
HAL Id: hal-04199857
https://hal.science/hal-04199857v1

Preprint submitted on 11 Sep 2023 (v1), last revised 21 Oct 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Intrinsic Universality in Automata Networks II: Glueing
and Gadgets

Martín Ríos Wilson, Guillaume Theyssier

To cite this version:
Martín Ríos Wilson, Guillaume Theyssier. Intrinsic Universality in Automata Networks II: Glueing
and Gadgets. 2023. �hal-04199857v1�

https://hal.science/hal-04199857v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Intrinsic Universality in Automata Networks II: Glueing and Gadgets

Mart́ın Rı́os-Wilsona,b, Guillaume Theyssierb

aFacultad de Ingenieŕıa y Ciencias, Universidad Adolfo Ibáñez.

bAix-Marseille Université, CNRS, I2M (UMR 7373), Marseille, France.

Abstract

An automata network (AN) is a finite graph where each node holds a state from a finite alphabet and is equipped

with a local map defining the evolution of the state of the node depending on its neighbors. This paper is the second

of a series about intrinsic universality, i.e. the ability for a family of AN to simulate arbitrary AN. We develop a proof

technique to establish intrinsic simulation and universality results which is suitable to deal with families of symmetric

networks where connections are non-oriented. It is based on an operation of glueing of networks, which allows to

produce complex orbits in large networks from compatible pseudo-orbits in small networks. As an illustration, we

give a short proof that the family of networks where each node obeys the rule of the ’game of life’ cellular automaton

is strongly universal. In the third paper of the series, we heavily rely on this proof technique to show intrinsic

universality results of various families with particular update schedules.

Keywords: automata networks, intrinsic universality, glueing, game of life

1. Introduction

Automata networks (AN) are finite dynamical systems introduced in the 40s [1] which are commonly used as

models of biological networks [2, 3] or computational models [4, 5, 6, 7, 8]. Although they can be defined as a global

map of the form F : Qn → Qn for some alphabet Q, many natural families are better described in a succinct way

as a graph where each vertex holds a state and is equipped with a local transition map that determines how the

state of the node evolves depending on the states of neighboring nodes. This way, they can be seen as non-uniform

cellular automata on arbitrary graphs. Beyond applications, AN theory has been developed in several directions,

two of them being the combinatorics of their orbits and computational complexity of various decision problems like

prediction or reachability [9, 10, 11, 5, 12, 13, 14, 15, 16, 17, 18]. It turns out that most results focus on a particular

problem or dynamical parameter.

This paper is the second of a series of three about intrinsic universality in AN, i.e. the ability for a specific

family of AN to simulate arbitrary AN. The main interest of this notion is that it has consequences both in terms of

dynamics and computational complexity. In the first paper [19], we established a precise formalism of families of AN,

intrinsic simulations and (strong) intrinsic universality. The present paper focuses on a proof technique to establish

1This research was partially supported by French ANR project FANs ANR-18-CE40-0002 (G.T., M.R.W.), ECOS project C19E02
(G.T., M.R.W.) and ANID FONDECYT Postdoctorado 3220205 (M.R-W).

Preprint submitted to Theoretical Computer Science September 11, 2023

intrinsic simulation and universality. At the core of our approach is a concept of glueing which is a way to merge

two or more ANs sharing a common sub-network. We show how glueing can be useful to build a large network with

a prescribed behaviors from compatible pseudo-orbits of small networks. We establish a general composition result

that allows to derive intrinsic universality of a family from the existence of a finite set of compatible pseudo-orbits

of a finite set of small networks.

A common aspect to most hardness results for automata networks is the formulation of gadgets simulating logic

gates in order to perform a reduction to classic computational complexity problems such as the circuit value problem

or the boolean satisfiability problem. Since there are similarities in the way these gadgets are constructed, it is

usually accepted that the mere existence of gadgets imply that the reductions are correct because a ’simulation of

Boolean circuit’ is achieved. To our knowledge, no formalism for gadgets and their composition has been proposed

so far, and we see two problems in this situation:

• First, it is not clear what ’simulating a Boolean circuit with gadgets’ means since the asynchronous nature

of Boolean circuit evaluation does not match the extreme sensitivity to synchronism of automata networks;

moreover, in a symmetric (non-oriented) network family like in the examples above, gadgets have no clear

notion of input and output nodes and, due to potential unwanted feedback behaviors, it is not as simple to

correctly connect them as it is to connect logic gates in a Boolean circuit.

• Second, the lack of gadget formalism pushes the authors to state results about hardness of a particular decision

problem or lower bound of a particular dynamical parameter: this approach is not modular since, as illustrated

in the first paper of this series [19], complexity of one particular aspect does not generally imply complexity of

another. We believe for instance that proving intrinsic universality is a much more far reaching objective than

proving the hardness of a particular decision problem.

The present paper aims at establishing precise sufficient conditions for intrinsic universality of a family that boils

down to the existence a finite set of objects. Together with the dynamical and computational complexity consequences

of universality established in [19], this provides a powerful tool to prove many lower bounds or hardness results at

once on a family of AN.

The detailed contributions of the present paper are as follows:

1. We consider several families of automata networks based on a finite set of local update rules called G-networks

(Definition 6), and show various simulations or (non-)universality results on standard examples (Section 3.4

and Theorems 21 and 22 and 24).

2. We develop a proof tool for intrinsic simulation results in the context of automata networks on non-directed

graphs: it is based on a way to compose small networks into a larger one called glueing (Definition 7) that

preserves pseudo-orbits (Lemma 8) and can be directly used to prove simulation of G-network families through

a concept of gadgets (Lemma 13).

3. Based on previously analyzed families of G-networks, we obtain a sufficient condition for intrinsic universality

that boils down to the existence of a coherent finite set of pseudo-orbits of a finite set of networks from the

considered family (Corollary 4).

4. We apply this techniques on the family of automata networks on arbitrary undirected graphs where each node

behaves like the cells of the famous ’Game of Life’ cellular automaton, and establish strong universality of the

family (Theorem 18) by new gadgets that are smaller and more time-efficient than the classical ones used to

prove intrinsic universality of the cellular automaton on the grid.

2. Preliminaries

Graph definitions. Given a (non-directed) graph G = (V,E) and two vertices u, v we say that u and v are

neighbors if (u, v) ∈ E. Remark that abusing notations, an edge (u, v) is also denoted by uv. Let v ∈ V, we call

NG(v) = {u ∈ V : uv ∈ E} (or simply N(v) when the context is clear) the set of neighbors (or neighborhood) of

v and δ(G)v = |NG(v)| to the degree of v. Observe that if G′ = (V ′, E′) is a subgraph of G and v ∈ V ′, we can

also denote by NG′(v) the set of its neighbors in G′ and the degree of v in G′ as δ(G′)v = |NG′(v)|. In addition, we

define the closed neighborhood of v as the set N [v] = N(v) ∪ {v} and we use the following notation ∆(G) = max
v∈V

δv

for the maximum degree of G. Additionally, given v ∈ V , we will denote by Ev to its set of incident edges, i.e.,

Ev = {e ∈ E : e = uv}. We will use the letter n to denote the order of G, i.e. n = |V |. Also, if G is a graph

whose sets of nodes and edges are not specified, we use the notation V (G) and E(G) for the set of vertices and the

set of edges of G respectively. In the case of a directed graph G = (V,E) we define for a node v ∈ V the set of its

in-neighbors by N−(v) = {u ∈ V : (u, v) ∈ E} and its out-neighbors as N+(v) = {u ∈ V : (v, u) ∈ E}. We have also

in this context the indegree of v given by δ− = |N−(v)| and its outdegree given by δ+ = |N+(v)|

Automata networks During the most part of of the text, and unless explicitly stated otherwise, every graph G

will be assumed to be connected and undirected. We start by stating the following basic definitions, notations and

properties that we will be using in the next sections. In general, Q and V will denote finite sets representing the

alphabet and the set of nodes respectively. We define Σ(Q) as the set of all possible permutations over alphabet Q.

We call an abstract automata network any function F : QV → QV . Note that F induces a dynamics in QV and thus

we can see (QV , F) as dynamical system. In this regard, we recall some classical definitions. We call a configuration

to any element x ∈ QV . If S ⊆ V we define the restriction of a configuration x to V as the function x|S ∈ QS such

that (x|S)v = xv for all v ∈ S. In particular, if S = {v}, we write xv.

Given an initial configuration x ∈ QV , we define the orbit of x as the sequence O(x) = (F t(x))t≥0. We define

the set of limit configurations or recurrent configurations of F as L(F) =
⋂

t≥0 F
t(QV). Observe that since Q is

finite and F is deterministic, each orbit is eventually periodic, i.e. for each x ∈ QV there exist some τ, p ∈ N

such that F τ+p(x) = F τ (x) for all x ∈ QV . Note that if x is a limit configuration then, its orbit is periodic. In

addition, any configuration x ∈ QV eventually reaches a limit configuration in finite time. We denote the set of

orbits corresponding to periodic configurations as Att(F) = {O(x) : x ∈ L(F)} and we call it the set of attractors of

F. We define the global period or simply the period of x ∈ Att(F) by p(x) = min{p ∈ N : x(p) = x(0)}. If p(x) = 1

we say that x is a fixed point and otherwise, we say that x is a limit cycle.

Given a node v, its behavior x 7→ F (x)v might depend or not on another node u. This dependencies can be

captured by a graph structure which plays an important role in the theory of automata networks (see [20] for a

review of known results on this aspect). This motivates the following definitions.

Definition 1. Let F : QV → QV be an abstract automata network and G = (V,E) a directed graph. We say G

is a communication graph of F if for all v ∈ V there exist D ⊆ N−
v and some function fv : QD → Q such that

F (x)v = fv(x|D). The interaction graph of F is its minimal communication graph.

Note that by minimality, for any node v and any in-neighbor u of v in the interaction graph of some F , then the

next state at node v effectively depends on the actual state at node u. More precisely, there is some configuration

c ∈ QV and some q ∈ Q with q 6= cu such that F (c)v 6= F (c′)v where c′ is the configuration c where the state of node

u is changed to q. This notion of effective dependency is sometimes taken as a definition of edges of the interaction

graph.

From now on, for an abstract automata network F and some communication graph G of F we use the notation

A = (G,F). In addition, by abuse of notation. we also call A an abstract automata network. We define a set of

automata networks or an abstract family of automata networks on some alphabet Q as a set F ⊆ ⋃

n∈N

{F : QV →

QV : V ⊆ [n]}.

A multiset overQ is a mapm : Q → N (recall that 0 ∈ N). A k-bounded multiset overQ is a mapm : Q → [k] = {0, . . . , k},

the set of such multisets is denoted [k]Q. For instance a multiset in [2]Q is actually a set. Note that when Q is finite

(which will always be the case below), any multiset is actually a bounded multiset. To any (partial) configuration

c ∈ QA, we associate the multiset m(c) which to any q ∈ Q associates its number of occurrences in c, i.e.

m(c) = q 7→ #{a ∈ A : c(a) = q}.

Definition 2. Given a non-directed graph G = (V,E), a vertex label map λ : V → (Q× N
Q → Q) and an edge label

map ρ : E → (Q → Q), we define the concrete symmetric automata network (CSAN) A = (G, λ, ρ). A family of

concrete symmetric automata networks (CSAN family) F is given by an alphabet Q, a set of local labeling constraints

C ⊆ Λ × R where Λ = {φ : Q× N
Q → Q} is the set of possible vertex labels and R = 2{ψ:Q→Q} is the set of possible

sets of neighboring edge labels. We say a CSAN (G, λ, ρ) belongs to F if for any vertex v of G with incident edges

Ev it holds (λ(v), ρ(Ev)) ∈ C.

Representations and simulations.

Definition 3. Let F be a set of abstract automata network over alphabet Q. A standard representation F∗ for F is

a language LF ⊆ {0, 1}∗ together with a DLOGSPACE algorithm such that:

• the algorithm transforms any w ∈ LF into the canonical representation of a circuit encoding C(w) that code

an abstract automata network Fw ∈ F ;

• for any F ∈ F there is w ∈ LF with F = Fw.

As it is described in [19], CSAN families are a collection of labeled graphs and thus they are naturally represented

as a graph G together with some representations of local functions (i.e. λ and ρ).

Definition 4. Let (F ,F∗) and (H,H∗) be two families with standard representations on alphabets QF and QH

respectively. Let T, S : N → N be two functions. We say that F∗ simulates H∗ in time T and space S if there

exists a DLOGSPACE Turing machine M such that for each w ∈ LH representing some automata network

Hw ∈ H : QnH → QnH , the machine produces a pair M(w) which consists in:

• w′ ∈ LF with Fw′ : QnF

F → QnF

F ,

• T (n) and a representation of a block embedding φ : QnF → Qn,

such that nF = S(n) and Fw′ simulates Hw in time T = T (n) under block embedding φ.

The orbit graph GF associated to a network F with nodes V and alphabet Q is the digraph with vertices QV

and an edge from x to F (x) for each x ∈ QV . We also denote GtF = GF t .

Definition 5. Fix a map ρ : N → N, we say that the orbit graph GF of F with n nodes is ρ-succinct if F can be

represented by circuits of size at most ρ(n). We say that the orbit graph GH of H with m nodes embeds GF with

distortion δ : N → N if m ≤ δ(n) and there is T ≤ δ(n) such that GF is a subgraph of GHT .

3. Gadgets and glueing

In the same way as Boolean circuits are defined from Boolean gates, many automata network families can be

defined by fixing a finite set of local maps G that we can freely connect together to form a global network, called a

G-network.

Such families can be strongly universal as we will see, even for very simple choices of G, which is an obvious

motivation to consider them. In this section, we introduce a general framework to prove simulation results of a

G-network family by some arbitrary family that amounts to a finite set of conditions to check. From this we will

derive a framework to certify strong universality of an arbitrary family just by exhibiting a finite set of networks

from the family that verify a finite set of conditions. As already said above, our goal is to analyze automata networks

with symmetric communication graph (CSAN families). Our framework is targeted towards such families.

The idea behind is that of building large automata networks from small automata networks in order to mimic

the way a G-network is built from local maps in G. The difficulty, and the main contribution of this section, is to

formalize how small building blocks are glued together and what conditions on them guaranty that the large network

correctly simulates the corresponding G-networks. In particular, our formalism is perfectly suited to show that a

family of undirected networks can simulate a family of oriented G-networks.

We will now introduce all the concepts used in this framework progressively.

3.1. G-networks

Let Q be a fixed alphabet and G be any set of maps of type g : Qi(g) → Qo(g) for some i(g), o(g) ∈ N. We say g is

reducible if it can be written as a disjoint union of two gates, and irreducible otherwise. Said differently, if G is the

g1

(1, 1)

(1, 1) (1, 2)

φA

g2

(2, 1)

(2, 1) (2, 2)

φB φC

g1

g2

A
B C

AB C

(2,1) (1,1)(1,1) (2,1) (1,2) (2,2)

φ(x)A = φA(xB , xC)

φ(x)B = φB(xA)

φ(x)C = φC(xA)

Figure 1: On the left a set of maps G over alphabet Q, in the middle an intuitive representation of input/output connections to make a

G-network, on the right the corresponding formal G-network φ : Q3 → Q3 together with the global map associated to it. The bijections

α and β from Definition 6 are represented in blue and red (respectively).

(bipartite) dependency graph of g describing on which inputs effectively depends each output, then g is irreducible

if G is weakly connected.

From G we can define a natural family of networks: a G-network is an automata network obtained by wiring

outputs to inputs of a number of gates from G. To simplify some later results, we add the technical condition that

no output of a gate can be wired to one of its inputs (no self-loop condition).

Definition 6. A G-network is an automata network F : QV → QV with set of nodes V associated to a collection of

gates g1, . . . , gn ∈ G with the following properties. Let

I = {(j, k) : 1 ≤ j ≤ n and 1 ≤ k ≤ i(gj)} and

O = {(j, k) : 1 ≤ j ≤ n and 1 ≤ k ≤ o(gj)}

be respectively the sets of inputs and outputs of the collection of gates (gj)1≤j≤n. We require |V | = |I| = |O| and

the existence of two bijective maps α : I → V and β : V → O with the condition that there is no (j, k) ∈ I such that

β(α(j, k)) = (j, k′) for some k′ (no self-loop condition). For v ∈ V with β(v) = (j, k), let Iv = {α(j, 1), . . . , α(j, i(gj))}
and denote by gv the map: x ∈ QIv 7→ gj(x̃)k where x̃ ∈ Qi(gj) is defined by x̃k = xα(j,k). Then F is defined as follows:

F (x)v = gv(xIv
).

Remark 1. Once G is fixed, there is a bound on the degree of dependency graphs of all G-networks. Thus, it is

convenient to represent G-networks by the standard representation of bounded degree automata networks (as a pair

of a graph and a list of local update maps). Another representation choice following strictly Definition 6 consists in

giving a list of gates g1, . . . , gk ∈ G, fixing V = {1, . . . , n} and give the two bijective maps α : I → V and β : V → O

describing the connections between gates (maps are given as a simple list of pairs source/image). One can check

that these two representations are DLOGSPACE equivalent when the gates of G are irreducible: we can construct

the interaction graph and the local maps from the list of gates and maps α and β in DLOGSPACE (the incoming

neighborhood of a node v, Iv, and its local map gv are easy to compute as detailed in Definition 6); reciprocally, given

the interaction graph G and the list of local maps (gv), one can recover in DLOGSPACE the list of gates and their

connections as follows:

• for v from 1 to n do:

– gather the (finite) incoming neighborhood N−(v) of v then the (finite) outgoing neighborhood N+(N−(v))

and iterate this process until it converges (in finite time) to a set Iv of inputs and Ov of outputs with

v ∈ Ov;

– check that all v′ ∈ Iv ∪Ov are such that v′ ≥ v otherwise jump to next v in the loop (this guaranties that

each gate is generated only once);

– since the considered gates are irreducible, Iv and Ov actually correspond to input and output sets of a gate

g ∈ G that we can recover by finite checks from the local maps of nodes in Ov;

– output gate g and the pairs source/image to describe α and β for nodes in Iv and Ov respectively.

In the sequel we denote Γ(G) the family of all posible G-networks associated to their bounded degree representation.

3.2. Glueing of automata networks

In this section we define an operation that allows us to ’glue’ two different abstract automata networks on a

common part in order to create another one which, roughly, preserve some dynamical properties in the sense that it

allows to glue pseudo-orbits of each network to obtain a pseudo-orbit of the glued network. One might find useful to

think about the common part of the two networks as a dowel attaching two pieces of wood: each individual network

is a piece of wood with the dowel inserted in it, and the result of the glueing is the attachment of the two pieces with

a single dowel (see Figure 2).

Definition 7. Consider F1 : QV1 → QV1 and F2 : QV2 → QV2 two automata networks with V1 disjoint from V2, C a

set disjoint from V1 ∪ V2, ϕ1 : C → V1 and ϕ2 : C → V2 two injective maps with ϕ1(C) ∩ ϕ2(C) = ∅ and C1, C2 a

partition of C in two sets. We define

V ′ = C ∪ (V1 \ ϕ1(C)) ∪ (V2 \ ϕ2(C))

and the map α : V ′ → V1 ∪ V2 by

α(v) =

v if v 6∈ C

ϕi(v) if v ∈ Ci, for i = 1, 2.

We then define the glueing of F1 and F2 over C as the automata network F ′ : QV
′ → QV

′

where

F ′
v =

(F1)α(v) ◦ ρ1 if α(v) ∈ V1,

(F2)α(v) ◦ ρ2 if α(v) ∈ V2,

C

ϕ1(C) ϕ2(C)
V1

V2

ϕ1 ϕ2

C

V ′

Figure 2: Scheme of a glueing

where ρi : QV
′ → QVi is defined by

ρi(x)v =

xϕ−1
i

(v) if v ∈ ϕi(C),

xv else.

When necessary, we will use the notation F ′ = F1
φ1

C1
⊕φ2

C2
F2 to underline the dependency of the glueing operation

on its parameters.

Given an automata network F : QV → QV and a set X ⊆ V , we say that a sequence (xt)0≤t≤T of configurations

from QV is a X-pseudo-orbit if it respects F as in a normal orbit, except on X where it can be arbitrary, formally:

xt+1
v = F (xt)v for all v ∈ V \X and all 0 ≤ t < T . The motivation for Definition 7 comes from the following lemma.

Lemma 8 (Pseudo-orbits glueing). Taking the notations of Definition 7, let X ⊆ V1 \ ϕ1(C) and Y ⊆ V2 \ ϕ2(C)

be two (possibly empty) sets. If (xt)0≤t≤T is a X ∪ ϕ1(C2)-pseudo-orbit for F1 and if (yt)0≤t≤T is a Y ∪ ϕ2(C1)-

pseudo-orbit for F2 and if they verify for all 0 ≤ t ≤ T

∀v ∈ C, xtϕ1(v) = ytϕ2(v), (1)

then the sequence (zt)0≤t≤T of configurations of QV
′

is a X ∪ Y -pseudo-orbit of F ′, where

ztv =

xt
α(v) if α(v) ∈ V1,

ytα(v) if α(v) ∈ V2.

Proof. Take any v ∈ V ′ \ (X ∪ Y). Suppose first that α(v) ∈ V1. By definition of F ′, we have F ′(zt)v = (F1)α(v) ◦ ρ1(zt)

but ρ1(zt) = xt (using the Equation 1 in the hypothesis) so F ′(zt)v = F1(xt)α(v). Since (xt) is a X ∪ ϕ1(C2)-pseudo-

orbit and since α(v) 6∈ X ∪ ϕ1(C2), we have

F1(xt)α(v) = xt+1
α(v) = zt+1

v .

We conclude that zt+1
v = F ′(zt)v. By a similar reasoning, we obtain the same conclusion if α(v) ∈ V2. We deduce

that (zt) is a X ∪ Y -pseudo-orbit of F ′.

In order to illustrate the latter lemma, we show an example of glueing considering classical life-like automata

network, given by the Game of life. In this case, we have that B = {3} and S = {2, 3} meaning that a dead cell

can update its state to alive if it has exactly three alive neighbors and it will survive only it has exactly 2 or 3 alive

neighbors.

First, we introduce, In Figure 3, the dynamics of a clock network (roughly, a network exhibiting a dynamics

consisting in a periodic sequence of patterns that move from left to right). This network will be very important to

the construction we will show in the next section and for the example of pseudo-orbit glueing that we are going to

introduce hereunder. Now, observe that the communication graph of the clock network is composed by six layers of

three independent nodes connected to all the nodes in the next layer. The layers in gray boxes (the first and the

last) are connected. In addition, all the layers are connected to an auxiliary node. This node will allow the layer to

return to state 0 when the next layer is in state 1 since it will provide an additional node in state 1 so all the nodes

in the layer will have exactly four nodes in state 1 (note that each node in a layer has three neighbors in the adjacent

layers and the auxiliary node). Observe that in each time step two layers are in state one and the rest o the layers

are in state zero. This pattern is shifted in each time step and thus it takes 6 time steps in order to go from the first

layer to the last one.

Now, let us consider a slightly different network, which is essentially the same as in Figure 3 but the first and the

last layer are not connected. We call this a wire network and we show its communication graph in Figure 4. We are

going to glue two of the wire networks, using the previous lemma, in order to create a larger wire. In Figure 5, it

is represented the glueing operation between two of these wire networks. The glueing parts are highlighted inside a

box in both gadgets. Dashed boxes indicate the zones that are not ruled by the dynamics (the X, Y , C1 and C2 in

the latter lemma). Observe that the pseudo-orbit which is induces the pattern that goes through the layers from left

to right in both gadgets is preserved in the new network. This pseudo-orbit is shown in Figure 4. More precisely, the

sequence of configurations (wi1)i=0,...,4 and w0 are both X and Y pseudo-orbits in each of the wire networks that we

are glueing. Observe that both of this sequences satisfy the conditions asked by the lemma and thus, they induce a

X ∪ Y -pseudo orbit on the glued network.

Observe that in the latter example, the glueing is straightforward not only because the structure of the graph

is uniform but due to the fact that the local rule is CSAN. However, even in the case of a CSAN family where the

transition rules are determined by a labeled non-directed graph, the result of a glueing operation has no reason to

belong to the family because the symmetry of the interaction graph might be broken (see Figure 6). The following

lemma gives a sufficient condition in graph theoretical terms for glueing within a concrete family of automata

networks. Intuitively, it consists in asking that, in each graph, all the connections of one half of the dowel to the

rest of the graph goes through the other half of the dowel. Here the wooden dowel metaphor is particularly relevant:

when considering a single piece of wood with the dowel inserted inside, one half of the dowel is ’inside’ (touches the

piece of wood), the other half is ’outside’ (not touching the piece of wood); then, when the two pieces are attached,

each position in the wood assembly is locally either like in one piece of wood with the dowel inserted or like in the

other one with the dowel inserted.

Lemma 9 (Glueing for CSAN). Let (G1, λ1, ρ1) and (G2, λ2, ρ2) be two CSAN from the same CSAN family F where

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

Figure 3: An orbit of a clock network. Gray-shaded nodes are connected. Nodes in state 1 are represented by black circles and those in

state 0 are represented by white circles. The represented orbit is periodic of period 6.

w0
1

w1
1

t = 1

t = 0

w2
1

t = 2

w3
1

t = 3

w4
1

t = 4

t = 5

w5
1

Figure 4: A pseudo-orbit representing a signal on a wire network. Black nodes are in state 1 and white nodes are in state 0. The

configuration at each time step is represented by the notation wt
i
, t = 0, 1, 2, 3, 4, 5i = 0, 1. This notation stands for the configuration

in time t that codes a signal representing the bit i. Thus, the pseudo-orbit represented is (w0

1
, w1

1
, w2

1
, w3

1
, w4

1
, , w5

1
). In time t = 0, it is

marked in dotted boxes the parts of the networks that do not depend on the local rule of the network.

⊕

t = 0

t = 1

C1
C2

X
C1

C2

Y

CX Y

Figure 5: Example of two wire gadgets transmitting a 1 signal represented as a particular pseudo-orbit. Nodes in black are in state 1

and nodes in white are in state 0. Nodes inside dashed boxes represent the zones that are arbitrary for the pseudo-orbit. At time t = 0

it is shown a X ∪ C2-pseudo-orbit for the left gadget and in the right a Y ∪ C1-pseudo-orbit. At time t = 1 it is shown the result of the

glueing of the two gadgets and the resulting X ∪ Y -pseudo-orbit given by the theorem.

+ =

φ1(C1)

φ1(C2)

φ2(C1)

φ2(C2)

Figure 6: Symmetry breaking in interaction graph after a glueing operation. Arrows indicate influence of a node (source) on another

(target), edges without arrow indicates bi-directional influence. Here C consists in two nodes only.

G1 and G2 are disjoint and F1 and F2 are the associated global maps. Taking again the notations of Definition 7, if

the following conditions hold

• the labeled graphs induced by ϕ1(C) and ϕ2(C) in G1 and G2 are the same (using the identification ϕ1(v) = ϕ2(v))

• NG1(ϕ1(C2)) ⊆ ϕ1(C)

• NG2(ϕ2(C1)) ⊆ ϕ2(C)

then the glueing F ′ = F1
φ1

C1
⊕φ2

C2
F2 can be defined as the CSAN on graph G′ = (V ′, E′) where V ′ is as in Definition 7

and each node v ∈ V ′ has the same label and same labeled neighborhood as either a node of (G1, λ1, ρ1) or a node of

(G2, λ2, ρ2). In particular F ′ belongs to F .

Proof. Let us define βi : Vi → V ′ by

βi(v) =

φ−1
i (v) if v ∈ φi(C),

v else.

Fix i = 1 or 2. According to Definition 7, if v ∈ V ′ is such that α(v) ∈ Vi then F ′
v = (Fi)α(v) ◦ ρi. By definition of

CSAN, this means that for any x ∈ QV
′

we have F ′
v(x) = ψi,α(v)(x|β(NGi

(α(v)))) where ψi,α(v) is a map depending

only on the labeled neighborhood of α(v) in Gi as in Definition 2. So the dependencies of v in F ′ are in one-to-one

correspondence through β with the neighborhood of α(v) in Gi. They key observation is that the symmetry of

dependencies is preserved, formally for any v′ ∈ β(NGi
(α(v))):

• either α(v′) ∈ Vi in which case the dependency of v′ on v (in map ψi,α(v′)) is the same as the dependency of v

on v′ (in map ψi,α(v)), and both are determined by the undirected labeled edge {α(v), α(v′)} of Gi;

• or α(v′) 6∈ Vi and in this case necessarily v ∈ Ci and v′ ∈ C3−i (because NGi
(Vi \ ϕi(C)) ∩ ϕi(C) ⊆ ϕi(Ci) from

the hypothesis), so the dependency of v′ on v is the same as the dependency of v on v′ because the labeled

graphs induced by φ1(C) and φ2(C) in G1 and G2 are the same.

Concretely, F ′ is a CSAN that can be defined on graph G′ = (V ′, E′
1 ∪ E′

2 ∪ E(C)) with

E′
i = E(Vi \ ϕi(C)) ∪ {(u, vi) : u ∈ V (Ci), vi ∈ (Vi \ ϕi(C)), (ϕi(u), vi) ∈ Ei},

a b c b c

d

e

e

d

cb

C1 C2

a

G1
G2

G′

C

ϕ1 ϕ2

Figure 7: Example of a glueing of two compatibles CSAN. The labeling in nodes of G1, G2 and G′ shows equalities between local λ maps

of these three CSAN.

and labels as follows:

• on E(C) as in both G1 and G2 (which agree through maps φ1 and φ2 on C),

• on E(Vi \ ϕi(C)) as in Gi,

• for each u ∈ V (Ci), vi ∈ (Vi \ ϕi(C)) such that (ϕi(u), vi) ∈ Ei, edge (u, vi) has same label as (ϕi(u), vi).

Since any CSAN families (Definition 2) is entirely based on local constraints on labels (vertex label plus set of labels

of the incident edges), we deduce that F ′ is in F .

3.3. G-gadgets, gadget glueing and simulation of G-networks

We now give a precise meaning to the intuitively simple fact that, if a family of automata networks can coherently

simulate a set of small building blocks (gates from G), it should be able to simulate any automata network that can

be built out of them (G-networks).

The key idea here is that gates from G will be represented by networks of the family called G-gadgets, and the

wiring between gates to obtain a G-network will translate into glueing between G-gadgets. Following this idea there

are two main conditions for the family to simulate any G-network:

• the glueing of gadgets should be freely composable inside the family to allow the building of any G-network;

• the gadgets corresponding to gates from G should correctly and coherently simulate the functional relation

between inputs and outputs given by their corresponding gate.

For clarity, we separate these conditions in two definitions.

We start by developing a definition for gadget glueing. Recall first that Definition 7 relies on the identification

of a common dowel in the two networks to be glued. Here, as we want to mimic the wiring of gates which connects

inputs to outputs, several copies of a fixed network called glueing interface will be identified in each gadget, some

of them corresponding to input, and the other ones to outputs. In this context, the only glueing operations we will

use are those where some output copies of the interface in a gadget A are glued on input copies of the interface

in a gadget B and some input copies of the interface in A are glued on output copies of the interface in B. Then,

the global dowel used to formally apply Definition 7 is a disjoint union of the selected input/output copies of the

interface. Figure 8 illustrates with the notations of the following Definition.

Definition 10 (Glueing interface and gadgets). Let C = Ci ∪ Co be a fixed set partitioned into two sets. A gadget

with glueing interface C = Ci ∪ Co is an automata network F : QVF → QVF together with two collections of injective

maps φiF,k : C → VF for k ∈ I(F) and φoF,k : C → VF for k ∈ O(F) whose images in VF are pairwise disjoint and

where I(F) and O(F) are disjoint sets which might be empty.

Given two disjoint gadgets (F, (φiF,k), (φoF,k)) and (G, (φiG,k), (φoG,k)) with same alphabet and interface C = Ci ∪ Co,

a gadget glueing is a glueing of the form H = F
φF

CF
⊕φG

CG
G defined as follows:

• a choice of a set A of inputs from F and outputs from G given by injective maps σF : A → I(F) and σG : A → O(G),

• a choice of a set B of outputs from F and inputs from G given by injective maps τF : B → O(F) and τG : B → I(G)

(the set B is disjoint from A),

• CF is a disjoint union of |A| copies of Ci, and |B| copies of Co: CF = A× Ci ∪B × Co,

• CG is a disjoint union of |A| copies of Co, and |B| copies of Ci: CG = A× Co ∪B × Ci,

• φF : CF ∪CG → VF is such that φF (a, c) = φi
F,σF (a)(c) for a ∈ A and c ∈ C, and φF (b, c) = φo

F,τF (b)(c) for

b ∈ B and c ∈ C,

• φG : CF ∪ CG → VG is such that φG(a, c) = φoG,σG(a)(c) for a ∈ A and c ∈ C, and φG(b, c) = φiG,τG(b)(c) for

b ∈ B and c ∈ C.

The resulting network H is a gadget with same alphabet and same interface with I(H) = I(F) \ σF (A) ∪ I(G) \ τG(B)

and O(H) = O(F) \ τF (B) ∪O(F) \ σG(A) and φiH,k is φiF,k when k ∈ I(F) and φiG,k when k ∈ I(G), and φoH,k is

φoF,k when k ∈ O(F) and φoG,k when k ∈ O(G).

Given a set of gadgets X with same alphabet and interface, its closure by gadget glueing is the closure of X by

the following operations:

• add a disjoint copy of some gadget from the current set,

• add the disjoint union of two gadgets from the current set,

• add a gadget glueing of two gadgets from the current set.

inputs outputs

F

σF (A)

τF (B)

α β

γ δ

ǫ ζ

σG(B)
τG(A)

G

a b

c d

e f

G

c d

f e

a b

Fα β

γ δ

ζ ǫ

input output

c β γ δ

f ǫ

a b

Figure 8: Gadget glueing as in Definition 10. On the left, two gadgets with interface C = Ci ∪ Co where Ci part in each copy of the

interface dowel is in red and Co part in blue. The gadget glueing is done with input σF (A) on output τG(A) (here A is a singleton) and

output τF (B) on input τG(B) (B is also a singleton). On the upper right, a representation of the global glueing process where nodes in

green are those in the copy of CF in F or in the copy CG in G; dotted links show the bijection between the embeddings of C = CF ∪ CG

into VF and VG via maps φF and φG. On the lower right the resulting gadget with the same interface C = Ci ∪ Co as the two initial

gadgets.

Remark 2. The representation of the result of a gadget glueing can be easily computed from the two gadgets F and G

and the choices of inputs/outputs given by maps σF , σG, τF and τG: precisely, by definition of glueing (Definition 7)

the local map of each node of the result automata network is either a local map of F (when in VF \ φF (CG) or in

CF) or a local map of G (when in VG \ φG(CF) or in CG). Note also that the closure by gadget glueing of a finite

set of gadgets X is always a set of automata networks of bounded degree.

Lemma 9 gives sufficient conditions on a set of gadgets to have its closure by gadget glueing contained in a CSAN

family.

Lemma 11. Fix some alphabet Q and some glueing interface C = Ci ∪Co and some CSAN family F . Let (Gn, λn, ρn)

for n ∈ S be a set of CSAN belonging to F with associated global maps Fn. Let φiFn,k
for k ∈ I(Fn) and φoFn,k

for

k ∈ O(Fn) be maps as in Definition 10 so that (Fn, (φ
i
Fn,k

), (φoFn,k
)) is a gadget with interface C = Ci ∪ Co. Denote

by X the set of such gadgets. If the following conditions hold:

• the labeled graphs induced by φiFn,k
(C) and by φoFn,k

(C) in Gn are all the same for all n and k with the

identification of vertices given by the φ∗
∗,∗ maps,

• NGn
(φiFn,k

(Co)) ⊆ φiFn,k
(C) for all n ∈ S and all k ∈ I(Fn),

• NGn
(φoFn,k

(Ci)) ⊆ φoFn,k
(C) for all n ∈ S and all k ∈ O(Fn),

then the closure by gadget glueing of X is included in F .

Proof. Consider first the gadget glueing H of two gadgets Fn and Fn′ from X . Following Definition 10, the global

dowel CFn
∪CFn′

used in such a glueing is a disjoint union of copies of C, and its embedding φFn
in Gn (resp. φFn′

in Gn′) is a disjoint union of maps φ∗
Fn,∗

(resp. φ∗
Fn′ ,∗). Therefore the three conditions of Lemma 9 follow from the

three conditions of the hypothesis on gadgets from X and we deduce that H belongs to family F . Moreover, it is

clear that gadget H then also verifies the three conditions from the hypothesis, and adding a copy of any gadget to

the set also verifies the conditions. We deduce that the closure by gadget glueing of X is included in F .

The second key aspect to have a coherent set X of G-gadgets is of dynamical nature: there must exists a collection

of pseudo-orbits on each gadget satisfying suitable conditions to permit application of Lemma 8 for any gadget glueing

in the closure of X ; moreover, these pseudo-orbits must simulate via an appropriate coding the input/output relations

of each gate g ∈ G in the corresponding gadget. To obtain this, we rely on a standard set of traces on the glueing

interface that must be respected on any copy of it in any gadget.

Definition 12 (Coherent G-gadgets). Let G be any set of finite maps over alphabet Q and let F be any set of abstract

automata networks over alphabet QF . We say F has coherent G-gadgets if there exists:

• a unique glueing interface C = Ci ∪ Co,

• a set X of gadgets (Fg, (φ
i
g,k)1≤k≤i(g), (φ

o
g,k)1≤k≤o(g)) for each g ∈ G where Fg : Q

Vg

F → Q
Vg

F ∈ F and sets Vg

and C are pairwise disjoint, and the closure of X by gadget glueing is contained in F ,

• a state configuration sq ∈ QCF for each q ∈ Q such that q 7→ sq is an injective map,

• a context configuration cg ∈ Q
V̂g

F for each g ∈ G where V̂g = Vg \
(

∪kφig,k(C) ∪k φog,k(C)
)

,

• a time constant T ,

• a standard trace τq,q′ ∈ (QCF){0,...,T} for each pair q, q′ ∈ Q such that τq,q′ (0) = sq and τq,q′ (T) = sq′ ,

• for each g ∈ G and for any uples of states qi,1, . . . , qi,i(g) ∈ Q and qo,1, . . . , qo,o(g) ∈ Q and q′
i,1, . . . , q

′
i,i(g) ∈ Q

and q′
o,1, . . . , q

′
o,o(g) ∈ Q such that g(qi,1, . . . , qi,i(g)) = (q′

o,1, . . . , q
′
o,o(g)), a Pg-pseudo-orbit (xt)0≤t≤T of Fg with

Pg =
⋃

1≤k≤i(g) φ
i
g,k(Co) ∪ ⋃

1≤k≤o(g) φ
o
g,k(Ci) and with

– for each 1 ≤ k ≤ i(g), the trace t 7→ xt
φi

g,k
(C)

is exactly τqi,k,q
′

i,k
,

– for each 1 ≤ k ≤ o(g), the trace t 7→ xtφo
g,k

(C) is exactly τqo,k,q
′

o,k
,

– x0
V̂g

= xT
V̂g

= cg.

We can now state the key lemma of our framework: having coherent G-gadgets is sufficient to simulate the whole

family of G-networks.

Lemma 13. Let G be a set of irreducible gates. If an abstract automata network family F has coherent G-gadgets

then it contains a subfamily of bounded degree networks with the canonical bounded degree representation (F0,F∗
0)

that simulates Γ(G) in time T and space S where T is a constant map and S is bounded by a linear map.

Proof. We take the notations of Definition 12. To any G-network F with set of nodes V given as in Definition 6

by a list of gates g1, . . . , gk ∈ G and maps α and β (see Remark 1) we associate an automata network from F as

follows. First, let (Fgi
)1≤i≤k be the gadgets corresponding to gates gi and suppose they are all disjoint (by taking

disjoint copies when necessary). Then, start from the gadget F1 = Fg1 and for any 1 ≤ i < k we define Fi+1 as the

gadget glueing of Fi and Fgi+1 on the input/outputs as prescribed by maps α and β. More precisely, the gadget

glueing select the set of inputs (j, k) with 1 ≤ j ≤ i and 1 ≤ k ≤ i(gj) such that β(α(j, k)) = (i + 1, k′) for some

1 ≤ k′ ≤ o(gi+1) and glue them on their corresponding output (i+ 1, k′) of gi+1 (precisely, through maps σFi
and

σFgi+1
of domain Ai+1 playing the role of maps σF and σG of Definition 10), and, symmetrically, selects the inputs

(i+ 1, k) with 1 ≤ k ≤ i(gi+1) such that β(α(i + 1, k)) = (j, k′) for some 1 ≤ j ≤ i and 1 ≤ k′ ≤ o(gj) and glue their

corresponding output (j, k′) (precisely, through maps τFgi+1
and τFi

of domain Bi+1 playing the role of maps τG and

τF from Definition 10). If both of these sets of inputs/outputs are empty, the gadget glueing is replaced by a simple

disjoint union.

The final gadget Fk has no input and no output, and a representation of it as a pair graph and local maps can

be constructed in DLOGSPACE, because the local map of each of its nodes is independent of the glueing sequence

above and completely determined by the gadget Fgj
it belongs to and whether the node is inside some input or some

output dowel or not (see Reamrk 2).

It now remains to show that the automata network Fk simulates F . To fix notations, let Vk be the set of

nodes of Fk. For each v ∈ V , define Dv ⊆ Vk as the copy of the dowel that correspond to node v of F , i.e. that

was produced in the gadget glueing of Fi with Fgi+1 for i such that β(v) = (i + 1, k′) for some 1 ≤ k′ ≤ o(gi+1) (or

symmetrically α(i+ 1, k) = v for some 1 ≤ k ≤ i(gj)). More precisely, if a ∈ Ai+1 is such that σFgi+1
(a) = (i+ 1, k′)

then Dv = {a} × C (symmetrically if b ∈ Bi+1 is such that τFgi+1
(b) = (i+ 1, k) then Dv = {b} × C). Also denote

by ρv : Dv → C the map such that ρv(a, c) = c for all c ∈ C (symmetrically, ρv(b, c) = c). With these notations, we

have

Vk =
⋃

v∈V

Dv ∪
⋃

1≤i≤k

V̂gi

Let us define the block embedding φ : QV → QVk

F as follows

φ(x)(v′) =

sxv
(ρv(v

′)) if v′ ∈ Dv,

cgi
(v′) if v′ ∈ V̂gi

.

for any x ∈ QV and any v′ ∈ Vk, where sq for q ∈ Q are the state configurations and cg for g ∈ G are the context

configurations granted by Definition 12. Note that φ is injective because the map q 7→ sq is injective. By inductive

applications of Lemma 8, the Pgi
-pseudo-orbits of each Fgi

from Definition 12 can be glued together to form valid

orbits of Fk that start from any configuration φ(x) with x ∈ QV and ends after T steps in a configuration φ(y) for

some y ∈ QV which verifies y = F (x). Said differently, we have the following equality on QV :

φ ◦ F = FTk ◦ φ.

Note that T is a constant and that the size of Vk is at most linear in the size of V . The lemma follows.

Remark 3. Note that in Lemma 13 above, the block embedding that is constructed can be viewed as a collection of

blocks of bounded size that encode all the information plus a context (see [19, Remark 2]).

As it is stated in the first paper of this series (see [19, Remark 1]), in the case of CSAN families, there exists an

efficient algorithm to go from the bounded degree representation to the CSAN representation (as a consequence of the

fact that the representations use a constant amount of memory). Thus, we provide hereunder a simpler formulation

of the Lemma.

Corollary 1. If G is a set of irreducible gates and F a CSAN family which has coherent G-gadgets then F simulates

Γ(G) in time T and space S where T is a constant map and S is bounded by a linear map.

3.3.1. Game of life has coherent gadgets

In this section, we are going to show that Game of life has coherent GNOR gadgets, where GNOR = {NOR(x, y) =

(x ∨ y, x ∨ y)}. In order to do that, we are going to show that we are able to simulate this two gates by combining

wire networks and a clock network.

First, we show, in Figure 10, the structure of the communication graph of the NOR gadget. Observe that it is

composed by 2 copies of the wire network and 2 copies of the clock network (see Figure 9). Now, we present the

main result of this subsection:

Lemma 14. Game of Life automata networks admits coherent GNOR gadgets.

Proof. We are going to show that the NOR gadget satisfies the conditions of the Definition 12. In fact we have that:

• The NOR gadget has a unique glueing interface C which is shown in Figure 10. The functions φi, φo are also

represented in the same figure.

• Observe that the map q ∈ {0, 1} 7→ sq = (wq0)|C (observe that wi0 = w0 for each i since all the nodes are in

state 0 in this configuration), is injective.

• The context configuration is given by:

– For the clock network we use the initial condition of the dynamics of the clock network (see Figure 3).

– For the copies of the wire network: the nodes are in state 0 with the exception of the nodes in the copies

of C (see Figure 4).

• The time constant is T = 6

• The configurations w0
q , . . . , w

5
q (see Figure 4) and wt0 (or simply w0) where wt0 is the configuration in which

each node is in state 0 for every t = 0, . . . , T define a standard trace for each pair (0, 0), (0, 1), (1, 0), (1, 1) as

follows: τq,q′ = ((w0
q)|C , (w1

q)|C , (w3
q)|C , (w4

q)|C , (w5
q′)|C , (w6

q′)|C = (w0
q′)|C)).

• The pseudo orbits are shown in Table 1 and Figure 9. In the table, the detail of the local computation produced

by the central part of the gadget is given. Figure 9 shows how the nodes are labeled in the previous table. In

addition, the latter figure shows a general picture on how the signals are transmitted and computed by the

gadget. In particular, it is posible to verify that all the computation is produced in T = 6.

Nodes/Time l1 l2 l3 l′

1
l′

2
l′

3
c1 c2 c3 a v r1 r2 r3 r′

1
r′

2
r′

3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 x x x y y y 1 1 1 0 0 0 0 0 0 0 0

3 x x x y y y 1 1 1 0 x ∨ y 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 x ∨ y x ∨ y x ∨ y x ∨ y x ∨ y x ∨ y x ∨ y x ∨ y

5 0 0 0 0 0 0 0 0 0 x ∨ y 0 x ∨ y x ∨ y x ∨ y x ∨ y x ∨ y x ∨ y

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1: Pseudo-orbit associated to the NOR gadget implemented using Game of Life rules. The labelling is defined according to Figure

11

• After T = 6 time steps, the nodes that are not part of any copy of C will return to the state given by the

context configuration.

We conclude that the NOR gadget satisfies the conditions given by Definition 12. Thus, the lemma holds.

3.4. Gm-networks and Gm,2-networks as standard universal families

Let i, o ∈ {1, 2} be two numbers. We define the functions OR,AND : {0, 1}i → {0, 1}o where OR(x) = max(x)

and AND(x) = min(x). Note that in the case in which i = o = 1 we have AND(x) = OR(x) = Id(x) = x and also

in the case i = 1 and o = 2 we have that AND(x) = OR(x) = (x, x). We define the set Gm = {AND,OR}. Observe

that in this case o and i may take different values. In addition, we define the set Gm,2 in which we fix i = o = 2.

It is folklore knowledge that monotone Boolean networks (with AND/OR local maps) can simulate any other

network. Here we make this statement precise within our formalism: Gm-networks are strongly universal. Note that

there is more work than the classical circuit transformations involving monotone gates because we need to obtain a

simulation of any automata network via block embedding. In particular we need to build monotone circuitry that is

synchronized and reusable (i.e. that can be reinitialized to a standard state before starting a computation on a new

input). Moreover, our definitions requires a production of Gm-networks in DLOGSPACE. The main ingredient for

establishing universality of Gm-networks is an efficient circuit transformation due to Greenlaw, Hoover and Ruzzo in

[21, Theorems 6.2.3 to 6.2.5]. Let us start by proving that this family is strongly universal, which is slightly simpler

to prove.

Theorem 15. The family Γ(Gm) of all Gm-networks is strongly universal.

Proof. Let Q an arbitrary alphabet and F : Qn → Qn an arbitrary automata network on alphabet Q such that the

communication graph of F has maximum degree ∆. Let C : {0, 1}n → {0, 1}n be a constant depth circuit representing

F . Let us assume that C has only OR, AND and NOT gates. We can also assume that C is synchronous because, as

its depth does not depend on the size of the circuit, one can always add fanin one and fanout one OR gates in order

to modify layer structure. We are going to use a very similar transformation to the one proposed in [21, Theorem

6.2.3] in order to efficiently construct an automata network in Γ(Gm). In fact, we are going to duplicate the original

circuit by considering the coding x ∈ {0, 1} → (x, 1 − x) ∈ {0, 1}2. Roughly, each gate will have a positive part

(which is essentially a copy) and a negative part which is produces the negation of the original output by using De

Morgan’s laws. More precisely, we are going to replace each gate in the network by the gadgets shown in Figure 12.

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

Figure 9: Representation of the pseudo-orbits used for the computation of the NOR gadget implemented using Game of Life automata

networks.

=

φi2(C) φo2(C)

A
B

C

φi1(C) φo1(C)

C

Ci Co

Figure 10: (A) Representation of the computation part of the NOR gadget implemented using Game of Life rules. (B) Thick lines

represent complete connections between the different layers, i.e. each node in the central layer is connected with any node in the left

layer. (C) Representation of the glueing interface.

c1 c2 c3

v

w1

w2

w3

w′
1

w′
2

w′
3

u1

u2

u3

u′
1

u′
2

u′
3

a

Figure 11: Structure of the connections of the central nodes in the NOR gadget implemented using Game of Life rules. Nodes labeled as

l (resp. r) are nodes inside the last part (resp. first) of a wire network, nodes labeled as c are nodes inside one layer of a clock network

(see Figure 4).

The main idea is that one can represent the function x ∧ y by the coding: (x ∧ y, x ∨ y) and x ∨ y by the coding:

(x ∨ y, x ∧ y). In addition, each time there is a NOT gate, we replace it by a fan in 1 fan out 1 OR gadget and we

connect positive outputs to negative inputs in the next layer and negative outputs to positive inputs as it is shown

in Figure 13. We are going to call C∗ to the circuit constructed by latter transformations. Observe that C∗ is such

that it holds on {0, 1}i:
φ ◦ C = C∗ ◦ φ

where φ : {0, 1}n → {0, 1}2n is defined for any n by φ(x)2j = xj and φ(x)2j+1 = ¬xj .

Now consider the coding map mQ : Q → {0, 1}k and let n = k|V |. Build from C∗ the Gm,2-network F ∗ :

{0, 1}V+ → {0, 1}V+

that correspond to it (gate by gate) and where the output j is wired to input j for all 1 ≤ j ≤ 2n.

Define a block embedding of QV into {0, 1}V+

as follows (see [19, Remark 2] for more details on simulation):

• for each v ∈ V let Dv be the set of input nodes in F ∗ that code v (via mQ and then double railed logic),

• let C = V + \ ⋃

vDv be the remaining context block,

• let pv,q ∈ {0, 1}Dv be the pattern coding node v in state q,

• let pC = 0C be the context pattern,

• let φ : QV → {0, 1}V+

be the associated block embedding map.

We claim that F ∗ simulates F via block embedding φ with time constant equal to the depth of C∗ plus 1. Indeed,

F ∗ can be seen as a directed cycle of N layers where layer Li+1 mod N only depends on layer i. The block embedding

is such that for any configuration x ∈ QV , φ(x) is 0 on each layer except the layer containing the inputs. On

configurations where a single layer Li is non-zero, F ∗ will produce a configuration where the only non-zero layer is

Li+1 mod N . From there, it follows by construction of F ∗ that φ ◦ F (x) = (F ∗)N ◦ φ(x) for all x ∈ QV .

The fact that construction is obtainable in DLOGSPACE follows from the same reasoning used to show in [21,

Theorem 6.2.3]. In fact, authors show that reduction is actually better as they show it is NC1.

Theorem 16. The family Γ(Gm,2) simulates in constant time and linear space the family Γ(Gm), i.e. there exists a

constant function T : N → N and a linear function S : N → N such that Γ(Gm) 4TS Γ(Gm,2)

Proof. Let F : QV → QV be an arbitrary Gm-network coded by its standard representation defined by a list of gates

g1, . . . , gn and two functions α an β mapping inputs to nodes in F and nodes in F to outputs respectively. We are

going to construct in DLOGSPACE a Gm,2-network G that simulates F in time T = O(1) and space S = O(|V |)
where H is the communication graph of F . In order to do that, we are going to replace each gate gk by a small gadget.

More precisely, we are going to introduce the following coding function: x ∈ {0, 1} → (x, x, 0) ∈ {0, 1}3. We are going

to define gadgets for each gate. Let us take k ∈ {1, . . . , n} and call g∗
k the corresponding gadget associated to gk.

Let us that suppose gk is an OR gate and that it has fanin 2 and fanout 1 then, we define g∗ : {0, 1}6 → {0, 1}6 as a

function that for each input of the form (x, x, y, y, 0, 0) produces the output g∗((x, x, y, y, 0, 0)) = (x∨y, x∨y, 0, 0, 0, 0).

The case fanin 1 and fanout 1 is given by g∗((x, x, 0, 0, 0, 0)) = (x, x, 0, 0, 0, 0), the case fanin 2 and fanout 2 is given

∧

x y

x ∧ y x ∧ y

∨

x y

x ∨ y x ∨ y

x ∧ yx ∧ y

yx

∧

x ∨ yx ∨ y

yx

∨

x ∨ yx ∨ y

yx

∨

x ∧ yx ∧ y

yx

∧

Figure 12: AND and OR gadgets for simulating AND/OR gates with fanin and fanout 2. For other values of fanin and fanout gadgets

are the same but considering different number of inputs/outputs

∨

y

x ∨ y x ∨ y

x

∨

y

x ∨ y x ∨ y

∧

y

x ∧ y x ∧ y

∨

x

x

∨

x

¬

x

x

Figure 13: NOT gadget wiring for circuit simulation using gates from Gm. In this case a NOT gate is connected to an OR gate in the

original circuit. Copies of the NOT gate in the circuit performing simulation are connected to the copies of the OR gate switched: positive

part is connected to negative part of the OR gate and viceversa.

by g∗((x, x, y, y, 0, 0)) = (x ∨ y, x ∨ y, x ∨ y, x ∨ y, 0, 0) and finally case fanin 1 and fanout 2 is given by the same

latter function but on input (x,x,0,0,0,0). The AND case is completely analogous. We are going to implement the

previous functions as small (constant depth) synchronized circuits that we call block gadgets. More precisely, we are

going to identify functions g∗ with its correspondent block gadget. The detail on the construction of these circuits

that define latter functions are provided in Figures 14, 15 and 16.

Once we have defined the structure of block gadgets, we have to manage connections between them and also

manage the fixed 0 inputs that we have added in addition to the zeros that are produced by the blocks as outputs.

In order to do that, let us assume that gates gi and gj are connected. Note from the discussion on coding above that

AND/OR gadgets have between 2 and 4 inputs and outputs fixed to 0. In particular, as it is shown in Figures 14,

15 and 16, all the block gadgets have the same amount of zeros in the input and in the output with the exception of

the fanin 1 fanout 2 gates and the fanin 2 fanout 1 gates. However, as G-networks are closed systems (the amount

of inputs must be the same that the amount of outputs) we have that, for each fanin 1 fanout 2 gate, it must be

a fanin 2 fanout 1 gate and vice versa (otherwise there would be more input than outputs or more outputs than

inputs). In other words, there is a bijection between the set of fanin 1 fanout 2 gates and the set of fanin 2 fanout

1. Observe that fanin 2 fanout 1 gates consume 2 zeros in input but produce 4 zeros in output while fanin 1 fanout

2 gates consume 4 in input and produce 2 zeros in output (see Figures 15 and 16). So, between g∗
i and g∗

j we have

to distinct two cases: a) if both gates have the same number of inputs and outputs, connections are managed in the

obvious way i.e., outputs corresponding to the computation performed by original gate are assigned between g∗
i and

g∗
j and each gate uses the same zeros they produce to feed its inputs. b) if g∗

i or g∗
j have more inputs than outputs or

vice versa, we have to manage the extra zeros (needed or produced). Without lost of generality, we assume that g∗
i

is fanin 2 fanout 1. Then, by latter observation it must exists another gate gk and thus, a gadget block g∗
k with fanin

1 and fanout 2. We simply connect extra zeros produced by g∗
i to block g∗

k and we do the same we did in previous

case in order to manage connections.

Note that F ∗ is constructible in DLOGSPACE as it suffices to read the standard representation of F and

produce the associated block gadgets which have constant size. In addition we have that previous encoding g → g∗

induce a block map φ : {0, 1}V → {0, 1}V+

where |V +| = O(|V |) and that φ ◦F = F ∗T ◦φ where T = 6 is the size of

each gadget block in F ∗. We conclude that F ∗ ∈ Γ(Gm,2) simulates F in space |V +| = O(|V |) and time T = 6 and

thus, Γ(Gm) 4TS Γ(Gm,2) where T is constant and S is a linear function. .

Corollary 2. The family Γ(Gm,2) is strongly universal.

Proof. Result is direct from Theorem 15 (Γ(Gm) is strongly universal) and Theorem 16 (Γ(Gm) 4TS Γ(Gm,2) where T

is constant and S is a linear function).

Now we show the universality of Γ(Gm). The proof is essentially a consequence of [21, Theorem 6.2.5]. Roughly,

latter result starts with alternated monotone circuit which has only fanin 2 and fanout 2 gates (previous results in

the same reference show that one can always reduce to this case starting from an arbitrary circuit) and gives an NC1

∧ ∧ ∨

yx

x ∧ y x ∧ y

∧ ∧∨

x ∧ y x ∧ y 0 0 0 0

yx

x ∧ y x ∧ y

0 0

0 0

x ∧ y

yx

∧

∨ ∨ ∨

yx

x ∨ y x ∨ y

∧ ∧∨

∨

x y

x ∨ y

yx

x ∨ y x ∨ y

0 0

0 0

0000x ∨ yx ∨ y

Figure 14: Block gadgets for simulating Fanin 2 Fanout 1 AND/OR gates using only gates in Gm,2. Squared zeros represent the amount

of zeros that can be used as inputs for the same block. Circled zeros correspond to extra zeros that need to be assigned to a Fanin 1

Fanout 2 gate.

∨ ∨ ∨

0x

x x

∨

∨

x

x x

∨ ∨

0x

x x

0 0

0 0

00xx x x

xx

x

∧

∨ ∨ ∨

0x

∨

∨

∨ ∨

0x

x x

0 0

0 0

00xx

x

x

x

x

∧

0 0

0 0

Figure 15: Block gadgets for simulating Fanin 1 Fanout 2 and Fanin 1 Fanout 1 AND/OR gates using only gates in Gm,2. Squared zeros

represent the amount of zeros that can be used as inputs for the same block. Circled zeros correspond to extra zeros that need to be

received from a Fanin 2 Fanout 1 gate.

∨ ∨ ∨

yx

x ∨ y x ∨ y

∨ ∨∨

yx

x ∨ y x ∨ y

0 0

0 0

00x ∨ yx ∨ y

∨

x ∨ y x ∨ y

yx

x ∨ y x ∨ y

∨

yxyx

x ∧ y

0 0

00x ∧ yx ∧ y

∧

x ∧ y x ∧ y

yx

x ∧ y x ∧ y

∧ ∧

x ∧ y x ∧ y

∧ ∨∧

x ∧ y 0 0

Figure 16: Block gadgets for simulating fanin 2 fanout 2 AND/OR gates using only gates in Gm,2. Squared zeros represent the amount

of zeros that can be used as inputs for the same block.

construction of a synchronous circuit preserving latter properties. We need additional care here because we want a

reusable circuit whose output is fed back to its input. Note also that the construction uses quadratic space in the

number of gates of the circuit given in input, so we cannot show strong universality this way but only universality.

Theorem 17. The family Γ(Gm) of all Gm-networks is universal

Proof. Let F : Qk → Qk be some arbitrary network with a circuit representation C : {0, 1}n → {0, 1}n such that

n = kO(1). By [21, Theorem 6.2.5] we can assume that there exists a circuit C′ : {0, 1}n′ → {0, 1}n′

where n′ = O(n2)

such that C′ is synchronous alternated and monotone. In addition, every gate in C′ has fanin and fanout 2. We

remark that latter reference do not only provides the standard encoding of C′ but also give us a DLOGSPACE

algorithm (it is actually NC1) which takes the standard representation of C : {0, 1}n → {0, 1}n and produces C′.

We are going to slightly modify latter algorithm in order to construct not only a circuit but a Gm-network. In fact,

the only critical point is to manage the identification between outputs and inputs. This is not direct from the result

by Ruzzo et al. as their algorithm involves duplication of inputs and also adding constant inputs. In order to manage

this, it suffices to simply modify their construction in order to mark original, copies and constant inputs. Then, as

Gm includes COPY gates and also AND/OR gates with fanout 1, one can always produce copies of certain input if

we need more, or erase extra copies by adding and small tree of O(log(n)) depth. Same goes for constant inputs.

Formally, at the end of the algorithm, the DLOGSPACE can read extra information regarding copies and constant

inputs, and then can construct O(log(n)) depth circuit that produces a coherent encoding for inputs and outputs.

This latter construction defines a Gm-network G : {0, 1}n′′ → {0, 1}n′′

and an encoding φ : Qn → {0, 1}n′′

where

n′′ = O(n2) such that φ ◦ F = GT ◦ φ where T = O(depth(C’) + log(n)). Thus, Gm is universal.

We can now state the following direct corollary.

Corollary 3. Let F be a strongly universal automata network family. Then, F is universal.

Proof. In order to show the result, it suffices to exhibit a G-network family (G-networks are bounded degree networks)

which is strongly universal and universal at the same time. By Theorem 17 we take G = Gm and thus, corollary

holds.

Corollary 4. Let G be either Gm or Gm,2. Any family F that has coherent G-gadgets contains a subfamily of bound

degree networks with bounded degree representation which is (strongly) universal. Any CSAN family with coherent

G-gadgets is (strongly) universal.

3.5. Closure and synchronous closure

Although monotone gates are sometimes easier to realize in concrete dynamical system which make the above

results useful, there is nothing special about them to achieve universality: any set of gates that are expressive enough

for Boolean functions yields the same universality result. Given a set of maps G over alphabet Q, we define its closure

G as the set of maps that are computed by circuits that can be built using only gates from G. More precisely, G
is the closure of G by composition, i.e. forming from maps g1 : QI1 → QO1 and g2 : QI2 → QO2 (with I1, I2, O1, O2

Figure 17: Non-synchronous composition (on the left) and synchronous composition (on the right).

disjoint) a composition g by plugging a subset of outputs O ⊆ O2 of g1 into a subset of inputs I ⊆ I2 of g2, thus

obtaining g : QI1∪I2\I → QO1\O∪O2 with

g(x)o =

g1(xI1)o if o ∈ O1 \O

g2(y)o if o ∈ O2

where yj = xj for j ∈ I2 \ I and yj = g1(xI1)π(j) where π : I → O is the chosen bijection between I and O (the

wiring of outputs of g1 to inputs of g2). A composition is synchronous if either I = ∅ or I = I2. We then define

the synchronous closure G2
as the closure by synchronous composition. The synchronous composition correspond to

synchronous circuits with gates in G. A G-circuit is a sequence of compositions starting from elements of G. It is

synchronous if the compositions are synchronous. The depth of a G-circuit is the maximal length of a path from an

input to an output. In the case of a synchronous circuits, all such path are of equal length.

Remark 4. The above definitions are very close to the classical notion of clones [22]. However, we stress that, in our

case, projections maps Qk → Q are generally not available, nor duplication maps x 7→ (x, x) allowing to use the same

variable several times. This is important because in a given dynamical systems, erasing or duplicating information

might be impossible (think about reversible systems) and hiding it into some non-coding part might be complicated.

Proposition 1. Fix some alphabet Q and consider two finite sets of maps G and G′ over alphabet Q such that:

• either contains the identity map Q → Q and is such that G contains G′,

• or there is an integer k such that G2

k, the set of elements of G2
that can be realized by a circuit of depth k,

contains G′.

Then, any family F that has coherent G-gadgets has coherent G′-gadgets.

Proof. Suppose first that the first item holds. Since G contains G′ there must exist a circuit made of gates from G
that produces any given element g ∈ G′. One then wants to apply gadget glueing on gadgets from G to mimic the

composition and thus obtain a gadget corresponding to g. However this doesn’t work as simply because propagation

delay is a priori not respected at each gate in the circuit composition yielding g and there is a risk that information

arrives distinct delays at different outputs. However, since G contains the identity map, there is a corresponding

gadget in the family that actually implements a delay line. This additionnal gadget solves the problem: it is

straightforward to transform by padding with identity gates all circuit with gates in G into synchronous ones.

Moreover, by padding again, we can assume that the finite set of such circuits computing elements of Gm are all of

same depth. It is then straightforward to translate this set of circuits into coherent Gm-gadgets by iterating gadget

glueing and using Lemma 8.

If the second item holds the situation is actually simpler because the synchronous closure contains only syn-

chronous circuits of gates from Gm,2 so we can directly translate the circuits producing the maps of Gm,2 into gadgets

via gadget glueing by Lemma 8 as in the previous case. Moreover, the hypothesis is that all elements of G′ are

realized by circuit of same depth so we get gadgets that share the same time constant.

As a direct corollary of Proposition 1, we can extend the results about strong universality of Gm,2 to other families

of G-networks associated to elementary Boolean gates, like GNOR and GNAND = {NAND(x, y) = (x ∧ y, x ∧ y)}. Note

however that classical results on Boolean gates and clone theory cannot be applied immediately (see Remark 4) and

the expected universality result requires a little bit of care.

Corollary 5. The families Γ(GNOR) and Γ(GNAND) are strongly universal.

Proof. First, since NAND and NOR gates are conjugated by negation, it is clear that families Γ(GNOR) and Γ(GNAND)

simulate each other with time constant 1 via a block embedding that just apply x 7→ x at each node. It is thus sufficient

to prove that Γ(GNOR) is strongly universal. Consider the two maps α : {0, 1}4 → {0, 1}4 and ω : {0, 1}4 → {0, 1}4

that are synchronous GNOR-circuits of depth 2 defined by :

NOR

NOR

NOR

NOR

d
c

b
a

α(a, b, c, d)

NOR

NOR

NOR

NOR

d
c

b
a

ω(a, b, c, d)

By Proposition 1 (second item), the family Γ(GNOR) has coherent G-gadgets where G = {α, ω} and therefore simulates

the family Γ(G) with constant spatio-temporal rescaling factors by Lemma 13. Now observe that for any x, y ∈ {0, 1}
it holds that α(x, x, y, y) = (a, a, a, a) with a = x ∧ y and ω(x, x, y, y) = (o, o, o, o) with o = x ∨ y. This implies that

family Γ(G) simulates Γ(Gm,2) with spatial rescaling factor 2 and temporal rescaling factor 1, simply by doubling

each node because AND and OR gates of type {0, 1}2 → {0, 1}2 in Gm,2 are such that AND(x, y) = (a, a) and

OR(x, y) = (o, o). We deduce that Γ(G) and therefore Γ(GNOR) are strongly universal.

3.5.1. Game of life is strongly universal

Theorem 18. The family of outer-totalistic CSAN networks with B = 3 and S = 2, 3 i.e. Game of life automata

networks, is strongly universal.

Proof. The result holds as a direct consequence of the Lemma 14 which tell us that Game of life automata networks

have coherent GNOR gadgets, the Corollary 1 which tell us that the family of Game of life automata networks simulates

Γ(GNOR) in constant time and linear space and finally, the Corollary 5 which tell us that the familly Γ(GNOR) is

strongly universal and thus, the family of Game of life automata networks are strongly universal.

Remark 5. We would like to stress three points about the latter result:

1. the gadget used in the proof of Lemma 14 is simpler than the case of cellular automata and intrinsic universality

(see [23] for more details). In particular, the fact that the communication graph can be chosen freely, allow us

to transmit information and perform calculations in less time.

2. the result is an improvement of the result obtained in the cellular automata context since, as shown in [19,

Corollary 4], intrinsic universality is not enough for strong universlity. In fact, Theorem 18 in the same

reference provides some insight on how the properties of the communication graph play an important role in

terms of the universality.

3. the result is an application of the tools developed in the present article which can be easily applied to any

other family: given a family of automata networks one can show the strong universality by simply showing

that the family admits a set of coherent gadgets. We stress that this approach allows to derive a perfectly

rigorous and computer checkable proof of many facts implied by strong universality (e.g. [19, Corollary 1] and

[19, Theorem 15]) from a rather small set of observations on a finite set of pseudo-orbits of small automata

networks (see proof of Lemma 14).

3.6. Super-polynomial periods without universality

A universal family must exhibit super-polynomial periods, however universality is far from necessary to have this

dynamical feature. In this subsection we define the family of wire networks to illustrate this.

In order to do that, we need the following classical result about the growth of Chebyshev function and prime

number theorem.

Lemma 19. [24] Let m ≥ 2 and P(m) = {p ≤ m | p prime}. If we define π(m) = |P(m)| and θ(m) =
∑

p∈P(m)

log(p)

then we have π(m) ∼ m
log(m) and θ(m) ∼ m.

By using the Lemma 19 we can construct automata networks with non-polynomial cycles simply by making

disjoint union of rotations (i.e. network whose interaction graph is a cycle that just rotate the configuration at each

step). Indeed, it is sufficient to consider rotations on cycle whose length are successive prime numbers. It turns out

that these automata networks are exactly Gw-networks where Gw is a single ’wire gate’: Gw = {idB} where idB is

the identity map over {0, 1}.

Formally, according to Definition 6, for any Gw-network F : QV → QV there exist a partition V = C1 ∪C2 . . .∪Ck
where Ci = {ui1 . . . , uili} with li ≥ 2 for each i = 1, . . . , k and F (x)ui

s+1 mod li

= xui
s

for any x ∈ QV and 0 ≤ s ≤ li.

Theorem 20. Any family F that has coherent Gw-gadgets has superpolynomial cycles, more precisely: there is some

α > 0 such that for infinitely many n ∈ N, there exists a network Fn ∈ F with O(n) nodes and a periodic orbit of

size Ω(exp(nα)).

Proof. Taking the notations of Lemma 19, define for any n the Gw-networkGn made of disjoint union of circuits of each

prime length less than n. Gn has size at most nπ(n) and if we consider a configuration x which is in state 1 at exactly

one node in each of the π(n) disjoint circuit, it is clear that the orbit of x is periodic of period exp θ(n). Therefore,

from Lemma 19, for any n, Gn is a circuit of size m ≤ nπ(n) with a periodic orbit of size θ(n) ∈ Ω(exp(
√
m logm)).

By hypothesis there are linear maps T and S such that for any n, there is Fn that simulates Gn (by Lemma 13),

therefore Fn also has a super-polynomial cycles (see [19, Lemma 6] for more results).

3.7. Conjunctive networks and Gconj-networks

Let G = (V,E) be any directed graph. The conjunctive network associated to G is the automata network

FG : {0, 1}V → {0, 1}V given by F (x)i = ∧j∈N−(i)xj where N−(i) denotes the incoming neighborhood of i. Con-

junctive networks are thus completely determined by the interaction graph and a circuit representation can be

deduced from this graph in DLOGSPACE. We define the family Fconj as the set of conjunctive networks together

with the standard representation F∗
conj which are just directed graphs encoded as finite words in a canonical way.

Remark 6. We can of course do the same with disjunctive networks. Any conjunctive network FG on graph G is

conjugated to the disjunctive network F ′
G on the same graph by the negation map ρ : {0, 1}V → {0, 1}V defined by

ρ(x)i = 1 − xi, formally ρ ◦ FG = F ′
G ◦ ρ. In particular, this means that the families of conjunctive and disjunctive

networks simulate each other. In the sequel we will only state results for conjunctive networks while they hold for

disjunctive networks as well.

Let us now consider the set Gconj = {AND,COPY}. Gconj-networks are nothing else than conjunctive networks

with the following degree constraints: each node has either in-degree 1 and out-degree 2, or in-degree 2 and out-degree

1. The following theorem shows that, up to simulation, these constraints are harmless.

Theorem 21. The family of Gconj-networks simulates the family (Fconj ,F∗
conj) of conjunctive networks in linear

time and polynomial space.

Proof. Let F be an arbitrary conjunctive network on graph G = (V,E) with n nodes. Its maximal in/out degree is

at most n. For each node of indegree i ≤ n we can make a tree-like Gconj-gadget with i inputs and 1 output that

computes the conjunction of its i inputs in exactly n steps: more precisely, we can build a sub-network of size O(n)

with i identified ’input’ nodes of fanin 1 and one identified output node of fanout 1 such that for any t ∈ N the state

of the output node at time t+n is the conjunction of the states of the input nodes at time t (the only sensible aspect

is to maintain synchronization in the gadget, see Figure 18).

We do the same for copying the output of a gate i times and dealing with arbitrary fanout. Then we replace

each node of F by a meta node made of the two gadgets to deal with fanin/fanout and connect everything together

according to graph G (note that fanin/fanout is granted to be 1 in the gadgets so connections respect the degree

constraints). We obtain in DLOGSPACE a Gconj-network of size polynomial in n that simulates F in linear

time.

v1 v2 v3

vo

Figure 18: Fanin gadget of degree 3. For any configuration x, F 3(x)vo = xv1 ∧ xv2 ∧ xv3 .

Remark 7. The family of conjunctive networks can produce super-polynomial periods but is not universal. There

are several ways to show this. It is for instance impossible to produce super-polynomial transients within the family

[25, Theorem 3.20] so [19, Corollary 1] allows to conclude. One could also use [19, Corollary 2] since a node in a

strongly connected component of a conjunctive network must have a trace period of at most the size of the component

(actually much more in known about periods in conjunctive networks through the concept of loop number or cyclicity,

see [25]).

3.8. Super-polynomial transients and periods without universality

Let us consider in this section alphabet Q = {0, 1, 2}. We are going to define a set Gt such that Gt-networks

exhibit super-polynomial transients but are not universal. To help intuition, Gt-networks can be though as standard

conjunctive networks on {0, 1} that can in some circumstances produce state 2 which is a spreading state (a node

switches to state 2 if one of its incoming neighbors is in state 2). The extra state 2 will serve to mark super-polynomial

transients, but it cannot escape a strongly connected component once it appears in and, as we will see, Gt-networks

are therefore too limited in their ability to produce large periodic behavior inside strongly connected components.

AND2Υ1

Υ2

Λ

x Id

Figure 19: Freezing the result of a test in a Gt-network. The module T (x) is made of the nodes marked Υ, AND2, Λ and Id. Observe

that each node represents some output of its corresponding label (for more details on G-networks see Definition 6). Each gate has one

output with the exception of the gate Υ which is represented by two nodes. The module T (x) reads the value of node x belonging to

an arbitrary Gt-network (represented in light gray inside dotted lines). The output Λ is fed back to its control input via the Id node

(self-loops are forbidden in Gt-networks). Note that x as well as the rest of the network is not influenced by the behavior of the gates of

the module T (x).

Gt is made of the following maps:

AND{0,1} : (x, y) 7→

2 if 2 ∈ {x, y}

x ∧ y else.

AND2 : (x, y) 7→

2 if 2 ∈ {x, y} or x = y = 1

0 else.

Λ : (x, y) 7→

2 if 2 ∈ {x, y}

x else.

Id : x 7→ x.

Υ : x 7→ (x, x).

Gt-networks can produce non-polynomial periods by disjoint union of rotations of prime lengths as in Theo-

rem 20, but they can also wait for a global synchronization of all rotations and freeze the result of the test for this

synchronization condition inside a small feedback loop attached to a “controlled AND map”.

More precisely, as shown in Figure 19 we can use in the context of any Gt-network a small module T (x) of made

of five nodes with the following property: if the Λ node of the module is in state 0 in some initial configuration, then

it stays in state 0 as long as nodes x is not in state 1, and when x = 1 at some time step t then from step t+ 2 on

the Λ node is in state 2 at least one step every two steps. This module is the key to control transient behavior.

Besides, the map AND{0,1} behaves like standard Boolean AND map when its inputs are in {0, 1}. More generally,

by combining such maps in a tree-like fashion, one can build modules A(x1, . . . , xk) for any number k of inputs with

a special output node which has the following property for some time delay ∆ ∈ O(log(k)): the output node at time

t+ ∆ is in state 1 if and only if all nodes xi (with 1 ≤ i ≤ k) are in state 1 at time t.

Combining these two ingredients, we can build upon the construction of Theorem 20 to obtain non-polynomial

transients in any family having coherent Gt-gadgets.

Theorem 22. Any family F that has coherent Gt-gadgets has superpolynomial transients, more precisely: there is

some α > 0 such that for any n ∈ N, there exists a network Fn ∈ F with O(n) nodes and a configuration x such that

F tn(x) is not in an attractor of Fn with t ∈ Ω(exp(nα)).

Proof. Like in Theorem 20, the key of the proof is to show that there is a Gt-network with transient length as in the

theorem statement, then the property immediately holds for networks of the family F by Lemma 13 and [19, Lemma

6].

For any n > 0 we construct a Gt-network Gn made of two parts:

• the ’bottom’ part of Gn uses a polynomial set of nodes Bn and consists in a disjoint union of circuits for each

prime length less than n as in Theorem 20, but where for each prime p, the circuit of length p has a node vp

which implements a copy gate COPY, thus not only sending its value to the next node in the circuit, but also

outputting it to the second part of Gn;

• the ’top’ part of Gn is made of a module A(x1, . . . , xk) connected to all nodes vp as inputs and whose output

is connected to a test module T (x) as in Figure 19.

Note that the size of Gn is polynomial in n. With this construction we have the following property as soon as the

modules A(x1, . . . , xk) and T (x) are initialized to state 0 everywhere: as long as nodes vp are not simultaneously

in state 1 then the output of the test module T (x) stays in state 0; moreover, if at some time t nodes vp are

simultaneously in state t, then after time t+O(log(t)) the output node of module T (x) is in state 1 one step every

two steps. This means that t + O(log(t)) is a lower bound on the transient of the considered orbit. To conclude

the theorem it is sufficient to consider the initial configuration where all nodes are in state 0 except the successor of

node vp in each circuit of prime length p, which are in state 1. In this case it is clear that the first time t at which

all nodes vp are in state 1 is the product of prime numbers less than n. As in theorem 20, we conclude thanks to

Lemma 19.

As said above, Gt-networks are limited in their ability to produce large periods. More precisely, as shown by

the following lemma, their behavior is close enough to conjunctive networks so that it can be analyzed as the

superposition of the propagation/creation of state 2 above the behavior of a classical Boolean conjunctive network.

To any Gt-network F we associate the Boolean conjunctive network F ∗ with alphabet {0, 1} as follows: nodes with

local map AND{0,1} or AND2 are simply transformed into nodes with Boolean conjunctive local maps on the same

neighbors, nodes with local maps Υ or Id are left unchanged (only their alphabet changes), and nodes with map

Λ(x, y) are transformed into a node with only x as incoming neighborhood.

Lemma 23. Let F be a Gt-network with node set V and F ∗ its associated Boolean conjunctive network. Consider

any x ∈ {0, 1, 2}V and any x∗ ∈ {0, 1}V such that the following holds:

∀v ∈ V : xv ∈ {0, 1} ⇒ x∗
v = xv,

then the same holds after one step of each network:

∀v ∈ V : F (x)v ∈ {0, 1} ⇒ F ∗(x∗)v = F (x)v.

Proof. It is sufficient to check that if F (x)v 6= 2, it means that all its incoming neighbors are in {0, 1} so x and x∗

are equal on these incoming neighbors, and that it only depend on neighbor a in the case of a local map Λ(a, b). In

any case, we deduce F ∗(x∗)v = F (x)v by definition of F ∗.

Gt-networks are close to Boolean conjunctive networks as shown by the previous lemma. The following result

shows that this translates into strong limitations in their ability to produce large periods and prevents them to be

universal.

Theorem 24. The family of Gt-networks is not universal.

Proof. Consider a Boolean conjunctive automata network F , a configuration x with periodic orbit under F and

some node v such that there is a walk of length L from v to v. We claim that xv = FL(x)v so the trace at node

v in x is periodic of period less than L. Indeed, in a conjunctive network state 0 is spreading so clearly if xv = 0

then FL(x)v = 0 and, more generally, F kL(x)v = 0 for any k ≥ 1. On the contrary, if xv = 1 then we can’t have

FL(x)v = 0 because then FPk(x)v = 0 with P the period of x which would imply xv = 0.

With the same reasoning, if we consider any Gt-network F , any configuration x with periodic orbit and some

node v such that there is a walk of length L from v to v, then it holds:

xv = 2 ⇔ FL(x)v = 2.

We deduce thanks to Lemma 23 that for any configuration x with periodic orbit of some Gt-network F with n nodes,

and for any node v belonging to some strongly connected component, the period of the trace at v starting from x

is less than n2: it is a periodic pattern of presence of state 2 of length less than n superposed on a periodic trace

on {0, 1} of length less than n. We conclude that the family of Gt-networks cannot be universal thanks to [19,

Corollary 2].

4. Perspectives

The main contribution of this paper is a proof technique to show intrinsic universality of families of automata

networks, with all the dynamical and computational consequences such a result implies. As announced earlier, the

first perspective is to use of this framework to show universality results of known families. In the third paper of this

series, we show using these tools how some non-universal concrete families can recover universality by changing the

update schedule of the system[26].

In addition, several research directions directly connected to the notions developed in the present paper are worth

being considered. We detail some of them below.

Glueing. We think it would be interesting to understand the properties of the glueing process itself and see what

information on the result of the glueing process can be deduced from the knowledge of each network to be glued.

We are particularly interested in dynamical properties. In addition, it would be very interesting to explore if latter

process can be seen in the opposite way, i.e., given an automata network, determine if it is possible to decompose

the network into glued blocks satisfying some particular properties as gadgets do.

Universality and gadgets. We know how to build families which are universal but not strongly universal by adding

a somewhat artificial mechanism that slows down polynomially any useful computation made by networks in the

family, giving examples which are universal but requires a superlinear spatio-temporal rescaling factor. However, we

don’t have any natural example so far of such ’weakly universal’ families and we would like to better understand this

territory. In the same spirit, we can ask how a strongly universal family can fail to have coherent Gm-gadgets (recall

that Corollary 4 only gives a sufficient condition to be strongly universal). We don’t think that strongly universality

implies coherent Gm-gadgets in general, but the implication might at least be true under some additional hypothesis,

and possibly in natural families like G-networks.

G-networks. Proposition 1 together with theorems 20 and 24 provide an interesting starting point to explore the link

between different gate sets and the richness of their synchronous closure and the associated family of G-networks.

It is natural to further study the hierarchy between sets of gates and we believe that a promising direction would

be to study reversible gate sets such as Toffoli or Fredkin gates. Also, we would like to understand how easy it is

to deduce global properties of the family of G-networks from the knowledge of G. Typically, one can consider the

following decision problem: given a set of gates G, decide whether the family of G-networks strongly universal. Is

this problem undecidable? If it is the case, what is the minimum number of gates in G to obtain undecidability?

References

[1] W. S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, The Bulletin of

Mathematical Biophysics 5 (4) (1943) 115–133. doi:10.1007/bf02478259.

[2] R. Thomas, Boolean formalization of genetic control circuits, Journal of Theoretical Biology 42 (3) (1973)

563–585. doi:10.1016/0022-5193(73)90247-6.

[3] S. Kauffman, Homeostasis and differentiation in random genetic control networks, Nature 224 (5215) (1969)

177–178. doi:10.1038/224177a0.

[4] M. Gadouleau, S. Riis, Memoryless computation: new results, constructions, and extensions, Theoretical Com-

puter Science 562 (2015) 129–145.

[5] E. G. Ch., P. Montealegre, Computational complexity of threshold automata networks under different updating

schemes, Theor. Comput. Sci. 559 (2014) 3–19. doi:10.1016/j.tcs.2014.09.010.

[6] E. Goles, M. Matamala, Reaction-diffusion automata: Three states implies universality, Theory of Computing

Systems 30 (3) (1997) 223–229.

[7] A. Wu, A. Rosenfeld, Cellular graph automata. ii. graph and subgraph isomorphism, graph structure recognition,

Information and Control 42 (1979) 330–353. doi:10.1016/S0019-9958(79)90296-1.

https://doi.org/10.1007/bf02478259
https://doi.org/10.1016/0022-5193(73)90247-6
https://doi.org/10.1038/224177a0
https://doi.org/10.1016/j.tcs.2014.09.010
https://doi.org/10.1016/S0019-9958(79)90296-1

[8] A. Wu, A. Rosenfeld, Cellular graph automata. i. basic concepts, graph property measurement, closure proper-

ties, Information and Control 42 (3) (1979) 305 – 329. doi:10.1016/S0019-9958(79)90288-2.

[9] E. Goles, J. Olivos, Periodic behaviour of generalized threshold functions, Discrete Mathematics 30 (2) (1980)

187 – 189. doi:http://dx.doi.org/10.1016/0012-365X(80)90121-1.

[10] E. Goles-Chacc, F. Fogelman-Soulie, D. Pellegrin, Decreasing energy functions as a tool for studying threshold

networks, Discrete Applied Mathematics 12 (3) (1985) 261–277.

[11] E. Goles, P. Montealegre, V. Salo, I. Törmä, Pspace-completeness of majority automata networks, Theor.

Comput. Sci. 609 (2016) 118–128. doi:10.1016/j.tcs.2015.09.014.

[12] E. Goles, P. Montealegre, Computational complexity of threshold automata networks under different updating

schemes, Theoretical Computer Science 559 (2014) 3–19.

[13] E. Goles, P. Montealegre, V. Salo, I. Törmä, Pspace-completeness of majority automata networks, Theoretical

Computer Science 609 (2016) 118–128.

[14] E. Goles, P. Montealegre, K. Perrot, Freezing sandpiles and boolean threshold networks: Equivalence and

complexity, Advances in Applied Mathematics 125 (2021) 102161.

[15] E. Goles, M. Montalva-Medel, P. Montealegre, M. Rı́os-Wilson, On the complexity of generalized q2r automaton,

Advances in Applied Mathematics 138 (2022) 102355.

[16] C. L. Barrett, H. B. Hunt, M. V. Marathe, S. Ravi, D. J. Rosenkrantz, R. E. Stearns, Complexity of reachability

problems for finite discrete dynamical systems, Journal of Computer and System Sciences 72 (8) (2006) 1317–

1345. doi:10.1016/j.jcss.2006.03.006.

[17] C. Barrett, H. B. H. III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, R. E. Stearns, On

some special classes of sequential dynamical systems, Annals of Combinatorics 7 (4) (2003) 381–408.

doi:10.1007/s00026-003-0193-z.

[18] M. Folschette, L. Paulevé, M. Magnin, O. Roux, Sufficient conditions for reachability in automata networks

with priorities, Theoretical Computer Science 608 (2015) 66–83. doi:10.1016/j.tcs.2015.08.040.

[19] M. Rı́os-Wilson, G. Theyssier, Intrinsic Universality in Automata Networks I: Families and Simulations, preprint

available on HAL and arXiv (2023).

[20] M. Gadouleau, On the influence of the interaction graph on a finite dynamical system, Natural Computing

19 (1) (2019) 15–28. doi:10.1007/s11047-019-09732-y.

[21] R. Greenlaw, H. J. Hoover, W. L. Ruzzo, Limits to Parallel Computation, Oxford University Press, 1995.

doi:10.1093/oso/9780195085914.001.0001.

[22] H. E. Vaughan, Emil l. post. the two-valued iterative systems of mathematical logic. annals of mathematics studies, no. 5.

Journal of Symbolic Logic 6 (3) (1941) 114–115. doi:10.2307/2268608.

URL https://doi.org/10.2307%2F2268608

https://doi.org/10.1016/S0019-9958(79)90288-2
https://doi.org/http://dx.doi.org/10.1016/0012-365X(80)90121-1
https://doi.org/10.1016/j.tcs.2015.09.014
https://doi.org/10.1016/j.jcss.2006.03.006
https://doi.org/10.1007/s00026-003-0193-z
https://doi.org/10.1016/j.tcs.2015.08.040
https://doi.org/10.1007/s11047-019-09732-y
https://doi.org/10.1093/oso/9780195085914.001.0001
https://doi.org/10.2307%2F2268608
https://doi.org/10.2307/2268608
https://doi.org/10.2307%2F2268608

[23] B. Durand, Z. Róka, Cellular Automata: a Parallel Model, Vol. 460 of Mathematics and its Applications.,

Kluwer Academic Publishers, 1999, Ch. The game of life:universality revisited., pp. 51–74.

[24] G. Hardy, E. Wright, R. Heath-Brown, D. Heath-Brown, J. Silverman, A. Wiles,

An Introduction to the Theory of Numbers, Oxford mathematics, OUP Oxford, 2008.

URL https://books.google.fr/books?id=rey9wfSaJ9EC

[25] B. D. Schutter, B. D. Moor, On the sequence of consecutive powers of a matrix in a boolean algebra, SIAM

Journal on Matrix Analysis and Applications 21 (1) (1999) 328–354. doi:10.1137/s0895479897326079.

URL https://doi.org/10.1137%2Fs0895479897326079

[26] M. Rı́os-Wilson, G. Theyssier, Intrinsic Universality in Automata Networks III: Symmetry versus Asynchronism,

preprint available on HAL and arXiv (2023).

https://books.google.fr/books?id=rey9wfSaJ9EC
https://books.google.fr/books?id=rey9wfSaJ9EC
https://doi.org/10.1137%2Fs0895479897326079
https://doi.org/10.1137/s0895479897326079
https://doi.org/10.1137%2Fs0895479897326079

	Introduction
	Preliminaries
	Gadgets and glueing
	G-networks
	Glueing of automata networks
	G-gadgets, gadget glueing and simulation of G-networks
	Game of life has coherent gadgets

	Gm-networks and Gm,2-networks as standard universal families
	Closure and synchronous closure
	Game of life is strongly universal

	Super-polynomial periods without universality
	Conjunctive networks and Gconj-networks
	Super-polynomial transients and periods without universality

	Perspectives

