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METHODS & TECHNIQUES

Measuring the 3D wake of swimming snakes (Natrix tessellata)
using volumetric particle image velocimetry
Vincent Stin1,2, Ramiro Godoy-Diana1, Xavier Bonnet3 and Anthony Herrel2

ABSTRACT

We describe a method for measuring the 3D vortical struc-
tures produced by an anguilliform swimmer using volumetric
velocimetry. The wake of freely swimming dice snakes (Natrix
tessellata) was quantified, revealing the creation of multiple vor-
tices along the body of the snake due to its undulation. The
3D structure of the vortices generally consisted of paired vor-
tex tubes, some of which were linked together to form a hairpin
structure. The observations match predictions from computa-
tional fluid dynamic studies of other anguilliform swimmers.
Quantitative measurements allowed us to study vortex circula-
tion and size, and global kinetic energy of the flow, which varied
with swimming speed, vortex topology, and individual charac-
teristics. Our findings provide a baseline for comparing wake
structures of snakes with different morphologies and ecolo-
gies and investigating the energetic efficiency of anguilliform
swimming.

KEYWORDS: Snake, Swimming, Anguilliform, Hydrodynamics,
Volumetric PIV, Vortex

INTRODUCTION
Undulatory swimming kinematics are usually classified in four
main modes involving different proportions of the body and/or
caudal fin (Lindsey 1978; Sfakiotakis et al. 1999). Among these,
anguilliform swimming describes the motion of elongated animals,
where the kinematics consist of an undulation that increases in
amplitude along the body. Since Lighthill’s analytical large ampli-
tude elongated body theory (Lighthill 1971), numerical inves-
tigations have been conducted (Kern and Koumoutsakos 2006;
Borazjani and Sotiropoulos 2009, 2010; Nangia et al. 2017; Bat-
tista 2020a,b; Khalid et al. 2020; Ogunka et al. 2020; Khalid
et al. 2021) in order to obtain a estimation of quantities such
as forces, pressure fields, and swimming efficiency for an ideal-
ized swimmer. Anguilliform swimming hydrodynamics have been
experimentally studied on the eels Anguilla anguilla (Muller et al.
2001) and Anguilla rostrata (Tytell 2004; Tytell and Lauder 2004),
the lamprey Petromyzon marinus (Gemmell et al. 2016; Du Clos
et al. 2019; Lehn 2019), and the catfish Plotosus lineatus (Tack et
al. 2021), using particle image velocimetry (PIV) in 2D.

1PMMH, CNRS, ESPCI Paris-PSL, Sorbonne Université, Université Paris Cité,
Paris, France.
2UMR7179 MECADEV, Département Adaptation du Vivant, MNHN/CNRS, Paris,
France.
3Centre d’Étude Biologique de Chizé, CNRS, UMR 7372, Villiers-en-Bois, France.

Authors for correspondence: (vincent.stin@espci.fr)

The elongated and limbless morphology of snakes is associated
with over ten different gaits used in various environments (Jayne
2020), with swimming kinematics first studied quantitatively by
Taylor (1952) inspired by the work of Gray (1933). Snakes’ great
diversity in size and shape makes them ideal to study anguilli-
form locomotion, and their numerous independent radiations into
aquatic environments provide insight into the adaptation of elon-
gated limbless tetrapods to this environment. However, apart from
prey capture studies (Van Wassenbergh et al. 2010; Segall et al.
2019), a hydrodynamic analysis based on live swimming snake
data has yet to be attempted.
Although 2D PIV helps to understand aquatic locomotion dynam-
ics, 3D velocimetry is necessary to fully describe the vortex
dynamics produced by a moving finite body (Tytell et al. 2008),
especially in out-of-plane movements as in swimming snakes.
The main methods are synthetic aperture PIV (e.g., Lehn 2019;
Mendelson and Techet 2020), tomographic PIV (Skipper et al.
2019), and digital defocusing PTV (e.g., Flammang et al. 2011;
Bartol et al. 2016). These methods instantly capture the entire 3D
unsteady flow field, but flow field measurements of swimming ani-
mals are scarce. Aside from unpublished work on lampreys (Lehn
2019), the 3D wake of an anguilliform swimmer has not been
characterized experimentally.
We propose a method to examine the 3D flow induced by an
anguilliform swimmer using a free-swimming dice snake (Natrix
tessellata) as our model. Using DDPTV, we measured the wake
and investigated the vortical structure. We compared results to
previous computational fluid dynamics and 2D experimental PIV
studies.

MATERIAL AND METHODS
Animals and swimming behaviour

Swimming kinematics and PIV data were obtained from three (one
male and two females) adult captive dice snakes (Natrix tessel-
lata). Dice snakes are semi-aquatic snakes and were chosen for
their relatively small size.
A first set of trials was made to characterize the swimming kine-
matics of Natrix tessellata as no data are available in the literature
and because the kinematic parameters of swimming snakes are
generally scarce. The snakes were freely swimming in a plexiglass
tank (length = 400 cm, width = 40 cm, height = 30 cm, water height
= 22 cm). Animals were filmed in ventral view (Phantom MIRO,
1000 fps). Kinematic parameters were extracted by digitizing the
snake’s midline using an custom-written MATLAB routine. We
measured the following anatomical and kinematic parameters: the
total length, from the tip of the snout to the tip of the tail (L), max-
imal body diameter (D), body mass (m), forward swimming speed
(U ), tailbeat frequency (f ), peak-to-peak amplitude of the tail (A),
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Fig. 1. Experimental setup and snake kinematics. (A) Superimposed images of a snake at two consecutive maxima of tail deflection. The peak-to-peak
amplitude A, tailbeat frequency f and the forward velocity U are measured by finding the peaks in the lateral excursion of the tail-tip over time for at least
one full tailbeat cycle. The body wave length λ is measured when two adjacent crests are clearly visible on the snake body. (B) Anatomical & kinematic
parameters gathered during the swimming behaviour experiment with the asterisk meaning that the parameter was divided by the snake length. Number
of swimming trials: NM = 17, NF1 = 11, NF2 = 11. Results are presented as means±s.d. (C) Volumetric imaging setup. a: Water tank, b: Nd:YAG laser
(Quantel Evergreen), c: Measurement volume, d: Camera frame. (D) Boxplot of mean voluntary forward velocity of the swimming snakes during the PIV
swimming trials (NM = 31, NF1 = 52, NF2 = 29).

and the body wavelength (λ). The Reynolds and Strouhal numbers
were also computed as:

Re =
UD

ν
(1)

St =
fA

U
(2)

where ν is the water kinematic viscosity. The general swimming
kinematic parameters are summarized in Fig.1.B and permit a
broad estimation of the swimming behaviour of the test animals
under laboratory conditions. Although conducted separately from
the PIV experiments, these trials have the potential to be performed
concurrently in a separate study, with appropriate laser filtering in
place. An example of a swimming trial video is accessible in the
supplementary materials.

Experimental PIV setup

In order to quantify the flow around a swimming snake we used
a volumetric three-component DDPTV setup (V3V-9000-CS sys-
tem, TSI ; Fig.1.C). The experiments were conducted in a water-
filled plexiglass tank (length = 210 cm, width = 18 cm, height = 30
cm, water height = 22 cm). A narrower tank was chosen in order
to increase the chances of the snake to swim through the mea-
surement volume without over-constraining the kinematics. The
water was seeded with 50 µm polyamide particles (PSP-50, Dantec
Dynamics) with a concentration of around 5× 10−2 ppp (Cam-
bonie and Aider 2014). The tank was illuminated from above by

a 14 Hz pulsed 200 mJ dual head Nd:YAG laser (Quantel Ever-
green) expanded with two -25 mm cylindrical lenses. The particles
were filmed by three CCD arrays (Powerview Plus 4MP-HS) with
50 mm camera lenses (Nikon AF Nikkor, aperture f/16) mounted
on a 170 mm equilateral triangular frame (V3V 9000-CS). The
acquisition setup was piloted by the INSIGHT V3V-4G software
and calibrated as explained by Troolin and Longmire (2010). The
resulting measurement volume is the intersection between the
fields of view of the cameras and the laser cone. Its dimension
is approximately 18× 18× 12 cm and it is centered on the water
tank in width (Z-axis) and height (Y-axis).

Recording procedure

During each trial the snake was placed at one side of the tank and
allowed to swim. When put into the water snakes typically swam
to the other side of the tank along the X direction, passing through
the measurement volume while being recorded by the cameras at a
frequency of 14 Hz. Preliminary trials were conducted to estimate
the best ∆T between two consecutive PIV frames so that displace-
ment of the seeding particles does not exceeded six pixels. The
resulting ∆T ranged between 1 ms and 2.5 ms. As the width of
the measurement volume was smaller than the width of the water
tank, only the trials were the snake entirely swam through it were
retained. The PIV swimming trials were performed on six different
days over the course of several weeks. During the first two record-
ing days, females were gravid which impacted their body mass and
diameter. The measurements in Table 1 were made after the eggs
were laid. A total of 112 sequences of free swimming Natrix tes-
sellata with at least one tailbeat in the measurement volume were
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recorded. The number of sequences were respectively 31, 52 and
29 for Natrix M, Natrix F1 and Natrix F2.

Data processing

Image masking
In order to avoid artefacts induced by the presence of the snake’s
body on the raw images during the PIV analysis, the snake was
removed from the images with the help of a custom-written mask-
ing routine in MATLAB using the Image Processing Toolbox.

PIV Processing
The images were then processed using the INSIGHT V3V-4G soft-
ware in order to obtain the vector fields. The main steps of the
data processing are: (1) 2D particle identification in the images
of each camera using a Gaussian fitting (Levenberg–Marquardt
algorithm). (2) 3D particle identification, the correspondence of
a particle in one image to the same particle in the other two images
is carried in agreement with the calibration. The fine search tol-
erance is set to 0.5 px and the coarse search tolerance to 1 px.
(3) The velocity is processed using the 3D displacement between
two consecutive frames with a relaxation algorithm (Pereira et al.
2006). (4) The neighbor tracking reconstruction algorithm uses
the trajectories from the neighboring particles to find the proba-
ble location of a missing triplet at time t+∆T. (5) The randomly
spaced vectors are finally interpolated using a Gaussian-weighted
algorithm (Pereira and Gharib 2002), resulting in a 74× 74× 43
evenly spaced vector grid with a 2.5 mm resolution.

Base change
Vector fields were processed using code written in MATLAB. The
swimming trials being in free swimming conditions, the move-
ments of the snake in the measurement volume can be quite
different from one sequence to another, which makes the com-
parison challenging. In order to tackle this problem, we changed
the regular Cartesian coordinate system (XY Z) to a new rotated
coordinate system (XrotY Zrot) for each swimming trial. For each
recorded sequence the water jet created by the last tailbeat was
tracked with a velocity thresholding method. The trajectory of the
jet was estimated by a linear regression of the superimposed posi-
tion of the jet center. A new base was then created by a rotation
around the Y-axis so that the new Xrot axis was co-linear to the
jet’s trajectory and the Zrot axis perpendicular to it.

Hydrodynamic parameters

The flow field induced by the swimming snake was monitored
from its detection in the volume until it either reached the edges
of the working volume or dissipated. The unsteadiness was quan-
tified by computing the Q-criterion of the vector field. Q is defined
as the second invariant of the velocity gradient tensor (Hunt et al.
1988; Jeong and Hussain 1995):

Q =
1

2
(∥ Ω ∥2 − ∥ S ∥2) (3)

where Ω is the antisymmetric part and S the symmetric part of the
tensor. The positive values of Q indicate the parts of the flow field
where vorticity dominates over the viscous stress. The strength
of the vortices was estimated by computing the circulation of the
vortex cores:

Γ =

∮
C

v⃗ · d⃗l =
∫
S

ω⃗ · n⃗dS (4)

where ω is the vorticity vector and n the normal vector. The sur-
faces S of the vortex cores are identified by using the Γ2 criterion
(Graftieaux et al. 2001) in the rotated XrotY planes co-linear to the
jet trajectory so that a vortex core is always present in the planes.
The vortex size d is defined by the distance between the center of
the positive and negative vortex cores:

d =
√

(x+ − x−)2 + (y+ − y−)2 (5)

where (x+, y+) and (x−, y−) are the coordinates of the centers
of the positive and negatives vortex cores in the XrotY planes. In
order to compare the results between the different individuals and
sequences, the hydrodynamic parameters are non-dimensionalized
by the mean forward swimming speed U of the snake during the
measurement period and the snake diameter D :

Γ∗ =
Γ

UD
(6)

d∗ =
d

D
(7)

The kinetic energy of the wake in the whole measurement volume
is defined as :

E =
ρ

2

∫
V

∥ u ∥2 dV (8)

where ρ is the water density, V the measurement volume and ∥ u ∥
the velocity magnitude. To quantify differences in the hydrody-
namic parameters across individual sequences we focused on trials
where at least one tail beat vortex was clearly visible and where
measurements were possible (NM = 12; NF1 = 13; NF2 = 14).

RESULTS & DISCUSSION
Vortex characterisation

Although the snakes swam with the characteristic lateral undu-
lation of an anguilliform swimmer in the frontal plane (XZ),
there were also noticeable, albeit smaller, oscillations in the sagit-
tal plane (XY). The tail was often positioned below the body
and the tailbeats were downward facing. The mean swimming
speed in body lengths per second across the swimming trials was,
respectively, UM = 0.51 Ls−1, UF1 = 0.37 Ls−1 and UF2 =
0.34 Ls−1 (Fig.1.D).
During a typical swimming sequence, vortices were shed after
each change of direction of the swimmer’s body during oscilla-
tory movements. The displacement of the body created two vortex
tubes of opposite rotation (Fig.2.A,B) on its top and bottom, which
in some cases became connected. The shed vortices were tilted
at an angle of approximately 30° to 40° to the swimming direc-
tion (Fig.2.C). Their trajectory was mostly linear with a tendency
to curl. Body vortices with similar topologies and dynamics were
also observed.
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The circulation of the vortex cores rapidly increased in magnitude
just after the tail beat and reached a maximum before decreas-
ing (Fig.2.D). The positive and the negative vortex cores displayed
symmetrical variations during the observed time period. During its
lifetime, the vortex size gradually increased (Fig.2.E) and changed
from a flattened into a more circular shape. The kinetic energy
of the wake increased starting from the moment when the swim-
mer enters the measurement volume. After the final tailbeat of
the swimmer, the perturbations dissipate and the kinetic energy
decreases (Fig.2.F).

Comparison of parameters

Across the swimming sequences, the dimensional maximal circu-
lation ranged from around 18 to 51 cm2s−1, 25 to 70 cm2s−1 and
22 to 88 cm2s−1 for Natrix M, Natrix F1, and Natrix F2, respec-
tively. The non-dimensional circulation Γ∗ ranged approximately
between 0.5 and 1.5. The maximum vortex size was between
approximately 2.5 and 5.3 cm, 2.7 and 5.2 cm, and 2.6 and 5.4 cm
for Natrix M, Natrix F1, and Natrix F2 respectively. A Spearman
correlation (R=0.8, P<0.05) showed that there was an increasing
monotonic trend between the maximal vortex size and the max-
imal circulation. As the maximal circulation is usually measured

Fig. 2. Results. (A,B,C) Trailing edge vortices in the measurement volume during a swimming trial highlighted with Q-criterion isosurfaces (Q = 80) colored
by ωx. (A,B) Side view of two consecutive trailing edge vortices (∆T = 286 ms, half of a tailbeat cycle) with the corresponding snake image (Natrix F1)
captured by the PIV cameras. (C) Top view of the superimposed isosurfaces shown on (A) and (B) at their respective times showcasing the angle between
two consecutive vortices. (D,E,F) Measured hydrodynamic parameters during the swimming trial. (D) Positive (red) and negative (blue) vortex core non-di-
mensionalized circulation of the trailing edge vortex (B) from the frame before its detection (t∗ = 0) to the time when it reaches the edge of the measurement
volume. (E) Size-adjusted vortex size evolution. Values are the mean values in three consecutive planes centered on the vortex path. Error bars are s.d. (F)
Evolution of the kinetic energy in the whole measurement volume during the swimming trial. The two vertical lines correspond to the beginning and the end
of t∗. (G,H,I) 3D view showcasing the main steps of the behaviour of a hairpin-like vortex with the example of the trailing edge vortex in (B). (G) Two vortex
tubes of opposite rotation (t∗ = 71 ms). (H) Bridging of the two vortex tubes (t∗ = 285 ms). (I) Separation of the tubes before the bridge and the shape
of the structure is getting rounder (t∗ = 500 ms). The mean vorticity at the bridge section (ωY = 15.08 s−1) is similar to the vorticity of the vortex tubes
(ωX = 15.45 s−1). The corresponding video can be accessed in the supplementary materials.
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near the beginning of the vortex lifetime, this means that a high
initial circulation is likely to yield a bigger vortex.

A Spearman correlation (R=0.7, P<0.05) between the maximal
kinetic energy in the whole measurement volume during the entire
swimming sequence and the maximal circulation of the tailbeat
vortex showed an increasing monotonic trend. This means that
there is a tight scaling between the local hydrodynamic parameters
of the vortices (i.e., the circulation) and the global parameters (i.e.,
the kinetic energy of the fluid in the whole measurement field).

Discussion

As the wake is the footprint of a swimmer, it is crucial to fully cap-
ture it in order to maximise the understanding of the fluid-structure
interactions between the body and the water. The 2D PIV experi-
ments on eels by Muller et al. (2001) in the frontal plane have led
to the prediction that the 3D vortical structure of an anguilliform
swimmer should resemble a vortex ring. Tytell and Lauder (2004)
were skeptical about the true roundness of the vortex and the com-
putational work of Borazjani and Sotiropoulos (2009) suggested
that the wakes were in fact vortex loops stretched in the stream-
wise direction or "hairpin-like" vortices. The traditional plane to
measure the swimmer’s wake in the existing literature is the frontal
plane (XZ) without looking at the other ones (Fig.3.A,B,C). Our

experimental results in the frontal plane are in accordance with
the 2D vortex behaviour in the existing anguilliform swimming
studies (Fig.3.D) with the creation of two counter-rotating vortex
cores during a tailbeat cycle. The 3D velocimetry method pre-
sented here reveals that these vortex cores observable in the frontal
plane are the links between the vortex tubes stretched in the swim-
ming direction (Fig.3.E). These links are created after each change
of direction of the tail.

The observed three-dimensional vortex topologies were either
hairpin-like, tubular or turbulent without any clear cohesion. We
observed hairpin-like and tubular structures in most of the analysed
swimming sequences. A lack of cohesion was observed essen-
tially only when the snake kinematics involved strongly out-of-
plane motions, changes of direction, or acceleration/deceleration
sequences. These different vortex topologies have been predicted
by CFD studies (Kern and Koumoutsakos 2006; Borazjani and
Sotiropoulos 2009; Khalid et al. 2021), and associated to differ-
ent kinematic parameters such as the tailbeat amplitude, frequency,
and body wavelength.

As the DDPTV enables the observation of the full wake structure,
our measurements revealed the different stages of the formation
of the hairpin vortices. The shedding of two vortex tubes of oppo-
site rotation immediately after a tailbeat (Fig.2.G) creates a bridge

Fig. 3. Vortex comparison. (A,B,C,D) Trailing edge vortices in the frontal plane (XZ) from different studies. The swimmers are swimming along the X axis
and the visible vortex cores are the result of a full tailbeat cycle. Vector fields from (A) an eel (Tytell and Lauder 2004) (B) a lamprey (Gemmell et al. 2016)
(C) an anguilliform swimmer CFD model (Kern and Koumoutsakos 2006) and (D) our results. The flow field in (D) is smoothed with a 3D Gaussian filter
(σ = 1.25) to enhance the illustration of the dipolar vortex structure only (note that the quantitative computations of vortex circulation and kinetic energy were
performed on the unfiltered velocimetry output). The corresponding ωY -colored 3D plot (E) suggests that the vortex structure is more complex than it appears
in a 2D plane. The grey plane is the location of the velocity field (D).
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where the vortex tubes interact (Fig.2.H), leading to their connec-
tion and detachment before the bridge (Fig.2.I). These steps are
similar to events in coherent packets of hairpin vortices in channel
flow (Zhou et al. 1999). The rounding of the vortex structure after
the bridging step is also reminiscent of the Ω-shaped vortex cre-
ated by self-induction of the hairpin vortex. Despite the relatively
slow frame rate, our 3D measurement allowed us to observe the
bridging step.
The shedding of vortices was also witnessed more anteriorly on the
body. The production of body vortices has been described by Gem-
mell et al. (2016) for lampreys where a particular attention was
given to the bending of the body. In addition to transverse motion,
the body has an angular velocity in the transverse plane (YZ).
The body surface rotation helps to rotate the fluid and eases the
shedding of adjacent vortices. The production of counter-rotating
vortex tubes along the body has been suggested to generate addi-
tional thrust (Fu and Liu 2015) during swimming. In the case of
gliding snakes, a CFD study showed that the body-induced vor-
tices produced lift along the body (Gong et al. 2022). The body
vortices may therefore have a double function of propelling and
stabilising the swimmer.
The maximal circulation measured for the three swimmers was
similar to the ones measured in smaller anguilliform swimmers:
∼ 20 cm eels (Tytell and Lauder 2004) and ∼ 10 cm lampreys
(Gemmell et al. 2016). The circulation of small hairpin vortices
decreases exponentially after attaining a maximum because of the
viscous interactions of the counter-rotating vortex tubes (Sabatino
and Maharjan 2015). On the other hand, the circulation of laminar
vortex rings slowly decreases after the maximum (Rosenfeld et al.
1998). In our results, depending on the swimming trial, the circu-
lation either decreases or stays relatively constant. The decreasing
vortex circulation is probably due to the viscous interactions with
either the counter rotating vortex tubes or surrounding vortices
created by the other tail beats. The relatively constant or slowly
decreasing circulation, on the other hand, behaves like a laminar
vortex ring.
Studies on vortex rings show that the diameter of the vortex rapidly
increases, attains a maximum, and then asymptotically decreases
to a constant value (Arakeri et al. 2004). The distance between the
vortex cores observed here follows the same pattern as they either
increase or stay relatively constant. This means that the vortices
with an increasing distance are in the first part of their lifetime and
the ones with a relatively constant distance are likely to be near
the end of their lifetime. Our data further suggests a relationship
between the circulation and vortex size.
As the experiments were done in a still-water tank, the displace-
ment of the water was essentially caused by the swimming snakes.
The kinetic energy of the water measured is therefore the energy
that was transferred by the snake minus the dissipation. Com-
putational studies found faster swimming kinematics result in
stronger vortices (Kern and Koumoutsakos 2006; Bhalla et al.
2013). Gravid snakes had larger body diameter and higher mass
but proportionally less locomotor muscle due to eggs which may
impact locomotor performance (Seigel et al. 1987). Gravid snakes
shed vortices with high circulation and size, producing the high-
est overall kinetic energy, suggesting they adjust swimming effort
at a higher cost. Complementary results from other species may
provide an explanation for the observed phenomenon of gravid
snakes exhibiting less swimming activity compared to non-gravid
individuals (Aubret et al. 2005).

Volumetric measurements of the wake can be used as tools for
non-invasive estimations of the swimming performance (Li and
Mendelson 2023). Coupled with 3D kinematic data, the results of
this method could be used for interspecific comparisons of the
swimming performance of snakes. This would lead to a better
understanding of the differences of swimming efficiency in snakes
with different lifestyles, shapes, and ecologies.
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