Supplementary Information

Irreversible Electrochemical Reaction at High Voltage Induced by Distortion of Mn and V Structural Environments in Na₄MnV(PO₄)₃

Sunkyu Park ^{1,2,3}, Jean-Noël Chotard ^{1,5}, Dany Carlier ^{2,5}, François Fauth ⁴, Antonella ladecola ⁵, Christian Masquelier ^{*,1,5} and Laurence Croguennec ^{*,2,5}

¹ Laboratoire de Réactivité et de Chimie des Solides, Université de Picardie Jules Verne, CNRS-UMR 7314, F-80039 Amiens Cedex 1, France

² Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB UMR 5026, F-33600 Pessac, France

³ TIAMAT, 15 Rue Baudelocque, F-80000 Amiens, France

⁴ CELLS-ALBA Synchrotron, Cerdanyola del Vallès, E-08290 Barcelona, Spain

⁵ RS2E, Réseau sur le stockage électrochimique de l'énergie, FR CNRS 3459, F-80039 Amiens Cedex 1, France

Figure S1. SEM images of Na4MnV(PO4)3.

Figure S2. (a) TGA data of the Na₄MnV(PO₄)₃ powder, measured in air with the heating rate of 10 K/min. (b) Adiabatic calorimetry between -25 and 300 °C upon heating and upon cooling.

Table S1	Refined structural	parameters of	the Na ₄ MnV(P	°O₄)₃ powder	collected
	W	thin a capillary	[,] at 298 K.		

Na₄MnV(PO₄)₃

Space group: *R*-3*c* (#167); *Z* =6 *a* = 8.9640(2) Å; *c* = 21.4724(4) Å; *c/a* = 2.395 *V* = 1494.20(2) Å³; *V/Z* = 249.034(8) Å³ R_{wp} = 16.7 %; R_{p} = 16.6 %; R_{Bragg} = 8.3 %

Atom	Wyckoff position	x/a	y/b	z/c	Uiso, Å ²	Occ.
Mn/V(1)	12c	0	0	0.1491(2)	0.010(2)	0.5/0.5
P(1)	18e	0.2985(8)	0	0.25	0.015(2)	1
Na(1)	6b	0	0	0	0.021(6)	0.97(3)
Na(2)	18e	0.6420(13)	0	0.25	0.028(5)	0.96(2)
O(1)	36f	0.0144(16)	0.2091(14)	0.1928(5)	0.023(4)	1
O(2)	36f	0.1870(12)	0.1724(13)	0.0842(6)	0.017(3)	1

Figure S3. Specific discharge capacity (■) and coulombic efficiency (★) during the first 5-20 cycles in the voltage windows of 2-3.75 V (red), 2-4.3 V (blue), 1-4.3 V (green) at the C-rate of C/10 (1 Na⁺ in 10 h).

Figure S4. (a) Different coordination models of k^2 -weighted Fourier transformed EXAFS oscillations at V K-edge after the first cycle with the voltage window of 2-4.3V. (b) Corresponding backward Fourier transforms in *q*-space.

Table S2. Refined parameters for the first coordination shell of V K-edge EXAFS spectra considering different coordination models for V in Na₄MnV(PO₄)₃ recovered after the first cycle with the voltage window of 2-4.3 V: *k*-range: 2.7 - 10.7 Å⁻¹, R-range: 1.0 - 2.1 Å, dR = 0, sine window

Coordination model	d(V – O) (Å)	E₀ (eV)	σ² (Ų)	R-factor
6	2.014(5) X 6	-0.8	0.0064(5)	0.0150
5.5+0.5	2.013(5) X 5.5	0.5	0.0058(5)	0.0017
5.5+0.5	1.645(5) X 0.5	0.5		0.0017

Figure S5. Calculated FT-EXAFS oscillations which are deconvoluted with the various scattering paths for Na₄MnV(PO₄)₃ at V K-edge

Figure S6. Wider 20 range synchrotron XRPD patterns collected *operando* during the first cycle of Na₄MnV(PO₄)₃ vs. Na metal, within a voltage window of 1.0 - 4.3 V vs. Na⁺/Na at the C-rate of C/9 (= 1 Na⁺ in 9 h). The same data with the narrower 20 range are shown in Figure 4.

Figure S7. Rietveld refinement results of Na₃MnV(PO₄)₃ using the C2/*c* space group obtained from the synchrotron XRPD pattern collected with the *in situ* cell during charge.

Figure S8. The starting points of the acquisition for each XAS spectrum and the voltage profile obtained with the *in situ* cell for the XAS *operando* measurements.

Figure S9. Comparison of the spectrum #18 (end of charge, in green) with those of V⁵⁺OPO₄ (with vanadyle type bonds, in black continuous line) and Na1V⁴⁺2(PO4)3 (with V⁴⁺ in symmetric oxygen octahedra, in black dotted line). As expected for a more distorted environment, the pre-edge is more intense for VOPO₄. As expected, the pre-edge position shifts to higher energy when moving from V⁴⁺O₆ in Na₁V₂(PO₄)₃ to V⁵⁴⁺O₆ in Na₋₁MnV(PO₄)₃.

Figure S10. EXAFS oscillations at Mn and V K-edges collected in *operando* conditions at different states of charge and discharge of the battery for the Na₄MnV(PO₄)₃ positive electrode. The range of EXAFS oscillations at Mn K-edge was limited due to the presence of Fe in the Be windows of the electrochemical cell.

Table S3. Refined parameters for the first shell of Mn K-edge EXAFS spectra. *k*-range: 2.3 - 11.3 Å⁻¹, R-range: 1.0 - 2.1 Å, dR = 0, sine window. The coordination number (N) was set to 6, and attenuation factors (S_0^2) were fixed as 0.887. The Mn – O distances and the Debye-Waller factors (σ_i^2) were refined, whereas the energy shift (E₀) was first refined before being fixed.

Spectrum number	d(Mn-O) (Å)		E ₀ (eV)	σ^2 (Å ²)	R-factor
1	2.135(5)	-	0.0	0.010	0.0099
2	2.135(5)	-	-0.1	0.011	0.0108
3	2.133(5)	-	-0.2	0.011	0.0110
4	2.119(5)	-	-1.6	0.012	0.0122
5	2.114(5)	-	-2.3	0.013	0.0124
6	2.106(5)	-	-3.1	0.013	0.0123
7	2.098(5)	-	-4.0	0.014	0.0150
8	2.100(5)	-	-3.4	0.016	0.0199
9	2.122(5)	-	-0.3	0.018	0.0315
10	2.121(5)	-	-0.2	0.020	0.0358
11	2.117(5)	-	-0.1	0.023	0.0426
13	1.935(5)	2.236(5)	0.0	0.009	0.0134
14	1.932(5)	2.241(5)	0.0	0.009	0.0151
15	1.931(5)	2.250(5)	0.0	0.008	0.0177
16	1.929(5)	2.256(5)	-0.1	0.008	0.0222
17	1.927(5)	2.273(5)	-0.4	0.008	0.0241
18	1.926(5)	2.240(5)	-0.3	0.009	0.0176
19	1.924(5)	2.207(5)	-0.7	0.011	0.0130
20	1.923(5)	2.206(5)	-1.0	0.011	0.0121
21	1.930(5)	2.197(5)	-2.1	0.015	0.0486
24	2.145(5)	1.949(5)	-0.5	0.012	0.0245
25	2.122(5)	-	1.2	0.020	0.0324
26	2.119(5)	-	0.3	0.018	0.0219
27	2.118(5)	-	0.0	0.016	0.0150
28	2.114(5)	-	-0.7	0.014	0.0113
29	2.113(5)	-	-0.8	0.014	0.0099
30	2.113(5)	-	-1.1	0.013	0.0096
31	2.119(5)	-	-0.1	0.013	0.0086

Table S4. Refined parameters for the first shell of V K-edge EXAFS spectra. *k*-range: 2.7 – 10.7 Å⁻¹, R-range: 1.0 - 2.1 Å, dR = 0, sine window. The coordination number (N) was set to 6, and attenuation factors (S_0^2) were fixed as 0.884. The V – O distances and the Debye-Waller factors (σ_i^2) were refined, whereas the energy shift (E_0) was first refined before being fixed.

Spectrum number	d(V-O) (Å)		E ₀ (eV)	σ^2 (Å ²)	R-factor
1	2.021(5)	-	2.1	0.005	0.0018
2	2.018(5)	-	2.0	0.005	0.0014
3	2.015(5)	-	2.2	0.006	0.0008
4	2.005(5)	-	2.2	0.007	0.0005
5	1.991(5)	-	2.0	0.008	0.0005
6	1.967(5)	-	1.4	0.008	0.0008
7	1.939(5)	-	0.1	0.007	0.0007
8	1.935(5)	-	-0.1	0.007	0.0011
9	1.935(5)	-	0.1	0.007	0.0010
10	1.934(5)	-	0.1	0.007	0.0014
11	1.934(5)	-	0.2	0.007	0.0011
12	1.934(5)	-	0.3	0.007	0.0016
13	1.931(5)	-	0.2	0.007	0.0013
15	1.931(5)	1.652(5)	0.5	0.007	0.0014
16	1.931(5)	1.633(5)	0.5	0.008	0.0016
18	1.930(5)	1.630(5)	0.6	0.007	0.0015
19	1.934(5)	1.610(5)	1.1	0.008	0.0017
20	1.938(5)	1.611(5)	1.1	0.008	0.0017
21	1.944(5)	1.622(5)	1.3	0.008	0.0015
22	1.951(5)	1.625(5)	1.3	0.009	0.0015
23	1.958(5)	1.639(5)	1.4	0.009	0.0018
24	1.967(5)	1.652(5)	1.6	0.009	0.0018
25	1.976(5)	1.668(5)	1.6	0.009	0.0018
28	2.000(5)	1.675(5)	0.9	0.007	0.0019
29	2.007(5)	1.662(5)	0.8	0.007	0.0020
30	2.011(5)	1.654(5)	0.7	0.006	0.0024
31	2.013(5)	1.652(5)	0.6	0.006	0.0025

Figure S11. Rietveld refinement results of the XRPD pattern obtained from $Na_4MnV(PO_4)_3$ electrode charged at 4.3 V after 5 cycles with the voltage window of 2-4.3 V.

Figure S12. Full pattern matching analysis of the XRPD pattern obtained from Na₄MnV(PO₄)₃ electrode discharged at 2.0 V after 5 cycles with the voltage window of 2-4.3 V.