that the p-value is also uniformly distributed con-
ditionally to the p-dimensional clustering obtained by aggregation, when the null hypothesis
is true.

Proposition 9. Consider p fixed permutations σ(1), . . . , σ(p) of [|n|]. Let K(1), . . . ,K(p) ∈
[|n|]. For j ∈ [|p|], let t(j) ∈ TK(j),n and consider the clustering C(j) associated to (t(j), σ(j))
by Definition 2.

Consider a fixed non-zero vector κ ∈ Rnp (that is only allowed to depend on (t(j), σ(j)), j ∈
[|p|]). Assume that

κ⊤β = 0.

Assume that with non-zero probability, the event

E :=
{
for j ∈ [|p|], C(j) is the clustering given by B̂.j and Yσ(j)(1)j ≥ · · · ≥ Yσ(j)(n)j

}
holds. Assume also that the np×np matrix Γ is invertible. Then, conditionally to E, pval(Y )
is uniformly distributed on [0, 1] under the null hypothesis.

3.2.4. Unconditional level

The unconditional guarantee is similar to that of Proposition 6 for the one-dimensional case.
In particular, here we also introduce the subset E on which the null hypothesis is well-defined.

Proposition 10. Let E be a subset of the set of all possible values of (t(j), σ(j))j∈[|p|] in
Proposition 9. Consider a deterministic function κ : E → Rnp, outputing a non-zero column
vector. Assume that Γ is invertible. For j ∈ [|p|], let B̂.j be obtained from (2). Let also S(j) =
S(j)(Y .j) be the random permutation obtained by the order of Y .j: YS(j)(1)j ≥ · · · ≥ YS(j)(n)j
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(uniquely defined with probability one). Let C(j)(Y .j) = C(j) be the random clustering given

by B̂.j (Definition 1). Let T(j)(Y .j) = T(j) ∈ TK(j),n be the random vector (with random

K(j)(Y .j) = K(j)), such that (T(j), S(j)) yields C(j) as in Definition 2.
Assume that

P
(
(T(j), S(j))j∈[|p|] ∈ E ,κ((T(j), S(j))j∈[|p|])

⊤β = 0
)
> 0.

Then, conditionally to the above event, pval(Y ) is uniformly distributed on [0, 1].

3.3. Numerical experiments

In this section, we describe the numerical experiments that we have performed in order to
illustrate the behaviour of our post-clustering testing procedure for p > 1. The code to
reproduce these numerical experiments and the associated figures is available from https:

//plmlab.math.cnrs.fr/pneuvial/poclin-paper.
We consider the specific case where Y is distributed from a matrix normal distribu-

tion MN n×p(u,Σ,∆) (see Section 1) with p = 3, u =

 ν1n/2 0n/2 0n/2

−ν1n/2 0n/2 0n/2

 with

ν ∈ {0, 1, 2, 5}, Σ = In, and ∆ =


1 0 ρ

0 1 0

ρ 0 1

 with ρ ∈ {0, 0.3, 0.5}.

We obtain K = 2 clusters by aggregating one-dimensional convex clusterings obtained for
a given value of λ, as explained in Section 3.1. For each variable j ∈ {1, 2, 3}, we want to
compare the means of the two clusters. This corresponds to the test of the null hypothesis
κ⊤β = 0, where κ is defined by (3) (see Example 1). We compare our procedure with
λ = 0.016 (resp. λ = 0.0025) for n = 100 (resp. n = 1000) and the two-group Wilcoxon rank
sum test as implemented in the R function wilcox.test. This choice of λ ensures to have
at least two clusters under the null hypothesis with high probability, as explained in Section
2.5 and Appendix E.1. The empirical cumulative distribution function of the p-values pval(y)
across 500 experiments is represented for different values of the simulation parameters in
Figures 4 and 5 for n = 100 and n = 1000, respectively. For each parameter combination, the
p-value distribution of the proposed method (in green) is compared to that of the two-group
Wilcoxon rank sum test (in orange) for all three variables Y .j , for j = 1, 2, 3 (in columns).
Each row corresponds to a value of ν and each line type corresponds to a value of ρ.

First, the clustering procedure described in Section 3.1 works reasonably well in this setting.
Indeed, for the variable Y .1, the absolute value of the difference between the true means of
the estimated clusters (obtained as κ⊤β) is generally close to the true value of the signal
(that is 2ν), see Figure 9 in Appendix E.3.

The proposed test controls the type I error rate: in all situations where there is no signal
(that is, for ν = 0 or j ∈ {2, 3}), the empirical p-value distribution is close to the uniform
distribution on [0, 1] (y = x). Under the alternative hypothesis (i.e. for j = 1 and ν > 0), our
proposed test is able to detect some signal for ν ≥ 2. For ν = 1 the signal is too small to be
detected.

In contrast, the naive Wilcoxon test yields severely anti-conservative p-values in absence of
signal. This test is naturally much more sensitive than our proposed test. However, it should
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Figure 4: The empirical cumulative distribution function of the p-values across 500 experi-
ments for n = 100 with our method poclin (in green) and the Wilcoxon test (in orange).
Each column corresponds to a variable j, each row to a value of ν and each line type to a
value of ρ.

be noted that one cannot compare the power of the two tests, since the Wilcoxon test fails to
control type I error.

Regarding the influence of n: our proposed method does not gain much power as n increases
from 100 to 1000. This is consistent with the fact that the signal is not different across values
of n, see Figure 9. For n = 1000, the Wilcoxon test is able to distinguish the signal from the
noise when ρ = 0 and actually becomes well-calibrated for Y .2 when ν ̸= 0. However, due to
the correlation between Y .1 and Y .3, the Wilcoxon test is anti-conservative for Y .3.

4. Discussion

We first provide an overview of our contributions, and then we discuss various specific aspects
of them and various remaining open questions.
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Figure 5: The empirical cumulative distribution function of the p-values across 500 experi-
ments for n = 1000 with our method poclin (in green) and the Wilcoxon test (in orange).
Each column corresponds to a variable j, each row to a value of ν and each line type to a
value of ρ.

4.1. Overview of the contributions

Selective inference, in the post-clustering context, is a challenging problem and statistical
guarantees could be obtained for it only in the recent years, see the references provided in
Section 1. In this paper, we suggest a solution based on exhibiting polyhedral conditioning
sets for Gaussian vectors, extending a line of work that has proved to be very successful in
other statistical contexts, especially for regression models. This line of work was pioneered by
[14] and then developed by [23, 29], among others.

Nevertheless, extending the existing approaches from regression models to clustering models
is challenging. As such, the proofs we provide require innovations (for instance for Theorems
2 and 7). Furthermore, obtaining polyhedral conditioning sets is made possible by focusing on
intermediate one-dimensional convex clustering optimization problems based on ℓ1 penalties
(see (2)). In the end, we provide the following workflow for selective inference post-clustering.

(1) We characterize a one-dimensional clustering by polyhedral constraints on the obser-
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vation vector (Section 2.2).
(2) As a by by-product, we provide a regularization path algorithm to implement this

clustering (Section 2.4). The computational efficiency of this algorithm is demonstrated nu-
merically, also in comparison with other existing procedures.

(3) Following [14], from the polyhedral constraints, we obtain a test procedure which is
conditionally and unconditionally valid post-clustering (Section 2.3). The procedure enables
to test the nullity of any linear combination of the unknown mean vector, provided this com-
bination only depends on the clustering (and on the order of the observations). In particular,
it is possible to test for the significance of the signal difference between two clusters as in
Example 1 (see Equation (16)). Although we do not develop it in this paper, confidence inter-
vals for the above linear combination can be constructed from our test procedure, similarly as
in [14]. Numerical experiments (Section 2.5) confirm the validity of the test procedure, and
indicate that it has power to detect cases where the clustering on the observation vector was
able to cluster the unknown mean vector as well into inhomogeneous groups.

(4) We suggest to aggregate one-dimensional clusterings to form a single multi-dimensional
clustering for the data matrix. Our above contributions can thus be naturally leveraged to
obtain a valid test procedure, posterior to this multi-dimensional clustering (Section 3.2).
In particular, we can test the significance of the signal difference between clusters along a
specific variable, as in Example 1. This feature could be beneficial in potential applications
to single-cell RNA-seq data, since in this context, testing along a specific variable enables to
study genes expressions individually. It is also a welcome complement to related references,
in particular [6], that focuses on testing the global nullity of the signal mean difference vector
across two clusters, rather than considering individual components (i.e. variables).
This workflow (1)-(4) depends on a regularization parameter λ that should not be data-driven
(see Section 4.3 below). From a practical point of view, we provide a procedure to choose λ
in a non data-driven way, from a choice of the covariance matrix, see Sections 2.5 and 3.3,
and Appendix E.1.

Similarly as in the one-dimensional case, we provide numerical experiments (Section 3.3)
that both confirm the validity of the test procedure and demonstrate its power to validate
when the clustering procedure successfully yields clusters with significant signal difference
for individual variables. These numerical experiments (as well as those in Section 2.5) also
indicate that inference post-clustering is challenging, in that statistical procedures that do not
account for the data-driven nature of the clustering are strongly anti-conservative. Indeed,
the standard Wilcoxon test wrongly indicates signal differences across clusters in many cases
where there is actually no difference. Note that the numerical experiments are focused on
the hierarchical-clustering-based aggregation of one-dimensional clusterings, as described in
Section 3.1. In future investigations, it would be relevant to quantify the benefit brought by
alternative aggregation methods. Indeed, a flexibility of our framework is that our statistical
guarantees hold for any aggregation procedure.

4.2. Benefits of the test procedure in well- and misspecified clustering problems

For simplicity, let us focus on the one-dimensional case of Section 2, with the observation
vector X ∼ N (µ,Σ). The discussion of the multi-dimensional case of Section 3 would be
similar. The clustering problem can be considered as well-specified if there are clusters of
indices for the mean vector µ with equal values, corresponding to a Gaussian mixture setting
(see for instance [8, 13, 16, 22] for expositions and recent contributions on mixture models).
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In the well-specified case, there are thus intrinsic classes of the observations and it is natural
to aim at recovering them.

Consider for the sake of discussion that n/2 components of µ are zero and the other
n/2 components are one (there are two intrinsic classes) and that the clustering procedure
yields two clusters C1 and C2 of equal size. Then if the null hypothesis (2/n)

∑
i∈C1 µi =

(2/n)
∑

i∈C2 µi is rejected by our test procedure, it means that one empirical cluster contains
a strict majority of individuals from one intrinsic class, and vice versa for the second cluster. If
our test procedure is extended to yield a confidence interval on (2/n)

∑
i∈C1 µi−(2/n)

∑
i∈C2 µi

showing that with high probability this quantity is larger than some δ ∈ (0, 1), then one can
see that the first empirical cluster contains at least n(δ + 1)/4 observations from an intrinsic
class (corresponding to mean one; and conversely for the second cluster). Hence, generally
speaking, for a well-specified clustering problem with intrinsic classes, our test procedure is
relevant to recover these classes, similarly as statistical procedures that are dedicated to finite
mixture problems, see the references given above.

On the other hand, the clustering problem can be considered as misspecified when the n
components of µ are two-by-two distinct. In this case one can consider that there are no
intrinsic classes. Nevertheless, providing tests or confidence intervals on the same quantity
(2/n)

∑
i∈C1 µi − (2/n)

∑
i∈C2 µi as before enables to assess if the clustering procedure was

able to cluster the unknown mean vector, besides the random/noisy observations. Hence, a
benefit of the post-clustering framework considered here is that it is meaningful both in well-
and misspecified settings. A similar discussion can be made in the related context of selective
inference in regression settings, see in particular [1, 3].

4.3. Known covariance matrix and fixed λ

As pointed out above, we assume the covariance matrix (Σ in Section 2 and Γ in Section 3)
to be known and the tuning parameter λ to be fixed. These two assumptions are necessary
for our statistical guarantees in Sections 2 and 3. Indeed, the obtention of these guarantees
relies first on exhibiting a Gaussian vector constrained to a polyhedron. Then, the Gaussian
vector is decomposed into a linear combination (corresponding to the statistical hypothesis
to test) and an independent remainder. This two-step strategy corresponds in particular to
Lemma 3 and Proposition 4 in the one-dimensional case. It was previously suggested by [14]
in the related context of post-selection inference for the lasso model selector, with Gaussian
linear models.

Obtaining a polyhedron in the first step relies on λ not depending on the data, and com-
puting the decomposition in the second step relies on knowing the covariance matrix. Broadly
speaking, in the selective inference context, it is relatively common to assume known covari-
ance matrices, or fixed tuning parameters, in order to obtain rigorous mathematical guaran-
tees. This is indeed the case in [14] mentioned above, but also for instance in [6]. In this latter
reference, the covariance matrix is assumed to be proportional to the identity, with a known
variance for most of the theoretical results. Asymptotic results are given there in Section 4.3
for the case of a conservative variance estimator. Also, data thinning procedures, for instance
in [18], usually require knowledge of the data distribution in order to produce independent
parts, where the independence property enables valid statistical inference.

In our setting, obtaining theoretical guarantees (finite-sample or asymptotic) with an es-
timated covariance matrix or a data-dependent tuning parameter is of course an important
problem for future work. In other contexts, successes have been obtained in this direction,
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see in particular [28, 35]. Note that relaxing the assumption of known covariance matrix can
yield identifiability issues, because the mean vector β is unrestricted (see also the discussion
of misspecified clustering problems in Section 4.2). These identifiability issues boil down to
the fact that multiple pairs of mean vector and covariance matrix can “explain” the same
dataset. Studying which minimal assumptions circumvent these identifiability issues is thus an
important problem in the prospect of extending this work to an estimated covariance matrix.

4.4. Choice of the ℓ1 norm in the multi-dimensional convex clustering
problem (1)

Our test procedure and its statistical guarantees for the multi-dimensional case rely on ag-
gregating one-dimensional clusterings. As discussed in Remark 2, solving Problem (1) with
the multi-dimensional ℓ1 norm penalization boils down to one such aggregation. Hence, our
procedure and guarantees apply to multi-dimensional convex clustering with ℓ1 penalization.

One can see that our arguments, and crucially the proof of Theorem 2, cannot be applied
directly to convex clusterings obtained by replacing the ℓ1 penalization by a more general
ℓq one, q > 0, and especially by the ℓ2 one. In fact, we view the following question as an
important open problem: is it possible to characterize the set of observation matrices Y , such
that Problem (1), with the ℓ1 penalization replaced by the ℓq one, yields a given clustering,
with polyhedral sets or other tractable sets?

Nevertheless, we note that the ℓ1 penalization in Problem (1) has computational bene-
fits. Indeed, the problem is separable, and for each subproblem, we have obtained an exact
regularization path in Section 2.4 that stops after a maximal number of iterations known in
advance. To our knowledge, such a favorable regularization path is not available for a general
ℓq penalization. In agreement with this, the reference [10] (from 2011) concludes that Problem
(1) can be readily solved for thousands of data points, while if the ℓ1 penalization is replaced
by the ℓq one, this is the case for (only) hundreds of data points.

4.5. Comparison with data splitting strategies

For the problem of post-clustering inference, data splitting (or data fission, data thinning)
strategies [5, 18, 36] consist in separating the dataset into two stochastically independent
ones, keeping the same indexing of individuals as the original dataset. Then, a clustering can
be computed from the first dataset and then applied to the second data set. By independence,
the distribution of a post-clustering statistic of interest (for instance the difference of average
between two classes for a variable, in view of studying (4)) on the second data set remains
simple. For instance if the original dataset is Gaussian, this distribution remains Gaussian
conditionally to the clustering. Hence, a benefit of data splitting compared to our approach
is a simplicity of implementation. Furthermore, any clustering procedure can be used.

On the other hand, with data splitting, conclusions are provided for a clustering com-
puted on a dataset that differs from the original one. Hence, the conclusions of data splitting
approaches might be more difficult to interpret for practitioners, compared to those of the
present work, since these conclusions do not apply to the clustering that they would compute
on the original data set.

Note also that data splitting and our approach share two similar difficulties. First, they
share hyperparameters that should not be data-driven for the statistical guarantees. Indeed,
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with data splitting we need to fix the splitting mechanism to general the two datasets above.
Similarly, we fix the regularization parameter λ in (1). Second, considering Gaussian data, the
covariance matrix should be known for data splitting and our approach, as already discussed
in Section 4.3.

4.6. On conditioning by the orders

Let us consider the one-dimensional setting (Section 2) for simplicity of exposition. A similar
discussion could be made for the multi-dimensional case as well. Our test procedure is valid
conditionally to both the clustering and the order of observations, see Proposition 5, and our
discussion at the beginning of Section 2.2. Being valid conditionally to the clustering can be
considered as a desirable statistical feature, since the clustering is an object of interest in itself
(see also the discussion before Proposition 5). However, being valid conditionally to the order
is more a by-product of our approach than a desirable statistical feature. Indeed, in order to
obtain a polyhedral set with a tractable number of linear pieces (2(n − 1)) in Theorem 2, it
was necessary in the proof to condition by the observation order. Importantly, the constraint
(9) is not a linear constraint on the observation vector if the order is not fixed.

It could be the case that, if a test procedure could be derived by only conditioning by the
clustering, this test could have more power than the one we obtain in Section 2.3, which is
an interesting perspective for future work. In other words, it is possible that we pay a price
when conditioning by the order of observations? In the related regression context, a similar
phenomenon occurs in [14]. There, a first test procedure is obtained by conditioning by the
selected variables and a second one is obtained by conditioning by the selected variables and
the signs of the coefficients. The first procedure has a computational cost that is exponential
in the number of variables, but is more powerful. The second procedure has a small computa-
tional cost. In Section 6 of [14], it is written on this point that “one may be willing to sacrifice
statistical efficiency for computational efficiency”.
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Appendix A: Technical lemmas and their proofs

Lemma 11. Consider a fixed x = (x1, . . . , xn) ∈ Rn. Let, for B = (B1, . . . , Bn) ∈ Rn,

R(B) = ||B − x||22.

Then, for i, i′ ∈ [|n|], i ̸= i′ such that xi = xi′, if B is such that Bi ̸= Bi′, replacing Bi and Bi′

by (Bi+Bi′)/2 strictly decreases R(B). Furthermore, for i, i′ ∈ [|n|], i ̸= i′ such that xi < xi′,
if Bi > Bi′, exchanging Bi and Bi′ in B strictly decreases R(B).

Proof of Lemma 11. In the first case, we compute the change of R(B),

before− after = (Bi − xi)
2 + (Bi′ − xi)

2 − 2

(
Bi +Bi′

2
− xi

)2

which is strictly positive by strict convexity and because Bi ̸= Bi′ . In the second case,

before− after = (Bi − xi)
2 + (Bi′ − xi′)

2 − (Bi − xi′)
2 − (Bi′ − xi)

2

= −2Bixi − 2Bi′xi′ + 2Bixi′ + 2Bi′xi

= 2(Bi −Bi′)(xi′ − xi)

> 0.

Lemma 12. Let k ∈ N. Let f : Rk → R be convex and continuously differentiable. Let
g : Rk → R be convex and continuous. Let x ∈ Rk. For a continuously differentiable function
ψ : Rk → R, we let Linx(ψ) be the function t 7→ ∇ψ(x)

⊤(t−x), letting ∇ψ(x) be the gradient
of ψ at x. Then x is a minimizer of Linx(f) + g if and only if x is a minimizer of f + g.

Proof of Lemma 12. For a convex function ϕ, x is a minimizer of ϕ if and only if, for any
v ∈ Rk,

lim
u→0
u>0

ϕ(x+ uv)− ϕ(x)

u
≥ 0.

For any v ∈ Rk, the above limit is identical when ϕ = f + g and when ϕ = Linx(f) + g.
Hence the above limit is non-negative when ϕ = f + g if and only if it is non-negative when
ϕ = Linx(f) + g.

Lemma 13. Let n ∈ N and (a1, . . . , an) ∈ Rn with
∑n

i=1 ai = 0. Then the function

g : Rn → R

(u1, . . . , un) 7→
n∑
i=1

aiui +
n∑

i,i′=1
i<i′

|ui − ui′ |

is minimal at 0 if and only if, with a[1] ≤ · · · ≤ a[n] the ordered values of a1, . . . , an, for
ℓ ∈ [|n− 1|],

ℓ∑
i=1

a[i] + ℓ(n− ℓ) ≥ 0.
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Proof of Lemma 13. We write b1 ≤ · · · ≤ bn for the ordered values of a1, . . . , an. Then g is
minimal at 0 if and only if h is minimal at 0 with

h : Rn → R

(u1, . . . , un) 7→
n∑
i=1

biui +
n∑

i,i′=1
i<i′

|ui − ui′ |.

The minimum of h is reached when u1, . . . , un satisfy u1 ≥ · · · ≥ un. Indeed if there is i < i′

with ui < ui′ , we can swap ui and ui′ which lets the sum of absolute values unchanged and
changes the linear combination as

before− after = biui + bi′ui′ − biui′ − bi′ui = (bi − bi′)(ui − ui′) ≥ 0.

We can do this swap each time there is i < i′ with ui < ui′ , until we have u1 ≥ · · · ≥ un and
g has not been increased. Hence, to minimize h it is sufficient to consider u1 ≥ · · · ≥ un.

Let vℓ = uℓ − uℓ+1 ≥ 0 for ℓ ∈ [|n− 1|]. We have

n∑
i=1

biui = un

n∑
i=1

bi +

n−1∑
ℓ=1

vℓ

(
ℓ∑
i=1

bi

)

=

n−1∑
ℓ=1

vℓ

(
ℓ∑
i=1

bi

)

since by assumption
∑n

i=1 ai =
∑n

i=1 bi = 0. We also have

n∑
i,i′=1
i<i′

|ui − ui′ | =
n∑

i,i′=1
i<i′

i′−1∑
ℓ=i

vℓ

=
n−1∑
ℓ=1

vℓℓ(n− ℓ).

Therefore,

n∑
i=1

biui +

n∑
i,i′=1
i<i′

|ui − ui′ | =
n−1∑
ℓ=1

vℓ

(
ℓ∑
i=1

bi + ℓ(n− ℓ)

)
.

Hence h is minimal at 0 if and only if, for ℓ ∈ [|n− 1|],
∑ℓ

i=1 bi + ℓ(n− ℓ) ≥ 0.

Appendix B: Proofs for Section 2

Proof of Lemma 1. For the first part, let i, i′ ∈ [|n|], i ̸= i′ such that xi = xi′ and assume
that B̂i ̸= B̂i′ . Let us consider the increment of the criterion in (5) when replacing B̂i and B̂i′

by (B̂i + B̂i′)/2. From Lemma 11, the quadratic part is strictly decreased. Let us show that
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the absolute value part is decreased. This will lead to a contradiction since there is a unique
minimizer in (5) by strict convexity. The increment of the absolute value part is given by

before− after = |B̂i − B̂i′ |+
n∑
ι=1

ι̸∈{i,i′}

(∣∣∣B̂ι − B̂i

∣∣∣+ ∣∣∣B̂ι − B̂i′
∣∣∣− 2

∣∣∣∣∣B̂ι − B̂i + B̂i′

2

∣∣∣∣∣
)
.

In the right-hand side above, |B̂i− B̂i′ | > 0 and the second sum is non-negative by convexity.
This conclude the proof of the first part.

For the second part, let i, i′ ∈ [|n|], i ̸= i′ such that xi > xi′ and assume that B̂i < B̂i′ .
Let us consider again the increment of the criterion in (5) obtained by exchanging B̂i and
B̂i′ . From Lemma 11, the quadratic part is strictly decreased. The absolute value part is
left unchanged and thus the criterion in (5) is strictly decreased which is a contradiction as
before.

Proof of Theorem 2.
Proof that (6) and (7) imply (8),(9),(10)

By (6), for any k ∈ [|K|], all the B̂i for i ∈ Ck are identical to a value that we denote by b̂k,
with b̂1, . . . , b̂K two-by-two distinct. By Definition 1, Lemma 1 and (7), we have b̂1 > · · · > b̂K .
With this notation, the vector (̂bk)k∈[|K|] is locally solution of

min
(bk)k

1

2

K∑
k=1

∑
i∈Ck

(bk − xi)
2 + λ

K∑
k,k′=1
k′>k

nknk′(bk − bk′).

Indeed, in (5) we can assign to all the (Bi)i∈Ck the same new value bk close to b̂k, and we
have |Bi − Bi′ | = bk − bk′ for all i ∈ Ck, i′ ∈ Ck′ , k < k′. Canceling the gradient with respect
to b1, . . . , bK at b̂1, . . . , b̂K then provides, for k ∈ [|K|],

∑
i∈Ck

(
b̂k − xi

)
− λ

k−1∑
k′=1

nknk′ + λ

K∑
k′=k+1

nknk′ = 0.

This provides

b̂k =
1

nk

∑
i∈Ck

xi + λ

k−1∑
k′=1

nk′ − λ

K∑
k′=k+1

nk′ (20)

=
1

nk

∑
i∈Ck

xi + λtk−1 − λ(tK − tk). (21)

Hence, we have for k, k′ ∈ [|K|], k < k′:

b̂k − b̂k′ =
1

nk

∑
i∈Ck

xi −
1

nk′

∑
i∈Ck′

xi + λ(tk−1 − tk′−1) + λ(tk − tk′),

so that (8) holds by the previous observation that b̂1 > · · · > b̂K and taking k′ = k + 1.
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Now we fix k ∈ [|K|]. If we replace B̂i = b̂k by b̂k + Ui for i ∈ Ck and we keep the B̂i,
i ̸∈ Ck unchanged, we increase the cost function in Problem (5). Hence the following function
of (Ui)i∈Ck

1

2

∑
i∈Ck

(
b̂k + Ui − xi

)2
+ λ

K∑
k′=1
k′ ̸=k

∑
i∈Ck

nk′ sign(k
′ − k)

(
b̂k − b̂k′ + Ui

)

+ λ
∑
i,i′∈Ck
i<i′

|Ui − Ui′ |

is minimal locally around 0. Above, we let sign(t) = 1 if t > 0, sign(0) = 0 and sign(t) = −1
if t < 0. From Lemma 12, this implies that the function

∑
i∈Ck

(
b̂k − xi

)
Ui + λ

K∑
k′=1
k′ ̸=k

∑
i∈Ck

nk′ sign(k
′ − k)Ui + λ

∑
i,i′∈Ck
i<i′

|Ui − Ui′ | (22)

of (Ui)i∈Ck has a local minimum at zero. From (20), this function is

∑
i∈Ck

 1

nk

∑
i′∈Ck

xi′

− xi

Ui + λ
∑
i,i′∈Ck
i<i′

|Ui − Ui′ |. (23)

If nk = 1 this function is 0. Otherwise, because this function has a local minimum at zero,

and because ai :=
1
nk

(∑
i′∈Ck xi′

)
− xi satisfies aσ(tk−1+1) ≤ · · · ≤ aσ(tk) by (7) , Lemma 13

implies that for all ℓ ∈ [|nk|],

ℓ∑
i=1

 1

nk

∑
i′∈Ck

xi′

− xσ(tk−1+i)

+ λℓ(nk − ℓ) ≥ 0 (24)

so that (9) holds. Note that (24) also holds trivially for ℓ = nk. Finally, (10) holds, being
identical to (7) .
Proof that (8),(9),(10) imply (6) and (7)

Let b̃k be given by the right hand side of (20) for k ∈ [|K|]. Let B̃i = b̃k for k ∈ [|K|]
and i ∈ Ck. Let us show that B̃ = (B̃1, . . . , B̃n) provides a minimum of (5) (that is B̃ = B̂).
Note that (8) and (21) provide b̃k > b̃k′ for k < k′. Then we can write the cost function at
B̃i + Ui, i ∈ [|n|], locally around 0 for U = (U1, . . . , Un) ∈ Rn, using :

1

2

K∑
k=1

∑
i∈Ck

(
b̃k − xi + Ui

)2
+ λ

K∑
k,k′=1
k′>k

∑
i∈Ck
i′∈Ck′

(
b̃k − b̃k′ + Ui − Ui′

)
+ λ

K∑
k=1

∑
i,i′∈Ck
i<i′

|Ui − Ui′ |.

From Lemma 12 a sufficient condition to have a local minimum at 0 is to have a local minimum
at 0 of

K∑
k=1

∑
i∈Ck

(
b̃k − xi

)
Ui + λ

K∑
k,k′=1
k′>k

∑
i∈Ck
i′∈Ck′

(Ui − Ui′) + λ
K∑
k=1

∑
i,i′∈Ck
i<i′

|Ui − Ui′ |.
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This is a sum of functions of (Ui)i∈Ck , the sum being over k. Hence, it is enough that the
following function of (Ui)i∈Ck is locally minimal at 0, for k ∈ [|K|],

∑
i∈Ck

(
b̃k − xi

)
Ui + λ

∑
i∈Ck

K∑
k′=1
k′ ̸=k

nk′ sign(k
′ − k)Ui + λ

∑
i,i′∈Ck
i<i′

|Ui − Ui′ |.

This is the same function as in (22) and (23). It is 0 when nk = 1. Otherwise, since the weights
of the linear combination of (Ui)i∈Ck have sum zero and with Condition (9) we indeed have a

minimum at Ui = 0, i ∈ Ck from Lemma 13. Hence B̃ as defined above is the global minimizer
of (5) (since it is a local minimizer). Hence since we have seen before that b̃k ̸= b̃k′ for k ̸= k′,
then (6) is satisfied. Finally, (7) holds, being identical to (10).
Proof of (11): This equation was established in (20).

Proof and full expressions for Lemma 3.

Condition (10): xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(n) is equivalent to M1Pσx ≤ λm1 with

M1 =



−1 1 0 0 . . . 0

0 −1 1 0 . . . 0

0 0 −1 1 . . . 0

. . .
. . .

. . .
. . .

0 0 0 0 −1 1


∈ Rn−1×n (25)

and m1 = 0n−1.
Condition (8): For k ∈ [|K − 1|],

1

nk

nk∑
i=1

xσ(tk−1+i) −
1

nk+1

nk+1∑
i=1

xσ(tk+i) > λ(tk+1 − tk−1)

is equivalent to M2(t)Pσx < λm2(t), where M2(t) ∈ RK−1×n and m2(t) ∈ RK−1 are defined
by

m2(t) = − (t2 − t0, t3 − t1, . . . , tK − tK−2)
⊤ (26)

and

M2(t) =



− 1
n1

. . . − 1
n1

1
n2

. . . 1
n2

0 . . . 0 . . . 0 . . . 0 0 . . . 0

0 . . . 0 − 1
n2

. . . − 1
n2

1
n3

. . . 1
n3

. . . 0 . . . 0 0 . . . 0

..

.
..
.

..

.
...

...
...

...
...

...
...

...
...

...
...

...
...

0 . . . 0 0 . . . 0 0 . . . 0 . . . − 1
nK−1

. . . − 1
nK−1

1
nK

. . . 1
nK


,

(27)

where the number of repetitions of each ±1/nk in each line is nk.
Condition (9) : For k ∈ [|K|] such that nk ≥ 2, for ℓ ∈ [|nk − 1|],

1

nk

nk∑
i=1

xσ(tk−1+i) −
1

ℓ

ℓ∑
i=1

xσ(tk−1+i) ≥ λ(ℓ− nk)
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is equivalent to M3(t)Pσx ≤ λm3(t) where M3(t) ∈ Rn−K×n and m3(t) ∈ Rn−K are as
follows. We have

m3(t) = (n1 − 1, n1 − 2, . . . , 1, n2 − 1, . . . , 1, . . . , nK − 1, . . . , 1)⊤ (28)

with the convention that (nk − 1, nk − 2, . . . , 1) is empty when nk = 1, and M3(t) =

diag(M
(1)
3 , . . . ,M

(K)
3 ) with

M
(k)
3 =



1 0 0 . . . 0 0

1
2

1
2 0 . . . 0 0

1
3

1
3

1
3 . . . 0 0

...
...

...
. . .

...
...

1
nk−1

1
nk−1

1
nk−1 . . . 1

nk−1 0


− 1

nk
1nk−1×nk

, (29)

with the convention that M
(k)
3 is 0 × 0 when nk = 1 and where 1nk−1×nk

is the nk − 1 × nk
matrix composed of ones.

Proof of Proposition 4. The proposition is obtained from Lemma 5.1 in [14]. We will only
show the last claim that the probability that V−(Z) = V+(Z) is zero, conditionally to the
event in (13). We have, letting 1(13) denote the indicator function that the event in (13) holds,

E
[
1(13)1V−(Z)=V+(Z)

]
= E

[
1V−(Z)=V+(Z)E

[
1(13)

∣∣V−(Z) = V+(Z)
]]
.

The above conditional expectation is zero from (13), because η⊤X is independent from Z
and has non-zero variance because Σ is invertible and η is non-zero.

Proof of Proposition 5. The proof follows closely that of Theorem 5.2 in [14]. Fix t ∈ [0, 1].
Remark that in Lemma 3, all the lines of M2(t) are non-zero. Furthermore, Σ is invertible.
This provides, from Theorem 2 and Lemma 3 that the events Et,σ and {MPσX ≤ λ m} have
their symmetric difference of probability zero. Hence we have

P (pval(X, t, σ) ≤ t|Et,σ) = P (pval(X, t, σ) ≤ t|MPσX ≤ λ m) .

We then have

P (pval(X, t, σ) ≤ t|Et,σ)

=

∫
Rn

P (pval(X, t, σ) ≤ t|MPσX ≤ λ m,Z = z0) dP|MPσX≤λ m(z0),

where dP|MPσX≤λ m(z0) denotes the law of Z conditionally to MPσX ≤ λ m.
Consider z0 in the support of P|MPσX≤λ m such that V−(z0) < V+(z0), which holds with

P|MPσX≤λ m-probability one from Proposition 4. Then, as discussed in Section 2.3.1 and
shown in [14], conditionally to MPσX ≤ λ m and Z = z0, under the null hypothesis
η⊤µ = 0, T (X, t, σ) is uniformly distributed on [0, 1] and thus so is pval(X, t, σ). We thus
obtain,

P (pval(X, t, σ) ≤ t|Et,σ) =

∫
Rn

t dP|MPσX≤λ m(z0)

= t.

This concludes the proof.
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Proof of Proposition 6. Fix t ∈ [0, 1]. We have

P
(
pval(X,T, S) ≤ t| (T, S) ∈ E ,η(T, S)⊤µ = 0

)
=

∑
(t,σ)∈E

η(t,σ)⊤µ=0
P((T,S)=(t,σ))>0

P
(
(T, S) = (t, σ)| (T, S) ∈ E ,η(T, S)⊤µ = 0

)
P (pval(X, t, σ) ≤ t| (T, S) = (t, σ)) .

In the conditional probability P (pval(X, t, σ) ≤ t| (T, S) = (t, σ)) of the above sum, condi-
tionally to (T, S) = (t, σ), one can check that all the conditions of Proposition 5 hold. Hence,
from this proposition, we have

P
(
pval(X,T, S) ≤ t| (T, S) ∈ E ,η(T, S)⊤µ = 0

)
=

∑
(t,σ)∈E

η(t,σ)⊤µ=0
P((T,S)=(t,σ))>0

P
(
(T, S) = (t, σ)| (T, S) ∈ E ,η(T, S)⊤µ = 0

)
× t

= t.

This concludes the proof.

Proof of Theorem 7.
We will show that, for the successive values of r, for k ∈ [|K(r)|], for λ ≥ λ(r),

b̂
(r)
k (λ) =

1

n
(r)
k

∑
i∈C(r)

k

xi + λ
k−1∑
k′=1

n
(r)
k′ − λ

K(r)∑
k′=k+1

n
(r)
k′ . (30)

We will also show that for the successive values of r,

λ(r+1) = inf
{
λ ≥ λ(r); there exists k ∈ [|K(r) − 1|] such that b̂

(r)
k (λ) = b̂

(r)
k+1(λ)

}
. (31)

We will prove by induction that the following properties O(r), P(r), Q(r) and R(r) hold for
r = 0, 1, . . . and as long as K(r) ≥ 2:

O(r) = “(30) holds for k ∈ [|K(r)|] and λ ≥ λ(r)”,

P(r) = “the set in (31) is non-empty and (31) holds”,

Q(r) = “for λ ∈ [λ(r), λ(r+1)), we have b̂
(r)
1 (λ) > · · · > b̂

(r)

K(r)(λ)”,

R(r) = “for λ ∈ [λ(r), λ(r+1)), (B̂
(r)
i (λ))i∈[|n|] minimizes Problem (5)”.

Along proving these properties by induction, we will show that K(r) > K(r+1). Doing this,
and discussing the case r = rmax at the end, will conclude the proof.

Initialization: r = 0. When r = 0, we have λ(0) = 0 and, for k ∈ [|K(0)|],

b̂
(0)
k (λ(0)) = x̃k =

1

n
(0)
k

∑
i∈C(0)

k

xi (32)
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and thus the right-hand sides of (17) and (30) are equal and so O(0) holds. Furthermore, from

(32), b̂
(0)
1 (0) > · · · > b̂

(0)

K(0)(0). We have, for k ∈ [|K(0) − 1|], using (30),

b̂
(0)
k (λ)− b̂

(0)
k+1(λ) = x̃k + λ

k−1∑
k′=1

n
(0)
k′ − λ

K(0)∑
k′=k+1

n
(0)
k′ − x̃k+1 − λ

k∑
k′=1

n
(0)
k′ + λ

K(0)∑
k′=k+2

n
(0)
k′

= x̃k − x̃k+1︸ ︷︷ ︸
>0

−λ
(
n
(0)
k + n

(0)
k+1

)
︸ ︷︷ ︸

>0

. (33)

Hence, we see that indeed the set in (31) is non-empty.

Let λ̃(1) be given by the right-hand side of (31). The values of b̂
(0)
k (λ), k ∈ [|K(0)|], are

continuous in λ and thus by definition of λ̃(1) they remain two-by-two distinct and in the
same order on [0, λ̃(1)). Furthermore , from (33),

λ̃(1) = min
k∈[|K(0)−1|]

x̃k − x̃k+1

n
(0)
k + n

(0)
k+1

= λ(0) + min
k∈[|K(0)−1|]

b̂
(0)
k (λ(0))− b̂

(0)
k+1(λ

(0))

n
(0)
k + n

(0)
k+1

= λ(1).

Hence indeed (31) holds and thus P(0) holds. Since λ(1) is given by (31), then also Q(0) holds.
Let us now show R(0). Let λ ∈ [λ(0), λ(1)). We will apply Theorem 2, with σ there being a

permutation such that xσ(1) ≥ · · · ≥ xσ(n) and C being the clustering C(0). For k ∈ [|K(0)−1|],
since b̂

(0)
k (λ)− b̂

(0)
k+1(λ) > 0 as seen above, we obtain from (30) that (8) holds, using (20) and

(21). It is immediate that (9) holds because the left-hand term is zero and the right-hand
term is non-positive. Hence from (11) in Theorem 2, R(0) indeed holds, also from (30). Also,

K(1) < K(0) because, by definition of λ(1) in (31), the values b̂
(0)
1 (λ(1)), . . . , b̂

(0)

K(0)(λ
(1)) are not

two-by-two distinct.
Induction: from r to r + 1. Let now r ∈ N such that K(r+1) ≥ 2. Assume that O(r),

P(r), Q(r) and R(r) hold. For any B ∈ Rn, from R(r), for λ ∈ [λ(r), λ(r+1)),

1

2

n∑
i=1

(
B̂

(r)
i (λ)− xi

)2
+ λ

n∑
i,i′=1
i<i′

∣∣∣B̂(r)
i (λ)− B̂

(r)
i′ (λ)

∣∣∣ ≤ 1

2

n∑
i=1

(Bi − xi)
2 + λ

n∑
i,i′=1
i<i′

|Bi −Bi′ | .

As λ→ λ(r+1), this yields

1

2

n∑
i=1

(
B̂

(r)
i (λ(r+1))− xi

)2
+ λ(r+1)

n∑
i,i′=1
i<i′

∣∣∣B̂(r)
i (λ(r+1))− B̂

(r)
i′ (λ(r+1))

∣∣∣
≤ 1

2

n∑
i=1

(Bi − xi)
2 + λ(r+1)

n∑
i,i′=1
i<i′

|Bi −Bi′ | .

Hence, the minimizer of (5) for λ = λ(r+1) is equal to B̂
(r)
i (λ(r+1))i∈[|n|]. Hence, C(r+1)

is the clustering obtained by minimizing (5). We can see from the successive defi-

nitions of (b̂
(r)
k (λ(r+1)))k∈[|K(r)|], (b̂

(r+1)
k (λ(r+1)))k∈[|K(r+1)|] and (B̂

(r+1)
i (λ(r+1)))i∈[|n|] that

(B̂
(r)
i (λ(r+1)))i∈[|n|] = (B̂

(r+1)
i (λ(r+1)))i∈[|n|].
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Hence, from (11) in Theorem 2, the right-hand side of (30), with (r, λ) there replaced by

(r+1, λ(r+1)) and for k ∈ [|K(r+1)|], is equal to b̂(r+1)
k (λ(r+1)). Hence (30) holds at step r+1

for λ = λ(r+1). Hence (30) holds for λ ≥ λ(r+1) since the right-hand-sides of (17) and (30)
have the same slope w.r.t. λ. Thus O(r+1) is proved. The properties P(r+1) and Q(r+1) are
shown similarly as in the initialization step.

Let us finally show R(r+1). Let λ ∈ [λ(r+1), λ(r+2)). Similarly as for the initialization step,
we will apply Theorem 2, with the same permutation σ and with C being the clustering C(r+1).
Equation (8) is shown to hold similarly as before, using (30). From R(r) and with the above,

we obtain that
(
B̂

(r)
i (λ(r+1))

)
i∈[|n|]

=
(
B̂

(r+1)
i (λ(r+1))

)
i∈[|n|]

minimizes (5) when λ = λ(r+1).

Hence Equation (9) holds when λ = λ(r+1) from Theorem 2. For λ ∈ [λ(r+1), λ(r+2)), the
clustering is the same as when λ = λ(r+1) so the left-hand-side of (9) is unchanged compared
to when λ = λ(r+1). On the other hand, the right-hand side is decreased. Hence, (9) also holds
for λ ∈ [λ(r+1), λ(r+2)). Hence from (11) in Theorem 2, and (30), R(r+1) indeed holds.

When r = rmax. As before, we show that O(rmax−1) implies O(rmax). Then using (30) for
rmax we obtain, by the same arguments as when showing R(r+1) above, that for λ ≥ λ(rmax),

(B̂
(rmax)
i (λ))i∈[|n|] minimizes (5). Note that the right-hand-side of (30) is constant in λ now

and there is a single class. Hence the common value of (B̂
(rmax)
i )i∈[|n|] minimizes (5) as λ→ ∞,

so this value is
∑n

i=1 xi/n.

Appendix C: Proofs for Section 3

Proof of Proposition 8. Computing the invariant statistic as described in Section 3.2.1 re-
quires computing vec(Z) := [Inp−vec(c)κ⊤]vec(Y ) with vec(c) = (Ip⊗Σ)κ(κ⊤(Ip⊗Σ)κ)−1,
similarly as Z and c in Proposition 4. Using the properties of Kronecker products, we have,
letting ej0 be the j0th base column vector in Rp,

vec(c) =(Ip ⊗Σ)(ej0 ⊗ η)(κ⊤(Ip ⊗Σ)κ)−1

=(ej0 ⊗Ση)(η⊤Ση)−1

=ej0 ⊗ c,

where c = Ση(η⊤Ση)−1 is as defined for the one-dimensional case in Proposition 4. Hence,
vec(c) is a np × 1 vector where the subvector corresponding to the variable j0 is equal to c
and the subvectors corresponding to the other variables are zero. Then,

vec(Z) =vec(Y )− vec(c)κ⊤vec(Y )

=vec(Y )− (ej0 ⊗ c)(e⊤j0 ⊗ η⊤)vec(Y )

=vec(Y )−
(
(ej0e

⊤
j0)⊗ (cη⊤)

)
vec(Y )

=vec(Y )− ej0 ⊗
(
cη⊤Y .j0

)
=ej0 ⊗Z + vec(Y .−j0),

where Z = [In − cη⊤]Y .j0 is defined as in Proposition 4 and Y .−j0 is defined by replacing
the column j0 of Y by zero. Hence, vec(Z) is a np× 1 vector which subvector corresponding
to the variable j0 is Z which is computed as in the one-dimensional case.
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The next step for obtaining the invariant statistic is to compute

V−(vec(Z)) := max
l:(MDσvec(c))l<0

λml − (MDσvec(Z))l
(MDσvec(c))l

and

V+(vec(Z)) := min
l:(MDσvec(c))l>0

λml − (MDσvec(Z))l
(MDσvec(c))l

.

In V−(vec(Z)) the set of indices l is the disjoint union of p sets of cardinality 2(n− 1) each,
corresponding to the p variables. Consider l in the set corresponding to a variable j ̸= j0.
Then in (MDσvec(c))l, the row l of MDσ, of size np has non-zero components only for
the indices corresponding to the variable j. On the other hand, as seen above, vec(c) has
non-zero components only for the indices corresponding to the variable j0. Hence, taking the
inner product, (MDσvec(c))l = 0. Hence the maximum in V−(vec(Z)) can simply be taken
with the indices l corresponding to the variable j0. This, together with the expressions of
vec(c) and vec(Z) above yields

V−(vec(Z)) = max
l:(M(t(j0))P

σ(j0)
c)l<0

λm(t(j0))l − (M(t(j0))Pσ(j0)Z)l

(M(t(j0))Pσ(j0)c)l
:= V−(Z),

where V−(Z) has the same expression as in Proposition 4 for the one-dimensional case. We
obtain similarly

V+(vec(Z)) = min
l:(M(t(j0))P

σ(j0)
c)l>0

λm(t(j0))l − (M(t(j0))Pσ(j0)Z)l

(M(t(j0))Pσ(j0)c)l
:= V+(Z).

The invariant statistic is thus, similarly as in Section 2.3.1,

T (Y ) = F
[V−(Z),V+(Z)]

0,η⊤Ση
(η⊤Y .j0).

This concludes the proof.

Proof of Proposition 9. From Theorem 2 and Lemma 3, for j ∈ [|p|], the event{
C(j) is the clustering given by B̂.j and Yσ(j)(1)j ≥ · · · ≥ Yσ(j)(n)j

}
is equal to the event

{
M(t(j))Pσ(j)Y .j ≤ λm(t(j))

}
, up to a symmetric difference of Y -

probability 0 (because the rows of M(t(j)) are non-zero and the covariance matrix of Y .j

is invertible). Hence, up to a symmetric difference of Y -probability 0, the event E is equal to
the event {MDσvec(Y ) ≤ λm}, with the construction of Section 3.2.1. The rest of the proof
is the same as the proof of Proposition 5.

Proof of Proposition 10. The proof is the same as for Proposition 6.

Appendix D: Time complexity of convex clustering

D.1. Benchmarking existing implementations of convex clustering

In this section we compare the observed time complexities of existing implementations of
one-dimensional convex clustering in the R language:
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Figure 6: Comparison of the empirical complexities of existing R implementations of convex
clustering. The axes are on a logarithmic scale. Each dot represents one experimental run.
For a given method, the median computation times for a given problem size are connected by
dashed lines. The solid lines have been obtained by a linear regression of time against problem
size (on the log scale).

• the convex clustering 1d method in our R package poclin, which is available from
https://plmlab.math.cnrs.fr/pneuvial/poclin;

• the genlasso function in the R package genlasso, which is available from CRAN at
https://CRAN.R-project.org/package=genlasso;

• the clusterpath.l1.id function in the R package clusterpath, which is available from
R-forge at https://clusterpath.r-forge.r-project.org/. The core functions of this
package are implemented in C.

We have used the R package microbenchmark to compare the execution
time of these implementations on standard Gaussian signal of size n ∈
{10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000}. The results are displayed
in Figure 6 on the log-log scale. Each dot represents one experimental run. For a given
method, the median computation times for a given problem size are connected by dashed
lines. The solid lines have been obtained by a linear regression of time against problem size
(on the log scale).

The computation time of genlasso is much larger than for the other implementations; we
were not able to get results for n ≥ 100 with this method. This is explained by the fact that
genlasso is a generic implementation where the constraints are stored in a n(n − 1)/2 × n
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matrix. In contrast, the other clusterpath and poclin implementations are quite efficient.
For clusterpath, we report two computational times, which are labeled as ’clusterpath’ and
’clusterpath light’ in Figure 6, respectively:

• ’clusterpath’ corresponds to the direct application of the clusterpath.l1.id function.
We were not able to include ’clusterpath’ for n ≥ 10000 due to memory issues – one
run of this function for n = 5000 takes up 6.6 Gb of RAM;

• ’clusterpath light’ directly calls the underlying C function join clusters convert in
the clusterpath package, thereby avoiding some computational overhead. Thanks to
this modification, we were able to run ’clusterpath light’ for n ≤ 50000. However, it was
not possible to run it for n ≥ 100000 because of memory issues.

In contrast, since the space complexity of poclin is linear, we were able to run poclin without
any memory issue for n ≤ 100000. The computational time of poclin is slightly higher than
that of ’clusterpath light’ for n ≤ 20000. However, we note that the implementation in poclin

only uses R code, while ’clusterpath light’ only uses C code: we expect that a C implementation
of poclin would lead to improve computational times. More interestingly, a linear regression
in the log/log space showed that the slope of the poclin curve is approximately 1.5, while that
of ’clusterpath light’ and ’clusterpath’ are approximately 1.9. This implies that the empirical
complexity of poclin is of the order of O(n1.5), while that of clusterpath is of the order of
O(n1.9).

D.2. Further reducing the time complexity of Algorithm 1

The complexity of Algorithm 1 can be reduced to the order O(n log(n)) without compromising
the linear memory complexity. This section gives an informal description of the main idea
for this reduction. We consider the pairs of consecutive clusters, associated to consecutive
values of b̂ in Algorithm 1. Let us define the “merging distance” of each of these pairs as
the value of λ for which the corresponding value of b̂ become equal, that is, where this pair
of clusters should be merged into one. If two clusters are merged, the merging distances are
updated only for these two clusters and the one or two adjacent ones. This property could
be exploited in the implementation of Algorithm 1, by storing these merging distances in a
min heap binary tree [34]. Indeed, the minimal element of a min heap (here, corresponding to
the next merge), is obtained in constant time (O(1)) as the root of the tree, while the cost of
inserting an element in the heap is logarithmic (O(log(n))), corresponding to the depth of the
binary heap. Exploiting the binary min-heap tree, we can keep a O(log(n)) cost at each step
when two clusters are merged. This yields a total computational complexity of O(n log(n))
for O(n) steps.

Note also that if more than two clusters are merged, then the computational cost of the
corresponding step can be higher, but the total number of steps is more reduced. We eschew
a full description of an implementation of Algorithm 1 with a binary min-heap tree for the
sake of concision and to promote explicit formulas such as (17) and (18).

Appendix E: Additional illustrations

E.1. Calibration of the regularization parameter

We describe the procedure used in the numerical experiments to calibrate the value of the
regularization parameter λ. As explained in the main text, the goal of this procedure is to
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Figure 7: Empirical distribution of λ(rmax) across 10000 replications of the procedure to choose
λ (see main text for details). The dots correspond to the chosen values.

ensure that with high probability, the one-dimensional convex clustering finds at least two
clusters under the null hypothesis.

We generate B = 10000 replicated null data sets Zb ∼ N (0n,Σ), b ∈ [|B|]. For each of

these data sets, we calculate λ
(rmax)
b , the smallest value of the regularization parameter λ for

which the convex clustering yields a single cluster. For a given input data set, this value is
obtained analytically in linear time using (19). Finally, we set λ to q0.01(λ) − sd(λ), where

λ = (λ
(rmax)
b )b∈[|B|], q0.01(z) is the first percentile of the vector z and sd(z) is the standard

deviation of the vector z. The result of this procedure for Σ = In is also illustrated by
Figure 7. For n ∈ {100, 500, 1000}, the empirical distribution of λ(rmax) is summarized by a
violin plot (mirrored kernel density estimate) and the obtained value of λ is represented by a
dot and a dashed horizontal line.

E.2. Level of the test in the one dimensional case

We set a Gaussian sample X = (X1, . . . , Xn) with mean vector µ = 0n and known covariance
matrix Σ = In. For the given fixed value λ = 0.0025, we use our test in order to compare
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the means of cluster Ck and Ck′ for 1 ≤ k < k′ ≤ K0 = 10. This corresponds to the test

of the K0(K0 − 1)/2 null hypotheses η[kk′]⊤µ = 0, where η[kk′] ∈ Rn is defined by η
[kk′]
i =

1/nk1i∈Ck − 1/nk′1i∈Ck′ . We retain N = 1000 numerical experiments such that the clustering
C(X) associated to λ verifies K(X) ≥ K0. The result is summarized in Figure 8 by the
empirical cumulative distribution of the conditional p-value (15) for each pair of clusters.
Figure 8 illustrates the uniformity of the distribution of each of these p-values, for n = 1000.
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Figure 8: Experiments under the null hypothesis: empirical cumulative distribution functions
of the p-value of the test of equality of means of all pairs of clusters. Each curve corresponds
to a specific pair of clusters.

E.3. The p-dimensional case

In Figure 9 we plot the empirical distribution (across 500 numerical experiments described in
Section 3.3) of the absolute value of the difference between the true means of the estimated
clusters for n = 100 and n = 1000, for the variable Y .1. By construction, under this simulation
scenario, this quantity is bounded by 2ν, as indicated by a dashed horizontal line. The other
variables, Y .2 and Y .3, are not displayed because they do not carry any signal. This indicates
that the convex clustering procedure works reasonably well: indeed, the difference between
the true means of the estimated clusters is close to the difference between the true means of
the true clusters. Moreover, the variability is greater for n = 100 than n = 1000, consistently
with the available information to solve the clustering problem.
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Figure 9: Empirical distribution (across 500 experiments) of the absolute value of the difference
between the true means of the estimated clusters. Dashed horizontal lines are drawn for
reference at y = 2ν (in black) and y = 0 (in gray).
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