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Abstract

Friction-induced vibration of mechanical systems has significant academic appeal and industrial implications. This

paper presents a novel approach to studying the friction-induced planar vibrations of a two-rigid-disc system with a

finite contact area. In this approach, a set of discrete two-dimensional LuGre models are introduced to calculate the

dynamics of the system, eliminating the need for a stick-slip transition criterion required by static friction models.

Complex eigenvalue analysis and transient dynamic analysis are performed to analyse the linear stability and bifurca-

tion properties of the system. The spatial variation of the coefficient of friction is also considered, modelled for the

first time as an interval field, and is found to greatly impact the system’s stick-slip behaviour and cause oscillations

around equilibrium points.
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1. Introduction

Friction-induced vibration is a common phenomenon caused by relative motion between two surfaces in contact,

resulting in self-excited vibration. The vibration can range from small, periodic oscillations to large, chaotic motions

and can have adverse effects on a mechanical system, such as wear, noise, and energy loss. Over the years, researchers

have identified four main mechanisms contributing to friction-induced vibration: (1) Negative friction slope [1, 2],

where the coefficient of friction decreases with increasing relative velocity between surfaces, leading to self-excited

friction and dynamic instability; (2) Mode coupling [3, 4], where the interaction of multiple vibration modes results in

energy transfer between the modes and the emergence of new vibration frequencies; (3) The stick-slip motion [5, 6],

where alternating states of stick and slip due to the non-smooth nature of dry friction causes system vibration; (4)

The sprag-slip motion [7, 8]. The alternating engagement and release of the sprags can result in vigorous dynamic

responses involving intermittent sticking and slipping phases.
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Nomenclature

Abbreviations

CEA Complex Eigenvalue Analysis

COF Coefficient of Friction

TDA Transient Dynamic Analysis

Symbols

γi Angle of dsi with respect to the X1 axis

HI
S(X), HK(x) The static and kinetic coefficient of fric-

tion Interval fields

Ff , Ff i Global friction force and local friction forces

Pi, Qi Global coordinate of the centre of dsi and its

projection on the lower disc

qe The equilibrium point

Z Bristle deformation

µS, µK Static and kinetic coefficient of friction (COF)

Ω Driving angular velocity

ρi Distance from the centre of dsi to O1

σ0, σ1, σ2 Stiffness coefficient, microscopic and

macroscopic damping coefficients in the Lu-

Gre model

Θe, Φe Circumferential displacement at the equilib-

rium point of the upper and lower discs

Θ, Φ Rotational displacement of the upper and lower

discs

ξIi Interval field coordinates

Cp, CpΘ, Cd, CdΦ Damping terms for the translational

and torsional motion of the upper and lower

discs

dsi Area of a small fraction of the cross-section of

the connecting cylinder

FN Constant normal load

HSc, HSr Interval centre and Interval radius of the static

COF interval field

Jp, Jd, Jp, Jd Polar moment of inertia of the upper and

lower discs

Kp, KpΘ, Kd, KdΦ Stiffness of the translational and tor-

sional springs connected to the upper and lower

discs

Mp, Md Mass of the upper and lower discs

R1,R2 Radius of the upper and lower discs

Rc Radius of the contact area

Rd Influence radius of the static COF interval field

TΘ, TΦ Torques generated by the friction forces of the

upper and lower discs

Vs Stribeck velocity

X1e, X2e Horizontal displacement at the equilibrium

point of the upper and lower discs

Y1e, Y2e Vertical displacement at the equilibrium point

of the upper and lower discs

Investigating friction-induced vibration problems requires a suitable friction model to describe the underlying

frictional behaviour. Over the years, various friction models have been developed, which can be categorised as either

static or dynamic. Static models can be expressed as functions of friction force and relative velocity between contacting

surfaces, such as the Coulomb’s friction model and its modified versions [9, 10], velocity-based models [11] and the
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Karnopp model [12]. These models are designed to describe the system behaviours in the steady state, at which the

system has a large enough relative velocity. On the other side, dynamic friction models are capable of capturing

dynamic effects in a wide range of relative velocity by the aid of inner state variables. The Dahl model [13] and the

LuGre model [14] are typical dynamic friction models based on the conceptualisation of the deflection of flexible

bristles, while the latter is an extension of the former incorporating the Stribeck effect [15]. The LuGre model has

shown promising properties to replicate dynamics behaviours like pre-sliding, frictional lag and hysteresis effect and

thus has widespread applications [16, 17]. Extensions to the LuGre model have also emerged such as the Elasto-

plastic model [18] and the Leuven model [19]. Interested readers are referred to [20, 21] for an extensive overview of

friction models. This work investigates friction-induced planar motions involving translational and rotational motions,

and thus a friction model coping with 2D motion is in demand. Since a static model would require a complex 2D

stick-slip transition criterion, which would degrade both efficiency and accuracy, the LuGre model is used instead for

its simplicity and effectiveness in 2D motion. Applications of the LuGre model in 2D motion can be found in the

literature, e.g. the distributed 2D LuGre tire friction model [22] and the lumped 2D LuGre model for point contact

multi-body system [23].

Complex eigenvalue analysis (CEA) and transient dynamic analysis (TDA) are effective techniques for studying

friction-induced vibration problems [24]. CEA, used in applications such as aeroelastic flutter [25] and brake squeal

analysis [26], involves finding the equilibrium of the nonlinear system and linearising the system equations near this

point to derive the stiffness and damping matrices. The eigenvalues of the linearised system are then calculated, and

if any have a positive real part, the steady state is unstable and can result in self-excited vibrations. CEA is widely

used in industry due to its computational efficiency and its ability to quickly identify unstable modes [27]. TDA, on

the other hand, provides a detailed time response of the system’s dynamic behaviour, including stick-slip effects and

bifurcation [28, 24].

Friction-induced vibration problems have traditionally been studied using deterministic methods. However, recent

advancements in the field include the study of uncertainty and variability in these systems. For instance, Butlin

and Woodhouse [29] quantified the uncertainty and sensitivity of a friction-coupled system modelled with realistic

complexity. Massa et al. [30] carried out a study using fuzzy approach for a friction-induced vibration problem to

identify the unstable modes. Nechak and Sinou [31] constructed a hybrid meta-model taking into account random

and interval uncertainties for the prediction of friction-induced instabilities. Nobari et al. [32] conducted CEA for

a friction-induced vibration system in a statistical way to cope with variability and uncertainty of input variables for

the stability analysis. Hu et al. [33, 34] proposed a random friction field modelling method in which the coefficient

of friction is treated as a random field and the resulting frictional responses were analysed statistically. However, in

practical engineering, the knowledge of the COF between certain materials is generally limited as only an interval

of possible values, e.g. see [35, 36]. The limited information such as probability density function hinders the use

of probabilistic approaches unless conducting a large number of measurements. A practical alternative is to model

it as an interval field, where the required knowledge can be reduced to its upper and lower bounds and an influence

radius indicating the spatial dependency of the variables. Interval field is analogous to random field, firstly proposed
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by Moens et al. [37] and then developed into many variants, for instance, the K-L expansion based method [38] and

the convex model based method [39]. Recently, a B-spline based interval field modelling method [40] is proposed

by the authors, which has shown effectiveness and convenience to be constructed and is adopted to model the spatial

variation of the coefficient of friction.

The present study investigates a two-rigid-disc system with a finite contact area and demonstrates the reliability

of the friction model used in predicting its dynamical responses. A set of discrete 2D LuGre models, attached to

each divided region of the discretised contact area, are used to calculate the frictional responses of the system. A

combination of CEA and TDA is conducted to gain a comprehensive understanding of the system’s stability and

bifurcation properties. Finally, the variation of the coefficient of friction is studied by modelling it as an interval field

to investigate its impact on the dynamical behaviour of the system. The rest of the paper is organised as follows.

In Section 2, the friction-induced vibration of a two-rigid-disc system with finite contact area is discussed and the

formulation of the discrete LuGre model is presented. Section 3 focuses on the stability and bifurcation analysis of the

system through the use of Complex Eigenvalue Analysis (CEA) and Transient Dynamic Analysis (TDA). In Section 4,

the non-deterministic friction model is introduced, including the examination of its effect on stick-slip behaviour and

the deviation of the system’s response from its deterministic counterpart.

2. Model description of a two-rigid-disc system

The present work investigates the friction-induced planar vibrations of a two-rigid-disc system. The model is an

extension of the one used in [41] but with a finite contact area and subjected to non-deterministic friction, the latter of

which will be discussed in Sec.4 in detail. The model is depicted in Fig.1, in which two circular discs interact through

a cylindrical bar rigidly connecting to the edge of the upper disc and frictionally contacting with the lower disc. Both

discs are elastically constrained by two springs in the direction of X1 (or X2) and Y1 (or Y2) and one torsional spring in

the direction of Θ (or Φ). A constant vertical load FN is applied normal to the upper disc. The vertical motions of both

discs are constrained so that only planar vibrations will occur. The torsional spring of the lower disc is driven by an

angular velocity Ω at one end and will cause the lower disc to spin around its centre O2, which will eventually cause

the vibration of the upper disc through the frictional contact. The initial coordinates of O1 and O2 are identical, and

the initial X and Y axes attached to each disc are correspondingly parallel. The governing equations for the system can

be stated as 

Mp Ẍ1 +Cp Ẋ1 + Kp X1 = Ff · ex

Mp Ÿ1 +Cp Ẏ1 + Kp Y1 = Ff · ey

Jp Θ̈ +CpΘ Θ̇ + KpΘ Θ = TΘ

Md Ẍ2 +Cd Ẋ2 + Kd X2 = −Ff · ex

Md Ÿ2 +Cd Ẏ2 + Kd Y2 = −Ff · ey

Jd Φ̈ +CdΦ Φ̇ + KdΦΦ = TΦ

, (1)
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Fig. 1. The two-rigid-disc system setting.

where Mp, Jp denote the mass and polar moment of inertia of the upper disc, Kp,KpΘ denote the stiffness of the

translational and torsional springs connected to the upper disc and Cp,CpΘ are the damping terms. Correspondingly,

Md, Jd,Kd,KdΦ,Cd,CdΦ are the parameters for the lower disc, as indicated in Figure 1. The global coordinate system

uses ex and ey as its two orthogonal basis vectors. Friction forces are indicated by Ff and the torques generated by

these forces TΘ,TΦ, of which the calculation entails discretising the contact interface, e.g. the bottom cross-section

of the connecting cylinder, as shown in Figure 2. The contact surface has been discretised. In the local coordinate

of the upper disc, a small fraction of the cross-section of an area dsi (
∑

i dsi = πR2
c , Rc is the radius of the contact

cross-section) has a distance ρi from its centre to O1 and an angle γi with respect to the X1 axis. In this work, a mesh

size of 0.20 is adopted considering the computational efficiency and convergence analysis. A convergence analysis

with respect to the mesh size can be found in Appendix A. The global coordinate of the centre of this small fraction

Pi = (PiX, PiY) and its absolute velocity Ṗi = (ṖiX, ṖiY) can be represented as

PiX = X1 + ρi cos(γi + Θ)

PiY = Y1 + ρi sin(γi + Θ)

ṖiX = Ẋ1 − ρi sin(γi + Θ) Θ̇

ṖiY = Ẏ1 + ρi cos(γi + Θ) Θ̇.

(2)
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Fig. 2. A small fraction of the cross-section of the cylindrical bar.

Such a small area is in contact with the lower disc, of which the velocity of the centre of the contact area Qi =

(QiX,QiY) can be represented as 
Q̇iX = Ẋ2 − (PiY − Y2) Φ̇

Q̇iY = Ẏ2 + (PiX − X2) Φ̇.
(3)

The relative velocity between points Pi and Qi is then determined as Vri = (ṖiX − Q̇iX, ṖiY − Q̇iY). The friction

force Ff i = (F f iX, F f iY) is computed using a set of discrete 2D LuGre models. The LuGre model is a dynamical

friction model, illustrated in Fig.3, which is known for its effectiveness in describing dynamical friction behaviours

and convenience in implementation. The LuGre model considers the microscopic interactions between contacting

asperities as a set of elastic bristles with damping. The friction force is then represented by the average deflection of

those bristles. In the amended form of the LuGre model [42], auxiliary state variables Zi = (ZiX ,ZiY ) are introduced to

determine the dynamical evolution of the friction force, represented as
Żi = Vri − Zi

σ0 |Vri |

G(Qi,Φ,Vri)

G(Vri) = µK + (µS − µK) e−|Vri/Vs |
2

Ff i = −(σ0 Zi + σ1 Ż + σ2 Vri) FN,

(4)

where σ0 is a constant parameter denoting the stiffness coefficient of the bristle, σ1, σ2 represent the microscopic and

macroscopic damping coefficients, respectively. µS and µK denote the static and kinetic COF, and Vs is the Stribeck

velocity.

An advantage of the LuGre model is that an explicit stick-slip transition criterion is no longer required as it is

incorporated implicitly into the model by the state variables. Such a criterion is essential in static models and it

often requires a careful treatment to ensure accuracy [34]. The friction-related terms in (1) can thus be derived as the
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Fig. 3. The LuGre model.

composition of local friction forces as
Fi = Σi Ff i

TΘ = Σi [F f iY ρi cos(γi + Θ) − F f iX ρi sin(γi + Θ)]

TΦ = Σi [−F f iY (PiX − X2) + F f iX (PiY − Y2)].

(5)

To obtain the system dynamics, equations (4) and (5) are substituted into the governing equations (1). It should be

noted that the friction forces and torques make the problem highly nonlinear. Moreover, incorporating the discrete

LuGre model results in a stiff system, as the frequency in the stick state is much higher than in the slip state [43].

Therefore, choosing an appropriate solver that can handle both challenges is crucial, as an insufficient solver could

lead to many iterations in one time step or cause convergence issues. In this work, the MATLAB multistep stiff solver

ode15s is adopted, which is based on the numerical differentiation formulas of orders 1 to 5 [44] and has shown to

provide satisfactory results in practice.

3. Deterministic stability analysis and bifurcation analysis of the system

3.1. Complex eigenvalue analysis

In this section, the stability analysis of the two-rigid-disc system is carried out. In the first step, the equilibrium

point of the system is sought by eliminating all differential terms in (1) and (4). The following nonlinear algebraic

equations are thus established as

Kqe = b, (6)

where K = diag{Kp,Kp,KpΘ,Kd,Kd,KdΦ} is the stiffness matrix, qe = {X1e,Y1e, Θe, X2e,Y2e, Φe}
T is the equilibrium

point and b = [b1, b2, b3, b4, b5, b6]T, the components bi (i = 1, 2, ..., 6) are expressed in Appendix B. The right-hand

side vector b is a function of qe. As a consequence, Eq.(6) is highly nonlinear and requires a nonlinear solver. After

obtaining the equilibrium point of the system, the Complex Eigenvalue Analysis (CEA) is performed to study the

stability of the system around that equilibrium point. The system equations (1) should be linearised in the following
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form as

Ml q̈ + Cl q̇ +Kl q = 0, (7)

where Ml = diag{Mp,Mp, Jp,Md,Md, Jd}, Cl = diag{Cp,Cp,CpΘ,Cd,Cd,CdΦ}−∂b/∂q |q=qe and Kl = K−∂b/∂q |q=qe .

The components in Cl and Kl are provided in Appendix C. In the theory of CEA, the eigenvalues of the linearised

system (7) indicate the stability of the equilibrium point: all negative real parts of eigenvalues indicate stability while

the presence of at least one eigenvalue possessing positive real part indicates instability.

In the numerical simulations of the current and the following sections, the same parameters reported in Table 1 are

used unless otherwise stated.

Table 1: Parameters used for simulation

Mp [kg] Jp [kg ·m2] Md [kg] Jd [kg ·m2] Kp [N ·m−1] KpΘ [N · rad−1] Kd [N ·m−1] KdΦ [N · rad−1]

1 0.5 4 8 10 10 100 100

Cp [Ns ·m−1] CpΘ [Ns · rad−1] Cd [Ns ·m−1] CdΦ [Ns · rad−1] Vs [m · s−1] σ0 [m−1] σ1 [s ·m−1] σ2 [s ·m−1]

0.1 0.1 0.1 0.1 0.001 105
√

105 0.01

µS µK R1 [m] R2 [m]

0.4 0.32 1.0 2.0

B

A

C

0 20 40 60 80 100
Time [s]

0.072

0.0725

0.073

0.0735

0.074

0 20 40 60 80 100
Time [s]

-10

-5

0

5

10

0 20 40 60 80 100
Time [s]

0.174

0.175

0.176

0.177

A

B

C

Stable

Unstable

Fig. 4. Stability analysis of the equilibrium points for Rc = 0.10 [m]. Left: stability map. Right: circumferential responses of the upper disc for

three cases.

The stability of the equilibrium points with Rc = 0.10 [m] with the variation of normal load FN (equispaced by 1)

and driving angular velocity Ω (equispaced by 0.1) is obtained and shown in Fig.4. It can be observed that although
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irregular patterns occur in the diagram, the areas of stable and unstable parameters can be approximately split by a

boundary curve from up left to the bottom right. To further examine the validity of the result, three pairs of (FN,Ω)

parameters (marked A, B and C in Fig.4) are used to compute the dynamical response of the circumferential vibration

of the upper disc starting from the vicinity of the equilibrium point under those parameters. Pair A (FN = 2 [N],

Ω = 9.7 [rad/s]) is a stable case and the dynamical response converges to the equilibrium point Θe = 0.0731 [rad].

Pair C (FN = 76 [N], Ω = 2.3 [rad/s]) is another stable case in which the dynamical response oscillates around its

equilibrium point Θe = 0.1216 [rad] with a reducing magnitude. In comparison, the parameter pair B (FN = 45 [N],

Ω = 7 [rad/s]) is obtained as an unstable case, and the dynamical response indeed shows an increasing osicillation

amplitude with the simulation time, which means the response rapidly deviates from the equilibrium point Θ = 0.120

[rad] as time increases and thus is certainly not stable. The responses of the three cases mentioned above illustrate the

result of the CEA.

A second investigation is carried out to determine how the contact area’s size will affect the system’s stability.

Varying Rc and keeping other parameters unchanged, the stability maps of the system can be obtained and are shown

in Fig.5. In Fig.5(a) the point contact case is presented for comparison, in which the system becomes unstable after

increasing the normal load to a certain level around 25 [N]. It can be observed that with the increase of the contact
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4

5

6

7

8

9

10

(d)

Fig. 5. Stability maps with (a) point contact; (b) Rc = 0.10 [m]; (c) Rc = 0.30 [m]; (d) Rc = 0.50 [m].

area, parameters that lead to a stable equilibrium point concentrate in the lower part of the diagram, where the critical
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driving angular velocity sits between 3-4 [rad · s−1]. The critical value ofΩ is seen to lift up slightly with an expanding

contact area. For a low normal load, the stable areas greatly decrease when Rc increases, meaning a large contact area

between the two discs will prevent a stable equilibrium point at a low normal load and a high driving angular velocity.

It is commonly believed that systems with higher damping tend to be more stabilising [45]. Hence, the effect of

the separate viscous damping (indicated by ’C□’) on the stability of the system is then studied. In Table 1, all viscous

damping terms have the same value of 0.1. Their values will be changed simultaneously to another value indicating

a different damping level, indicated by C. As shown in Fig.6, the stability of the system with Rc = 0.10 [m] with

four damping levels corresponding to values taken from {0.0, 0.1, 0.2, 0.5}, are investigated through CEA. It should
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(d)

Fig. 6. Stability maps with Rc = 0.10 [m] and damping level (a) C = 0; (b) C = 0.10; (c) C = 0.30; (d) C = 0.50.

be noted that varying the viscous damping level will not change the equilibrium point. In the case where there is no

viscoelastic damping, the stable area is mainly limited in the left bottom corner of the diagram and is significantly

smaller than in other cases. In comparison, strengthening the damping level simultaneously can effectively enlarge the

stable area, especially in regions with low normal loads and high rotational speed.

3.2. Bifurcation analysis

After drawing a general picture of the system’s stability in the previous section, the transient dynamics of the

system under specific control parameters are investigated. The system’s bifurcation behaviour is of particular interest
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as the Hopf bifurcation point indicates the transformation of the motion status. In what follows, the normal load and

the driving angular velocity are chosen as the control parameters. Different scenarios are investigated by varying the

contact area or the damping level of the system. All simulations in this section start at the all-zeros initial condition,

and the extreme (maximum and minimum) values of circumferential displacement of the upper disc are recorded when

the system enters the steady state.

The bifurcation diagram for varying FN is shown in Fig.7. For the point contact case, it can be seen that the Hopf

bifurcation point locates at around FN = 20 [N], beyond which the system stops converging to the equilibrium point

and a stable limit cycle shows up. The radius of the limit cycle expands as the normal load increases until FN is larger

than 70 [N], after which the limit cycle maintains the same level. It can also be noticed that the Hopf bifurcation points

shift to the left when the contact area increases, which means that the system can have a limit cycle at a low normal

load when enlarging the contact area. In the meantime, the radius of the limit cycle behaves oppositely with the radius

of the contact area. Figure 8 illustrates the system bifurcation diagram where the driving angular velocity is set as the

0 10 20 30 40 50 60 70 80
-10

-5

0

5

10

15

Fig. 7. Bifurcation diagram for Ω = 4 [rad · s−1] and C = 0.1.

control parameter while the normal load and damping level are constants as FN = 50 [N] and C = 0.1. For the three

scenarios studied with different finite contact areas, the resulting Hopf bifurcation points locate closely to each other

between Ω ∈ [3, 4] [rad · s−1]. When Ω continues to increase over the Hopf bifurcation points, a stable equilibrium

point disappears and a stable limit cycle shows up. The radius of the limit cycle again increases with the decrease of

the contact area at a given driving angular velocity. In contrast, for the point contact case, no stable equilibrium point

exists under this condition, so its extreme values split from the beginning of the variation of the control parameter.
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Fig. 8. Bifurcation diagram for FN = 50 [N] and C = 0.1.

In the last case, the impact of the damping level on the system’s bifurcation behaviours is studied, as shown in

Fig.9, where the normal load is the control parameter and Ω and Rc are set as constants. It can be clearly observed that

the Hopf bifurcation points shift to the right when increasing the damping level, enlarging the region where a stable

equilibrium point exists. In the meantime, the radius of the limit cycle shrinks under a large damping level, indicating

a weakening oscillation at the steady state. Note that the locations of the Hopf bifurcation points are consistent with

the stable-unstable boundary on the corresponding stability maps shown in the previous section, thus demonstrating

the reliability of the dynamical responses.

4. Non-deterministic analysis with a coefficient of friction interval field

In the aforementioned study, the friction force and torque were assumed to be deterministic due to the treatment

of the coefficient of friction as a constant. However, previous experimental measurements of coefficient of friction

have shown that it can not be considered as a fixed value and is inherently uncertain [46, 47]. In practical engineering

applications, the exact value of the coefficient of friction at a contact interface is often uncertain and can only be esti-

mated within upper and lower bounds [35, 36]. When addressing surface contact problems, the coefficient of friction

at different local contact points may vary, while close contact points may have similar values. In such situations, it is

appropriate to model the coefficient of friction of the entire contact interface as an interval field.

In this section, the non-deterministic nature of the coefficient of friction at the contact interface is taken into
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Fig. 9. Bifurcation diagram for Ω = 4 [rad · s−1] and Rc = 0.10 [m].

consideration, and it is modelled as an interval field. The interval field, defined by crisp bounds and a dependency

length, is used to investigate its impact on the system performance. The coefficient of friction is no longer uniform

across the contact interface, but instead varies depending on local contact properties such as roughness. For the sake

of simplicity, the bottom surface of the connecting cylinder is assumed to be smooth while the top surface of the

lower disc is rough. Thus, the coefficient of friction interval field can be constructed based on the properties of the

lower disc alone. While both surfaces could be considered as rough, doing so would increase the required algorithmic

complexity without significantly changing the results. Additionally, an ideal assumption of isotropic coefficient of

friction is adopted, meaning that the local coefficients of friction in the x- and y-directions are considered the same.

This interval field can be represented as {HI
S(X), X in the domain of lower disc} and is constructed using the re-

cently proposed B-spline interval field decomposition method [40], which has an explicit formulation to account for

the spatially-dependent uncertainty as

HI
S(X) = HSc + HSr

N∑
i=1

Bi(X) ξIi , (8)

where HSc and HSr represent, respectively, the interval centre and interval radius of the static COF interval field so

that the static COF only varies within [HSc − HSr,HSc + HSr]. The set {Bi(X), i = 1, ...,N} contains two-dimensional

quadratic B-spline functions built on the spatial domain of the lower disc incorporating the influence radius Rd, which

is used to decide the spatial dependency of the field variables, and {ξi} denote Interval Field Coordinates (IFCs) taking

values in the interval [-1, 1]. An elaboration of the interval field modelling method can be found in [40]. The local
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kinetic COF is treated as a scaled static COF interval field as HK(x) = τHS(x), where τ = 0.8 is a constant scaling

factor [34]. Figure 10 exhibits two realisations of the static COF interval field within the interval [0.3, 0.5] in the

spatial domain of the lower disc (of a radius R2 = 2 [m]) with an influence radius Rd = 0.1 [m]. Incorporating the

concept of the COF interval field, the derivation of the friction force using the LuGre model is modified as
Żi = Vri − Zi

σ0 |Vri |

G(Qi,Φ,Vri)

G(Qi, Φ,Vri) = HK(Qi, Φ) + (HS(Qi, Φ) − HK(Qi, Φ)) e−|Vri/Vs |
2

Ff i = −(σ0 Zi + σ1 Ż + σ2 Vri) FN,

(9)

in which case function G(Qi, Φ,Vri) now becomes not only relative velocity dependent but also position dependent.

Fig. 10. Two realisations of the static COF interval field.

4.1. Stick-slip effect

Stick-slip effect depicts the self-sustained vibration occurring between two contacting bodies when their relative

velocity is sufficiently low. In this section, the dynamical behaviours of the system are investigated under low driving

angular velocity, e.g. Ω ∈ [0.001, 0.1] [rad · s−1] for both the deterministic system and the non-deterministic system.

For example, Figure 11(a) displays the time response of relative circumferential velocity between the upper and lower

discs at FN = 10 [N] and Ω = 0.01 [rad · s−1] of the deterministic system, in which intermittent (almost) zero velocity

can be observed indicating that contact between the two discs being at the state of stick. During the state of stick, no

relative motion occurs between the two discs on the macroscopic scale, while microscopic relative motion is allowed

since the relative velocity is not exactly zero at the state of stick due to the nature of the LuGre model. The phase

portrait, shown in Fig.11(b), exhibits quasi-periodic behaviours of the upper disc when it enters the steady state. In

contrast, when the driving angular velocity is increased to 0.10 [rad · s−1], the stick-slip effects of the system disappear,

as can be seen in Fig.12. Its phase portrait finally converges to a point under such a condition.

Based on the findings of the study, a grid analysis was conducted to determine the appearance of the stick-slip

effect under specified control parameters. The normal load was sampled from each integer between 1 and 50 [N], and
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Fig. 11. Dynamical results for the deterministic system at FN = 10 [N], Ω = 0.01 [rad · s−1], Rc = 0.10 [m] (a) time response of relative

circumferential velocity; (b) phase portrait of the upper disc.
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Fig. 12. Dynamical results for the deterministic system at FN = 10 [N], Ω = 0.10 [rad · s−1], Rc = 0.10 [m] (a) time response of relative

circumferential velocity; (b) phase portrait of the upper disc.
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the driving angular velocity was sampled from 0.001 to 0.1 rad/s, spaced equally by 0.001 [rad · s−1]. The results are

shown in Fig.13. It is observed that an increase in normal load leads to an increase in the maximum driving angular

velocity that allows for the stick-slip effect to occur. The boundary between the ”no stick-slip” region and the ”stick-

slip” region appears as a strip rather than a distinct line. The strip is wider at high normal loads compared with low

normal loads. The control parameters within the strip lead to partial stick-slip behaviour: stick-slip behaviour appears

initially, but cannot be sustained and eventually decreases to reach the equilibrium point as time evolves. A sample

case is provided in Fig.14(a), where the relative circumferential velocity oscillates but reaches zero values around the

first 60 [s], after which it never returns to zero and gradually stops oscillating.

In comparison, as shown in Fig.13(b), the maximum driving angular velocities that allow for the stick-slip effect

to occur in the non-deterministic system are generally higher than in the deterministic system. The variation of the co-

efficient of friction increases the oscillation of the results and prevents the system from reaching the equilibrium point

to some extent. Consequently, the same control parameters that can not sustain the stick-slip effect in the deterministic

system may lead to a sustainable stick-slip effect in the non-deterministic system, as illustrated in Fig.14(b). Such a

finding is consistent with the results in the literature [48]. It should be noted that the stick-slip stability map of the

non-deterministic system is obtained using a single realisation of the COF interval field. Different realisations may

result in subtle changes to the map, but the conclusion remains unchanged.

4.2. Interval analysis

In the stick-slip analysis, it has been found that the spatial variation of the COF leads to the oscillation of the

dynamic responses, which may prevent the response of the system from converging to the equilibrium point (calculated

from the deterministic model) even though the equilibrium point is stable. As shown in Fig.15, in a steady state the

responses of the deterministic model in both small and large contact areas converge to the corresponding equilibrium

points, while those of the interval field model have strong oscillations and are not decaying over time. In addition, it

can be found that the responses of the interval model with a large contact area show lower oscillating amplitude than

those with a small contact area.

Interval analysis has been carried out to quantify the deviation bounds of the interval model’s time-domain re-

sponses to their deterministic counterparts using the normal load as the control parameter. Two cases with large

(Rc = 0.50 [m]) and small (Rc = 0.10 [m]) contact areas are studied. The driving angular velocity is fixed at

Ω = 1 [rad · s−1] during the analysis so that from Fig.5(b) one can see under most variations of the normal load,

the systems have stable equilibrium points. The extreme values of circumferential displacement of the upper disc are

recorded when the system enters into the steady state. For the interval field model, 1000 Monte-Carlo simulations are

performed, with each lasting 300 [s] of simulation time. The results are presented in Fig.16. A few findings should

be pointed out from these results. Firstly, the equilibrium points of the deterministic model with a small contact area

have a local maximum approximately at FN = 20 [N], while those of the deterministic model with a large contact area

increase monotonically with normal loads. Secondly, in most cases, the extreme values ΘE of the deterministic results

are single-valued (the maximum value equalling the minimum value), which means the time responses converge to the

equilibrium points. The extreme values ΘE of the deterministic results of the model with a small contact area separate
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Fig. 13. Stick-slip stability maps for Rc = 0.10 [m]. (a) Deterministic system; (b) non-deterministic system.
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Fig. 14. Time response of relative circumferential velocity at FN = 20 [N], Ω = 0.025 [rad · s−1], Rc = 0.10 [m] for (a) deterministic system; (b)

non-deterministic system.
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Fig. 15. Transient dynamic responses of Θ at FN = 20 [N], Ω = 1 [rad · s−1] for (a) Rc = 0.10 [m] and (b) Rc = 0.50 [m].
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Fig. 16. Interval analysis of deviation from deterministic results at Ω = 1 [rad · s−1] for (a) Rc = 0.10 [m] and (b) Rc = 0.50 [m].
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at around FN = 60 [N], showing unstable equilibrium points in the nearby region, which is consistent with the stability

analysis results shown in Fig.5(b). Thirdly, the results of the interval field model enclose the corresponding determin-

istic results and the deviations are relatively smaller under a small normal load compared with deviations under a large

one. Finally, the deviations between the results of the interval field model and the deterministic model with a large

contact area are significantly smaller compared with those of both models with a small contact area, which means that

enlarging the contact area may eliminate or at least weaken the impact of variation of the coefficient of friction.

5. Conclusions

This paper studies the friction-induced vibration problems of a two-rigid-disc system with a finite contact area.

A set of discrete LuGre models are used to facilitate the calculation of system dynamics, thus avoiding defining an

explicit stick-slip transition criterion like required by static friction models. The system is analysed using complex

eigenvalue analysis and transient dynamic analysis to study the stability and bifurcation behaviour. The results show

that changes in contact area and damping level can significantly impact the stability and bifurcation diagrams, with

the Hopf bifurcation point shifting in response. The second part of the paper considers uncertainties in friction by

modelling the coefficient of friction as an interval field. The results show that considering these uncertainties can result

in increased stick-slip effects and a wider range of control parameters that can lead to these behaviours. Additionally,

increasing the contact area is found to weaken the effect of variations in the coefficient of friction. Future work should

aim for an extended experimental validation.
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Appendix A Convergence analysis

The finite contact area is discretised by the triangular element of a mesh size h. Friction forces are imposed on

the mass centre of each discretised area and their magnitudes are decided by the area. In the following content, a

convergence analysis with respect to the mesh size is studied. The dynamics of the system is calculated under the

default setting (parameters shown in Table 1) with the radius of the contact area Rc = 0.10 [m], normal load FN = 20

[N] and driving angular velocity Ω = 1.0 [rad/s]. The dynamics calculated using a very fine mesh (h/Rc = 0.001) is

taken as a reference result. The relative error of the circumferential displacement of the upper plate is calculated using

the following formulation

Err =

r
|Θ − Θref |

2 dt
r
|Θref |

2 dt
(A.1)

It is clear from the result, shown in Fig.A.1, that the relative error converges as the mesh size decreases. Specifically,

when the mesh size ratio h/Rc is below 0.30, the dynamics of the system becomes comparable with that of the reference

case. On the basis of the convergence analysis, a mesh size ratio h/Rc = 0.20 is set for all simulations of this paper.

Appendix B Force components at equilibrium point

b1 =
∑

i

F f iXe, (B.1)

b2 =
∑

i

F f iYe, (B.2)

b3 =
∑

i

[F f iYe ρi cos(γi + Θe) − F f iXe ρi sin(γi + Θe)], (B.3)

b4 = −
∑

i

F f iXe, (B.4)

b5 = −
∑

i

F f iYe, (B.5)

b6 =
∑

i

[−F f iYeXei + F f iXeYei]}T, (B.6)
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Fig. A.1. Convergence analysis w.r.t mesh size. Rc = 0.10 [m], FN = 20 [N], Ω = 1.0 [rad/s] and simulation time t = 30 [s].

where

F f iXe = −Ni (
VriXGe

Vrie
+ σ2VriX), (B.7)

F f iYe = −Ni (
VriYGe

Vrie
+ σ2VriY), (B.8)

Ni =
FN

πR2
c

dsi, (B.9)

Xei = X1e − X2e + ρi cos(γi + Θe), (B.10)

Yei = Y1e − Y2e + ρo sin(γi + Θe), (B.11)

VriX = ΩYei, (B.12)

VriY = −Ω Xei (B.13)

Vrie = Ω

√
X2

ei + Y2
ei (B.14)

Ge = τHS + (1 − τ) HSe−|Vrie/Vs |
2

(B.15)

Appendix C Linearised terms

Kl =



Kp −
∑

i
∂F f iXe

∂X1
, −

∑
i
∂F f iYe

∂Y1
, −

∑
i

F f iXe

∂Θ
, −

∑
i
∂F f iXe

∂X2
, −

∑
i
∂F f iXe

∂Y2
, −

∑
i
∂F f iXe

∂Φ

−
∑

i
∂F f iYe

∂X1
, Kp −

∑
i
∂F f iYe

∂Y1
, −

∑
i
∂F f iYe

∂Θ
, −

∑
i
∂F f iYe

∂X2
, −

∑
i
∂F f iYe

∂Y2
, −

∑
i
∂F f iYe

∂Φ

K31, K32, K33, K34, K35, K36∑
i
∂F f iXe

∂X1
,

∑
i
∂F f iXe

∂Y1
,

∑
i

F f iXe

∂Θ
, Kd +

∑
i
∂F f iXe

∂X2
,

∑
i
∂F f iXe

∂Y2
,

∑
i
∂F f iXe

∂Φ∑
i
∂F f iYe

∂X1
,

∑
i
∂F f iYe

∂Y1
,

∑
i
∂F f iYe

∂Θ
,

∑
i
∂F f iYe

∂X2
, Kd +

∑
i
∂F f iYe

∂Y2
,
∑

i
∂F f iYe

∂Φ

K61, K62, K63, K64, K65, K66


(C.1)
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K31 =
∑

i

[−
∂F f iYe

∂X1
ρi cos(γi + Θe) +

∂F f iXe

∂X1
ρi sin(γi + Θe)], (C.2)

K32 =
∑

i

[−
∂F f iYe

∂Y1
ρi cos(γi + Θe) +

∂F f iXe

∂Y1
ρi sin(γi + Θe)], (C.3)

K33 = KpΘ +
∑

i

[
∂F f iYe

∂Θ
ρi cos(γi + Θe) + F f iYe ρi sin(γi + Θe) +

F f iXe

∂Θ
ρi sin(γi + Θe) + F f iXe ρi cos(γi + Θe)],

(C.4)

K34 =
∑

i

[−
∂F f iYe

∂X2
ρi cos(γi + Θe) +

∂F f iXe

∂X2
ρi sin(γi + Θe)] (C.5)

K35 =
∑

i

[−
∂F f iYe

∂Y2
ρi cos(γi + Θe) +

∂F f iXe

∂Y2
ρi sin(γi + Θe)] (C.6)

K36 =
∑

i

[−
∂F f iYe

∂Φ
ρ cos(γi + Θe) +

∂F f iXe

∂Φ
ρi sin(γi + Θe)] (C.7)

K61 =
∑

i

(
∂F f iYe

∂X1
Xei + F f iYe −

∂F f iXe

∂X1
Yei) (C.8)

K62 =
∑

i

(
∂F f iYe

∂Y1
Xei −

∂F f iXe

∂Y1
Yei) − F f iXe (C.9)

K63 =
∑

i

[
∂F f iYe

∂Θ
Xei − F f iYe ρi sin(γi + Θe) −

∂F f iXe

∂Θ
Yei − F f iXe ρ cos(γi + Θe)] (C.10)

K64 =
∑

i

(
∂F f iYe

∂X2
Xei − F f iYe −

∂F f iXe

∂X2
Yei) (C.11)

K65 =
∑

i

(
∂F f iYe

∂Y2
Xei −

∂F f iXe

∂Y2
Yei + F f iXe) (C.12)

K66 = KdΦ +
∑

i

(
∂F f iYe

∂Φ
Xei −

∂F f iXe

∂Φ
Yei) (C.13)

Ce =



Cp −
∑

i
∂F f iXe

∂Ẋ1
, −

∑
i
∂F f iYe

∂Ẏ1
, −

∑
i

F f iXe

∂ Θ̇
, −

∑
i
∂F f iXe

∂Ẋ2
, −

∑
i
∂F f iXe

∂Ẏ2
, −

∑
i
∂F f iXe

∂ Φ̇

−
∑

i
∂F f iYe

∂Ẋ1
, Cp −

∑
i
∂F f iYe

∂Ẏ1
, −

∑
i
∂F f iYe

∂ Θ̇
, −

∑
i
∂F f iYe

∂Ẋ2
, −

∑
i
∂F f iYe

∂Ẏ2
, −

∑
i
∂F f iYe

∂ Φ̇

C31, C32, C33, C34, C35, C36∑
i
∂F f iXe

∂Ẋ1
,

∑
i
∂F f iXe

∂Ẏ1
,

∑
i

F f iXe

∂ Θ̇
, Cd +

∑
i
∂F f iXe

∂Ẋ2
,

∑
i
∂F f iXe

∂Ẏ2
,

∑
i
∂F f iXe

∂ Φ̇∑
i
∂F f iYe

∂Ẋ1
,

∑
i
∂F f iYe

∂Ẏ1
,

∑
i
∂F f iYe

∂ Θ̇
,

∑
i
∂F f iYe

∂Ẋ2
, Cd +

∑
i
∂F f iYe

∂Ẏ2
,
∑

i
∂F f iYe

∂ Φ̇

C61, C62, C63, C64, C65, C66


(C.14)
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C31 =
∑

i

[−
∂F f iYe

∂Ẋ1
ρi cos(γi + Θe) +

∂F f iXe

∂Ẋ1
ρi sin(γi + Θe)], (C.15)

C32 =
∑

i

[−
∂F f iYe

∂Ẏ1
ρi cos(γi + Θe) +

∂F f iXe

∂Ẏ1
ρi sin(γi + Θe)], (C.16)

C33 = CpΘ +
∑

i

[−
∂F f iYe

∂ Θ̇
ρi cos(γi + Θe) +

∂F f iXe

∂ Θ̇
ρi sin(γi + Θe)], (C.17)

C34 =
∑

i

[−
∂F f iYe

∂Ẋ2
ρi cos(γi + Θe) +

∂F f iXe

∂Ẋ2
ρi sin(γi + Θe)], (C.18)

C35 =
∑

i

[−
∂F f iYe

∂Ẏ2
ρi cos(γi + Θe) +

∂F f iXe

∂Ẏ2
ρi sin(γi + Θe)], (C.19)

C36 =
∑

i

[−
∂F f iYe

∂ Φ̇
ρi cos(γi + Θe) +

∂F f iXe

∂ Φ̇
ρi sin(γi + Θe)], (C.20)

C61 =
∑

i

(
∂F f iYe

∂Ẋ1
Xei −

∂F f iXe

∂Ẋ1
Yei), (C.21)

C62 =
∑

i

(
∂F f iYe

∂Ẏ1
Xei −

∂F f iXe

∂Ẏ1
Yei), (C.22)

C63 =
∑

i

(
∂F f iYe

∂ Θ̇
Xei −

∂F f iXe

∂ Θ̇
Yei), (C.23)

C64 =
∑

i

(
∂F f iYe

∂Ẋ2
Xei −

∂F f iXe

∂Ẋ2
Yei), (C.24)

C65 =
∑

i

(
∂F f iYe

∂Ẏ2
Xei −

∂F f iXe

∂Ẏ2
Yei), (C.25)

C66 = CdΦ +
∑

i

(
∂F f iYe

∂ Φ̇
Xei −

∂F f iXe

∂ Φ̇
Yei), (C.26)

∂F f iXe

∂X1
= −NiΩ (

ge

VrieVs
+

Ge

V3
rie

)VriXVriY (C.27)

∂F f iXe

∂Ẋ1
= −Ni (

Ge

Vrie
−

gev2
riX

VsVrie
−

GeV2
riX

V3
rie

+ σ2) (C.28)

∂F f iYe

∂Y1
= −NiΩ (

Ge

Vrie
−

geV2
riX

VrieVs
−

GeV2
riX

V3
rie

+ σ2) (C.29)

∂F f iXe

∂Ẏ1
= −Ni (−

ge

VrieVs
−

Ge

V3
rie

)VriXVriY (C.30)

F f iXe

∂Θ
= −NiΩ ρi [

Ge

Vrie
cos(γi + Θe) −

geVriX

VrieVs
(VriX cos(γi + Θe) + VriY sin(γi + Θe)) (C.31)

−
GeVriX

V3
rie

(VriX cos(γi + Θe) + VriY sin(γi + Θe)) + σ2 cos(γi + Θe)] (C.32)

∂F f iXe

∂ Θ̇
= −Niρi[−(

Ge

Vrie
−

geV2
riX

VrieVs
−

GeV2
riX

V3
rie

+ σ2) sin(γi + Θe) − (
ge

VrieVs
+

GeV2
riX

V3
rie

)VriXVriY cos(γi + Θe)] (C.33)

24



∂F f iXe

∂X2
= −NiΩ (−

−ge

VsVrie
−

Ge

V3
rie

)VriXVriY, (C.34)

∂F f iXe

∂Ẋ2
= −Ni (−

Ge

Vrie
+

geV2
riX

VrieVs
+

GeV2
riX

V3
rie

− σ2), (C.35)

∂F f iXe

∂Y2
= −NiΩ (−

Ge

Vrie
+

geV2
riX

VrieVs
+

GeV2
riX

V3
rie

− σ2), (C.36)

∂F f iXe

∂Ẏ2
= −Ni (

ge

VrieVs
+

Ge

V3
rie

)VriXVriY, (C.37)

∂F f iXe

∂Φ
= 0, (C.38)

∂F f iXe

∂ Φ̇
= −Ni [

Ge

Vrie
Yei −

geVriX

VrieVs
(VriXYei − VriYXei) −

GeVriX

V3
rie

(VriXYei − VriYXei) + σ2Yei], (C.39)

∂F f iYe

∂X1
= −NiΩ (−

Ge

Vrie
+

geV2
riY

VrieVs
+

GeV2
riY

V3
rie

− σ2), (C.40)

∂F f iYe

∂Ẋ1
= −Ni (−

ge

VrieVs
−

Ge

V3
rie

)VriXVriY, (C.41)

∂F f iYe

∂Y1
= −NiΩ (−

ge

VrieVs
−

Ge

V3
rie

)VriXVriY, (C.42)

∂F f iYe

∂Ẏ1
= −Ni (−

Ge

Vrie
−

geV2
riY

VsVrie
−

GeV2
riY

V3
rie

+ σ2), (C.43)

∂F f iYe

∂Θ
= −NiΩ ρi [

Ge

Vrie
sin(γi + Θ) − (

geVriY

VrieVs
+

GeVriY

V3
rie

)(VriX cos(γi + Θe) + VriY sin(γi + Θ)) + σ2 sin(γi + Θe)],

(C.44)

∂F f iYe

∂ Θ̇e
= −Ni ρi [(

Ge

Vrie
−

geV2
riY

VrieVs
−

GeV2
riY

V3
rie

+ σ2) cos(γi + Θe) + (
ge

VrieVs
+

Ge

V3
rie

)VriXVriY sin(γi + Θe)], (C.45)

∂F f iYe

∂X2
= −NiΩ (

Ge

Vrie
−

geV2
riY

VrieVs
−

GeV2
riY

V3
rie

+ σ2), (C.46)

∂F f iYe

∂Ẋ2
= −Ni (

ge

VrieVs
+

Ge

V3
rie

)VriXVriY, (C.47)

∂F f iYe

∂Y2
= −NiΩ (

ge

VrieVs
+

Ge

V3
rie

)VriXVriY, (C.48)

∂F f iYe

∂Ẏ2
= −Ni (−

Ge

Vrie
+

geV2
riY

V3
rie

+
GeV2

riY

V3
rie

− σ2), (C.49)

∂F f iYe

∂Φ
= 0, (C.50)

∂F f iYe

∂ Φ̇
= −Ni [−

Ge

Vrie
Xei −

geVriY

VrieVs
(VriXYei − VriYXei) −

GeVriY

V3
rie

(VriXYei − VriYXei) − σ2Xei], (C.51)

where

ge = 2(1 − τ)HSe−|Vrie/Vs |
2

(C.52)
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