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Abstract. This paper is situated in the context of multi-agent systems
validation using theorem proving techniques. This document presents a
preliminary case study, which is a part of a broader investigation aim-
ing to explore whether such techniques could aid developers in detecting
and characterizing errors in MAS specifications. Indeed, regardless of
the verification system used (model checking or theorem proving), un-
derstanding the reason of a failure in order to correct the specification is
most of the time rather difficult. In this article, we propose a method that
may help in this task. This method relies on the variables (and their de-
pendencies) that appear in proof obligations generated by GDT4MAS, a
specification and verification method dedicated to Multi-Agent Systems.
Graphs generated thanks to dependencies between variables occurring
in an unproved theorem may indeed help to identify certain types of
mistakes, giving a way to correct the specification.

Keywords: Multi-Agent Systems, Proof Failure, Debugging.

1 Introduction

This article is set within the broader context of validating Multi-Agent Systems
(MAS), focusing particularly on the tuning stage. Over the past few years, con-
siderable effort has been dedicated to validating MAS through proof techniques.
That is precisely why we employ the GDT4MAS model in this work [12], which
offers a dual benefit of formal tools for specifying Multi-Agent Systems and an
automated proof system. By utilizing a formal specification, the proof system
generates a set of Proof Obligations that serve as a guarantee for the system’s
correctness.

Simultaneously, we have embarked on studying how to address the question:
”What happens when the theorem prover fails to complete the proof?” Specif-
ically, we explore the potential to extract valuable insights from these failures,
referred to as proof failures, to aid in debugging the Multi-Agent System (MAS).
Addressing this question within a general context presents challenges. Firstly, it
is worth noting that a proof failure can transpire in three distinct scenarios:

– The first scenario occurs when a true theorem is unprovable, as demonstrated
by Gödel’s Incompleteness Theorem. This situation arises when the theorems
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generated by GDT4MAS involve first-order logic formulae with arithmetic,
which aligns with Gödel’s findings that there exist non-provable true theorems
within such cases;
– The second scenario occurs when a true theorem cannot be proven automat-
ically by the prover due to the semi-decidability of first-order logic. This means
that there is no universal automatic strategy capable of proving all possible
theorems. Instead, an expert must provide an ad hoc strategy tailored to the
specific situation;
– The third scenario arises when an error in the specification of the MAS results
in the generation of a false theorem that cannot be proven as a consequence.

So, when a proof failure is considered, the first problem is to determine,
among the three cases presented above, which applies. Providing complete ex-
planations here would be too lengthy and would divert from the topic. Never-
theless, it’s important to note that the proof system is specifically designed to
produce theorems that can be proven by standard provers’ strategies, without
requiring the expertise of a human. Additionally, true theorems that are unprov-
able typically do not apply to real-life situations. Therefore, in most instances,
proof failures are indicative of errors in the specification, and this is the context
that will be considered in the following sections.

Our study revolves around the following question: If certain proof obligations
generated are not automatically proven, can we leverage this information to assist
in correcting the specification of the MAS? Consequently, the primary notion is
to examine whether proof failures can be utilized to identify and rectify bugs in
the MAS specification.

Contrary to the perspective presented in [2], where the authors propose that
proof-based approaches are solely intended for MAS validation while other meth-
ods should be employed for debugging and tuning, our objective is to utilize proof
failures to identify and rectify early errors in the design of a MAS. In doing so,
we aim to capture and correct these mistakes at a very early stage of the MAS
development process.

This article commences with a concise overview of prior research on debug-
ging Multi-Agent Systems (MAS). Subsequently, in section 3, we introduce the
GDT4MAS model, along with the proof mechanism and the accompanying tools.
Section 4 informally presents the notion of variables graph that we propose to
study. Section 5 exemplifies the use of this tool on a case study. In section 6,
we formalise the work presented in the two previous sections. Lastly, in the final
section, we conclude the presented work and provide insights into the future
direction of our research in this domain.

2 State of the Art

Ensuring the correctness of a Multi-Agent System (MAS) is an essential and
challenging problem, as has been repeatedly acknowledged in previous studies [4].
Similar to classical software, there are primarily two methods for assessing the
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correctness of a Multi-Agent System (MAS): proof and testing, as elucidated in
references [12, 13]. In this section, we focus on works dealing with the tuning of
erroneous systems. However, as far as we know, there are no work proposing a
way to automatically correct wrong specifications.

2.1 Test

The majority of research on debugging Multi-Agent Systems (MAS) primarily
focuses on testing methodologies. These approaches aim to identify potential
issues and provide one or more test cases that can reproduce the problem. Testing
can be carried out at various levels, as outlined in [18]:

– At the unit level, the objective is to detect issues within individual com-
ponents, as exemplified by the work presented in [27]. This involves a direct
adaptation of conventional testing techniques to the context of Multi-Agent
Systems (MAS);
– At the agent level, several approaches have been developed to address de-
bugging within Multi-Agent Systems (MAS). Some propose the utilization of
”xUnit” tools to specify unit tests [25], often incorporating mock agents into
the system [1]. Other approaches involve the inclusion of dedicated testing
agents within the MAS [19, 15]. Additionally, certain methods employ evolu-
tionary techniques to monitor the system under various conditions, enabling
the management of a large number of initial situations [17];
– At the system level, there are relatively few approaches that specifically
address testing principles within the context of Multi-Agent Systems (MAS).
This scarcity can be attributed to the inherent complexity of the problem, which
is extensively discussed in [16]. Nonetheless, there have been notable works in
this domain [6, 25]. Among these, [20] stands out as one of the few studies that
acknowledges the importance of the goal notion within MAS testing.

2.2 Trace Analysis

There is another type of research that addresses the debugging of multi-agent
systems, which involves trace analysis. This research primarily concentrates on
three tasks related to debugging: detecting the problem, pinpointing the possible
causes, and determining the root cause [10, 26, 24].

Two different methods are used to analyze traces: the first involves examining
the sequence of messages exchanged between agents, while the second utilizes
data mining techniques to verify if the knowledge provided by the system de-
signer can be identified within the multi-agent system, with the objective of
detecting and explaining bugs. A combination of these two approaches is ex-
plored in the paper [5].

2.3 Visualisation

While visualisation tools for multi-agent systems are potentially useful, there are
only a few studies that focus on them. The main challenge in designing such tools
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is the difficulty of creating relevant views due to the vast number of interacting
entities. One approach to tackling this issue is to generate views from traces, as
proposed in [26], while others concentrate on real-time visualisation, as explored
in [15].

2.4 Proof Failures

The utilization of proof failures as a prospective domain remains largely unex-
plored and requires further investigation. Some studies suggest equipping the
prover with tools that can leverage proof failures [8]. While [3] presents a few
ideas regarding the application of these proof failures, they have yet to be im-
plemented.

2.5 And Outside of the Multi-Agent Systems World

Several recent works have been developed to help to manage proof failures thanks
to test-case generation. This is for instance the case of the STaDy tool presented
in [23]. This work has been extended more recently to help to determine the
reason of a proof failure (prover weakness or subcontract weakness) [22]. As
in [9] and in [7], they use counterexamples generation to help to determine the
reason of the proof failure. However, none of this work is dedicated to multi-agent
systems with autonomous agents. Moreover, as these work are not dedicated to
a structured model as a GDT4MAS specification, they cannot use the proof
obligation structure to provide more specific information. There are also works
proposing to use abduction to help uderstand errors [11], but as far as we know,
these works have not been applied to programs.However, it is clear that works
on this type of research in the general case, and a fortiori in the field of MAS,
are very rare.

3 The GDT4MAS Model

This approach, which combines a dedicated model and proof system, offers sev-
eral compelling features for the design of Multi-Agent Systems (MAS). It en-
compasses a formal language to describe agent behavior and desired properties,
utilizes expressive and widely recognized first-order logic, and incorporates an
automated proof process. The GDTM4MAS method, which is elaborated further
in [12, 13], is briefly introduced here.

3.1 Main Concepts

The GDT4MAS method necessitates the specification of several concepts out-
lined herein.

Environment The environment of the MAS is defined by a set of typed variables
and an invariant property iE .
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Agent Types Each agent type is specified by a set of internal typed variables,
an invariant and a behaviour. The behaviour of an agent is mainly defined by
a Goal Decomposition Tree (GDT). A GDT, or goal decomposition tree, is a
hierarchical structure of goals, with the root representing the primary goal of
the agent. Each goal is associated with a plan, which, when successfully executed,
results in the achievement of the associated goal (known as the “parent goal”).
Plans can consist of either a single action or a set of subgoals, which are linked
together using a “decomposition operator.” A goal G is typically defined by its
name nG, a “satisfaction condition” scG, and a “guaranteed property in case of
failure” gpf G.

The satisfaction condition (SC) of a goal is formally specified by a formula
that must be true when the execution of the plan associated to the goal succeed.
Otherwise, the guaranteed property in case of failure (GPF) of the goal specifies
what is however guaranteed to be true when the execution of the plan associated
to the goal fails (this has of course no sense when the goal is said to be a NS
goal, that is to say a goal whose plan always succeed).

SC and GPF are referred to as state transition formulae (STF) because they
establish a connection between two states: the initial state, which is the system
state just before the agent attempts to solve the goal, and the final state, which
is the system state after the agent has completed the execution of the goal’s
associated plan. In an STF, a variable v can be primed or unprimed. The primed
notation (v′) represents the value of the variable in the final state, while the
unprimed notation (v) represents the value of the variable in the initial state. A
STF can be non-deterministic when, given an initial state, multiple final states
can satisfy it. For example, consider the STF y′ < y. This implies that the value
of variable y must be lower after the execution of the goal’s plan compared to its
initial value. If y is initially 10, final states with values of 2, 5 or 9 for y would
satisfy this STF.

Decomposition Operators GDT4MAS offers multiple decomposition operators to
specify different types of behaviors. However, in this article, we only employ two
of these operators:

– the SeqAnd operator in GDT4MAS dictates that the subgoals of a plan
must be executed in a specific order, progressing from left to right on the
graphical representation of the GDT. If the agent’s behavior adheres to this
order, successfully achieving all the subgoals results in the attainment of the
parent goal. However, if the execution of the first subgoal fails, the subsequent
subgoal is not executed;
– The SyncSeqAnd operator operates similarly to the SeqAnd operator, with
the added capability of locking a set of variables in the environment. This
locking mechanism prevents other agents from modifying these variables until
the execution of the plan is completed.

Actions Actions are defined by a precondition that outlines the states in which
they can be executed, and a postcondition that specifies the effect of the action
using a state transition formula (STF).
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Agents Agents are defined as instances of agent types, with effective values for
the potential parameters.

3.2 GDT Example

Fig. 4 depicts the GDT (Goal Dependency Tree) of an agent comprising three
goals, visually represented by ellipses accompanied by their names and satisfac-
tion conditions (SC). The root goal, labeled as goal A, is decomposed into two
subgoals, B and C, utilizing the SeqAnd operator. Both subgoals B and C are
leaf goals, and as such, an action is associated with each of them, represented
by arrows in the diagram.

3.3 Proof Principles

General Presentation The proof mechanism aims at proving the following
properties:

– Agents preserve their invariant properties [13];
– Agents preserve the invariant properties of the environment;
– The agents behaviours are consistent; (plans associated to goals are correct);
– Agents respect their liveness properties. These properties formalise expected
dynamic characteristics.

In addition, the proof mechanism utilized in the system depends on “proof
obligations” (PO). These POs are properties that must be proven to ensure the
accuracy of the system and can be automatically generated from a GDT4MAS
specification. They are expressed in first-order logic and can be verified by any
first-order logic prover. Furthermore, the proof system is designed to be com-
positional: The proof of an individual agent type’s correctness is broken down
into several smaller, independent proof obligations. In most cases, the proof of
a given agent type can be established independently of the other types.

Context Notion A key notion that has been associated to the proof process
is the context of execution of a goal notion. This is a predicate summarising the
states in which a goal of a GDT may be executed. The context of a goal can be
automatically inferred in a top-down way, starting from the triggering context
(TC) of the agent. The TC of an agent is a predicate specifying when the agent
begins to act.

The context inference mechanism is illustrated in the sequel on a small ex-
ample presented in Fig. 1.

In this example, we suppose that the triggering context associated to this
GDT is x < 10, where x is an environment variable. The invariant property of
the environment is 0 ≤ x ≤ 20. Moreover, y is an internal variable of the agent.
The invariant property of the agent is y > 0.

As the invariant of the environment is an invariant, it is obviously true when
the execution of goal A is about to begin. Moreover, by definition, the triggering
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Fig. 1. Mathematical GDT.

context of the agent is also true at this moment. So, the context of goal A is the
following:

CA ≡ x < 10 ∧ 0 ≤ x ∧ x ≤ 20 ∧ y > 0

The plan associated to goal A consists in directly executing goal B. So, the
context of goal B is the same as the context of goal A. So we have:

CB ≡ x < 10 ∧ 0 ≤ x ∧ x ≤ 20 ∧ y > 0

We now consider goal C. Schema in Fig. 2 represents the trace of the system
evolution.

Fig. 2. Trace of the evolution of the system.

In this trace, three states can be identified:

– state α is the state in which the system is when the agent begins to act (and
so, will try to achieve goal A);
– state β is the state in which the system is when the execution of goal B ends;
– state γ is the state in which the system is when the execution of goal C
begins.

As it can be seen, states α and β are not necessarily consecutive states, be-
cause goal B can be itself decomposed into several subgoals, and because other
agents may act meanwhile. Similarly states β and γ are not necessarily consecu-
tive because other agents may act in the system in the meantime. However, we
know that:

– context of node B is true in state α:
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– the agent invariant and the environment invariant are true in state β and γ;

– the satisfaction condition of goal B is true between states α and β. In other
words, the value of x in state β, written xβ , is equal to the value of x in state
xα increased by 1 and the value of y in state β is equal to yα increased by 1;

– the value of y in state γ is equal to the value of y in state β because y is
an internal variable of the agent and so, it cannot be modified between states
β and γ (only the owner agent of internal variables can modify them, and the
agent we consider cannot perform any action between states β and γ).

Thus, the context of goal C could be something like that:
xα < 10 ∧ 0 ≤ xα ∧ xα ≤ 20 ∧ yα > 0
0 ≤ xβ ∧ xβ ≤ 20 ∧ yβ > 0
0 ≤ xγ ∧ xγ ≤ 20 ∧ yγ > 0
xβ = xα + 1 ∧ yβ = yα + 1
yγ = yβ

In the sequel, goals α, β and γ will be respectively denoted −2, −1 and 0.
So, the context of goal C is the following:

CC ≡


x−2 < 10 ∧ 0 ≤ x−2 ∧ x−2 ≤ 20 ∧ y−2 > 0
0 ≤ x−1 ∧ x−1 ≤ 20 ∧ y−1 > 0
0 ≤ x0 ∧ x0 ≤ 20 ∧ y0 > 0
x−1 = x−2 + 1 ∧ y−1 = y−2 + 1
y0 = y−1

(1)

Proof Schema The GDT4MAS method defines several proof schemas. These
proof schemas are formulae that are used to generate proof obligations. For in-
stance, the proof schema that is used to verify that the decomposition of a goal
A into two subgoals B and C thanks to the SeqAnd operation is correct is:

CC ∧ [SCC ]0→1 → [SCA]−2→1

In this formula, [P ]a→b represents the predicate obtained by substituting in
P every occurrence of variables v without a subscript by va and by substitution
in P every occurrence of variables v′ by vb. So, considering the example in Fig. 1,
the proof obligation generated it the following:

CC ∧ (x1 = x0 + 3 ∧ y1 = y0 + 2)→ (x1 = x−2 + 4 ∧ y1 = y−2 + 3) (2)

The verification of invariant properties is also verified thanks to proof schemas
that must be applied to each action of a the GDT.
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PVS PVS (Prototype Verification System) [21] is a proof environment that
relies on a theorem prover for managing specifications expressed in a typed
higher-order logic. The system includes a set of predefined theories for handling
various concepts, such as set theory and arithmetic. The theorem prover operates
interactively, allowing the user to intervene in the proof process as needed.

One of the goal of the GDT4MAS method is to minimise the user interven-
tion. It is the reason why Proof Obligations are generated in a way maximising
the success rate of automatic proof strategies. The strategy of PVS used is a very
general one called grind that uses, among others, propositional simplification,
arithmetic simplification, skolemisation and the disjunctive simplification.

The PVS proof process uses the sequent calculus. Thus, each theorem that
must be proven by PVS is at first translated into an initial sequent with an
empty antecedent and a consequent consisting in the theorem to prove. In our
context, the theorem to prove is often an “imply” formula. In such a case, the
initial sequent is transformed into a sequent whose antecedent is the left part of
the imply and whose consequent is the right part of the imply. So, PVS builds
a proof tree where each sequent is decomposed into one ore several sequents
(called child node) using deduction rules. The proof is a success if, in the proof
tree built by PVS, each lief node is proven.

3.4 Execution Platform

The GDT4MAS model is supported by a too which provides the following fea-
tures:

– execution of a GDT4MAS specification;
– generation of proof obligations in the PVS language;
– proof of a GDT4MAS specification using PVS.

This platform provides various modes for executing specifications, including
a random mode where agents are activated randomly and a trace mode where
agents are activated in a predetermined order. Dynamic charts display the val-
ues of selected variables in real-time during execution, and a log console provides
information on system activity such as the activated agent, the goal being exe-
cuted, and the action being executed. These features make the GD4MAS model
an ideal candidate for our experiments.

4 Variables Graphs

As shown in formula 2, a proof obligation is a horn-clause h(v)→ g(v), where v
is a set of variables considered at different instants. There are a few cases where
a relation between the hypotheses and the goal is not required, namely:

– when hypotheses entail false;
– when the goal is true.
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In all the other cases, variables used in the goal formula g(v) must occur in
the hypotheses (h(v)). Moreover, a relationship between them must be deduced
from the hypotheses. And in some cases, it may be required that properties on
these variables can be entailed from the context of the goal (it is a necessary
condition, not a sufficient condition). So, we decided to product variables graph
for each unproved proof obligation, and to study different cases of proof failures.

Definition 1. A variables graph, associated to a Proof Obligation P = h(v)→
g(v)where h(v) in its normal conjunctive form, is represented by a tuple (V,L, Vc, Vg)
where:

– V is the set of variables occurring in P ;
– L ∈ V 2 is the relation determining each couple of variables occurring in the
same term of P ;
– Vc ∈ V is the set of variables associated to the older state in P ;
– Vg ∈ V is the set of variables in g(v).

Proof obligation 2 is not a Horn Clause, so, it must be split into two proof
obligations (remind that the Context CC is given in formula 1):

CC ∧ (x1 = x0 + 3 ∧ y1 = y0 + 2)→ (x1 = x−2 + 4) (3)

CC ∧ (x1 = x0 + 3 ∧ y1 = y0 + 2)→ (y1 = y−2 + 3) (4)

The graphs associated to these two proof obligationsare represented in Fig. 3.
On this figure, variables of Vc are hatched and variables of Vg have a pink
background. The left part of the Fig. represents the graph associated to proof
obligation 3 whereas the right part represents the graph associated to proof
obligation 4.

Fig. 3. Variables graphs associated to proof obligations.
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On these graphs, it is easy to understand that the first proof obligation may
be wrong: a link between x1 and x−2 must be established, but it seems that
there is no way to do that from the hypotheses.

5 Using Proof Failures To Help to Debug MAS

When a MAS is bugged, this may be induced by several kinds of such errors.
Here are a few examples:

– the decomposition operator utilized to define the plan linked to a goal is
incorrect, thereby causing the failure to achieve the parent goal even when
subgoals are achieved;
– the associated Satisfaction Condition of a goal is inadequate in its strength
and does not offer the necessary properties for later use;
– The agent’s triggering context is incorrect, which may lead to its activation
at inappropriate times or its failure to activate when necessary;
– the invariant associated to an agent type is wrong or too weak.

In [14], the authors have shown how the localisation of proof failures can help
to correct wrong specifications. In this paper, we show how a study of variables
graphs generated from unproved proof obligations can help to propose solutions
to correct the specification. To illustrate our work, we will refer a case study
that we describe in the next section.

5.1 Case Study

Description of the MAS Used Our case study revolves around a producer-
consumer system. In its basic version, the system consists of two agents belonging
to two distinct agent types: the Producer type and the Consumer type. How-
ever, as we will demonstrate, from a proof standpoint, the analysis of the system
remains the same regardless of the number of agents for each type. Nevertheless,
there are execution-related differences that we will explore. The environment
incorporates a variable called stockE, which is an integer representing the quan-
tity of resources (e.g., pounds of flour) that the producer has already placed in
the environment.

In order to generate some resources, the producer agent exploits internal
resources of another type (such as wheat), which are tracked by an internal vari-
able called stockPro. This variable represents the amount of wheat (in pounds)
currently owned by the producer. To create a single unit of a particular envi-
ronmental resource (such as flour), the producer consumes one unit of its own
resources (one pound of wheat). This production process is described by the
GDT (Goal-Delegation Tree) of the Producer type, as shown in Fig. 4, which
consists of three goals. Goal B represents the consumption of the internal re-
source, while goal C models the creation of the new resource in the environment.

On the other hand, the consumer is responsible for producing resources of
a different type, such as bags of bread. The amount of resources produced is
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Fig. 4. GDT of the producer type.

represented by an internal variable of the Consumer type, called stockCons.
To produce these resources, the consumer needs to use two resources from the
environment (producing a bag of bread requires two pounds of flour). The GDT
of the Consumer type (shown in Fig. 5) formalizes this process: goal B represents
the consumption of two resources from the environment, and goal C represents
the production of a new resource of the third type.

Fig. 5. GDT of the consumer type.

Additionally, there is a further limitation to the process described above. The
environment can only stock two resources of the environment type at a time (in
the example, there is only enough space on the shelf for two pounds of flour). This
implies that if there are already two resources in the environment, one must be
consumed before the producer can add a new one. The triggering context for the
producer formalizes this constraint as follows: stockPro > 0∧ stockE < 2. With
this triggering context, the producer can only be activated if it still has resources
and if there is room in the environment to store its production. Furthermore,
the environment has the following invariant: stockE > −1 ∧ stockE < 3. This
invariant specifies the range of valid values for the stockE variable, in accordance
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with the aforementioned constraint. The Producer type also has an associated
invariant: stockPro > −1. This is because the number of internal resources
cannot be a negative value.

The triggering context for the Consumer type is straightforward: stockE > 1.
This implies that the consumer cannot act unless there are at least two resources
available in the environment. The invariant associated with this agent type is
similar to that of the Producer, specifying that the number of its internal re-
sources is a non-negative integer: stockCons > −1.

5.2 Identifying Proof Failure Cases

Concurrency Problem A first kind of proof failure may arise if an environ-
ment variable is not locked by an agent when it should be. In the case study
presented above, this is for instance the case for the producer agents : the main
goal specifies that the stock in the environment should be increased by one and,
indeed, the two subgoals specify that the stockE variable is first maintained,
and then increased by one. However, as this variable is not locked, between the
executions of the first and second subgoals of the root goal, another agent may
modify the value of stockE.

The first proof obligation corresponding to the verification of this decompo-
sition is the following:

stockPro−2 > 0 ∧ stockE−2 < 2 ∧ stockPro−2 > −1∧
stockE−2 > −1 ∧ stockE−2 < 3 ∧ stockPro−1 = stockPro−2 − 1∧
stockE−1 = stockE−2 ∧ stockPro−1 = stockPro0 ∧ stockPro−1 > −1∧
stockE−1 > −1 ∧ stockE−1 < 3 ∧ stockPro0 > −1 ∧ StockE0 > −1∧
stockE0 < 3 ∧ stockE1 = stockE0 + 1 ∧ stockPro1 = stockPro0∧
stockPro0 > −1 ∧ stockE0 > −1 ∧ stockE0 < 3∧
stockPro1 > −1 ∧ stockE1 > −1 ∧ stockE1 < 3
→
stockE1 = stockE−2 + 1

The variables graph associated to this proof obligation is shown Fig. 6.
The lack of lock corresponds to a variables graph where the path between

several variables arising in the goal of a proof obligation could be completed by
an edge between nodes corresponding to the same variables in two states corre-
sponding to the sates just before and just after a SeqAnd or a SeqOr operator.
The solution to correct the bug consists in changing the operator (SeqAnd or
SeqOr in its synchronised version (SyncSeqAnd or SyncSeqOr) with a lock on
the concerned variable.

Lack of Preservation In some cases, the developer may forget to express
that a goal execution must no modify a variable. Let consider the producer
agent of our case study once again, and suppose that its main goal is this time
well decomposed thanks to a SyncSeqAnd operator, but with the satisfaction
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Fig. 6. Lack of lock.

condition of its first subgoal being : stockPro′ = stockPro − 1. We obtain the
following proof obligation:

stockPro−2 > 0 ∧ stockE−2 < 2 ∧ stockPro−2 > −1∧
stockE−2 > −1 ∧ stockE−2 < 3 ∧ stockPro−1 = stockPro−2 − 1∧
stockPro−1 = stockPro0 ∧ stockPro−1 > −1 ∧ stockE0 = stockE−2∧
stockE−1 > −1 ∧ stockE−1 < 3 ∧ stockPro0 > −1 ∧ stockE0 > −1∧
stockE0 < 3 ∧ stockE1 = stockE0 + 1 ∧ stockPro1 = stockPro0∧
stockPro0 > −1 ∧ stockE0 > −1 ∧ stockE0 < 3∧
stockPro1 > −1 ∧ stockE1 > −1 ∧ stockE1 < 3
→
stockE1 = stockE−2 + 1

The variables graph generated from this proof obligation is shown Fig. 7.
As in the previous case, this kind of bug is characterised by a hole in the chain

between to variables used in the goal of a proof obligation. But in this case, the
edge that lacks is not at the same place : it is between two states corresponding
to the first one and the last one of a goal. By adding an equality between the
values of the concerned variables in these two states, the proof obligation can be
proved.

Uncompleted Behaviour This kind of bug is the consequence of an erro-
neous specification, where an agent does not do all what it should. Let’s con-
sider now our case study where the producer agent does not increase the stock
in the environment. Thus, the satisfaction condition of its second subgoal is
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Fig. 7. Lack of Preservation Condition

stockPro′ = stockPro instead of stockPro′ = stockPro∧stockE′ = stockE+1.
The proof obligation is then the following:

stockPro−2 > 0 ∧ StockE−2 < 2 ∧ StockPro−2 > −1∧
stockE−2 > −1 ∧ StockE−2 < 3 ∧ stockPro−1 = stockPro−2 − 1∧
stockE−1 = stockE−2 ∧ stockPro−1 = stockPro0 ∧ stockPro−1 > −1∧
stockE0 = stockE−2 ∧ stockE−1 > −1 ∧ stockE−1 < 3 ∧ stockPro0 > −1∧
stockE0 > −1 ∧ stockE0 < 3 ∧ stockPro1 = stockPro0∧
stockPro0 > −1 ∧ stockE0 > −1 ∧ stockE0 < 3∧
stockPro1 > −1 ∧ stockE1 > −1 ∧ stockE1 < 3
→
stockE1 = stockE−2 + 1

The variables graph generated from the previous proof obligation is the same
as the graph in Fig. 7. However, in this case, adding a preservation property
stockE′ = stockE to the satisfaction condition of the second subgoal of the
main goal does not correct the proof obligation (the prover still fails to prove
the formula).

Under-Specified Triggering Context When the triggering context of an
agent is under-specified, a proof obligation may be wrong. Let’s consider our
producer agent once more. The proof schema associated to the first subgoal
requires to prove the invariant, and so, we have to prove that stockPro remains
greater or equal to zero. If the triggering context of the agent is under-specified
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(for example, it is just true), this leads to the following proof obligation:

stockPro0 > −1 ∧ stockE0 > −1∧
stockPro1 = stockPro0 − 1 ∧ stockE1 = stockE0

→
stockPro1 > −1

The variables graph generated from this proof obligation is represented Fig. 8.
As we can see on this figure, this case of bug correspond to a graph without
missing edge. So, it can be easily distinguished from the previous ones.

Fig. 8. Under-Specified Triggering Context

Wrong Satisfaction Condition Another kind of bug corresponds to a wrong
satisfaction condition. On the producer agent of the case study, it would be the
case if the satisfaction condition of the first subgoal was stockPro′ = stockPro−
2∧stockE′ = stockE, for instance. In this case as in the previous one, no problem
can be detected on the variables graph.

Wrong Decomposition Operator Finally, the last kind of bug we have iden-
tified corresponds to a bad choice of the decomposition operator. This would
be the case if, for the producer agent of the case study, we had used a SyncSe-
qOr operator instead of a SyncSeqAnd. Once again, with such a kind of bug, no
problem can be detected from the variables graph.

6 Variables Graph Usage: Formalisation and
Generalisation

In the previous section, we analysed variables graph on a case study. In the sec-
tion, we give more general rule to use such graphs. However, we must precise that
the work presented here, consider only proof obligations that are horn clauses,
that is to say that look like:

h1 ∧ h2 ∧ ... ∧ hn → g
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with no or logical operator in every hypothesis hi, and neither or nor and in
the goal g.

Definition 2 (variables graph associated to a proof obligation). a vari-
ables graph for such a proof obligation is an undirected graph:

V G = (V,E, Vinit, Vgoal)

where V is the set of vertices and E is the set of edges. This graph is built as
follow:

– V corresponds to the set of each sub-scripted variable used in any hypothesis
or in the goal of the proof obligation ;

– Vinit ⊆ V is the set of sub-scripted variables corresponding to the state in
which the agent began the execution of its behaviour ;

– Vgoal ⊆ V is the set of sub-scripted variables used ind the goal of the proof
obligation ;

– (va, vb) ∈ E if and only if there is at least one hypothesis hi that uses both
va and vb.

We can now formally describe several kinds of bugs when a proof obligation
is not proven and when vertices in Vgoal correspond to a same variable v in
different states.

If two vertices vta and vtb in Vgoal corresponding to the same variable v
in different states ta and tb (ta < tb ) do not belong to the same connected
component of the graph, we determine ta2 , the last state for which v is present
in the connected component of vta and tb1 , the first state for which v is present
in the connected component of vtb .

– if ta2 and tb2 correspond respectively to the initial state and to the final
state of a goal and adding an hypothesis vta2

= vtb1 make the proof feasible,
the problem is a lack of preservation;

– if ta2 and tb2 correspond respectively to the initial state and to the final
state of a goal g′ and adding an hypothesis vta2

= vtb1 does not make the proof
feasible, the problem might be an under-specified satisfaction condition for the
goal g′;

– if ta2 and tb2 correspond respectively to the final state and to the initial state
of two subgoals g1 and g2 connected by a SEQAND operator or a SEQOR
operator, and adding an hypothesis vta2

= vtb1 make the proof feasible, the
problem is a concurrency problem;

If the vertices in Vgoal correspond to the same variable v in different states
ta and tb (ta < tb ) and if they belong to the same connected component of
the graph, then we have to consider three potential causes: under-specified trig-
gering context, wrong satisfaction condition, of wrong decomposition operator.
Variables graph do not give anymore information.
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7 Conclusion and Perspectives

In this article, we have presented a promising way to identify proof failures ex-
planations, associated to a guide to their correction. More precisely, we have
determined six different kinds of errors, and we have shown that three of these
kinds correspond to different characteristics on variables graph. We are now
working on an implementation of an algorithm that aims to automate the cor-
rection of these three first kinds of bugs when it is possible. Using a very strongly
structured specification, as GDT4MAS clearly appeared as a key characteristics
to have better chances to correct mistakes. This could explain the fact that there
was no other preliminary work in this field, and that the work presented here,
although offering only partial results for the moment, seems to open the way for
future much more complete results

In the near future, we plan to work on extending the usage of variables graph
when the goal of a proof obligation mentions different variables.

Finally, we plan to use automatic test case generation to help to distinguish
cases that variables graph cannot isolate.
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