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Multi-camera Visual Predictive Control Strategy for Mobile
Manipulators

H. Bildstein†, A. Durand-Petiteville‡ and V. Cadenat†

Abstract—This work aims at designing a visual predictive
control (VPC) scheme for a mobile manipulator equipped with
two cameras. The task consists in accurately positioning the end-
effector camera while starting a few meters away from the desired
pose with a tucked arm. Three challenges are addressed in this
paper: the initial unavailability of the visual features, the arm
singularities together with the closed-loop stability, and the final
positioning accuracy. The first one is dealt with by choosing
image features extracted from both cameras and by suitably
switching between them, the second one is tackled through a
suitable manipulability measure introduced in the cost function,
and the two last ones are fulfilled via the definition of an enhanced
terminal constraint. The proposed approach has been validated
experimentally on TIAGo robot. The obtained results show its
relevance and its efficiency.

I. INTRODUCTION

In this paper, we propose a multi-camera Visual Predictive
Control (VPC) strategy to position a mobile manipulator end-
effector. VPC [1] is the fusion between Nonlinear Model
Predictive Control (NMPC) [2] [3] and Image-Based Visual
Servoing (IBVS) [4]. The resulting control strategy combines
the advantages of IBVS, i.e., reactivity and absence of metric
localization [5], with the ones of NMPC, i.e., the possibility to
take into account constraints such as joints limits and camera
field of view during the minimization process. Over the last
years, numerous VPC-based controllers were developed to
control robotic systems such as a camera mounted on a robotic
arm [6] [7] [8] [9], a quadrotor UAV [10], a mobile robot
[11][12], an autonomous underwater vehicle [13] or a tendon-
driven continuum robot [14]. Regarding mobile manipulators,
NMPC strategies usually do not express the task in the image
space. For example, in [15] the task is defined using the
end-effector pose, while in [16], [17] and [18], the objective
function relies on the generalized coordinates. Cameras can
be used as the main sensor to control mobile manipulators
but the task is not defined in the image space. In [19] and
[20] the objective function is defined in the pose space, and
the current pose is respectively estimated using a time of
flight camera and an RGB-D camera. However, these methods
need a very efficient 3D reconstruction to reach an accurate
pose after convergence [21]. To our knowledge, the works
presented in [22] and [23] are the only ones to consider
a VPC strategy to control a mobile manipulator. In [22], a
point-based hierarchical MPC is used to control an underwater
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manipulator vehicle, but stability issues are not taken into
account. In [23], image moments obtained from a camera
mounted on the end-effector of a mobile manipulator are used
to control the whole system. A terminal constraint guarantees
closed-loop stability while the last velocity constraints are
relaxed to ensure feasibility. Simulations show that the system
accurately positions the end-effector while dealing with the
actuator joint limits and the camera field of view. However,
the landmark must lie in the arm camera’s field of view
from the beginning of the task. This leads to an unsuitable
motion of the robot which must move towards the target
with its stretched arm, thus increasing the risk of collision,
the vibrations, and the difficulty to switch towards the next
potential manipulation task. In this context, using a second
camera offers a complementary point of view to perform more
general missions, where the robot has to start with a tucked
arm.

This paper thus aims at extending the work presented in
[23] with the design of a multi-camera VPC strategy and its
implementation on the TIAGo robotic platform. This robot
is equipped with two cameras located on the head and on the
arm wrist. Here, the considered task consists in positioning the
end-effector at a desired pose defined in the image space of its
camera. The robot starts a few meters away from it with its arm
tucked. To overcome the initial visibility problem, we rely on
the head camera to compute the visual features and to project
them into the space of the end-effector camera. In this way, this
latter can be controlled to orientate itself towards the landmark.
However, this projection might suffer from singularities due
to the initial end-effector camera pose which does not allow
the camera to perceive the features. To manage this issue,
we propose a two-step process. First, while the landmark is
not visible, the visual features are projected on an image
sphere [24], i.e., without projection singularities, and the whole
system is controlled using cues based on spherical image
moments [25]. Next, once the landmark becomes visible, the
features are computed directly in the end-effector image and
the robot is controlled relying on planar image moments,
as these features can be more easily weighted to obtain an
accurate final pose [23].

The described approach is implemented in a VPC frame-
work allowing us to take into account constraints. Thus, in this
paper, we present how the minimization problem is expressed
in order to switch from spherical image moments to planar
ones, as well as the constraints dealing with the actuator joint
limits and camera field of view. Furthermore, we have also
extended the objective function with a manipulability term
[26] allowing the joints to stay away from singularities and



thus avoid the above-mentioned issues about collisions and
vibrations. It will also make the switch to another potential
manipulation task easier. Finally, we have also adapted the
terminal constraint and the input constraints to handle properly
the stability and the final end-effector accuracy.

The rest of the paper is organized as follows. First, the
different models are introduced before detailing the proposed
VPC strategy and its experimental validation on TIAGo robot.
Finally, the obtained results are thoroughly discussed.

II. PRELIMINARIES

A. Robotic system description and modeling

In this paper, we aim at positioning a camera embedded
on the end-effector of a mobile manipulator relatively to a
given landmark. The system is the TIAGo robot from PAL
Robotics (see Fig. 1a) made of an upper body embedded on
a differential mobile base. The former is composed of a 2
DoF head and a 7 DoF arm. It is equipped with two RGB-D
cameras respectively fixed on the head and the wrist. Thus,
this latter is controlled using only 5 DoF (na = 5), and the
former uses only the yaw joint of the head (nh = 1).

(a) The TIAGo robot (b) The robot model

Fig. 1: The robotic system

First, we introduce the following frames:
F0(O0,x0,y0,z0), Fb(0b,xb,yb,zb), Fch(Och ,xch ,ych ,zch)
and Fcee(Ocee ,xcee ,ycee ,zcee) respectively as the world, mobile
base, head camera, and wrist camera frames (see Fig. 1b).
Relations for both cameras are indexed with generic c, while
specific relations are detailed with ch or cee.
The mobile base pose and its control vector are defined as:

χb =
[
X ,Y,θ

]T
, ub =

[
v,ω

]T (1)

where X , Y and θ are respectively the base coordinates in
F0 and the angle between Fb and F0. v and ω are the linear
and rotational velocities along xb and around zb. The arm
configuration and its control vector are expressed as

χa =
[
q1,q2,q3,q4,q5

]T
, ua =

[
q̇1, q̇2, q̇3, q̇4, q̇5

]T (2)

where qi is the ith joint angle and q̇i is the ith joint velocity.
The same reasoning holds for the head configuration and its
control vector:

χh =
[
h1
]T

, uh =
[
ḣ1
]T (3)

Thus, the mobile manipulator pose and its control vector are:

χmm =
[
χT

b ,χ
T
a ,χ

T
h

]T
, umm =

[
uT

b ,u
T
a ,u

T
h

]T (4)

B. Projection method and visual features

1) Perspective projection (pp): The classical pinhole cam-
era model is using a perspective projection to convert the
coordinates of a 3D point XcXcXc =

[
Xc,Yc,Zc

]T , expressed in the
camera frame, to the ones in the image frame.xi

yi
Zc

=

 1
Zc

0 0
0 1

Zc
0

0 0 1

Xc
Yc
Zc

 (5)

The drawbacks of this projection method are firstly the pres-
ence of a singularity at Zc = 0, but also the discontinuity of
projection when passing from Zc > 0 to Zc < 0 and vice-versa.

In the paper, the visual features vector is denoted S,
completed with subscripts to indicate the projection method
(pp for perspective and sp for spherical), and superscripts to
specify the type of visual features (ip for interest points and
m for moments). Classically, when relying on the perspective
projection, the visual feature vector Sip

pp is composed by the
coordinates (xi,yi) of four interest points. This leads to:

Sip
pp =

[
x1,y1,x2,y2,x3,y3,x4,y4

]T (6)

[23] showed a suitable visual features vector based on 2D
image moments is:

Sm
pp =

[
xn,yn,an,sx,sy,α

]T (7)

The normalized coordinates of the gravity center xn and yn,
and the normalized area an are respectively closely related
to the x, y, and z translation error, while the features sx and
sy, derived from the image skewness, and the orientation α

corresponding to the orientation of the ellipse obtained with
image moments of an order less than 3 are respectively closely
related to x, y, and z orientation error. These features thus offer
good decoupling properties to control each DoF of the task.
The calculations are more detailed in [23].

2) Spherical projection (sp): The spherical projection is
used in this work to avoid the inherent singularity of the
classical perspective projection. It is important to note that
this projection is only virtual. It consists of the projection of
the 3D points XcXcXc on the unit sphere centered in Oc.[

xc,yc,zc
]T

=XcXcXc/∥XcXcXc∥ (8)

From this spherical image, a similar method relying this time
on 3D moments can be used. However, [25] shows it is
more difficult to get the same decoupling properties using 3D



moments. If O is the observed object and Osp its spherical
projection, these latter are defined by :

mi, j,k = ∑
Osp

xi y j zk (9)

From [25], tests and intuition, an adequate visual features
vector has been designed :

Ssp =
[
xg,yg, I1,Nv × zc,zg,αsp

]T (10)

The coordinates of the gravity center xg and yg are respec-
tively mainly related to the x and y translation errors, and
sometimes related to the x and y rotation errors depending
on the camera configuration. I1 is a feature obtained from a
suitable combination of 3D moments which is mainly related
to the z translation error. The second part of the Ssp vector is
designed using a different logic. Indeed, as for the perspective
projection, controlling the xc and yc orientations is more
complicated. Only one feature is retained to fulfill this aim: the
cross product between the normal vector Nv of the target plane
and the axis zc: Nv×zc. Next, the orientation αsp already used
in [25] is closely related to the z orientation, thus playing an
analog role to α with the stereographic projection. Finally, the
last coordinate of the gravity center zg only allows preventing
the symmetric configuration (zc looking the other way) to be
considered. However, it must be noted that the major drawback
of this projection method is the positioning accuracy which is
in practice very hard to obtain.

In this work, both types of visual features are smartly used
in the controller to avoid each drawback: Ssp is used to bring
the robot into a suitable configuration for the perspective
projection, and Spp is used afterward to get an accurate
convergence.

C. Manipulability and joint limits avoidance

For the issues mentioned earlier, it is necessary to avoid
singularities and joint limits. To do so, it is proposed to
use a specific metric denoted by w′ which allows combining
the envelope of a joint limits penalty function P with the
manipulability index w as follows: w′ = Pw2 where :

P = 1− exp(−k
5

∏
i=0

(qi −qimax)(qimin −qi)

(qimax −qimin)
) (11)

w = det(Jred(χa)Jred(χa))
T (12)

Jred(χa) is the reduced Jacobian only taking into account
translation velocities. This reduction is needed because only 5
joints are controlled. The elements qimax and qimin define the
minimal and maximal joint limits and k is a positive constant.
w′ tends to 0 when the robot comes closer to singularities or
joint limits.

III. VISUAL PREDICTIVE CONTROL

A. The VPC scheme

As mentioned before, VPC is the result of coupling NMPC
with IBVS. It thus shares characteristics from these two
particular control techniques. As NMPC, it is the solution to a

constrained optimization problem. More precisely, it consists
in finding an optimal control sequence U∗(·) that minimizes a
cost function JNp over a Np steps prediction horizon under a
set of user-defined constraints C(U(·)). The obtained optimal
control sequence is a Nc-dimensional vector where Nc is called
the control horizon. It means that the Nth

c first predictions of
the Np long prediction horizon are computed using indepen-
dent control inputs, while the remaining ones are all obtained
using a unique control input equal to the Nth

c element of U(·).
Similarly to IBVS, the cost function is defined in the image
space. It is expressed as the sum of the quadratic error between
the predicted visual features vector Ŝ and the desired ones S∗

over the horizon Np.
The optimal problem is then defined as follows:

U∗(·) = min
U(·)

(
JNp(S(k),U(·))

)
(13)

with

JNp(S(k),U(·)) =
k+Np

∑
p=k+1

F(p) (14)

and

F(p) =
[
Ŝ(p)−S∗

]T
QS

[
Ŝ(p)−S∗

]
+Kw/w′(p) (15)

subject to

Ŝ(k) = S(k), ŵ′(k) = w′(k) (16a)

Ŝ(p+1) = f (Ŝ(p),U(p)) (16b)
ŵ′(p+1) = g(ŵ′(p),U(p)) (16c)
C(U∗(·))≤ 0 (16d)

where U∗(·) = [u∗mm(k), . . . ,u
∗
mm(k+Nc − 1)] is the computed

optimal control and k represents instant tk = kTs, Ts being the
prediction sampling period. f , g and C(U∗(·)) respectively de-
note the prediction models and the inequality set of constraints
(see next section).

QS is a diagonal matrix that allows weighting the error
S− S∗ and thus prioritizing specific DoF against others. The
efficient use of such a matrix has been made possible by
using image moments instead of point-wise visual features as
classically done in the VPC literature. Kw is also a weighting
factor that balances the manipulability maximization with
the visual task. Once the problem is solved, only u∗mm(k) is
applied to the robot and the process is repeated. The previous
optimization results are used to warm-start the solver.

B. The models

1) The prediction models: Two prediction models f are
needed, one for each camera. These latter are obtained with
the same global and exact method as in [23]. Two main
steps are followed. First, the mobile base frame - camera
frame relation expressed by the homogeneous transformation
matrix bHc is used to map the points from the camera frame
to the mobile base frame. This latter is obtained using the
forward kinematics model and thus only depends on the arm
configuration χa if the end-effector camera is considered, and
only on the head configuration χh for the head one. Next, the



relation between two mobile base poses at different instants,
relying on the exact integration of the kinematic models of a
differential base, gives the matrix bk Hbk+1 .

The prediction model for the points in camera frames is
then given by:

XcXcXc(k+1) = cHb(k+1)bk+1Hbk
bHc(k)XcXcXc(k) (17)

where the bar indicates homogeneous coordinates. Finally, g
is got straightforwardly from a simple integration of χa.

2) The re-projection model: The information of the head
camera needs to be projected in the end-effector camera frame
when the latter cannot see the target. This is done using the
homogeneous transformation matrix ceeHch which depends on
χa and χh.

C. The projection method switch

As we mentioned earlier, the proposed strategy consists in
first using the head camera to compute the visual features when
the arm is tucked, i.e. when the end-effector camera cannot
perceive the target. The visual features are then expressed in
the camera end-effector frame using the spherical projection
and then used to compute a control vector aimed at driving
the end-effector to a pose for which the target can be seen.
Once the pose is reached, the image captured by the end-
effector camera is used to compute the visual features with
the perspective projection method. These visual data are then
used to compute the control vector driving the end-effector at
the desired pose. It is then necessary to develop a switching
method defining what projection method has to be used to
compute the predicted visual features.

We first define an array P made of Np cells. The nth cell
contains the projection method that has to be used to predict
the visual features Ŝ(p), ∀n ∈ J1,NpK and p = k+n, such as{

Ŝ(p) = Ŝsp(p) if P (n) = sp
Ŝ(p) = Ŝpp(p) if P (n) = pp

(18)

All cells are initialized with the sp value, meaning that the
spherical projection is used for the Np predictions. Next, our
goal is to perform a smooth switch of projection method by
substituting one by one the sp values by the pp ones. To do
so, we first define a delimiter psp ∈ J0,NpK such as:{

P (n) = sp if n ≤ psp

P (n) = pp if n > psp
∀n ∈ J1,NpK (19)

In the beginning, psp = Np to be consistent with the initial
values of P . Next, once the psp

th predicted visual features
are within an area belonging to the field of view of the end-
effector camera, their projection mode is switched to pp. This
behavior is encoded as follows:

psp = psp −1 if F(k+ psp)< δswitch (20)

where δswitch is a user-defined threshold and F(k+ psp) is
calculated using (15). The process is summarized in the frame
C of Fig. 2, where lines on arrows indicate conditions.

D. The enhanced terminal constraint (ETC)

The ETC is a constraint triptych that enhances the concept
of TC III-D1 when working with a limited prediction horizon
and non-optimal solver. The relaxation III-D3 allows the
feasibility, i.e the respect of the TC is possible despite the
horizon prediction limit, and the command decrease constraint
III-D2 allows actually to reach this computed configuration.
The constraints triptych is added when the sole perspective
projection is used for all predictions.

1) The terminal constraint (TC): The TC [2] usually im-
poses that the last predicted visual features vector is equal to
the desired one. A small necessary modification is made here:
the TC is initially introduced for the last prediction and is
shifted during the control:

∥Ŝm
pp(k+ pTC)−Sm∗

pp ∥= 0 (21)

where the pTC is the constrained prediction index. Initially,
pth

TC = Np. Of course, the TC must remain terminal and all
predictions after the pth

TC one have null command, this leads
to (22):

umm(p) = 0, ∀p ≥ k+ pTC −1 (22)

The TC is necessary for two reasons. First, it guarantees the
closed-loop stability of an NMPC scheme. Second, it forces
the realization of the positioning task to avoid a compromise
with manipulability maximization.

2) The command decrease constraint: The use of local, and
thus sub-optimal solver could make the control law stuck in
a local minimum. For example, the predicted trajectory may
realize the positioning task at the prediction constrained by the
TC, but the first piece of trajectory could be null and the robot
never reaches this pose [12]. The process to pull the robot out
of these minima is again presented in Fig. 2 in the frame D: a
decrease constraint is set up on the (pth

TC −1) command until
this latter is null. At this moment, the TC is shifted to the
(pTC −1)th prediction. This process is repeated until pTC = 1
so that the command applied to the robot actually makes it
reach the pose satisfying the TC.

3) The velocity constraints: To respect the TC when the
displacement to the reference configuration is too long with
respect to the prediction horizon, the velocity constraints of
the last inputs need to be relaxed [23]. This approach leads to
the following set of constraints for the mobile base velocities:[

umm(p)−uu|t
ul|t −umm(p)

]
≤ 0, ∀p ∈ Jk, k+Nc −Nr −1K[

umm(p)−uu|r
ul|r −umm(p)

]
≤ 0, ∀p ∈ Jk+Nc −Nr, k+Nc −1K

(23)

Nr is the number of prediction steps with relaxed boundaries,
ul|t and uu|t are respectively the lower and upper tight bound-
aries corresponding to the limits of the actuator, and ul|r and
uu|r are respectively the lower and upper relaxed boundaries.

E. The visibility constraints

In the context of visual servoing, the target must always
remain visible. The following constraint allows guaranteeing



Fig. 2: Projection method switch (C) and ETC (D) processes scheme.

that the visual cues do not leave the camera’s field of view.
Depending on the prediction’s projection method, these con-
straints are applied on the end-effector (ee) camera or the head
(h) one: 

[
Sip

pp|h(p)−Su|h

Sl|h −Sip
pp|h(p)

]
≤ 0 if P (n) = sp[

Sip
pp|ee(p)−Su|ee

Sl|ee −Sip
pp|ee(p)

]
≤ 0 if P (n) = pp

(24)

∀n ∈ J1,NpK and p = k + n, where Sl|ee, Su|ee, Sl|h and Su|h
are respectively the lower and upper image boundaries of the
end-effector and head camera.

F. The joint limits constraints

Finally, it is also necessary that the arm joints never exceed
their lower and upper boundaries χal and χau defined by the
elements qimax and qimin which leads to the constraints:[

χa(p)−χau
χal −χa(p)

]
≤ 0, ∀p ∈ Jk+1,k+NpK (25)

IV. RESULTS

This section presents experimental results to evaluate the
proposed strategy. The VPC scheme is run on a TIAGo robot.
All algorithms are implemented using the C++ language and
the optimization problem is solved with the SLSQP solver
from the NLopt package [27]. Matrices bHc and bk Hbk+1 are
obtained with Pinocchio [28], a rigid body dynamics library.
All tests are performed on an Intel Core i7-10850H and the
VPC runs at a frequency of 5Hz. The solver timeout is set to
0.15s, Np and Nc are fixed to 10 steps with a sampling time
Ts = 0.4s. The target is a rectangle centered in (3,0,1.08625)
and the initial robot pose is (0,0.3,0) in F0 with the arm
tucked as shown on Fig. 3b. The camera and the mobile base
have to travel about 2m to reach the target. The bounds on the
mobile base linear and angular velocities are respectively equal
to ±0.1 m/s and ±0.3 rad/s. The minimal and maximal joint
limits are given by: χau = [2.68,1.02,1.50,2.29,2.07], χal =
[0.07,−1.50,−3.46,−0.32,−2.07], χhu = [1.24] and χhl =
[−1.24]. The matrix QS(p) = diag(1,1,1,1,1,1) if P (p) = sp,
QS(p) = diag(1,1,1,10,10,1) if P (p) = pp. Kw = 0.001 and
k = 1e4. Finally, when the ETC is added, Nr = 1.

A. Task realization

Figure 3 presents the robot trajectory with the initial (3b)
and final (3f) configurations, and two other intermediate ones
(3c) and (3e), which indicate the manipulability is indeed large
as the arm is never stretched out. It also shows the head
camera’s initial view (3a) and the end-effector final view (3d),
for which the visual task is achieved.

(a) Initial head camera
(b) Configuration 1 (c) Configuration 2

(d) Final end-effector
camera (e) Configuration 3 (f) Configuration 4

Fig. 3: Experimentation snapshots.
The switching method evolution is shown in Fig. 4a. Every

prediction is initially computed using the spherical projection
method. As the predicted visual features fall within the end-
effector camera’s field of view, the projection method grad-
ually changes to the perspective one. For example, at the
10th iteration the projection method switches for the 10th

prediction. The transition is complete at the 35th iteration
when the method for the first prediction switches. From now
on, there is no risk of projection singularity anymore and the
spherical projection method becomes irrelevant. All prediction
costs are entirely expressed with the perspective projection and
ETC constraints triptych is introduced.

The switch divides thus the control into two parts. First,
the spherical projection is used based on the head camera
information projected in the wrist camera frame to bring
the robot basically in a configuration where the end-effector
camera has the target in sight. This leads to the second
part, where the perspective projection can be used, allowing
to control the end-effector camera with precision. Figure 5



follows this logic and presents the interest points trajectories
in the corresponding image and the visual features vector error
evolution of the first control part on the left, and of the second
part on the right.

(a) Prediction method evolution (b) w′ evolution

Fig. 4: Task realization results - Part 1

(a) Points trajectory - Head
camera

(b) Points trajectory -
End-effector camera

(c) S−S∗ evolution - sp (d) S−S∗ evolution - pp

Fig. 5: Task realization results - Part 2
In Fig. 5c, the feature zc is approaching the value 1,

indicating this part of the control is indeed bringing the end-
effector camera facing the target. In Fig. 5b and 5d, it can
be seen that the visual task is correctly performed. Indeed the
controller manages to drive the camera to make the interest
points reach their desired values (the green crosses). This is
achieved by vanishing the error between the image moments
and their desired values. In parallel of this positioning task, the
controller also needs to maximize the manipulability w′. Figure
4b, plotting its evolution with and without its consideration in
the cost F , shows this secondary task is also greatly achieved:
w′ is significantly greater with than without its consideration.

B. Stability and convergence

The stability and the precise convergence results are ob-
tained thanks to the constraints ETC triptych. Figure 6a
illustrates the pTC evolution: the TC constraint is initially
set up to the Nth

p prediction where it stays for a long time
because of the input relaxation. The TC is progressively shifted
prediction after prediction at the moment the u∗mm(pTC − 1)
norm is almost zero. This may be possible only thanks to

the command decrease constraint because of the non-optimal
solution. This scheme creates thus an u∗mm(pTC − 1) norm
with triangular shape (Fig. 6b) synchronized with the pTC
evolution. The last figure 6c shows the error between the last
predicted image moments and their desired values, such that an
error close to zero means the terminal constraint is respected.
As it can be seen in the figure, the TC is only punctually
not respected. The solver being set up with a timeout, the
optimization process might stop and deliver a solution not
dealing with the whole set of constraints. In Fig. 5a and
5c a similar scenario can be observed for the field of view
constraints. To deal with this issue, this constraint has been set
up in a conservative way to avoid the loss of visual features.

(a) pTC evolution

(b) ∥u∗mm(k+ pTC −1)∥ evolution

(c) Evolution last Ŝm − Ŝ∗m

Fig. 6: Stability and convergence results

C. Joints and commands evolution

Finally, Fig. 7 shows the velocities and joint angles evolu-
tion. For both, their values remain within the given boundaries
despite the use of a relaxed constraint to guarantee feasibility.
Moreover, the joint angles stay away from their limits thanks
to the manipulability measure.

V. CONCLUSION

In this paper, we have proposed a novel multi-camera VPC
scheme allowing to control a mobile manipulator. The task
is defined by a given pose expressed in the image space of
the end-effector camera. By designing a criterion based on
specific visual features extracted from both vision systems and
a manipulability metric, the proposed control strategy allows
overcoming two main issues: (i) the initial visibility problem
if the robot has to start with a tucked arm; (ii) the singularities
which may occur in particular configurations (e.g., stretched
arm). It also guarantees stability and final positioning accuracy
thanks to adapted constraints. It thus becomes possible to



(a) Velocities evolution (b) Joint values evolution

Fig. 7: Joints and commands evolution

avoid undesired motions, to reduce the collision risk and the
vibrations, and make the switch to another manipulation task
easier. The approach has been implemented on the TIAGo
robot and the obtained experimental results show its relevance
for efficiently controlling mobile manipulators. Based on these
results, we plan to increase the use of constraints to handle
the presence of obstacles and to allow multi-camera visibility
management.
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