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Classical inference methods notoriously fail when applied to data-driven test hypotheses or inference targets. Instead, dedicated methodologies are required to obtain statistical guarantees for these selective inference problems. Selective inference is particularly relevant post-clustering, typically when testing a difference in mean between two clusters. In this paper, we address convex clustering with ℓ1 penalization, by leveraging related selective inference tools for regression, based on Gaussian vectors conditioned to polyhedral sets. In the one-dimensional case, we prove a polyhedral characterization of obtaining given clusters, than enables us to suggest a test procedure with statistical guarantees. This characterization also allows us to provide a computationally efficient regularization path algorithm. Then, we extend the above test procedure and guarantees to multi-dimensional clustering with ℓ1 penalization, and also to more general multidimensional clusterings that aggregate one-dimensional ones. With various numerical experiments, we validate our statistical guarantees and we demonstrate the power of our methods to detect differences in mean between clusters. Our methods are implemented in the R package poclin.

Context and objectives

The problem of selective inference occurs when the same dataset is used (i) to detect a statistical signal and (ii) to evaluate the strength of this signal [START_REF] Taylor | Statistical learning and selective inference[END_REF]. In this article, we focus on the problem of post-clustering testing, where step (i) corresponds to a clustering of the input data, and step (ii) to an hypothesis test stemming from the clustering step. In such a situation, the naive application of a test that does not account for the data-driven clustering step is bound to violate type I error control [START_REF] Gao | Selective inference for hierarchical clustering[END_REF].

This problem occurs in several applications. For instance, it is well-identified in the analysis of single-cell RNA-seq data (see [START_REF] Lähnemann | Eleven grand challenges in single-cell data science[END_REF]) where the genes expression is measured for several cells: we want to test if each gene has a differential expression between two cells clusters, which are determined beforehand with a clustering procedure on the same expression matrix. This practical question has motivated numerous recent statistical developments to address this post-clustering testing problem.

A data splitting strategy has been studied by [START_REF] Zhang | Valid post-clustering differential analysis for single-cell RNA-seq[END_REF], but the assignment of labels (from the clustering of the first sample) to the second sample before the test procedure is not taken into account in the correction. A conditional testing approach has been proposed by [START_REF] Gao | Selective inference for hierarchical clustering[END_REF] for the problem of the difference in mean between two clusters. The authors condition by the event "the two compared clusters are obtained by the random clustering" and by an additional one, allowing p-values to be exactly computed in the case of agglomerative hierarchical clustering. This approach has been extended to the test of the difference in mean between two clusters for each fixed variable [START_REF] Hivert | Post-clustering difference testing: valid inference and practical considerations[END_REF]. A strategy to aggregate these p-values, and another approach using tests of multimodality (without statistical guarantees) are also suggested in [START_REF] Hivert | Post-clustering difference testing: valid inference and practical considerations[END_REF]. In the context of single-cell data analysis, a count splitting approach under a Poisson assumption [START_REF] Neufeld | Inference after latent variable estimation for single-cell RNA sequencing data[END_REF] and a more flexible Negative Binomial assumption [START_REF] Neufeld | Negative binomial count splitting for single-cell rna sequencing data[END_REF] have recently been proposed. In the same line of work, a data thinning strategy is explored in [START_REF] Dharamshi | Generalized data thinning using sufficient statistics[END_REF][START_REF] Neufeld | Data thinning for convolutionclosed distributions[END_REF], that consists in generating two (or more) independent random matrices that sum to the initial data matrix. This idea can be applied to various distributions belonging to the exponential family.

The present contribution takes a different route from the above references and builds on [START_REF] Lee | Exact post-selection inference, with application to the lasso[END_REF], where a Gaussian linear model is considered, and test procedures are provided, together with associated guarantees post-selection of variables based on the Lasso. The nature of the Lasso optimization problem is carefully analyzed in [START_REF] Lee | Exact post-selection inference, with application to the lasso[END_REF], and conditionally valid test procedures are obtained, based on properties of Gaussian vectors conditioned to polyhedral sets.

We will extend this approach and its statistical guarantees to clustering procedures based on solving a convex optimization problem with ℓ 1 penalization.

Let us now describe the setting of the paper in more details. We observe, for n observations of p variables (or features), a matrix Y = (Y ij ) i∈ [|n|],j∈ [|p|] , where [|u|] := {1, . . . , u} for any positive integer u. We assume that vec(Y ) is a np-dimensional Gaussian vector with mean vector β and np × np covariance matrix Γ, where vec(.) denotes the vectorization by column of a matrix. The vector β is unknown but the matrix Γ is assumed to be known (as in several of the articles cited above, we will discuss this hypothesis in Section 4.3). Note that this setup covers in particular the case considered e.g. in [START_REF] Gao | Selective inference for hierarchical clustering[END_REF], where Y follows the matrix normal distribution MN n×p (u, Σ, ∆) where u is the n × p mean matrix, Σ is the n × n covariance matrix among rows and ∆ is the p × p covariance matrix among variables. Indeed, this matrix normal setup is equivalent (by definition) to that vec(Y ) is a np-dimensional Gaussian vector with mean vector β := vec(u) and np × np covariance matrix Γ = ∆ ⊗ Σ, where ⊗ denotes the Kronecker product.

Under this framework, as announced, we will develop test procedures that extend the line of analysis of [START_REF] Lee | Exact post-selection inference, with application to the lasso[END_REF] to a clustering counterpart of the Lasso in linear models. Thus we consider the convex clustering problem [START_REF] Hocking | Clusterpath an algorithm for clustering using convex fusion penalties[END_REF][START_REF] Lindsten | Clustering using sum-of-norms regularization: With application to particle filter output computation[END_REF][START_REF] Pelckmans | Convex clustering shrinkage[END_REF] which consists in solving the following optimization problem

B(Y ) ∈ argmin B=(B ⊤ 1. ,...,B ⊤ n. ) ⊤ ∈R n×p 1 2 ||B -Y || 2 F + λ n i,i ′ =1 i<i ′ ||B i ′ . -B i. || 1 (1) 
where || • || F is the Frobenius norm and B i. denotes the i-th row of B. The quantity λ > 0 is a tuning parameter that we consider fixed here (as for the covariance matrix Γ, this assumption is further discussed in Section 4.3). We can immediately notice that Problem (1) is separable, and can be solved by addressing, for j ∈ [|p|], the one-dimensional problem B .j (Y .j ) ∈ argmin where B .j is the j-th column of B. It is worth pointing out that if the norm ∥ • ∥ 1 is replaced by another norm ∥ • ∥ q , q ∈ (0, ∞)\{1} in [START_REF] Bachoc | Valid confidence intervals for post-modelselection predictors[END_REF], then the optimization problem is no longer separable. Hence, it becomes more challenging from a computational perspective. This topic has been the object of a fair amount of recent work, see [START_REF] Chi | Splitting methods for convex clustering[END_REF][START_REF] Sun | Convex clustering: Model, theoretical guarantee and efficient algorithm[END_REF][START_REF] Wang | Sparse convex clustering[END_REF][START_REF] Weylandt | Dynamic visualization and fast computation for convex clustering via algorithmic regularization[END_REF][START_REF] Zhou | An efficient smoothing proximal gradient algorithm for convex clustering[END_REF] and our discussions at the end of Section 2.4 and in Section 4.4. The solution B .j (Y .j ) of ( 2) naturally provides a one-dimensional clustering C (j) of the observations for the variable j, by affecting i and i ′ to the same cluster if and only if B ij = B i ′ j . Similarly, the solution of (1) provided by the matrix B = ( B.1 , . . . , B.p ) naturally yields a multi-dimensional clustering of the observations, by affecting i and i ′ to the same cluster if and only if B i. = B i ′ . . In this article, we will consider more general multidimensional clusterings that can be obtained by aggregation of the one-dimensional clusterings C (1) , . . . , C (p) (see Section 3.1). A clustering of the rows of Y in K clusters will be denoted by C = C(Y ) = (C 1 (Y ), . . . , C K (Y )). Of course these clusters and the number of clusters K are random (depending on Y ).

Our goal is to provide test procedures for a (data-dependent) hypothesis of the form

κ ⊤ β = 0,
where κ = κ(C(Y )) is a deterministic function of the clustering C(Y ) and where we recall that β is the np × 1 mean vector of vec(Y ). We refer to Section 4.2 for further discussions on the merits and interpretations of the tests considered in this paper.

Example 1 (feature-level two-group test). The following typical example of a choice of κ enables to compare, for a variable j 0 ∈ [|p|], the average signal difference between two clusters

C k 1 and C k 2 , k 1 , k 2 ∈ [|K|], k 1 ̸ = k 2 . We write, for i ∈ [|n|] and j ∈ [|p|], κ i+(j-1)n = 1 i∈C k 1 |C k 1 | - 1 i∈C k 2 |C k 2 | 1 j=j 0 , (3) 
where |A| denotes the cardinality of any finite set A. This yields

κ ⊤ β = 1 |C k 1 | i∈C k 1 β i+(j 0 -1)n - 1 |C k 2 | i∈C k 2 β i+(j 0 -1)n . (4) 
In the particular matrix normal setup discussed above,

κ ⊤ β = 1 |C k 1 | i∈C k 1 u i,j 0 - 1 |C k 2 | i∈C k 2 u i,j 0 .
Rejecting this hypothesis corresponds to deciding that the clusters C k 1 and C k 2 have a discriminative power for the variable j 0 , since their average signal indeed differs.

The separation of Problem (1) into p one-dimensional optimization problems in (2) will be key for the testing procedures we develop in this paper. In Section 2, we will thus develop our methodology and theory related to the one-dimensional Problem [START_REF] Bachoc | Uniformly valid confidence intervals post-model-selection[END_REF]. A test procedure is proposed and its statistical guarantees are established in Section 2.3. In Section 2.4, a discussion of the existing optimization procedures to solve Problem (2) is given and an original regularization path algorithm is also provided, specifically for this problem (obtained by leveraging our theoretical results in Section 2.2). In Section 3, the proposed test procedure and its guarantees are extended to the p-dimensional framework. Numerical experiments are presented in Sections 2.5 for p = 1 and 3.3 for p > 1. In Section 4, we provide a detailed overview of our contributions, together with various conclusive discussions regarding them and remaining open problems. The proofs are postponed to Appendices A to C. Appendix D contains additional material regarding the computational aspects of convex clustering, in particular with our suggested regularization path. Appendix E contains additional numerical illustrations.

The one-dimensional case

Setting and notation

In this section, for notational simplification, we consider a single Gaussian vector X of size n × 1, with unknown mean vector µ and known covariance matrix Σ. This vector X should be thought of as an instance of Y .j in (2) for some fixed j ∈ [|p|].

We consider the convex clustering procedure (as Problem ( 2)) obtained for a given λ > 0 by

B(X) ∈ argmin B=(B 1 ,...,Bn)∈R n 1 2 ||B -X|| 2 2 + λ n i,i ′ =1 i<i ′ |B i ′ -B i |. (5) 
Solving this optimization problem defines a clustering of the n observations, each cluster corresponding to a distinct value of B(X). This mapping is formalized by the following definition.

Definition 1. For B = (B 1 , . . . , B n ) ∈ R n , let b 1 > b 2 > • • • > b K be the sorted distinct values of the set {B i : i ∈ [|n|]}. The clustering associated to B is C = (C k ) k∈[|K|] , where C k = {i : B i = b k } for k ∈ [|K|].
Note that, indifferently, we address clusterings of a set of elements (x 1 , . . . , x n ) (for instance scalars or vectors) either with clusters that are subsets of (x 1 , . . . , x n ) or subsets of [|n|]. It is convenient to point out the following basic property of the optimization of Problem [START_REF] Dharamshi | Generalized data thinning using sufficient statistics[END_REF], implying in particular that the clusters are composed by successive scalar observed values, which is very natural.

Lemma 1. Consider a fixed x = (x 1 , . . . , x n ) ∈ R n . Consider B = B(x) given by Problem (5). Then, for i, i ′ ∈ [|n|], i ̸ = i ′ , 1. x i = x i ′ implies B i = B i ′ 2. x i ≥ x i ′ implies B i ≥ B i ′ .
Similarly as discussed in Section 1, for the clustering C = C(X) = (C 1 (X), . . . , C K (X)) obtained from (5), we will provide a valid test procedure for an hypothesis of the form η ⊤ µ = 0, where η = η(C(X)).

Polyhedral characterization of convex clustering in dimension one

As in [START_REF] Lee | Exact post-selection inference, with application to the lasso[END_REF], we will suggest a test procedure (see Section 2.3) based on analyzing Gaussian vectors conditioned to polyhedral sets. At first sight, one could thus aim at showing that the observation vector X yields a given clustering with [START_REF] Dharamshi | Generalized data thinning using sufficient statistics[END_REF] if and only if it belongs to a corresponding polyhedral set. However, this does not hold in general. Hence, we will characterize a more restricted event with a polyhedral set. This event is that (i) a given clustering is obtained and (ii) the scalar observations are in a given order. The same phenomenon occurs in [START_REF] Lee | Exact post-selection inference, with application to the lasso[END_REF], where variables are selected in a linear model. There, it does not hold that a given set of variables is selected by the Lasso if and only if the observation vector belongs to a given polyhedral set. Nevertheless, the event that can be characterized with a polyhedral set is that (i) a given set of variables is selected and (ii) the signs of the estimated coefficients for these variables take a given sequence of values. We refer to Section 4.6 for further discussion on conditioning also by the observations' order.

Before stating the polyhedral characterization, let us provide some notation. We let S n be the set of permutations of [|n|]. Consider observations x 1 , . . . , x n , ordered as

x σ(1) ≥ • • • ≥ x σ(n) for σ ∈ S n .
When these observations are clustered into K clusters of successive values, the clustering is in one-to-one correspondence with the positions of the cluster right-limits t 1 , . . . , t K , where 0 = t 0 < t 1 . . . < t K = n, and where for k

∈ [|K|], cluster C k is composed by the indices σ(t k-1 + 1), . . . , σ(t k ), for k ∈ [|K|]
. This corresponds to the following definition.

Definition 2. For n ∈ N and K ∈ [|n|], let T K,n := {(t k ) 0≤k≤K ; 0 = t 0 < t 1 < • • • < t K = n} .
For any σ ∈ S n and any vector t ∈ T K,n , the clustering associated to (t, σ) is defined as

C(t, σ) = {C 1 , . . . , C K }, where for k ∈ [|K|], n k = t k -t k-1 and C k = {σ(t k-1 + i)} i∈[|n k |] .
In particular, let us consider the clustering C = (C k ) k∈[|K|] obtained from Definition 1 by solving Problem (5) for a given x ∈ R n . This clustering can be written as C(t, σ), for any σ such that

x σ(1) ≥ • • • ≥ x σ(n) , t 0 = 0 and t k = j∈[|k|] |C j | for k ∈ [|K|].
Example 2. To illustrate Definition 2 and Lemma 1, let x = (2, 6, 11, 10, 7, 1, 6.5, 7) be observed data. A permutation reordering the values of x by decreasing order is σ : (1, . . . , n = 8) → [START_REF] Berk | Valid post-selection inference[END_REF][START_REF] Chi | Splitting methods for convex clustering[END_REF][START_REF] Dharamshi | Generalized data thinning using sufficient statistics[END_REF][START_REF] Heinrich | Strong identifiability and optimal minimax rates for finite mixture estimation[END_REF][START_REF] Gionis | Clustering aggregation[END_REF][START_REF] Bachoc | Uniformly valid confidence intervals post-model-selection[END_REF][START_REF] Bachoc | Valid confidence intervals for post-modelselection predictors[END_REF][START_REF] Gao | Selective inference for hierarchical clustering[END_REF].

For the clustering C = (C 1 , C 2 , C 3 ) with C 1 = {11, 10}, C 2 =
{7, 7, 6.5, 6} and C 3 = {2, 1}, the associated vector t is t 0 = 0, t 1 = 2, t 2 = 6 and t 3 = 8, as shown in Figure 1. Note that the clustering C of observations is equivalent to the clustering of indices 5), σ(6)} = {5, 8, 7, 2} and C 3 = {σ [START_REF] Gionis | Clustering aggregation[END_REF], σ(8)} = {1, 6}. The regularization path (see Section 2.4) associated to the convex clustering problem on the observed values x is represented in Figure 2. The vertical line at x = λ intersects the regularization path at y = Bi . The order property between x i and Bi stated in Lemma 1 is observed all along the regularization path. For λ = 0.5, we find the clustering in three clusters where the Bi values take three distinct values bk ( b1 = 7.5, b2 = 6.625 and b3 = 4.5).

C 1 = {σ(1), σ(2)} = {3, 4}, C 2 = {σ(3), σ(4), σ(
Next, we can provide the announced polyhedral characterization of obtaining a given clustering, together with a given order of the observations. Theorem 2. Let t be a fixed vector in T K,n with K ∈ [|n|], and let σ ∈ S n be a fixed permutation of [|n|]. Let C = C(t, σ) be the clustering obtained from Definition 2, with cluster cardinalities n 1 , . . . , n K . Consider a fixed x = (x 1 , . . . , x n ) ∈ R n . Let B = B(x) be the solution of Problem (5) for some fixed λ > 0, with X replaced by x. From Definition 1, B 

x σ(8) = 1 x σ(7) = 2 x σ(6) = 6 x σ(5) = 6.5 x σ(4) = x σ(3) = 7 x σ(2) = 10 x σ(1) = 11 0 = t 0 1 2 = t 1 3 4 5 6 = t 2 7 8 = t 3 • • • • • • • •
• • • • • • • • • • • • • • • • • • • • • • • • • 0. 11, 10, 7, 1, 6.5, 7) 
x σ(1) ≥ x σ(2) ≥ • • • ≥ x σ(n) (6) 
is equivalent to the set of the three following conditions

for k ∈ [|K -1|] : 1 n k n k i=1 x σ(t k-1 +i) - 1 n k+1 n k+1 i=1 x σ(t k +i) > λ(t k+1 -t k-1 ), ( 8 
)
for k ∈ [|K|] such that n k ≥ 2, for ℓ ∈ [|n k -1|] : 1 n k n k i=1 x σ(t k-1 +i) - 1 ℓ ℓ i=1 x σ(t k-1 +i) ≥ λ(ℓ -n k ), (9) 
x σ(1) ≥ x σ(2) ≥ • • • ≥ x σ(n) . (10) 
Finally, when (6) and (7) hold, then for i

∈ [|n|], for k ∈ [|K|] with i ∈ C k , we have Bi = 1 n k i ′ ∈C k x i ′ + λ k-1 k ′ =1 n k ′ -λ K k ′ =k+1 n k ′ . (11) 
In [START_REF] Hoefling | A path algorithm for the fused lasso signal approximator[END_REF], note that by convention

b k ′ =a • • • = 0 for a, b ∈ Z, a > b.
We will use this convention in the rest of the paper. Note also that, apart from the polyhedral characterization given by ( 8) to [START_REF] Hocking | Clusterpath an algorithm for clustering using convex fusion penalties[END_REF], Theorem 2 also provides the explicit expression of the optimal B, solution of Problem [START_REF] Dharamshi | Generalized data thinning using sufficient statistics[END_REF]. This expression depends of the optimal clustering, so it cannot be directly computed to optimize (5) in practice. Nevertheless, Theorem 2 is the basis of a regularization path algorithm provided in Section 2.4.

Next, the following lemma provides a formulation of (8) to [START_REF] Hocking | Clusterpath an algorithm for clustering using convex fusion penalties[END_REF] in Theorem 2 as an explicit polyhedral set. In this lemma and in the rest of the paper, for a ∈ N, we let 0 a be the a × 1 vector composed of zeros. Lemma 3. Consider the setting of Theorem 2. Let P σ be the n × n permutation matrix associated to σ ∈ S n : P σ x = (x σ(1) , . . . , x σ(n) ) ⊤ , for a n × 1 vector x. Then, Conditions (8), ( 9) and (10) can be written as

{M(t)P σ x ≤ λ m(t)} (12) 
where M(t) ∈ R 2(n-1)×n and m(t) ∈ R 2(n-1) are given by:

M(t) =   M 1 M 2 (t) M 3 (t)   and m(t) =   m 1 m 2 (t) m 3 (t)   , with M 1 ∈ R n-1×n , M 2 (t) ∈ R K-1×n
and M 3 (t) ∈ R n-K×n , explicitly expressed in Appendix B (Equations (25), ( 27) and (29) respectively); 26) and (28) respectively). Furthermore, the inequality M 2 (t)P σ x ≤ λm 2 (t) is strict in (12).

m 1 = 0 n-1 , m 2 (t) ∈ R K-1 and m 3 (t) ∈ R n-K , explicitly expressed in Appendix B (Equations (

Test procedure and its guarantees

In this section, we construct the test procedure and provide its theoretical guarantees, based on Theorem 2 and Lemma 3. Since the polyhedral characterization has been shown from these two results, the construction and guarantees here are obtained similarly as in [START_REF] Lee | Exact post-selection inference, with application to the lasso[END_REF]. We nevertheless provide the full details, for the sake of self-completeness.

Construction of the test procedure

We want to test η ⊤ µ = 0, where η = η(C(X)) and C(X) is obtained from Problem (5) and Definition 1. The test statistic is naturally η ⊤ X, and we will construct an invariant statistic from it, based on the polyhedral lemma (Lemma 5.1) of [START_REF] Lee | Exact post-selection inference, with application to the lasso[END_REF], that we restate in our setting for convenience. In the next statement, I a is the identity matrix in dimension a ∈ N and we use the conventions that the minimum over an empty set is +∞ and the maximum over an empty set is -∞.

Proposition 4 (Polyhedral lemma, adapted from [START_REF] Lee | Exact post-selection inference, with application to the lasso[END_REF]). Let t be a fixed vector in T K,n with K ∈ [|n|]. Let σ ∈ S n be a fixed permutation of [|n|], and P σ be the n × n associated permutation matrix. Let X ∼ N (µ, Σ) with Σ invertible and let η be a fixed non-zero n × 1 vector (allowed to depend on t and σ). Let Z := Z(X) := [I n -cη ⊤ ]X with c = Ση(η ⊤ Ση) -1 . Let M := M(t) and λm := λm(t) defined in [START_REF] Lähnemann | Eleven grand challenges in single-cell data science[END_REF]. Then, for any fixed λ > 0, we have the following properties:

• Z is uncorrelated with, and hence independent of, η ⊤ X.

• The conditioning set can be written as follows

{MP σ X ≤ λ m} = {V -(Z) ≤ η ⊤ X ≤ V + (Z), V 0 (Z) ≥ 0} (13) 
where

-V -(Z) := max l:(MPσc) l <0 λm l -(MPσZ) l (MPσc) l -V + (Z) := min l:(MPσc) l >0 λm l -(MPσZ) l (MPσc) l -V 0 (Z) := min l:(MPσc) l =0 λm l -(MP σ Z) l .
Note that V -(Z), V + (Z) and V 0 (Z) are independent of η ⊤ X. Finally, when the event in (13) has non-zero probability, conditionally to this event, the probability that

V -(Z) = V + (Z) is zero.
From Proposition 4, it is shown in [START_REF] Lee | Exact post-selection inference, with application to the lasso[END_REF] that, for any fixed z 0 with V -(z 0 ) < V + (z 0 ), under the null hypothesis η ⊤ µ = 0, conditionally to {MP σ X ≤ λ m, Z = z 0 }, the following invariant statistic based on the test statistic η ⊤ X fulfills

T (X, t, σ) := F [V -(z 0 ),V + (z 0 )] 0,η ⊤ Ση (η ⊤ X) ∼ U[0, 1], (14) 
where U[0, 1] denotes the uniform distribution and F The p-value, corresponding to considering two-sided alternative hypotheses to

η ⊤ µ = 0, is then pval(x, t, σ) = 2 min [T (x, t, σ), 1 -T (x, t, σ)] (15) 
for a n × 1 observation vector x. Note that the two definitions ( 14) and ( 15) require V -(z 0 ) < V + (z 0 ), which holds almost surely conditionally to MP σ X ≤ λ m, as stated in Proposition 4.

Conditional level

Next, we show that the suggested test is conditionally valid. That is, conditionally to a clustering and a data order, when the null hypothesis (that is fixed by the clustering) holds, the p-value is uniformly distributed. In particular, the probability of rejection is equal to the prescribed level. Conditional validity naturally yields unconditional validity, as shown in Section 2.3.3. Hence conditional validity is mathematically a stronger property than unconditional validity. A statistical benefit of conditional validity is that the null hypothesis is fixed after conditioning; in particular η ⊤ µ becomes a fixed target of interest, which is beneficial for interpretability. In the related context of linear models, for instance, the tests obtained from the confidence intervals of [START_REF] Bachoc | Uniformly valid confidence intervals post-model-selection[END_REF][START_REF] Berk | Valid post-selection inference[END_REF] are unconditionally valid while the tests provided in [START_REF] Lee | Exact post-selection inference, with application to the lasso[END_REF][START_REF] Tibshirani | Uniform asymptotic inference and the bootstrap after model selection[END_REF] are conditionally (and unconditionally) valid. The interpretability benefit we discuss above is also discussed in [START_REF] Lee | Exact post-selection inference, with application to the lasso[END_REF].

Proposition 5. Let t be a fixed vector in

T K,n with K ∈ [|n|]. Let σ ∈ S n be a fixed permutation of [|n|]
, and P σ be the n × n associated permutation matrix. Let C = C(t, σ) be the clustering obtained from Definition 2, with cluster cardinalities n 1 , . . . , n K . Let X ∼ N (µ, Σ) with Σ invertible. Consider a fixed n × 1 non-zero vector η ∈ R n (that is only allowed to depend on (t, σ)). Assume that

η ⊤ µ = 0.
Let B = B(X) from Problem (5) for some fixed λ > 0. Assume that with non-zero probability, the event

E t,σ := C(t, σ) is the clustering given by B, X σ(1) ≥ X σ(2) ≥ • • • ≥ X σ(n)
holds. Then, conditionally to E t,σ , pval(X, t, σ) is uniformly distributed on [0, 1]:

P η ⊤ µ=0 pval(X, t, σ) ≤ t E t,σ = t ∀t ∈ [0, 1].

Unconditional level

We now show that pval(X, t, σ) is unconditionally uniformly distributed, which we call unconditional validity. Here, "unconditionally" means that the clustering is not fixed, but it is still necessary to condition by the fact that the null hypothesis η ⊤ µ = 0 is well-defined and true. Regarding well-definiteness, the vector η = η(C(X)) may indeed not be well-defined for all clusterings C(X). In the next proposition, we thus introduce the set E of clusterings, indexed by an ordering σ and a sequence of right-limits t as in Definition 2, that make η well-defined. For instance, in the case of the two-group test of Example 1, η can be defined similarly as in (4), with

η ⊤ µ = 1 |C k 1 (X)| i∈C k 1 (X) µ i - 1 |C k 2 (X)| i∈C k 2 (X) µ i . (16) 
In this case, E is the set of clusterings for which the number of clusters is larger than or equal to max(k 1 , k 2 ), enabling η to be well-defined. When k 1 = 1 and k 2 = 2, this definition is possible for all clusterings, except the one with only one cluster. In this case, E should thus be defined as restricting t to have at least 3 elements 0 = t 0 < t 1 < t 2 = n, that is to correspond to a clustering with at least two clusters. Then, Proposition 6 shows that conditionally to E and to η ⊤ µ = 0, the p-value is uniformly distributed, which we call unconditional validity, in the sense that we do not condition by a single clustering, as commented above. Proposition 6. Let E be a subset of the set of all possible values of (t, σ) in Proposition 5. Consider a deterministic function η : E → R n , outputing a non-zero column vector. Assume that Σ is invertible. Let B as in [START_REF] Dharamshi | Generalized data thinning using sufficient statistics[END_REF]. Let S = S(X) be a random permutation obtained by reordering X as: X S(1) ≥ • • • ≥ X S(n) (uniquely defined with probability one). Let C(X) = C be the random clustering given by B (Definition 1), of random dimension K(X) = K. Let T(X) = T ∈ T K,n be the random vector, such that T and S yield C as in Definition 2.

Assume that

P (T, S) ∈ E, η(T, S) ⊤ µ = 0 > 0.
Then, conditionally to the above event, pval(X, T, S) is uniformly distributed on [0, 1]:

P pval(X, T, S) ≤ t (T, S) ∈ E, η(T, S) ⊤ µ = 0 = t ∀t ∈ [0, 1].

Regularization path

At first sight, ( 5) is a convex optimization problem, whose (unique) minimizer does not have any explicit expression, and thus (5) requires numerical optimization to approximate its solution. Furthermore, this numerical optimization would be repeated for different values of λ. However, thanks to the polyhedral characterization of Theorem 2, we can provide a regularization path for solving [START_REF] Dharamshi | Generalized data thinning using sufficient statistics[END_REF]. This regularization path is an algorithm, only performing elementary operations, that provides the entire sequence of exact solutions to [START_REF] Dharamshi | Generalized data thinning using sufficient statistics[END_REF], for all values of λ. This algorithm is exposed in Algorithm 1. Then, Theorem 7 shows that this algorithm is well-defined and indeed provides the set of solutions to Problem (5).

Theorem 7. Algorithm 1 stops at a final value of r that we write r max , such that r max ≤ n -1 and we have

K (0) > • • • > K (rmax) = 1. Let λ (rmax+1) = +∞ by convention. For r ∈ {0, . . . , r max } and λ ∈ [λ (r) , λ (r+1) ), ( B(r) i (λ)) i∈[|n|] minimizes Problem (5) 1 .
1 Even if Algorithm 1 stops at r = rmax, we can still define ( B(rmax

) i (λ)) i∈[|n|]
there, with [START_REF] Murtagh | Algorithms for hierarchical clustering: an overview[END_REF], with the convention that

0 k ′ =1 n (rmax) k ′ = 0 and 1 k ′ =2 n (rmax) k ′
= 0. This vector has all its components equal to n i=1 xi/n.

Algorithm 1: Regularization path for one-dimensional convex clustering

Input: x = (x1, . . . , xn) ∈ R n Initialization r ← 0; λ (0) ← 0; x1 > • • • > xK (0) : the K (0) distinct values in x; C (0) = (C (0) 1 , . . . , C (0) 
K (0) ) ← clustering of [|n|] where C (0) k = {i ∈ [|n|] : xi = xk }; n (0) k ← |C (0) k | for k ∈ [|K (0) |]; b(0) k (λ (0) ) ← xk for k ∈ [|K (0) |]; B(0) i (λ (0) ) ← b(0) k (λ (0) ) if i ∈ C (0) k (k is unique) for i ∈ [|n|]; while K (r) ≥ 2 do For all λ ≥ λ (r) we define b(r) k (λ) := b(r) k (λ (r) ) + λ -λ (r)   k-1 k ′ =1 n (r) k ′ - K (r) k ′ =k+1 n (r) k ′   ∀k ∈ [|K (r) |] (17) 
B(r) i (λ) := b(r) k (λ) if i ∈ C (r) k (k is unique) for i ∈ [|n|]; λ (r+1) ← λ (r) + min k∈[|K (r) -1|] b(r) k (λ (r) ) - b(r) k+1 (λ (r) ) n (r) k + n (r) k+1 ; ( 18 
) ( b(r+1) k (λ (r+1) )) k∈[|K (r+1) |] ← distinct values of ( b(r) k (λ (r+1) )) k∈[|K (r) |] , sorted decreasingly; C (r+1) ← clustering of [|n|] obtained from B(r) i (λ (r+1) ) i∈[|n|]
by Definition 1;

n (r+1) k ← |C (r+1) k | for k ∈ [|K (r+1) |]; r ← r + 1; end
By way of illustration, Algorithm 1 was applied to the observations of Example 2, and the resulting regularization path is shown in Figure 2. In Algorithm 1, since r → K (r) is strictly decreasing during the execution, there are at most n -1 induction steps. A straightforward implementation of (18) can lead to a time complexity of order O(K (r) ) for each step, and thus a total time complexity of order O(n 2 ) in the worst case. The space complexity is linear (O(n)). Indeed, in order to recover the entire regularization path, it is sufficient to record at each step r the labels of the clusters merged at this step. We have implemented this algorithm in the open source R package poclin (which stands for "post convex clustering inference"), which is available from https://plmlab.math.cnrs.fr/pneuvial/poclin. The empirical time complexity of our implementation is substantially below O(n 2 ) for n ≤ 10 5 , as illustrated in Appendix D. In this appendix, we also explain that the time complexity of Algorithm 1 could be further decreased to O(n log(n)) without compromising the linear space complexity by storing merge candidates more efficiently using a min heap.

Remark 1 (Final value of the regularization parameter). As a consequence of Theorem 2 (see in particular (9)), the final value of λ in Algorithm 1 is obtained analytically as:

λ (rmax) = max i∈[|n-1|] 1 i i i ′ =1 x (i ′ ) -1 n n i ′ =1 x (i ′ ) n -i . ( 19 
)
It corresponds to the smallest value of λ for which the convex clustering yields exactly one cluster. The range of values for which there are two or more clusters has also been studied by [START_REF] Tan | Statistical properties of convex clustering[END_REF] for convex clustering procedures that include Problem [START_REF] Dharamshi | Generalized data thinning using sufficient statistics[END_REF]. We note that in the specific case of Problem (5), λ (rmax) can be computed using [START_REF] Neufeld | Inference after latent variable estimation for single-cell RNA sequencing data[END_REF] in linear time after an initial sorting of the input vector. Our numerical experiments below make use of [START_REF] Neufeld | Inference after latent variable estimation for single-cell RNA sequencing data[END_REF] to choose λ in a non data-driven way, see also Appendix E.1.

Relation to other existing regularization path algorithms. Algorithm 1 has similarities with the following two more general regularization path algorithms, that can be applied to Problem [START_REF] Dharamshi | Generalized data thinning using sufficient statistics[END_REF]. First, for the generalized lasso, a penalization term of the form ∥DB∥ 1 is studied in [START_REF] Tibshirani | The solution path of the generalized lasso[END_REF], for a general matrix D. It is then simple to find a n(n -1)/2 × n (sparse) matrix D leading to the penalization term [START_REF] Dharamshi | Generalized data thinning using sufficient statistics[END_REF]. The benchmarks that we have conducted in Appendix D show that the procedure based on the generalized lasso has a very large memory footprint and is very slow (more than 10 seconds for n = 50), as it relies on the matrix D, whose total number of entries is O(n 3 ). Second, the fused lasso signal approximator (FLSA) suggested by [START_REF] Hoefling | A path algorithm for the fused lasso signal approximator[END_REF] can handle a penalization term of the form

λ n i,i ′ =1,i<i ′ |B i ′ -B i | of
λ n i,i ′ =1,(i,i ′ )∈E |B i ′ -B i |
, where E is a set of pairs of indices. Similarly as before, taking E as the complete set of pairs recovers the penalization term of [START_REF] Dharamshi | Generalized data thinning using sufficient statistics[END_REF]. The theoretical time complexity of the regularization path for FLSA has been shown in [START_REF] Hocking | Clusterpath an algorithm for clustering using convex fusion penalties[END_REF] to be O(n log(n)) in this case. The benchmarks that we have conducted in Appendix D show that the procedure based on FLSA is much more efficient than the one based on the generalized lasso. Nevertheless, our implementation of Algorithm 1 remains preferable, as it can address larger dataset sizes (see Figure 6). On top of these numerical performances, the benefit of Algorithm 1, relatively to these two general procedures, is that its description and proof of validity (Theorem 7) are self-contained and specific to the one-dimensional convex clustering problem [START_REF] Dharamshi | Generalized data thinning using sufficient statistics[END_REF]. Furthermore, the proof of validity exploits the specific analysis of (5) given by Theorem 2.

Numerical experiments

In order to illustrate the behaviour of our post-clustering testing procedure, we have performed the following numerical experiments in the one-dimensional framework. The code to reproduce these numerical experiments and the associated figures is available from https://plmlab. math.cnrs.fr/pneuvial/poclin-paper.

We consider a Gaussian sample X = (X 1 , . . . , X n ) with mean vector µ = (ν1 ⊤ n/2 , 0 ⊤ n/2 ) ⊤ and known covariance matrix Σ = I n . Here and in the rest of the paper, for a ∈ N, we let 1 a be the a × 1 vector composed of ones.

We set n = 1000 and λ = 0.0025. This value of λ has been chosen to ensure that with high probability, the convex clustering finds at least two clusters under the null hypothesis. The procedure that we have used in our numerical experiments to achieve this property relies on [START_REF] Neufeld | Inference after latent variable estimation for single-cell RNA sequencing data[END_REF] and is described in Appendix E.1. Let C = (C k ) k∈[|K|] be the result of the one-dimensional convex clustering obtained from Algorithm 1 with λ = 0.0025. If K > 2, we merge adjacent clusters in to obtain a 2-class clustering of the form

C 1 := C 1 ∪ • • • ∪ C q , C 2 := C q+1 ∪ • • • ∪ C K ,
where q is chosen so that the sizes of C 1 and C 2 are as balanced as possible. We then the test procedure introduced in Section 2.3.1 to compare the means of C 1 and C 2 , as in Example 1. Note that this yields

η i = 1 i∈C 1 /|C 1 | -1 i∈C 2 /|C 2 | for i ∈ [|n|],
which is indeed a deterministic function of C 1 , . . . , C K and thus in the scope of the guarantees obtained in Section 2.3. For each signal value ν ∈ {0, 1, 2, 3, 4, 5}, we retain N = 1000 numerical experiments for which K ≥ 2. Note that the event K ≥ 2 corresponds to the set E in Proposition 6.

Figure 3 (left) gives the empirical density of η ⊤ µ, the difference between the true means of the estimated clusters, for each value of ν considered. This plot quantifies the performance of the clustering step: for a perfect clustering, we would have η ⊤ µ = ν, corresponding to the diagonal line. As expected, the larger the signal (ν increases), the easier the clustering step.

Figure 3 (right) shows the empirical p-value distribution of the proposed test (see [START_REF] Lindsten | Clustering using sum-of-norms regularization: With application to particle filter output computation[END_REF]). For ν = 0 (no signal), the curve illustrates the uniformity of the distribution of the p-values: it shows that the level of the test is appropriately controlled. Another simulation to control the level of the test is available in Appendix E.2. As expected, the power of the test is an increasing function of the distance between the null and the alternative hypotheses (as encoded by the parameter ν). Our conditional test is able to detect the signal only for ν > 1.

The p-dimensional case

Aggregating one-dimensional clusterings

Consider the p-dimensional setting of Section 1. For j ∈ [|p|], consider the one-dimensional clustering

C (j) = C (j) (Y .j ) = (C (j) 1 (Y .j ), . . . , C (j) K (j) (Y .j
)) obtained by computing B.j by solving (2) and with Definition 1. We consider a p-dimensional clustering C obtained by aggregation of the one-dimensional clusterings C (1) , . . . , C (p) as follows.

For i ∈ [|n|] and j ∈ [|p|], let Ỹij be the class index of Y ij in the clustering C (j) , rescaled from {1, 2, . . . , K (j) } to {0, 1/(K (j) -1), . . . , 1}. We obtain a p-dimensional clustering C by applying a clustering procedure to the rows of the n × p matrix Ỹ , for instance a hierarchical clustering [START_REF] Murtagh | Algorithms for hierarchical clustering: an overview[END_REF] with the Euclidean distance. We are then in a position to test an hypothesis κ ⊤ β = 0, where κ = κ(C), as motivated in Section 1. In particular, we can test the signal difference for the column j 0 between two clusters C k 1 and C k 2 in the multi-dimensional clustering C, as in [START_REF] Chi | Splitting methods for convex clustering[END_REF]. 13 Remark 2. Above, we focus on a specific aggregation using the hierarchical clustering with the Euclidean distance for simplicity. However, we can construct more general p-dimensional clusterings C by more general aggregations of C (1) , . . . , C (p) . Indeed, our statistical framework (see Section 3.2) encompasses any case where κ = κ(C), as long as C is a function of the onedimensional clusterings and orderings. In particular, one could also consider the hierarchical clustering with the Hamming distance, or the "unanimity" clustering, (i and i ′ are in the same cluster of C if and only if they are in the same cluster for each C (j) ). This latter clustering is actually the one provided by Problem (1). For more background on clustering aggregation, we refer for instance to [START_REF] Gionis | Clustering aggregation[END_REF][START_REF] Nguyen | Consensus clusterings[END_REF][START_REF] Wang | Clustering aggregation by probability accumulation[END_REF]] and references therein.

3.2. Test procedure and its guarantees

Construction of the test procedure

The test procedure for the hypothesis κ ⊤ β = 0 is constructed similarly as in Section 2.3.1. We consider p permutations σ (1) , . . . , σ (p) that provide the orderings of the columns of the n × p observation matrix Y . As in Definition 2, we identify the p clusterings C (1) , . . . , C (p) by their numbers of classes K (1) , . . . , K (p) ∈ [|n|] and by the right-limit sequences t (j) ∈ T K (j) ,n for j ∈ [|p|]. For j ∈ [|p|], we consider the matrix M(t (j) )P σ (j) of size 2(n -1) × n and the vector λm(t (j) ) of size n, defined in Lemma 3. Recall from Section 2 that, if only the variable j and its clustering C (j) and order σ (j) were considered, then the conditioning event would be M(t (j) )P σ (j) Y .j ≤ λm(t (j) ) . We then explicit the conditioning constraints in dimension p, corresponding to all the clusterings C (1) , . . . , C (p) and orders σ (1) , . . . , σ (p) . We define the matrix M of size 2(n-1)p×np in the following block-wise fashion. There are p 2 rectangular blocks (corresponding to dividing the rows into p groups and the columns into p groups). The block indexed by row-group j and column-group j ′ has size 2(n -1) × n. It is zero if j ̸ = j ′ and it is equal to M(t (j) ) if 

p = 1 x X Σ η Pσ M λm Z c size n n n × n n n × n 2(n -1) × n n n n p > 1 vec(y) vec(Y ) Γ κ Dσ M λm vec(Z)
MD σ vec(Y ) =    M(t (1) )P σ (1) Y .1 . . . M(t (p) )P σ (p) Y .p    .
We let λm be the vector obtained by stacking the column vectors λm(t (j) ), j ∈ [|p|], one above the other. The conditioning constraints in dimension p are then {MD σ vec(Y ) ≤ λm}. Consider a column vector κ of size np, that is allowed to depend on (t (j) , σ (j) ), j ∈ [|p|]. This includes the setting κ = κ(C (1) , . . . , C (p) ) of Section 3.1, with the additional mathematical flexibility that κ is allowed to depend on the orderings of the columns, besides their clusterings.

Recall that Γ is the np × np covariance matrix of vec(Y ). Note that in the definition of pval(x, t, σ) in Section 2.3.1 (one-dimensional case), the values of x, Σ, η, MP σ and λm are sufficient to determine the invariant statistic T (X, t, σ) in ( 14) and the p-value pval(x, t, σ) in [START_REF] Lindsten | Clustering using sum-of-norms regularization: With application to particle filter output computation[END_REF]. Thus we can define the test statistic κ ⊤ vec(Y ), then the invariant statistic T (Y ) = T (Y , t (1) , . . . , t (p) , σ (1) , . . . , σ (p) ) in the same way as T (X, t, σ) in ( 14) and consequently the p-value pval(y), for a n × p realization y of Y , in the same way as pval(x, t, σ) in [START_REF] Lindsten | Clustering using sum-of-norms regularization: With application to particle filter output computation[END_REF]. The explicit correspondence between the notation of the one-dimensional case and the present notation is given in Table 1. The next section provides additional explanations on the computation of the invariant statistic T (Y ), in the special case of independent variables, for the sake of exposition.

A detailed example: testing the signal difference along a variable j 0 with independent variables

Consider testing the signal difference for the column j 0 between two clusters C k 1 and C k 2 in the multi-dimensional clustering C, as in Example 1. It is interesting to explicit the construction of the invariant statistic in the special case of the matrix normal distribution (see Section 1) where ∆ is diagonal, that is the p n-dimensional observation vectors corresponding to the p variables are independent. For the sake of simplicity, let us even consider that ∆ = I p . Observe first that the test statistic satisfies κ ⊤ vec(Y ) = η ⊤ Y .j 0 , where

η i = 1 i∈C k 1 /|C k 1 | - 1 i∈C k 2 /|C k 2 |.
That is, the test statistic is constructed as it would be in the one-dimensional case (Section 2.3.1), except that the one-dimensional clustering C (j 0 ) is replaced by the aggregated one C. The variance of the test statistic (unconditional to the clusterings and orders of observations) is thus η ⊤ Ση and is as in the one-dimensional case (up to the distinction between C (j 0 ) and C). Then, the next proposition specifies the computation of the invariant statistic.

Proposition 8. In the context of Section 3.2.2, computing the invariant statistic as described in Section 3.2.1 is equivalent to proceed as described in Section 2.3.1 (one-dimensional case), with η defined by

η i = 1 i∈C k 1 /|C k 1 | -1 i∈C k 2 /|C k 2 | for i ∈ [|n|],
with X replaced by Y .j 0 and with the conditioning set {MP σ X ≤ λ m} replaced by M(t (j 0 ) )P σ (j 0 ) Y .j 0 ≤ λm(t (j 0 ) ) .

In Proposition 8, the observations corresponding to the variables j ̸ = j 0 , for which the average signal difference is not tested, have an impact on the clusterings C (j) , j ̸ = j 0 , and thus have an impact on the multi-dimensional clustering C and thus on η. Besides η, these observations have no other influence on the construction of the invariant statistic, which is computed only from Y .j 0 and its conditioning set {M(t (j 0 ) )P σ (j 0 ) Y .j 0 ≤ λm(t (j 0 ) )} as in the one-dimensional case. This fact can be interpreted in light of the general properties of conditioning and independence. Indeed, we are studying events of the form E j on Y .j , j ∈ [|p|] and we are studying a test statistic η(E 1 , . . . , E p ) ⊤ Y .j 0 conditionally to these events. Here E j encodes the event corresponding to ( 6) and ( 7) in Theorem 2 for variable j. By independence of Y .j , j ∈ [|p|], the events E j , j ̸ = j 0 simply have an influence on η, while the event E j 0 also has an impact on the conditional distribution of Y .j 0 given E j 0 .

Conditional level

For j ∈ [|p|], let B .j be obtained from [START_REF] Bachoc | Uniformly valid confidence intervals post-model-selection[END_REF]. The next proposition is similar to Proposition 5 and proves that the p-value pval(Y ) in Section 3.2.1 is uniformly distributed, conditionally to the one-dimensional clusterings and orders, when the null hypothesis is true. We remark that in the context of Section 3.1, this implies that the p-value is also uniformly distributed conditionally to the p-dimensional clustering obtained by aggregation, when the null hypothesis is true. Proposition 9. Consider p fixed permutations σ (1) , . . . , σ (p) of [|n|]. Let K (1) , . . . , K (p) ∈ [|n|]. For j ∈ [|p|], let t (j) ∈ T K (j) ,n and consider the clustering C (j) associated to (t (j) , σ (j) ) by Definition 2.

Consider a fixed non-zero vector κ ∈ R np (that is only allowed to depend on (t (j) , σ (j) ), j ∈ [|p|]). Assume that κ ⊤ β = 0.

Assume that with non-zero probability, the event

E := for j ∈ [|p|], C (j)
is the clustering given by B .j and Y σ

(j) (1)j ≥ • • • ≥ Y σ (j) (n)j
holds. Assume also that the np × np matrix Γ is invertible. Then, conditionally to E, pval(Y ) is uniformly distributed on [0, 1] under the null hypothesis.

Unconditional level

The unconditional guarantee is similar to that of Proposition 6 for the one-dimensional case.

In particular, here we also introduce the subset E on which the null hypothesis is well-defined.

Proposition 10. Let E be a subset of the set of all possible values of (t (j) , σ (j) ) j∈[|p|] in Proposition 9. Consider a deterministic function κ : E → R np , outputing a non-zero column vector. Assume that Γ is invertible. For j ∈ [|p|], let B .j be obtained from [START_REF] Bachoc | Uniformly valid confidence intervals post-model-selection[END_REF]. Let also S (j) = S (j) (Y .j ) be the random permutation obtained by the order of Y .j :

Y S (j) (1)j ≥ • • • ≥ Y S (j) (n)j
(uniquely defined with probability one). Let C (j) (Y .j ) = C (j) be the random clustering given by B .j (Definition 1). Let T (j) (Y .j ) = T (j) ∈ T K (j) ,n be the random vector (with random K (j) (Y .j ) = K (j) ), such that (T (j) , S (j) ) yields C (j) as in Definition 2. Assume that

P (T (j) , S (j) ) j∈[|p|] ∈ E, κ((T (j) , S (j) ) j∈[|p|] ) ⊤ β = 0 > 0.
Then, conditionally to the above event, pval(Y ) is uniformly distributed on [0, 1].

Numerical experiments

In this section, we describe the numerical experiments that we have performed in order to illustrate the behaviour of our post-clustering testing procedure for p > 1. The code to reproduce these numerical experiments and the associated figures is available from https: //plmlab.math.cnrs.fr/pneuvial/poclin-paper.

We consider the specific case where Y is distributed from a matrix normal distribu-

tion MN n×p (u, Σ, ∆) (see Section 1) with p = 3, u =   ν1 n/2 0 n/2 0 n/2 -ν1 n/2 0 n/2 0 n/2   with ν ∈ {0, 1, 2, 5}, Σ = I n , and ∆ =      1 0 ρ 0 1 0 ρ 0 1     
with ρ ∈ {0, 0.3, 0.5}.

We obtain K = 2 clusters by aggregating one-dimensional convex clusterings obtained for a given value of λ, as explained in Section 3.1. For each variable j ∈ {1, 2, 3}, we want to compare the means of the two clusters. This corresponds to the test of the null hypothesis κ ⊤ β = 0, where κ is defined by (3) (see Example 1). We compare our procedure with λ = 0.016 (resp. λ = 0.0025) for n = 100 (resp. n = 1000) and the two-group Wilcoxon rank sum test as implemented in the R function wilcox.test. This choice of λ ensures to have at least two clusters under the null hypothesis with high probability, as explained in Section 2.5 and Appendix E.1. The empirical cumulative distribution function of the p-values pval(y) across 500 experiments is represented for different values of the simulation parameters in Figures 4 and5 for n = 100 and n = 1000, respectively. For each parameter combination, the p-value distribution of the proposed method (in green) is compared to that of the two-group Wilcoxon rank sum test (in orange) for all three variables Y .j , for j = 1, 2, 3 (in columns). Each row corresponds to a value of ν and each line type corresponds to a value of ρ.

First, the clustering procedure described in Section 3.1 works reasonably well in this setting. Indeed, for the variable Y .1 , the absolute value of the difference between the true means of the estimated clusters (obtained as κ ⊤ β) is generally close to the true value of the signal (that is 2ν), see Figure 9 in Appendix E.3.

The proposed test controls the type I error rate: in all situations where there is no signal (that is, for ν = 0 or j ∈ {2, 3}), the empirical p-value distribution is close to the uniform distribution on [0, 1] (y = x). Under the alternative hypothesis (i.e. for j = 1 and ν > 0), our proposed test is able to detect some signal for ν ≥ 2. For ν = 1 the signal is too small to be detected.

In contrast, the naive Wilcoxon test yields severely anti-conservative p-values in absence of signal. This test is naturally much more sensitive than our proposed test. However, it should Each column corresponds to a variable j, each row to a value of ν and each line type to a value of ρ.

be noted that one cannot compare the power of the two tests, since the Wilcoxon test fails to control type I error.

Regarding the influence of n: our proposed method does not gain much power as n increases from 100 to 1000. This is consistent with the fact that the signal is not different across values of n, see Figure 9. For n = 1000, the Wilcoxon test is able to distinguish the signal from the noise when ρ = 0 and actually becomes well-calibrated for Y .2 when ν ̸ = 0. However, due to the correlation between Y .1 and Y .3 , the Wilcoxon test is anti-conservative for Y .3 .

Discussion

We first provide an overview of our contributions, and then we discuss various specific aspects of them and various remaining open questions. Each column corresponds to a variable j, each row to a value of ν and each line type to a value of ρ.

Overview of the contributions

Selective inference, in the post-clustering context, is a challenging problem and statistical guarantees could be obtained for it only in the recent years, see the references provided in Section 1. In this paper, we suggest a solution based on exhibiting polyhedral conditioning sets for Gaussian vectors, extending a line of work that has proved to be very successful in other statistical contexts, especially for regression models. This line of work was pioneered by [START_REF] Lee | Exact post-selection inference, with application to the lasso[END_REF] and then developed by [START_REF] Panigrahi | Approximate selective inference via maximum likelihood[END_REF][START_REF] Tibshirani | Uniform asymptotic inference and the bootstrap after model selection[END_REF], among others.

Nevertheless, extending the existing approaches from regression models to clustering models is challenging. As such, the proofs we provide require innovations (for instance for Theorems 2 and 7). Furthermore, obtaining polyhedral conditioning sets is made possible by focusing on intermediate one-dimensional convex clustering optimization problems based on ℓ 1 penalties (see [START_REF] Bachoc | Uniformly valid confidence intervals post-model-selection[END_REF]). In the end, we provide the following workflow for selective inference post-clustering.

(1) We characterize a one-dimensional clustering by polyhedral constraints on the obser-vation vector (Section 2.2).

(2) As a by by-product, we provide a regularization path algorithm to implement this clustering (Section 2.4). The computational efficiency of this algorithm is demonstrated numerically, also in comparison with other existing procedures.

(3) Following [START_REF] Lee | Exact post-selection inference, with application to the lasso[END_REF], from the polyhedral constraints, we obtain a test procedure which is conditionally and unconditionally valid post-clustering (Section 2.3). The procedure enables to test the nullity of any linear combination of the unknown mean vector, provided this combination only depends on the clustering (and on the order of the observations). In particular, it is possible to test for the significance of the signal difference between two clusters as in Example 1 (see Equation ( 16)). Although we do not develop it in this paper, confidence intervals for the above linear combination can be constructed from our test procedure, similarly as in [START_REF] Lee | Exact post-selection inference, with application to the lasso[END_REF]. Numerical experiments (Section 2.5) confirm the validity of the test procedure, and indicate that it has power to detect cases where the clustering on the observation vector was able to cluster the unknown mean vector as well into inhomogeneous groups.

(4) We suggest to aggregate one-dimensional clusterings to form a single multi-dimensional clustering for the data matrix. Our above contributions can thus be naturally leveraged to obtain a valid test procedure, posterior to this multi-dimensional clustering (Section 3.2). In particular, we can test the significance of the signal difference between clusters along a specific variable, as in Example 1. This feature could be beneficial in potential applications to single-cell RNA-seq data, since in this context, testing along a specific variable enables to study genes expressions individually. It is also a welcome complement to related references, in particular [START_REF] Gao | Selective inference for hierarchical clustering[END_REF], that focuses on testing the global nullity of the signal mean difference vector across two clusters, rather than considering individual components (i.e. variables). This workflow ( 1)-( 4) depends on a regularization parameter λ that should not be data-driven (see Section 4.3 below). From a practical point of view, we provide a procedure to choose λ in a non data-driven way, from a choice of the covariance matrix, see Sections 2.5 and 3.3, and Appendix E.1.

Similarly as in the one-dimensional case, we provide numerical experiments (Section 3.3) that both confirm the validity of the test procedure and demonstrate its power to validate when the clustering procedure successfully yields clusters with significant signal difference for individual variables. These numerical experiments (as well as those in Section 2.5) also indicate that inference post-clustering is challenging, in that statistical procedures that do not account for the data-driven nature of the clustering are strongly anti-conservative. Indeed, the standard Wilcoxon test wrongly indicates signal differences across clusters in many cases where there is actually no difference. Note that the numerical experiments are focused on the hierarchical-clustering-based aggregation of one-dimensional clusterings, as described in Section 3.1. In future investigations, it would be relevant to quantify the benefit brought by alternative aggregation methods. Indeed, a flexibility of our framework is that our statistical guarantees hold for any aggregation procedure.

Benefits of the test procedure in well-and misspecified clustering problems

For simplicity, let us focus on the one-dimensional case of Section 2, with the observation vector X ∼ N (µ, Σ). The discussion of the multi-dimensional case of Section 3 would be similar. The clustering problem can be considered as well-specified if there are clusters of indices for the mean vector µ with equal values, corresponding to a Gaussian mixture setting (see for instance [START_REF] Heinrich | Strong identifiability and optimal minimax rates for finite mixture estimation[END_REF][START_REF] Laurent | Non-asymptotic detection of twocomponent mixtures with unknown means[END_REF][START_REF] Mclachlan | Finite mixture models[END_REF][START_REF] Nguyen | Convergence of latent mixing measures in finite and infinite mixture models[END_REF] for expositions and recent contributions on mixture models). 20

In the well-specified case, there are thus intrinsic classes of the observations and it is natural to aim at recovering them. Consider for the sake of discussion that n/2 components of µ are zero and the other n/2 components are one (there are two intrinsic classes) and that the clustering procedure yields two clusters C 1 and C 2 of equal size. Then if the null hypothesis (2/n) i∈C 1 µ i = (2/n) i∈C 2 µ i is rejected by our test procedure, it means that one empirical cluster contains a strict majority of individuals from one intrinsic class, and vice versa for the second cluster. If our test procedure is extended to yield a confidence interval on (2/n) i∈C 1 µ i -(2/n) i∈C 2 µ i showing that with high probability this quantity is larger than some δ ∈ (0, 1), then one can see that the first empirical cluster contains at least n(δ + 1)/4 observations from an intrinsic class (corresponding to mean one; and conversely for the second cluster). Hence, generally speaking, for a well-specified clustering problem with intrinsic classes, our test procedure is relevant to recover these classes, similarly as statistical procedures that are dedicated to finite mixture problems, see the references given above.

On the other hand, the clustering problem can be considered as misspecified when the n components of µ are two-by-two distinct. In this case one can consider that there are no intrinsic classes. Nevertheless, providing tests or confidence intervals on the same quantity (2/n) i∈C 1 µ i -(2/n) i∈C 2 µ i as before enables to assess if the clustering procedure was able to cluster the unknown mean vector, besides the random/noisy observations. Hence, a benefit of the post-clustering framework considered here is that it is meaningful both in welland misspecified settings. A similar discussion can be made in the related context of selective inference in regression settings, see in particular [START_REF] Bachoc | Valid confidence intervals for post-modelselection predictors[END_REF][START_REF] Berk | Valid post-selection inference[END_REF].

Known covariance matrix and fixed λ

As pointed out above, we assume the covariance matrix (Σ in Section 2 and Γ in Section 3) to be known and the tuning parameter λ to be fixed. These two assumptions are necessary for our statistical guarantees in Sections 2 and 3. Indeed, the obtention of these guarantees relies first on exhibiting a Gaussian vector constrained to a polyhedron. Then, the Gaussian vector is decomposed into a linear combination (corresponding to the statistical hypothesis to test) and an independent remainder. This two-step strategy corresponds in particular to Lemma 3 and Proposition 4 in the one-dimensional case. It was previously suggested by [START_REF] Lee | Exact post-selection inference, with application to the lasso[END_REF] in the related context of post-selection inference for the lasso model selector, with Gaussian linear models.

Obtaining a polyhedron in the first step relies on λ not depending on the data, and computing the decomposition in the second step relies on knowing the covariance matrix. Broadly speaking, in the selective inference context, it is relatively common to assume known covariance matrices, or fixed tuning parameters, in order to obtain rigorous mathematical guarantees. This is indeed the case in [START_REF] Lee | Exact post-selection inference, with application to the lasso[END_REF] mentioned above, but also for instance in [START_REF] Gao | Selective inference for hierarchical clustering[END_REF]. In this latter reference, the covariance matrix is assumed to be proportional to the identity, with a known variance for most of the theoretical results. Asymptotic results are given there in Section 4.3 for the case of a conservative variance estimator. Also, data thinning procedures, for instance in [START_REF] Neufeld | Data thinning for convolutionclosed distributions[END_REF], usually require knowledge of the data distribution in order to produce independent parts, where the independence property enables valid statistical inference.

In our setting, obtaining theoretical guarantees (finite-sample or asymptotic) with an estimated covariance matrix or a data-dependent tuning parameter is of course an important problem for future work. In other contexts, successes have been obtained in this direction, see in particular [START_REF] Tian | Selective inference with unknown variance via 24 the square-root lasso[END_REF][START_REF] Yun | Selective inference for clustering with unknown variance[END_REF]. Note that relaxing the assumption of known covariance matrix can yield identifiability issues, because the mean vector β is unrestricted (see also the discussion of misspecified clustering problems in Section 4.2). These identifiability issues boil down to the fact that multiple pairs of mean vector and covariance matrix can "explain" the same dataset. Studying which minimal assumptions circumvent these identifiability issues is thus an important problem in the prospect of extending this work to an estimated covariance matrix. 

Our test procedure and its statistical guarantees for the multi-dimensional case rely on aggregating one-dimensional clusterings. As discussed in Remark 2, solving Problem (1) with the multi-dimensional ℓ 1 norm penalization boils down to one such aggregation. Hence, our procedure and guarantees apply to multi-dimensional convex clustering with ℓ 1 penalization. One can see that our arguments, and crucially the proof of Theorem 2, cannot be applied directly to convex clusterings obtained by replacing the ℓ 1 penalization by a more general ℓ q one, q > 0, and especially by the ℓ 2 one. In fact, we view the following question as an important open problem: is it possible to characterize the set of observation matrices Y , such that Problem (1), with the ℓ 1 penalization replaced by the ℓ q one, yields a given clustering, with polyhedral sets or other tractable sets?

Nevertheless, we note that the ℓ 1 penalization in Problem (1) has computational benefits. Indeed, the problem is separable, and for each subproblem, we have obtained an exact regularization path in Section 2.4 that stops after a maximal number of iterations known in advance. To our knowledge, such a favorable regularization path is not available for a general ℓ q penalization. In agreement with this, the reference [START_REF] Hocking | Clusterpath an algorithm for clustering using convex fusion penalties[END_REF] (from 2011) concludes that Problem (1) can be readily solved for thousands of data points, while if the ℓ 1 penalization is replaced by the ℓ q one, this is the case for (only) hundreds of data points.

Comparison with data splitting strategies

For the problem of post-clustering inference, data splitting (or data fission, data thinning) strategies [START_REF] Dharamshi | Generalized data thinning using sufficient statistics[END_REF][START_REF] Neufeld | Data thinning for convolutionclosed distributions[END_REF][START_REF] Zhang | Valid post-clustering differential analysis for single-cell RNA-seq[END_REF] consist in separating the dataset into two stochastically independent ones, keeping the same indexing of individuals as the original dataset. Then, a clustering can be computed from the first dataset and then applied to the second data set. By independence, the distribution of a post-clustering statistic of interest (for instance the difference of average between two classes for a variable, in view of studying ( 4)) on the second data set remains simple. For instance if the original dataset is Gaussian, this distribution remains Gaussian conditionally to the clustering. Hence, a benefit of data splitting compared to our approach is a simplicity of implementation. Furthermore, any clustering procedure can be used.

On the other hand, with data splitting, conclusions are provided for a clustering computed on a dataset that differs from the original one. Hence, the conclusions of data splitting approaches might be more difficult to interpret for practitioners, compared to those of the present work, since these conclusions do not apply to the clustering that they would compute on the original data set.

Note also that data splitting and our approach share two similar difficulties. First, they share hyperparameters that should not be data-driven for the statistical guarantees. Indeed, with data splitting we need to fix the splitting mechanism to general the two datasets above. Similarly, we fix the regularization parameter λ in [START_REF] Bachoc | Valid confidence intervals for post-modelselection predictors[END_REF]. Second, considering Gaussian data, the covariance matrix should be known for data splitting and our approach, as already discussed in Section 4.3.

On conditioning by the orders

Let us consider the one-dimensional setting (Section 2) for simplicity of exposition. A similar discussion could be made for the multi-dimensional case as well. Our test procedure is valid conditionally to both the clustering and the order of observations, see Proposition 5, and our discussion at the beginning of Section 2.2. Being valid conditionally to the clustering can be considered as a desirable statistical feature, since the clustering is an object of interest in itself (see also the discussion before Proposition 5). However, being valid conditionally to the order is more a by-product of our approach than a desirable statistical feature. Indeed, in order to obtain a polyhedral set with a tractable number of linear pieces (2(n -1)) in Theorem 2, it was necessary in the proof to condition by the observation order. Importantly, the constraint ( 9) is not a linear constraint on the observation vector if the order is not fixed.

It could be the case that, if a test procedure could be derived by only conditioning by the clustering, this test could have more power than the one we obtain in Section 2.3, which is an interesting perspective for future work. In other words, it is possible that we pay a price when conditioning by the order of observations? In the related regression context, a similar phenomenon occurs in [START_REF] Lee | Exact post-selection inference, with application to the lasso[END_REF]. There, a first test procedure is obtained by conditioning by the selected variables and a second one is obtained by conditioning by the selected variables and the signs of the coefficients. The first procedure has a computational cost that is exponential in the number of variables, but is more powerful. The second procedure has a small computational cost. In Section 6 of [START_REF] Lee | Exact post-selection inference, with application to the lasso[END_REF], it is written on this point that "one may be willing to sacrifice statistical efficiency for computational efficiency".

Proof of Lemma 13. We write b 1 ≤ • • • ≤ b n for the ordered values of a 1 , . . . , a n . Then g is minimal at 0 if and only if h is minimal at 0 with

h : R n → R (u 1 , . . . , u n ) → n i=1 b i u i + n i,i ′ =1 i<i ′ |u i -u i ′ |.
The minimum of h is reached when u 1 , . . . , u n satisfy u 1 ≥ • • • ≥ u n . Indeed if there is i < i ′ with u i < u i ′ , we can swap u i and u i ′ which lets the sum of absolute values unchanged and changes the linear combination as before

-after = b i u i + b i ′ u i ′ -b i u i ′ -b i ′ u i = (b i -b i ′ )(u i -u i ′ ) ≥ 0.
We can do this swap each time there is i < i ′ with u i < u i ′ , until we have u 1 ≥ • • • ≥ u n and g has not been increased. Hence, to minimize h it is sufficient to consider

u 1 ≥ • • • ≥ u n . Let v ℓ = u ℓ -u ℓ+1 ≥ 0 for ℓ ∈ [|n -1|]. We have n i=1 b i u i = u n n i=1 b i + n-1 ℓ=1 v ℓ ℓ i=1 b i = n-1 ℓ=1 v ℓ ℓ i=1 b i
since by assumption n i=1 a i = n i=1 b i = 0. We also have

n i,i ′ =1 i<i ′ |u i -u i ′ | = n i,i ′ =1 i<i ′ i ′ -1 ℓ=i v ℓ = n-1 ℓ=1 v ℓ ℓ(n -ℓ). Therefore, n i=1 b i u i + n i,i ′ =1 i<i ′ |u i -u i ′ | = n-1 ℓ=1 v ℓ ℓ i=1 b i + ℓ(n -ℓ) .
Hence h is minimal at 0 if and only if, for ℓ ∈

[|n -1|], ℓ i=1 b i + ℓ(n -ℓ) ≥ 0.
the absolute value part is decreased. This will lead to a contradiction since there is a unique minimizer in ( 5) by strict convexity. The increment of the absolute value part is given by before

-after = | B i -B i ′ | + n ι=1 ι̸ ∈{i,i ′ } B ι -B i + B ι -B i ′ -2 B ι - B i + B i ′ 2 .
In the right-hand side above, | B i -B i ′ | > 0 and the second sum is non-negative by convexity. This conclude the proof of the first part.

For the second part, let i, i ′ ∈ [|n|], i ̸ = i ′ such that x i > x i ′ and assume that B i < B i ′ . Let us consider again the increment of the criterion in [START_REF] Dharamshi | Generalized data thinning using sufficient statistics[END_REF] obtained by exchanging B i and B i ′ . From Lemma 11, the quadratic part is strictly decreased. The absolute value part is left unchanged and thus the criterion in ( 5) is strictly decreased which is a contradiction as before.

Proof of Theorem 2. Proof that (6) and ( 7) imply (8),( 9), [START_REF] Hocking | Clusterpath an algorithm for clustering using convex fusion penalties[END_REF] By ( 6), for any k ∈ [|K|], all the B i for i ∈ C k are identical to a value that we denote by b k , with b 1 , . . . , b K two-by-two distinct. By Definition 1, Lemma 1 and ( 7), we have b

1 > • • • > b K . With this notation, the vector ( b k ) k∈[|K|] is locally solution of min (b k ) k 1 2 K k=1 i∈C k (b k -x i ) 2 + λ K k,k ′ =1 k ′ >k n k n k ′ (b k -b k ′ ).
Indeed, in [START_REF] Dharamshi | Generalized data thinning using sufficient statistics[END_REF] we can assign to all the (B i ) i∈C k the same new value b k close to b k , and we have 

|B i -B i ′ | = b k -b k ′ for all i ∈ C k , i ′ ∈ C k ′ , k < k ′ .
i∈C k b k -x i -λ k-1 k ′ =1 n k n k ′ + λ K k ′ =k+1 n k n k ′ = 0. This provides b k = 1 n k i∈C k x i + λ k-1 k ′ =1 n k ′ -λ K k ′ =k+1 n k ′ (20) = 1 n k i∈C k x i + λt k-1 -λ(t K -t k ). (21) 
Hence, we have for k 

, k ′ ∈ [|K|], k < k ′ : b k -b k ′ = 1 n k i∈C k x i - 1 n k ′ i∈C k ′ x i + λ(t k-1 -t k ′ -1 ) + λ(t k -t k ′ ), so that ( 
(U i ) i∈C k 1 2 i∈C k b k + U i -x i 2 + λ K k ′ =1 k ′ ̸ =k i∈C k n k ′ sign(k ′ -k) b k -b k ′ + U i + λ i,i ′ ∈C k i<i ′ |U i -U i ′ |
is minimal locally around 0. Above, we let sign(t) = 1 if t > 0, sign(0) = 0 and sign(t) = -1 if t < 0. From Lemma 12, this implies that the function

i∈C k b k -x i U i + λ K k ′ =1 k ′ ̸ =k i∈C k n k ′ sign(k ′ -k)U i + λ i,i ′ ∈C k i<i ′ |U i -U i ′ | (22) 
of (U i ) i∈C k has a local minimum at zero. From [START_REF] Neufeld | Negative binomial count splitting for single-cell rna sequencing data[END_REF], this function is

i∈C k     1 n k i ′ ∈C k x i ′   -x i   U i + λ i,i ′ ∈C k i<i ′ |U i -U i ′ |. (23) 
If n k = 1 this function is 0. Otherwise, because this function has a local minimum at zero, and because a

i := 1 n k i ′ ∈C k x i ′ -x i satisfies a σ(t k-1 +1) ≤ • • • ≤ a σ(t k ) by (7) , Lemma 13 implies that for all ℓ ∈ [|n k |], ℓ i=1     1 n k i ′ ∈C k x i ′   -x σ(t k-1 +i)   + λℓ(n k -ℓ) ≥ 0 (24) 
so that (9) holds. Note that (24) also holds trivially for ℓ = n k . Finally, (10) holds, being identical to [START_REF] Gionis | Clustering aggregation[END_REF] .

Proof that (8),( 9),( 10) imply (6) and (7) Let bk be given by the right hand side of (20) for k ∈ [|K|]. Let Bi = bk for k ∈ [|K|] and i ∈ C k . Let us show that B = ( B1 , . . . , Bn ) provides a minimum of (5) (that is B = B). Note that ( 8) and ( 21) provide bk > bk ′ for k < k ′ . Then we can write the cost function at

B i + U i , i ∈ [|n|], locally around 0 for U = (U 1 , . . . , U n ) ∈ R n , using : 1 2 K k=1 i∈C k b k -x i + U i 2 + λ K k,k ′ =1 k ′ >k i∈C k i ′ ∈C k ′ b k -b k ′ + U i -U i ′ + λ K k=1 i,i ′ ∈C k i<i ′ |U i -U i ′ |.
From Lemma 12 a sufficient condition to have a local minimum at 0 is to have a local minimum at 0 of

K k=1 i∈C k b k -x i U i + λ K k,k ′ =1 k ′ >k i∈C k i ′ ∈C k ′ (U i -U i ′ ) + λ K k=1 i,i ′ ∈C k i<i ′ |U i -U i ′ |.
This is a sum of functions of (U i ) i∈C k , the sum being over k. Hence, it is enough that the following function of (U i ) i∈C k is locally minimal at 0, for k ∈

[|K|], i∈C k b k -x i U i + λ i∈C k K k ′ =1 k ′ ̸ =k n k ′ sign(k ′ -k)U i + λ i,i ′ ∈C k i<i ′ |U i -U i ′ |.
This is the same function as in ( 22) and [START_REF] Panigrahi | Approximate selective inference via maximum likelihood[END_REF]. It is 0 when n k = 1. Otherwise, since the weights of the linear combination of (U i ) i∈C k have sum zero and with Condition (9) we indeed have a minimum at U i = 0, i ∈ C k from Lemma 13. Hence B as defined above is the global minimizer of (5) (since it is a local minimizer). Hence since we have seen before that bk ̸ = bk ′ for k ̸ = k ′ , then ( 6) is satisfied. Finally, (7) holds, being identical to [START_REF] Hocking | Clusterpath an algorithm for clustering using convex fusion penalties[END_REF].

Proof of (11): This equation was established in [START_REF] Neufeld | Negative binomial count splitting for single-cell rna sequencing data[END_REF].

Proof and full expressions for Lemma 3.

Condition (10): x σ(1) ≥ x σ(2) ≥ • • • ≥ x σ(n) is equivalent to M 1 P σ x ≤ λm 1 with M 1 =            -1 1 0 0 . . . 0 0 -1 1 0 . . . 0 0 0 -1 1 . . . 0 . . . . . . . . . . . . 0 0 0 0 -1 1            ∈ R n-1×n (25) 
and

m 1 = 0 n-1 . Condition (8): For k ∈ [|K -1|], 1 n k n k i=1 x σ(t k-1 +i) - 1 n k+1 n k+1 i=1 x σ(t k +i) > λ(t k+1 -t k-1 ) is equivalent to M 2 (t)P σ x < λm 2 (t), where M 2 (t) ∈ R K-1×n and m 2 (t) ∈ R K-1 are defined by m 2 (t) = -(t 2 -t 0 , t 3 -t 1 , . . . , t K -t K-2 ) ⊤ (26) 
and

M 2 (t) =          -1 n 1 . . . -1 n 1 1 n 2 . . . 1 n 2 0 . . . 0 . . . 0 . . . 0 0 . . . 0 0 . . . 0 -1 n 2 . . . -1 n 2 1 n 3 
. . . 

. . . -1 n K-1 . . . -1 n K-1 1 n K . . . 1 n K          , (27) 
where the number of repetitions of each ±1/n k in each line is

n k . Condition (9) : For k ∈ [|K|] such that n k ≥ 2, for ℓ ∈ [|n k -1|], 1 n k n k i=1 x σ(t k-1 +i) - 1 ℓ ℓ i=1 x σ(t k-1 +i) ≥ λ(ℓ -n k )
is equivalent to M 3 (t)P σ x ≤ λm 3 (t) where M 3 (t) ∈ R n-K×n and m 3 (t) ∈ R n-K are as follows. We have

m 3 (t) = (n 1 -1, n 1 -2, . . . , 1, n 2 -1, . . . , 1, . . . , n K -1, . . . , 1) ⊤ (28) 
with the convention that (n k -1, n k -2, . . . , 1) is empty when n k = 1, and M 3 (t) = diag(M

3 , . . . , M

3 ) with

M (k) 3 =            1 0 0 . . . 0 0 1 2 1 2 0 . . . 0 0 1 3 1 3 1 3 . . . 0 0 . . . . . . . . . . . . . . . . . . 1 n k -1 1 n k -1 1 n k -1 . . . 1 n k -1 0            - 1 n k 1 n k -1×n k , (29) 
with the convention that M (k)

3 is 0 × 0 when n k = 1 and where

1 n k -1×n k is the n k -1 × n k matrix composed of ones.
Proof of Proposition 4. The proposition is obtained from Lemma 5.1 in [START_REF] Lee | Exact post-selection inference, with application to the lasso[END_REF]. We will only show the last claim that the probability that V -(Z) = V + (Z) is zero, conditionally to the event in [START_REF] Laurent | Non-asymptotic detection of twocomponent mixtures with unknown means[END_REF]. We have, letting 1 (13) denote the indicator function that the event in (13) holds,

E 1 (13) 1 V -(Z)=V + (Z) = E 1 V -(Z)=V + (Z) E 1 (13) V -(Z) = V + (Z) .
The above conditional expectation is zero from (13), because η ⊤ X is independent from Z and has non-zero variance because Σ is invertible and η is non-zero.

Proof of Proposition 5. The proof follows closely that of Theorem 5.2 in [START_REF] Lee | Exact post-selection inference, with application to the lasso[END_REF]. Fix t ∈ [0, 1]. Remark that in Lemma 3, all the lines of M 2 (t) are non-zero. Furthermore, Σ is invertible. This provides, from Theorem 2 and Lemma 3 that the events E t,σ and {MP σ X ≤ λ m} have their symmetric difference of probability zero. Hence we have

P ( pval(X, t, σ) ≤ t| E t,σ ) = P ( pval(X, t, σ) ≤ t| MP σ X ≤ λ m) .
We then have

P ( pval(X, t, σ) ≤ t| E t,σ ) = R n P ( pval(X, t, σ) ≤ t| MP σ X ≤ λ m, Z = z 0 ) dP |MPσX≤λ m (z 0 ),
where dP |MPσX≤λ m (z 0 ) denotes the law of Z conditionally to MP σ X ≤ λ m.

Consider z 0 in the support of P |MPσX≤λ m such that V -(z 0 ) < V + (z 0 ), which holds with P |MPσX≤λ m -probability one from Proposition 4. Then, as discussed in Section 2.3.1 and shown in [START_REF] Lee | Exact post-selection inference, with application to the lasso[END_REF], conditionally to MP σ X ≤ λ m and Z = z 0 , under the null hypothesis η ⊤ µ = 0, T (X, t, σ) is uniformly distributed on [0, 1] and thus so is pval(X, t, σ). We thus obtain, P ( pval(X, t, σ) ≤ t| E t,σ ) = R n t dP |MPσX≤λ m (z 0 ) = t. This concludes the proof. and thus the right-hand sides of ( 17) and ( 30) are equal and so O (0) holds. Furthermore, from [START_REF] Wang | Clustering aggregation by probability accumulation[END_REF], b(0) 1 (0) > • • • > b(0) K (0) (0). We have, for k ∈ [|K (0) -1|], using [START_REF] Tibshirani | The solution path of the generalized lasso[END_REF],

b(0) k (λ) - b(0) k+1 (λ) = xk + λ k-1 k ′ =1 n (0) k ′ -λ K (0) k ′ =k+1 n (0) k ′ -xk+1 -λ k k ′ =1 n (0) k ′ + λ K (0) k ′ =k+2 n (0) k ′ = xk -xk+1 >0 -λ n (0) k + n (0) k+1 >0 . (33) 
Hence, we see that indeed the set in ( 31) is non-empty. Let λ(1) be given by the right-hand side of [START_REF] Wang | Sparse convex clustering[END_REF]. = λ (1) .

Hence indeed [START_REF] Wang | Sparse convex clustering[END_REF] holds and thus P (0) holds. Since λ (1) is given by [START_REF] Wang | Sparse convex clustering[END_REF], then also Q (0) holds.

Let us now show R (0) . Let λ ∈ [λ (0) , λ (1) ). We will apply Theorem 2, with σ there being a permutation such that x σ(1) ≥ • • • ≥ x σ(n) and C being the clustering C (0) . For k ∈ [|K (0) -1|], since b(0) k (λ) -b(0) k+1 (λ) > 0 as seen above, we obtain from ( 30) that (8) holds, using ( 20) and [START_REF] Nguyen | Consensus clusterings[END_REF]. It is immediate that (9) holds because the left-hand term is zero and the right-hand term is non-positive. Hence from [START_REF] Hoefling | A path algorithm for the fused lasso signal approximator[END_REF] in Theorem 2, R (0) indeed holds, also from [START_REF] Tibshirani | The solution path of the generalized lasso[END_REF]. Also, K (1) < K (0) because, by definition of λ (1) in [START_REF] Wang | Sparse convex clustering[END_REF], the values b(0) 1 (λ (1) ), . . . , b(0) K (0) (λ (1) ) are not two-by-two distinct.

Induction: from r to r + 1. Let now r ∈ N such that K (r+1) ≥ 2. Assume that O (r) , P (r) , Q (r) and R (r) hold. For any B ∈ R n , from R (r) , for λ ∈ [λ (r) , λ (r+1) ),

1 2 n i=1 B(r) i (λ) -x i 2 + λ n i,i ′ =1 i<i ′ B(r) i (λ) - B(r) i ′ (λ) ≤ 1 2 n i=1 (B i -x i ) 2 + λ n i,i ′ =1 i<i ′ |B i -B i ′ | .
As λ → λ (r+1) , this yields

1 2 n i=1 B(r) i (λ (r+1) ) -x i 2 + λ (r+1) n i,i ′ =1 i<i ′ B(r) i (λ (r+1) ) - B(r) i ′ (λ (r+1) ) ≤ 1 2 n i=1 (B i -x i ) 2 + λ (r+1) n i,i ′ =1 i<i ′ |B i -B i ′ | .
Hence, the minimizer of (5) for λ = λ , the smallest value of the regularization parameter λ for which the convex clustering yields a single cluster. For a given input data set, this value is obtained analytically in linear time using [START_REF] Neufeld | Inference after latent variable estimation for single-cell RNA sequencing data[END_REF]. Finally, we set λ to q 0.01 (λ) -sd(λ), where λ = (λ (rmax) b

) b∈[|B|] , q 0.01 (z) is the first percentile of the vector z and sd(z) is the standard deviation of the vector z. The result of this procedure for Σ = I n is also illustrated by Figure 7. For n ∈ {100, 500, 1000}, the empirical distribution of λ (rmax) is summarized by a violin plot (mirrored kernel density estimate) and the obtained value of λ is represented by a dot and a dashed horizontal line.

E.2. Level of the test in the one dimensional case

We set a Gaussian sample X = (X 1 , . . . , X n ) with mean vector µ = 0 n and known covariance matrix Σ = I n . For the given fixed value λ = 0.0025, we use our test in order to compare 38 the means of cluster C k and C k ′ for 1 ≤ k < k ′ ≤ K 0 = 10. This corresponds to the test of the K 0 (K 0 -1)/2 null hypotheses η [kk ′ ] ⊤ µ = 0, where η [kk ′ ] ∈ R n is defined by η

[kk ′ ] i = 1/n k 1 i∈C k -1/n k ′ 1 i∈C k ′ .
We retain N = 1000 numerical experiments such that the clustering C(X) associated to λ verifies K(X) ≥ K 0 . The result is summarized in Figure 8 by the empirical cumulative distribution of the conditional p-value [START_REF] Lindsten | Clustering using sum-of-norms regularization: With application to particle filter output computation[END_REF] for each pair of clusters. Figure 8 illustrates the uniformity of the distribution of each of these p-values, for = 1000. 

Figure 1 :

 1 Figure 1: Illustration of Definition 2 for one clustering with K = 3 clusters of the observed values x = (2, 6, 11, 10, 7, 1, 6.5, 7)

  2 (.) is the cumulative distribution function (cdf) of a Gaussian distribution N (ν, τ 2 ) truncated on the interval [a, b].

Figure 3 :

 3 Figure 3: Left: empirical density of η ⊤ µ for each ν. Right: empirical cumulative distribution functions of the p-value of the test of equality between the means of two clusters.

Figure 4 :

 4 Figure 4: The empirical cumulative distribution function of the p-values across 500 experiments for n = 100 with our method poclin (in green) and the Wilcoxon test (in orange).Each column corresponds to a variable j, each row to a value of ν and each line type to a value of ρ.

Figure 5 :

 5 Figure 5: The empirical cumulative distribution function of the p-values across 500 experiments for n = 1000 with our method poclin (in green) and the Wilcoxon test (in orange).Each column corresponds to a variable j, each row to a value of ν and each line type to a value of ρ.

4. 4 .

 4 Choice of the ℓ 1 norm in the multi-dimensional convex clustering problem

  Canceling the gradient with respect to b 1 , . . . , b K at b 1 , . . . , b K then provides, for k ∈ [|K|],

  8) holds by the previous observation that b 1 > • • • > b K and taking k ′ = k + 1. Now we fix k ∈ [|K|]. If we replace B i = b k by b k + U i for i ∈ C k and we keep the B i , i ̸ ∈ C k unchanged, we increase the cost function in Problem (5). Hence the following function of

  The values of b(0)k (λ), k ∈ [|K (0) |],are continuous in λ and thus by definition of λ(1) they remain two-by-two distinct and in the same order on [0, λ(1) ). Furthermore , from[START_REF] Weylandt | Dynamic visualization and fast computation for convex clustering via algorithmic regularization[END_REF],λ(1) = min k∈[|K (0) -1|] k+1 = λ (0) + min k∈[|K (0) -1|] b(0) k (λ (0) ) -b(0) k+1 (λ (0) ) n

Figure 7 :

 7 Figure 7: Empirical distribution of λ (rmax) across 10000 replications of the procedure to choose λ (see main text for details). The dots correspond to the chosen values.

Figure 8 :E. 3 .

 83 Figure 8: Experiments under the null hypothesis: empirical cumulative distribution functions of the p-value of the test of equality of means of all pairs of clusters. Each curve corresponds to a specific pair of clusters.

Figure 9 :

 9 Figure 9: Empirical distribution (across 500 experiments) of the absolute value of the difference between the true means of the estimated clusters. Dashed horizontal lines are drawn for reference at y = 2ν (in black) and y = 0 (in gray).

Table 1

 1 Correspondence between the notation of Section 2.3.1 (dimension one) and the notation of Sections 3.2.1 and 3.2.2 (dimension p). j = j ′ . Define also D σ as the np × np block diagonal matrix with p diagonal blocks and block j equal to P σ (j) , for j ∈ [|p|]. With these definitions, we have

	vec(c)
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Appendix A: Technical lemmas and their proofs Lemma 11. Consider a fixed x = (x 1 , . . . , x n ) ∈ R n . Let, for B = (B 1 , . . . , B n ) ∈ R n ,

Then, for i, i ′ ∈ [|n|], i ̸ = i ′ such that x i = x i ′ , if B is such that B i ̸ = B i ′ , replacing B i and B i ′ by (B i + B i ′ )/2 strictly decreases R(B). Furthermore, for i, i ′ ∈ [|n|], i ̸ = i ′ such that x i < x i ′ , if B i > B i ′ , exchanging B i and B i ′ in B strictly decreases R(B).

Proof of Lemma 11. In the first case, we compute the change of R(B), before -after = (B i -

which is strictly positive by strict convexity and because B i ̸ = B i ′ . In the second case, before -after = (B i -

Lemma 12. Let k ∈ N. Let f : R k → R be convex and continuously differentiable. Let g : R k → R be convex and continuous. Let x ∈ R k . For a continuously differentiable function ψ : R k → R, we let Lin x (ψ) be the function t → ∇ ψ (x) ⊤ (t -x), letting ∇ ψ (x) be the gradient of ψ at x. Then x is a minimizer of Lin x (f ) + g if and only if x is a minimizer of f + g.

Proof of Lemma 12. For a convex function ϕ, x is a minimizer of ϕ if and only if, for any

For any v ∈ R k , the above limit is identical when ϕ = f + g and when ϕ = Lin x (f ) + g. Hence the above limit is non-negative when ϕ = f + g if and only if it is non-negative when ϕ = Lin x (f ) + g.

Appendix B: Proofs for Section 2

Proof of Lemma 1. For the first part, let i, i

Let us consider the increment of the criterion in [START_REF] Dharamshi | Generalized data thinning using sufficient statistics[END_REF] when replacing B i and B i ′ by ( B i + B i ′ )/2. From Lemma 11, the quadratic part is strictly decreased. Let us show that Proof of Proposition 6. Fix t ∈ [0, 1]. We have

In the conditional probability P ( pval(X, t, σ) ≤ t| (T, S) = (t, σ)) of the above sum, conditionally to (T, S) = (t, σ), one can check that all the conditions of Proposition 5 hold. Hence, from this proposition, we have

This concludes the proof.

Proof of Theorem 7. We will show that, for the successive values of r,

We will also show that for the successive values of r,

We will prove by induction that the following properties O (r) , P (r) , Q (r) and R (r) hold for r = 0, 1, . . . and as long as K (r) ≥ 2: [START_REF] Tibshirani | The solution path of the generalized lasso[END_REF] holds for k ∈ [|K (r) |] and λ ≥ λ (r) ", P (r) = "the set in [START_REF] Wang | Sparse convex clustering[END_REF] is non-empty and (31) holds",

Along proving these properties by induction, we will show that K (r) > K (r+1) . Doing this, and discussing the case r = r max at the end, will conclude the proof. Initialization: r = 0. When r = 0, we have λ (0) = 0 and, for k

Hence, from [START_REF] Hoefling | A path algorithm for the fused lasso signal approximator[END_REF] in Theorem 2, the right-hand side of (30), with (r, λ) there replaced by (r + 1, λ (r+1) ) and for k ∈

). Hence (30) holds at step r + 1 for λ = λ (r+1) . Hence [START_REF] Tibshirani | The solution path of the generalized lasso[END_REF] holds for λ ≥ λ (r+1) since the right-hand-sides of ( 17) and ( 30) have the same slope w.r.t. λ. Thus O (r+1) is proved. The properties P (r+1) and Q (r+1) are shown similarly as in the initialization step.

Let us finally show R (r+1) . Let λ ∈ [λ (r+1) , λ (r+2) ). Similarly as for the initialization step, we will apply Theorem 2, with the same permutation σ and with C being the clustering C (r+1) . Equation ( 8) is shown to hold similarly as before, using [START_REF] Tibshirani | The solution path of the generalized lasso[END_REF]. From R (r) and with the above, we obtain that B(r

minimizes (5) when λ = λ (r+1) .

Hence Equation ( 9) holds when λ = λ (r+1) from Theorem 2. For λ ∈ [λ (r+1) , λ (r+2) ), the clustering is the same as when λ = λ (r+1) so the left-hand-side of ( 9) is unchanged compared to when λ = λ (r+1) . On the other hand, the right-hand side is decreased. Hence, (9) also holds for λ ∈ [λ (r+1) , λ (r+2) ). Hence from [START_REF] Hoefling | A path algorithm for the fused lasso signal approximator[END_REF] in Theorem 2, and (30), R (r+1) indeed holds.

When r = r max . As before, we show that O (rmax-1) implies O (rmax) . Then using (30) for r max we obtain, by the same arguments as when showing R (r+1) above, that for λ ≥ λ (rmax) , ( B(rmax [START_REF] Dharamshi | Generalized data thinning using sufficient statistics[END_REF]. Note that the right-hand-side of ( 30) is constant in λ now and there is a single class. Hence the common value of ( B(rmax =(e j 0 ⊗ Ση)(η ⊤ Ση) -1 =e j 0 ⊗ c, where c = Ση(η ⊤ Ση) -1 is as defined for the one-dimensional case in Proposition 4. Hence, vec(c) is a np × 1 vector where the subvector corresponding to the variable j 0 is equal to c and the subvectors corresponding to the other variables are zero. Then,

where Z = [I n -cη ⊤ ]Y .j 0 is defined as in Proposition 4 and Y .-j 0 is defined by replacing the column j 0 of Y by zero. Hence, vec(Z) is a np × 1 vector which subvector corresponding to the variable j 0 is Z which is computed as in the one-dimensional case. 34

The next step for obtaining the invariant statistic is to compute

In V -(vec(Z)) the set of indices l is the disjoint union of p sets of cardinality 2(n -1) each, corresponding to the p variables. Consider l in the set corresponding to a variable j ̸ = j 0 . Then in (MD σ vec(c)) l , the row l of MD σ , of size np has non-zero components only for the indices corresponding to the variable j. On the other hand, as seen above, vec(c) has non-zero components only for the indices corresponding to the variable j 0 . Hence, taking the inner product, (MD σ vec(c)) l = 0. Hence the maximum in V -(vec(Z)) can simply be taken with the indices l corresponding to the variable j 0 . This, together with the expressions of vec(c) and vec(Z) above yields

where V -(Z) has the same expression as in Proposition 4 for the one-dimensional case. We obtain similarly

The invariant statistic is thus, similarly as in Section 2.3.1,

This concludes the proof.

Proof of Proposition 9. From Theorem 2 and Lemma 3, for j ∈ [|p|], the event

is the clustering given by B .j and Y σ

is equal to the event M(t (j) )P σ (j) Y .j ≤ λm(t (j) ) , up to a symmetric difference of Yprobability 0 (because the rows of M(t (j) ) are non-zero and the covariance matrix of Y .j is invertible). Hence, up to a symmetric difference of Y -probability 0, the event E is equal to the event {MD σ vec(Y ) ≤ λm}, with the construction of Section 3.2.1. The rest of the proof is the same as the proof of Proposition 5.

Proof of Proposition 10. The proof is the same as for Proposition 6. For a given method, the median computation times for a given problem size are connected by dashed lines. The solid lines have been obtained by a linear regression of time against problem size (on the log scale).

• the convex clustering 1d method in our R package poclin, which is available from https://plmlab.math.cnrs.fr/pneuvial/poclin; • the genlasso function in the R package genlasso, which is available from CRAN at https://CRAN.R-project.org/package=genlasso; • the clusterpath.l1.id function in the R package clusterpath, which is available from R-forge at https://clusterpath.r-forge.r-project.org/. The core functions of this package are implemented in C.

We have used the R package microbenchmark to compare the execution time of these implementations on standard Gaussian signal of size n ∈ {10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000}. The results are displayed in Figure 6 on the log-log scale. Each dot represents one experimental run. For a given method, the median computation times for a given problem size are connected by dashed lines. The solid lines have been obtained by a linear regression of time against problem size (on the log scale).

The computation time of genlasso is much larger than for the other implementations; we were not able to get results for n ≥ 100 with this method. This is explained by the fact that genlasso is a generic implementation where the constraints are stored in a n(n -1)/2 × n matrix. In contrast, the other clusterpath and poclin implementations are quite efficient. For clusterpath, we report two computational times, which are labeled as 'clusterpath' and 'clusterpath light' in Figure 6, respectively:

• 'clusterpath' corresponds to the direct application of the clusterpath.l1.id function.

We were not able to include 'clusterpath' for n ≥ 10000 due to memory issues -one run of this function for n = 5000 takes up 6.6 Gb of RAM; • 'clusterpath light' directly calls the underlying C function join clusters convert in the clusterpath package, thereby avoiding some computational overhead. Thanks to this modification, we were able to run 'clusterpath light' for n ≤ 50000. However, it was not possible to run it for n ≥ 100000 because of memory issues.

In contrast, since the space complexity of poclin is linear, we were able to run poclin without any memory issue for n ≤ 100000. The computational time of poclin is slightly higher than that of 'clusterpath light' for n ≤ 20000. However, we note that the implementation in poclin only uses R code, while 'clusterpath light' only uses C code: we expect that a C implementation of poclin would lead to improve computational times. More interestingly, a linear regression in the log/log space showed that the slope of the poclin curve is approximately 1.5, while that of 'clusterpath light' and 'clusterpath' are approximately 1.9. This implies that the empirical complexity of poclin is of the order of O(n 1.5 ), while that of clusterpath is of the order of O(n 1.9 ).

D.2. Further reducing the time complexity of Algorithm 1

The complexity of Algorithm 1 can be reduced to the order O(n log(n)) without compromising the linear memory complexity. This section gives an informal description of the main idea for this reduction. We consider the pairs of consecutive clusters, associated to consecutive values of b in Algorithm 1. Let us define the "merging distance" of each of these pairs as the value of λ for which the corresponding value of b become equal, that is, where this pair of clusters should be merged into one. If two clusters are merged, the merging distances are updated only for these two clusters and the one or two adjacent ones. This property could be exploited in the implementation of Algorithm 1, by storing these merging distances in a min heap binary tree [START_REF] Williams | Algorithm 232: heapsort[END_REF]. Indeed, the minimal element of a min heap (here, corresponding to the next merge), is obtained in constant time (O(1)) as the root of the tree, while the cost of inserting an element in the heap is logarithmic (O(log(n))), corresponding to the depth of the binary heap. Exploiting the binary min-heap tree, we can keep a O(log(n)) cost at each step when two clusters are merged. This yields a total computational complexity of O(n log(n)) for O(n) steps. Note also that if more than two clusters are merged, then the computational cost of the corresponding step can be higher, but the total number of steps is more reduced. We eschew a full description of an implementation of Algorithm 1 with a binary min-heap tree for the sake of concision and to promote explicit formulas such as [START_REF] Murtagh | Algorithms for hierarchical clustering: an overview[END_REF] and [START_REF] Neufeld | Data thinning for convolutionclosed distributions[END_REF].

Appendix E: Additional illustrations

E.1. Calibration of the regularization parameter

We describe the procedure used in the numerical experiments to calibrate the value of the regularization parameter λ. As explained in the main text, the goal of this procedure is to