
HAL Id: hal-04199828
https://hal.science/hal-04199828v1

Submitted on 8 Sep 2023 (v1), last revised 11 Sep 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optical flow algorithms optimized for speed, energy and
accuracy on embedded GPUs

Thomas Romera, Andrea Petreto, Florian Lemaitre, Manuel Bouyer, Quentin
L. Meunier, Lionel Lacassagne, Daniel Etiemble

To cite this version:
Thomas Romera, Andrea Petreto, Florian Lemaitre, Manuel Bouyer, Quentin L. Meunier, et al..
Optical flow algorithms optimized for speed, energy and accuracy on embedded GPUs. Journal of
Real-Time Image Processing, 2023, 20 (2), pp.32. �10.1007/s11554-023-01288-6�. �hal-04199828v1�

https://hal.science/hal-04199828v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Optical flow algorithms optimized for speed, energy and
accuracy on embedded GPUs

Thomas Romera · Andrea Petreto · Florian Lemaitre · Manuel Bouyer ·
Quentin Meunier · Lionel Lacassagne1 · Daniel Etiemble3

Received: date / Accepted: date

Abstract Embedded Computer Vision is a hot field

of research that requires trade-offs in order to balance

execution time, power consumption and accuracy. In

that field, dense optical flow estimation is a major tool

used in many applications. Many algorithms have been

designed, focusing on accuracy, very few works address

trade-offs and implementation on embedded hardware.

This paper tackles these trade-offs for embedded

GPU through the example of the well-known TV-L1 al-

gorithm. Thanks to High Level Transforms – operator

fusion and pipeline – and taking into account the iter-

ative aspect of these algorithms, we achieve a speedup

of ×3.7 versus OpenCV. Moreover, we show that a 16-

bit half precision implementation has a higher accuracy

than the 32-bit precision one for the same frame pro-

cessing time on NVIDIA Jetson boards.

Furthermore, this work can be generalized to any

kind of iterative stencil-based algorithms.

Keywords Computer Vision · Embedded GPU · Iter-

ative Stencils · Optical Flow · Energy Consumption ·
Half-precision Computation

1 Introduction

Embedded Computer Vision is getting more and more

widespread with applications in many fields. The algo-

rithms used today are complex, time demanding and

Thomas Romera · Andrea Petreto · Florian Lemaitre ·
Manuel Bouyer · Quentin Meunier · Lionel Lacassagne
LIP6, Sorbonne University, CNRS
E-mail: {first name}.{last name}@lip6.fr

Thomas Romera · Andrea Petreto
LERITY - ALCEN, Cergy-Pontoise, FRANCE

Daniel Etiemble
LISN, University Paris Saclay

power consuming, while they face real-time and electri-

cal consumption constraints. One of the main challenges

in Computer Vision algorithms is to optimize their im-

plementation in order to reduce both execution time

and power consumption.

A common problem in Computer Vision is optical

flow estimation, defined as the apparent motion of the

pixels between two image frames. First introduced by

Horn and Schunck in 1981 [18], it is used in many ap-

plications such as video denoising [31,38], motion de-

blurring [2], action recognition [9,14,25], 3D scene re-

construction [27], super-resolution [24], particle image

velocimetry [10], video enhancement [31], object detec-

tion [3], object tracking [21], robotics navigation [11]

and 3D scene reconstruction [27].

The Middlebury database [4] is the reference

database for optical flow algorithms and publications

and includes nearly 200 of them. The main comparisons

criteria in this base are qualitative, e.g. the average end-

point error or the average angular error. In fact, most

articles provide very little information about the execu-

tion time, as optical flow quality is regarded as the main

– if not the only – metric. Yet, most of these algorithms

are iterative and can take a long time to converge. Ma-

chine learning algorithms make up the second largest

share of algorithms type and can also require a lot of

time for inference. Therefore, if this database is a major

contribution to this field of research, it lacks informa-

tion about the performance and the multi-constraint

trade-offs in terms of flow quality, execution time and

power consumption for these algorithms.

Optical flow algorithms have different characteris-

tics in terms of computational power requirements and

optical flow output quality. While some of them have to

be run offline, others can be used in a real-time context,

i.e. process a frame of a given size in less than 40 ms.

2 Thomas Romera et al.

For the latter, high performance is necessary but hav-

ing a good trade-off between computation time, optical

flow accuracy and energy consumption is also crucial,

especially in an embedded context. In this perspective,

finding and using high performance and power efficient

architectures is a real need.

Embedded GPUs are natural candidates for Com-

puter Vision algorithms as they offer high performance

computing capabilities and relatively low-power con-

sumption – typically between 10 and 30 Watts. How-

ever, only a few implementations of optical flow algo-

rithms use them as they require efficient programming

to take advantage of their computational resources,

which are much more limited than on full-size, non-

embedded GPUs. Furthermore, these implementations

focus more on the mathematical formulations rather

than on efficient implementation details.

This article focuses on the TV-L1 optical flow es-

timation [40] since it is a well-known and robust al-

gorithm, able to deal with occlusions. The structure

of this algorithm lends itself well to algorithmic trans-

formations, allowing for fast and low energy consuming

implementations on embedded devices. In this work, we

study new optimized implementations of this algorithm

on embedded GPUs, and compare them with State-of-

the-Art CPU and GPU implementations. Our contri-

butions are three-fold:

– we give an evaluation of High Level Transforms (op-

erator fusion and pipeline) for iterative operators

like optical flow algorithms,

– we provide a quantitative and qualitative approach

for multi-constraint trade-offs: speed and precision

vs power consumption and accuracy,

– we perform a comparison of 16-bit and 32-bit pre-

cision implementations from an accuracy point of

view.

Several optimized CPU implementations of TV-L1

have been developed [40,36], as well as an OpenMP

version [28] and a SIMD version [30]. An FPGA im-

plementations has also been developed [6] and opti-

mized in terms of memory allocation and power con-

sumption [15]. Yet, GPU implementations are much

less widespread. [36] and [5] indicate timing results for

straightforward GPU implementations but no in-depth

study was performed and no implementation details

were mentioned. This is also the case for the implemen-

tations in [12]: timing is indicated but few implementa-

tion details are provided. Finally, the TV-L1 algorithm

is also available in the OpenCV library [7], for both

CPUs and GPUs.

NVIDIA Jetson boards (AGX Xavier, TX2 and

Nano) have been selected to evaluate the GPU imple-

mentations. It is a family of embedded boards widely

used in Computer Vision and autonomous vehicles.

We have two claims. First we claim that our TV-L1

implementations outperforms the State-of-the-Art by a

factor of ×3.7, thanks to High Level Transforms. Sec-

ond, we claim that for the same amount of per-frame

computation time, a 16-bit half precision implementa-

tion has a higher accuracy than a 32-bit one.

Section 2 demonstrates the main challenges associ-

ated with efficient optical flow estimation on embed-

ded architectures. Section 3 presents the optimizations

and the design choices of the TV-L1 implementations

on embedded GPUs. Section 4 presents several bench-

marks and their results regarding processing speed, en-

ergy consumption, floating-point precision and optical

flow accuracy. Finally, section 5 concludes.

2 Background and GPU basics

2.1 Related Work

Dense optical flow estimation algorithms have been a

focus for optimizations on embedded CPU platforms.

Papers [30,31] present efficient CPU SIMD implemen-

tations of the Horn-Schunck and the TV-L1 algorithms

on the NVIDIA Jetson embedded systems. Paper [34]

presents a first optimization of TV-L1 on embedded

GPUs. The efficiency of GPUs has also been shown for

other iterative optical flow algorithms like the Lucas-

Kanade method [26] using both OpenMP [17] and Ope-

nACC [16] API. However, most of the optical flow esti-

mation studies on GPUs focus only on the optical flow

accuracy and precision [4,1,5,23]. Computing speed is

sometimes provided but not studied in depth and en-

ergy consumption is usually not measured at all.

Recently, many new methods based on deep learn-

ing [20,39,19] have shown impressive results in terms

of optical flow quality. However, these methods are not

good candidates for embedded systems since they are

slower and require large GPUs to run and thus have

a large power requirement (typically several hundred

watts). Even the fast FlowNet 2.0 [20] method takes 7

ms to process 1024 × 436 pixel images on an NVIDIA

GTX 1080 GPU. We tested FlowNet 2.0 on the embed-

ded Jetson AGX platform. On the MPI-Sintel dataset

it takes 660 ms per frame with its regular pre-trained

model and 343 ms using its fastest pre-trained model.

A speedup of ×8.6 is needed to achieve real-time pro-

cessing at 25 image frames per second for 1024 × 436

pixels images. This resolution is not even an HD for-

mat. In comparison, the TV-L1 OpenCV implementa-

tion requires only 10ms per frame at this resolution [34,

7], without providing a fully optimized implementation.

TV-L1 is therefore a much better candidate for embed-

ded applications than deep-learning methods.

Optical flow algorithms optimized for speed, energy and accuracy on embedded GPUs 3

TV-L1 is a well-known and still widely used algo-

rithm which provides an interesting tread-off between

speed and quality compared to the other State-of-the-

Art methods [4]. It is also used as the baseline for other

more complex methods [12,37,36].

This article first focuses on speedups brought by

High Level Transforms [22], which are well suited for

TV-L1, and then deals with optical flow quality, accu-

racy and convergence speed with respect to computa-

tion precision. As far as we know, the impact on both

speed and accuracy when using half precision floating

point values [13,32] for storage and computation in-

stead of single precision has not yet been studied.

2.2 GPU hardware specificities

In this section, we describe some of the GPU’s speci-

ficities exploited for our optimized implementations.

Compared to CPUs, GPUs are composed of sim-

pler computation cores called CUDA cores but in much

greater number. The goal is to maximize throughput

over minimizing latency. The computation cores are

aggregated within multiple streaming-multiprocessors

(SM). All the cores of one sub-core are synchronized

and execute the same instruction at the same time.

GPUs have several memory levels. Accessible to all

threads, the global memory is implemented on a sep-

arate DRAM chip. The L2 cache is a small on-chip

SRAM shared between all the Streaming Processors

(SMs). The L1 cache is a fast on-chip SRAM shared

between all the sub-cores of the same SM.

There is usually much less cache memory per core

on a GPU than on a CPU. For example, on the Jetson

AGX, there is a total of 1024 KB of L1 data cache and

512 KB of L2 cache on the GPU for 512 F32 cores. The
8-core ARM v8.2 64-bit CPU has a total of 512 KB of

L1 data cache, 8192 KB of L2 cache and 4096 KB of

L3 cache for 8 cores. Memory-intensive transformations

such as the one performed on CPU in [31] are therefore

much more complex to implement on GPU.

2.3 GPU CUDA Programming model

In NVIDIA’s CUDA programming model, computation

is parallelized into multiple threads. Each thread exe-

cutes, on different data, the same series of instructions

described in a CUDA GPU function called a kernel.

Threads are grouped into multiple thread blocks which

form a grid. Thread blocks and grids can be either

one, two or three-dimensional. All threads of the same

thread block are executed on the same SM. They all

share the same L1 cache. Part of the L1 cache can be

explicitly managed and used as Shared memory. Shared

memory is specifically allocated for each thread block

so that all of its threads share the same data. They

cannot access the Shared memory from other blocks,

however. Inside a thread block, threads are scheduled

in groups of 32 synchronized threads called warps. One

warp is executed on the same sub-core. Threads are not

synchronized beyond warp level except by using spe-

cific barrier instructions. Another SIMD parallelism is

also available on GPU at an instruction level. The 32-

bit half2 vector type can be used to exploit sub-word

parallelism: Two F16 numbers are processed simultane-

ously.

Fine-tuning multiple parameters is critical to

achieve the best performances on GPU. It is necessary

to find a good balance between thread blocks and grid

size dimensions as well as carefully using the different

levels of GPU memories. Appropriate use of the Shared

memory is important.

3 TV-L1 algorithm implementations and opti-

mizations

This section presents the mathematical scheme of the

TV-L1 optical flow estimation, and then details the de-

signed implementations and optimizations on both em-

bedded CPU and GPU.

3.1 TV-L1 Optical Flow Estimation

The optical flow constraint equation states that for a

given image intensity I(x, y, t) function of time t and

spatial coordinates x and y:

∇I · u +
∂I

∂t
= 0. (1)

where u = (u1, u2) =
(

dx
dt ,

dy
dt

)
is the vector field of all

the pixel trajectories of the image at one instant t.

This linear equation has two unknown variables u1
and u2 and thus cannot be solved without the intro-

duction of additional constraints. This indeterminacy

problem is know as the aperture problem in optical flow

estimation methods.

The method proposed by [40] introduces an auxil-

iary variable v = (v1, v2) and a fixed-point iterative

scheme over the optical flow u and a dual vector field

P = (p1,p2) = ((p11, p12), (p21, p22)).

Algorithm 1 TV-L1 Numerical Scheme

1: Compute ∇I1 . centered gradient
2: for w = 0 to Nwarps do
3: Compute I1(x+u0)) and ∇I1(x+u0) . bicubic warp
4: for k = 0 to Niters do
5: v← u + TH(u,u0) . thresholding
6: Compute Div(P) . divergence
7: u← v + θDiv(P) . update optical flow
8: Compute ∇u . forward gradient

9: P← P+τ/θ∇(u)

1+τ/θ|∇(u)| . estimate dual variable

4 Thomas Romera et al.

The gradient ∇I1 is computed using central dif-

ferences ; the warpings I1(x+u0)) and ∇I1(x+u0) are

computed using bicubic interpolation ; the threshold-

ing operation used to update the auxiliary variable v is

defined in equations 2 and 3 ; the divergence Div(P) is

computed uing backward differences ; the gradient ∇u
is computed using forward differences.

ρ(u) = ∇I1(x+u0) · (u−u0) + I1(x+u0)− I0(x) (2)

TH(u,u0) =


λθ∇I1(x+u0) if ρ(u) < −λθ|∇I1(x+u0)|2,
−λθ∇I1(x+u0) if ρ(u) > λθ|∇I1(x+u0)|2,
ρ(u) ∇I1(x+u0)

|∇I1(x+u0)|2 otherwise. (3)

Based on the TV-L1 numerical scheme, 5 steps are

needed to update the optical flow:

Others

Threshold

v

Divergence

Div(P)

P

Estimate U
u Forward

Gradient

∇u

Estimate P

u P

Fig. 1: Iterative steps of the TV-L1 scheme before op-

erator fusion. This consumer/producer representation

highlights the data dependencies of each subsection of

the iterative scheme. Operators are centered on the

white square and the spatial dependencies shown in

gray. ◦ symbolizes function composition i.e. the output

of a step is the input of the next.

– a thresholding step (Threshold),
– a step computing the divergences of P (Divergence),
– a step estimating u (Estimate U),
– a step for the forward gradient of u (For. Gradient),
– a step estimating P (Estimate P).

This is shown in figure 1 along with the horizontal and

vertical dependencies needed to compute one central

pixel for each step. These horizontal and vertical de-

pendencies are introduced by the backward and for-

ward differences used to compute the divergences and

the forward gradients respectively. A complete TV-L1

iteration is the composition of all these 5 steps.

This iterative scheme estimates the optical flow for

small displacements. For bigger displacements, down-

scaled versions of the input image are used. The flow is

computed at the smallest resolution and refined up to

the original resolution.

The general TV-L1 scheme also includes an outer

iterative scheme, which compensates the partially com-

puted optical flow on the input images to get more ac-

curate results using bicubic image warping. Given its

small impact on optical flow quality but its large im-

pact on computation time [29], the number of these

outer iterations, called warps, was set to 1 in the rest

of the article.

The general scheme is embedded in a Gaussian pyra-

mid to downscale the input images until the displace-

ments are small enough. The method is first run on the

most downscaled level and the estimated motion prop-

agated to the next scale and refined until the original

resolution is reached.

3.2 CPU Implementation

This section summarizes the main optimization steps of

the CPU SIMD implementation presented in [30,31].

First, it is possible to perform operator fusion and

only use a first step to update the vector field u and a

second step to update the auxiliary dual vector field P.

Intermediate results are used immediately [22] without

Others
P

Update U Update P

u P

u

Fig. 2: Inner iterative steps of the TV-L1 method after

operator fusion.

memory transfers. However, due to the data dependen-

cies, further operator fusion is more complex. This is

illustrated in figures 3 and 4. Figure 3 shows the two

full stencils used to update u and P. They are computed

from the two half stencils shown previously in figure 2

and are the result of mathematical composition. The

ensuing data dependencies are identical for the com-

putation of u and P. As the number of TV-L1 itera-

tions increases, the input data dependencies required

to compute one pixel also increases for both stencils.

This growing spatial dependency is shown in figure 4

and illustrates the increased data access and computa-

tion needed to compute a single pixel.

Instead of updating the entire vector fields u and P,

we establish an iteration pipeline and update the lines

as soon as it is possible. Doing so increases memory

locality and performances.

3.3 GPU Implementation

In order to obtain the best performances from our GPU

hardware, we must ensure to limit superfluous compu-

Optical flow algorithms optimized for speed, energy and accuracy on embedded GPUs 5

Up. U

P
u

Up. P

u
P

Up. U

P
u

Up. P

u

Up. P

u
P

Up. U

P

u
Stencil U

u

P
Stencil P

P

Fig. 3: Full stencil derivation for one iteration of u and

P from the two initial half-stencils.

3 3 3 3

2 2 2 33

3 3 3 3

3 2 1 1 2 3

3 2 · 1 2 31

3 2 1 1 2 3

3 2 2 32

4

3

2

·

Border for 4 iterations

Border for 3 iterations

Border for 2 iterations

Central pixel to compute

4

4

4

4

4

4

4444

4444

4

4

4

4

4 4

4

4

4

4

1 Border for 1 iteration

Fig. 4: Full stencil size growth depending on the number

of iterations of TV-L1.

tation already performed and maximize data reuse in

fast memory. If many data accesses are needed, they

must make use of the fast shared memory or regis-

ters. As such, our optimized GPU implementations

make use of the CPU pipeline optimization scheme

presented previously. We present four levels of opti-

mization schemes for the GPU implementations: Global,

Shared fusion, Global pipeline and Shared pipeline. Several

additional schemes were developed and tested but were

found to be slower and less efficient than the Global

version. They will not be mentioned in this paper.

This was notably the case for implementations mak-

ing use of shuffle instructions in order for threads in

the same warp of 32 threads to share data. The lim-

ited ensuing block size and added warp border man-

agement degrade overall performance. These schemes

are declined in F32 and F16 floating point numbers and

use CUDA vector type float2 and half2. Finally, the

grid and thread block dimensions were tuned for each

version and for each tested platform. The Global and

Shared fusion versions corresponds to the implementa-

tions presented in [34].

The Global scheme implements operator fusion and

only uses the Global memory. The two half-stencils are

executed one after the other by to consecutive kernels.

Memory accesses are reduced, data locality and arith-

metic intensity improved. The overhead due to GPU

kernel launch is also reduced since there are only two

sequential kernels to run per TV-L1 iteration: one to

update u and one to update P. For border accesses

outside of the image, the index is clamped and the bor-

der value reused. It is the most straightforward parallel

scheme as one thread is tasked to compute one half-

stencil for one pixel of the image. This scheme serves

as a baseline for our optimizations.

Data loaded from Global memory

Computed area stored to Global memory

Thread block boundaries

Load
Step

Global Memory
input Shared Memory

Data accessed in Shared memory
to update one pixel

Shared Memory
Global Memory

output

Compute
and Store

Step

Synchronisation

Apron data

= +

Fig. 5: Shared fusion thread block memory access pattern

for 1 iteration. All the data needed to compute one it-

eration is loaded in Shared memory. The computation

step is then performed using only Shared memory. Fi-

nally, the results within the red area are written into

Global memory.

The Shared fusion scheme further reduces the number

of launched CUDA kernels to one per iteration by merg-

ing the two kernels of the Global version. Each thread

requires the union of the neighboring pixels of both half-

stencils described in the stencil illustration of figure 3.

The number of memory accesses to the Global memory

is decreased by using the Shared memory. The thread

block memory access pattern is described in figure 5

and includes a load step from the Global memory into

6 Thomas Romera et al.

the Shared memory. Since the Shared memory is shared

by all the threads of the same thread block, the data

loaded by adjacent threads can be reused. This transfer

is synchronized with a barrier. Some threads are used

only to load border data which are processed by neigh-

boring threads. These threads return after performing

the load step and do not perform the compute step.

Like in the Global scheme, the index outside the image

area are clamped and the nearest border values used.

This level of optimization usually corresponds to what

is found in other State-of-the-Art implementations [35,

33]. [35] performs further optimizations and fuses sev-

eral iterations of the numerical scheme.

2 50
4 81

7 113
10 146

13 169
15 1712

Prologue and
Epilogue steps

lines

i

i+1

i+2

i+3

i+4

i+5

i+6

i+7

iterations and
time

Line compute order
in Global memory

Iteration 1 compute step

Iteration 2 compute step

Iteration 3 compute step

Fig. 6: Global pipeline thread block computer order for

the steady-state of a 3-iteration pipeline on 6 consec-

utive lines. The thread block computes a full iteration

on each entire line.

The Global pipeline scheme implements the iteration

pipeline described in section 3.2 using only the Global

memory. The pipeline follows the vertical dependen-

cies of TV-L1: a whole line is entirely processed and

used as soon as possible to compute the next itera-

tions steps. The CUDA grid contains several blocks,

each working in parallel on a sub-strip of the input im-

ages. Each thread block is in charge of fully process-

ing one strip. If the number of threads is smaller than

the line width, lines are computed in multiple steps by

the same thread block. The Global pipeline compute or-

der pattern is shown in figure 6. The prologue and epi-

logue are executed in border areas of the arrays that

are not clamped: those areas are allocated. The hori-

zontal accesses outside of the image width are clamped

like in the Global scheme. This scheme aims at reusing

new computed data as soon as it is available in order

to maximize data locality in the cache. This scheme

makes use of nearby data still present in cache to up-

date a line. An increased number of pipelined iterations

increases the data dependencies for the computation of

a line however. As such, top and bottom border exten-

sions are added depending of the number of pipelined

iterations.

2 50
4 81

7 113

106
9

Prologue and
Epilogue steps

lines

0

1

2

iterations and
time

Line compute order
in Shared memory

Iteration 1 compute step

Iteration 2 compute step

Iteration 3 compute step

14
13
12 15

16
17

5
8

11

lines

iterations and
time

Line output order
in Global memory

14
16

17

i

i+1

i+2

i+3

i+4

i+5

Fig. 7: Shared pipeline thread block compute order for the

steady-state of 3 pipelined iterations on 6 consecutive

lines. This pattern is run multiple times with an offset

for lines wider than the thread block width.

The Shared pipeline scheme also implements the itera-

tion pipeline but uses the Shared memory to share data

already computed by one thread to the other threads

of the same block. Modular accesses are used to reduce

the number of lines needed for the computation steps.

The horizontal accesses outside of the arrays width are

still clamped. Similarly, several of these blocks work in

parallel to process smaller sub-strips of the input im-

ages. Like the previous Global pipeline scheme, this imple-

mentations aims at maximizing data locality. The data

reuse is performed here in the fast Shared memory.

The size of the Shared Memory is limited to 48

KB per blocks and is too small to contain all the data

needed to process lines wider than 128, 256 or 512 pixels

depending on the pipeline depth and the computation

format precision. The amount of Shared memory (in

bytes) needed to process 1D blocks of w threads com-

puting a pipeline of Pi iterations is:

QShared Memory = QFloating ×Na × w × (Pi + 1), (4)

where QFloating is the size in bytes of the floating point

numbers used in the kernel (8 bytes for versions using
float2 and 4 bytes for half2 versions), and with Na =

6 the number of arrays required for computation.

For F32, up to 7 iterations can be computed using

blocks of 128 threads and up to 3 by using blocks of

256 threads. For F16, thanks to their smaller footprint,

the limit is 15 iterations for blocks of 128 threads, 7

for blocks of 256 and 3 for blocks of 512. The thread

block must therefore first processes all the iterations on

one part of the line before processing the rest of the

line. An entire part of the sub-strip is processed before

computing the next parts. This computer order pattern

is further illustrated in figure 7.

4 Results

Table 1 shows the required memory operations and

floating-point operations (FLOP) needed to compute

1 warp and 10 iterations for all our implemented

Optical flow algorithms optimized for speed, energy and accuracy on embedded GPUs 7

Version
Floating Point

Operations per pix
MEMs accesses

per pix
Arithmetic
Intensity

Time
(ns per pix)

TP
(GFLOPS)

BW
(GB/s)

Global F32 640 181 0.44 8.17 78 165

Global F16 508 181 0.70 4.36 117 155

Shared fusion F32 640 251 0.32 8.13 79 230

Shared fusion F16 488 261 0.47 4.31 113 226

Global pipeline F32 640 181 0.44 6.65 96 203

Global pipeline F16 508 181 0.70 4.02 126 168

Shared pipeline F32 660 219 0.38 5.10 129 320

Shared pipeline F16 553 219 0.63 2.86 193 285

Table 1: Memory accesses and floating point operations per pixel of our TV-L1 implementations on the Jetson AGX.

The associated execution time, memory bandwidth and computational throughput were computed for 2048×2048

images and monoscale, 1 warp and 10 iterations.

monoscale GPU implementations for 2048 × 2048 im-

ages.

To evaluate the gains brought by our optimizations

and the use of F16 numbers, various benchmarks were

performed and are presented in this section. The tested

versions of the TV-L1 implementation are described

hereafter. Version names F〈XX〉 refer to the floating

point computation format, F32 or F16:

- Neon F〈XX〉: optimized Neon SIMD CPU version,

- Global F〈XX〉: GPU optimized implementation with

operator fusion using only the Global memory,

- Shared fusion F〈XX〉: GPU optimized implementation

with operator fusion and kernel fusion using the

Shared memory,

- Global pipeline F〈XX〉: GPU optimized implementa-

tion with operator fusion and iteration pipeline us-

ing only the Global memory,

- Shared pipeline F〈XX〉: GPU optimized implementa-

tion with operator fusion, kernel fusion and using

the Shared memory.

Those versions are compared to find the best im-

plementation on the 3 NVIDIA Jetson platforms, the

Jetson AGX Xavier, TX2 and Nano. They are com-

pared in terms of processing time, energy consumption

and optical flow quality.

4.1 Processing Time

First, the different versions are evaluated in terms of

processing time, normalized to find the average time

taken to compute one pixel of the input images. For this

series of benchmarks, qualitative comparisons are not

taken into account. Only the computation speed of the

different TV-L1 iterations optimizations is measured.

Therefore, a monoscale version of TV-L1 was tested

with 1 warp and 10 iterations per warp with empty im-

ages ranging from 128 × 128 up to 2048 × 2048 pixels.

The pipelined versions iterate twice a pipeline of depth

5 iterations in order to get a total of 10 iterations.

Figure 8 shows a detailed comparison between our

GPU implementations on the Jetson AGX. Overall, the

0 256 512 768 1024 1280 1536 1792 2048
Image width (pix)

0

2

4

6

8

10

12

14

T
im

e
 (

n
s/

p
ix

)

Global_F32
Shared_fusion_F32
Global_pipeline_F32
Shared_pipeline_F32
Opencv GPU

Global_F16
Shared_fusion_F16
Global_pipeline_F16
Shared_pipeline_F16

Fig. 8: Execution time (ns/pix) of TV-L1 implementa-

tions on AGX.

fastest implementation is the Shared pipeline F16. All the

optimizations enable us to reach 2.9 ns/pix for resolu-
tions up to 2048×2048 pixels. The Shared pipeline F32 is

also the fastest F32 version with a speed of 5.1 ns/pix for

2048× 2048 pixel frames. Thanks to the pipeline, data

locality is increased and the number of memory trans-

fers with the Global memory decreases. Furthermore,

using the Shared memory offers lower latency mem-

ory (similar to the L1 cache) and an increased memory

bandwidth (128 bytes per clock and per SM) compared

to the Global memory.

Using only the Shared memory like in the

Shared fusion versions is however not sufficient to achieve

the greatest speedup. The amount of data reused in the

Shared memory in the non-pipelined versions is very

limited. The Global pipeline F32 version does not use the

Shared memory but is able to reuse more data in the

Global memory thanks to the L1 and L2 data cache.

It is faster than the Shared fusion F32 version. This phe-

nomenon is much less present when using F16 numbers.

The Shared fusion F16 version is much closer and slightly

8 Thomas Romera et al.

faster for images greater than 1024 × 1024 pixels than

the Global pipeline F16 version.

Those results are further detailed in table 1 and

shows that our fastest Shared pipeline F16 implementa-

tion is the one with the highest computation through-

put and the second highest memory bandwidth.

0 256 512 768 1024 1280 1536 1792 2048
Image width (pix)

0

5

10

15

20

25

30

35

40

45

T
im

e
 (

n
s/

p
ix

)

Global_F32
Shared_fusion_F32
Global_pipeline_F32
Shared_pipeline_F32
Opencv GPU

Global_F16
Shared_fusion_F16
Global_pipeline_F16
Shared_pipeline_F16

Fig. 9: Execution time (ns/pix) of TV-L1 implementa-

tions on TX2.

0 256 512 768 1024 1280 1536 1792 2048
Image width (pix)

0

20

40

60

80

100

T
im

e
 (

n
s/

p
ix

)

Global_F32
Shared_fusion_F32
Global_pipeline_F32
Shared_pipeline_F32
Opencv GPU

Global_F16
Shared_fusion_F16
Global_pipeline_F16
Shared_pipeline_F16

Fig. 10: Execution time (ns/pix) of TV-L1 implemen-

tations on Nano.

Figures 9 and 10 show the same comparison on the

Jetson TX2 and Nano. The main difference here is the

slower performance of the Shared pipeline F32 version. It

is the slowest version for these two platforms whereas

it is the fastest F32 version on the Jetson AGX. This

is due to different hardware limitations in the TX2 and

Nano GPU architectures.

Firstly, on the Jetson AGX, 2 Shared pipeline F32

thread blocks can be concurrently active on the same

SM. This number is limited by the Shared memory

available on the GPU SMs. One thread block requires

36 KB of Shared memory for the Shared pipeline F32 ver-

sion. On the Jetson TX2 and Nano, only 1 thread

block can be launched per SM since they only have

64 KB of available Shared memory per SM. For the

Shared pipeline F16 version, 5 blocks of 128 threads can

be launched per SM on the AGX but only 3 per SM on

the TX2 and Nano.

Secondly, there are half as many 32-bit registers per

SM on the TX2 and Nano than on the AGX (32768

for the TX2 and Nano and 65536 for the AGX). This

limits the maximum number of threads that can be

launched in the pipelined versions. We require 1472 reg-

isters per warp for the Global pipeline F32 and 1536 for

the Global pipeline F16 version on TX2 and Nano. Thread

blocks of a maximum size of 640 threads are able to

be allocated on both architectures. On the AGX, we

are able to push the maximum block size up to 1024

threads, the maximum CUDA thread block width in

one dimension.

Finally, more SM are available on the AGX (8 SMs)

than on the TX2 (2 SMs) and the Nano (1 SM).

Overall, more blocks of a greater size can be

launched on the AGX than on the other boards.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pipeline depth (iterations)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e
 (

m
s/

it
e
ra

ti
o
n
s)

Global_pipeline_F32
Shared_pipeline_F32

Global_pipeline_F16
Shared_pipeline_F16

Fig. 11: Time per iterations (ms/iters) according to

pipeline depth (iterations) for the pipelined versions

(with and without Shared memory) on the Jetson AGX.

In addition, it is also necessary to determine the

optimal pipeline depth for the pipelined schemes. Fig-

ure 11 shows the time needed to compute one itera-

tion of TV-L1 depending of the pipeline depth for the

global pipeline and shared pipeline implementations using

F32 and F16 numbers on 2048×2048 pixels images. For

the Global pipeline scheme, the pipeline depth is limited

only by the amount of Global memory on the board.

For the Shared pipeline scheme, we found that the opti-

mal pipeline depth is 6 for the F32 version and 7 for the

Optical flow algorithms optimized for speed, energy and accuracy on embedded GPUs 9

0 100 200 300 400 500 600 700 800 900 1000
Energy (nJ/pix)

0

25

50

75

100

125

150

175

200

Ti
m

e
(n

s/
pi

x)

AGX Best F16 GPU
AGX Best F32 GPU
AGX OpenCV F32 GPU
AGX Neon F16 CPU
AGX Neon F32 CPU
TX2 Best F16 GPU
TX2 Best F32 GPU
TX2 OpenCV F32 GPU
TX2 Neon F32 CPU
Nano Best F16 GPU
Nano Best F32 GPU
Nano OpenCV F32 GPU
Nano Neon F32 CPU

Fig. 12: Time (ns/pix) and energy (nJ/pix) operating points for several TV-L1 implementations on each Jetson

boards. Several clock frequencies are tested for each versions for a 2048× 2048 pixel image.

F16 version. As previously said, the pipeline depth is

strongly limited by the amount of Shared memory. For

convenience, we use a pipeline of depth 5 iterations for

our benchmarks since it is very close to the best value

while allowing us to test iterations multiples of 5.

4.2 Energy Consumption

The implementations are then evaluated from an energy

point of view. The same monoscale configuration of 1

warp and 10 iterations per warps is chosen. Again, a

pipeline depth of 5 iterations is set and run twice for the

pipelined versions. Images with a resolution of 2048 ×
2048 pixels are used to ensure a sufficient load on the

GPU.

Figure 12 presents the results in the (time per pixel,

energy per pixel) space for the TV-L1 implementations
on GPU along with the optimized Neon CPU versions

and the GPU OpenCV version. Multiple points on a

curve correspond to different clock frequencies. Only

the maximum frequency is shown for each Neon CPU

versions. The AGX achieves the best performance both

in terms of runtime and energy consumption, followed

by the TX2 and the Nano. The fastest GPU imple-

mentation is Shared pipeline F16 and it is 7.4× faster and

6.4× more energy efficient than the optimized version

using Neon F16 of the ARM CPU on the AGX. It is also

5.2× faster and 4.9× more energy efficient than the

OpenCV F32 GPU version. The best F32 GPU imple-

mentation is the Shared pipeline F32 version and is 5.7×
faster and 5.3× more energy efficient compared to the

CPU Neon F16 version on CPU. Again, compared to the

F32 GPU version, it is 2.9× faster and 2.8×more energy

efficient.

The TX2 is the second best board in terms of pro-

cessing time and power consumption. The best imple-

mentation on this board is also the Shared pipeline F16

version. Compared to the AGX, it is 4.6× slower and

1.4× less power efficient.

Newer and more powerful hardware, while more

power demanding allows for our optimization to run

more efficiently. Compared to the two smaller and older

boards, the Jetson AGX has a reduced total energy con-

sumption and enables the optimized Shared pipeline F16

to run the fastest.

4.3 Optical Flow Quality

For this series of benchmarks, the fastest F32 and F16

pipelined implementations are tested on the public Mid-

dlebury optical flow datasets collection [4] and the MPI

Sintel flow dataset [8]. We used the Jetson AGX board

to run our tests. The TV-L1 configuration used for

the benchmarks is a 3-scale pyramid for the Middle-

bury datasets and a 5-scale pyramid for the MPI-Sintel
datasets. Each pyramid level runs the same number of

iterations. A 5-iteration pipeline is used to vary the

number of iterations up to 100 to generate a set of time

and accuracy points. We compare the computed optical

flow with the provided ground truth in terms of average

endpoint error (AEPE) and in terms of average angular

error (AAE).

4.3.1 Middlebury dataset

The Middlebury dataset consists in 8 pairs of grayscale

images of various resolutions (3 sequences of resolution

584 × 388 pixels, 4 sequences of resolution 640 × 480

pixels, and 1 sequence of resolution 420× 380 pixels).

Figure 13b shows the impact of F16 precision on the

computed flow accuracy. First, all the versions converge

toward the same flow quality given enough time (be-

tween 1.3 and 1.4 pixels of average endpoint error and

7.2 and 7.9 degrees of average angular error). Second,

for an equivalent computation time, the F16 versions

have a lower average error than the F32 versions. Since

10 Thomas Romera et al.

0.0

0.5

1.0

1.5

2.0

2.5

AE
PE

 (p
ix

)

Shared_pipeline_F32
Shared_pipeline_F16

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (ms)

0

5

10

15

20

25

AA
E

(°
)

Shared_pipeline_F32
Shared_pipeline_F16

(a) Middlebury dataset.

0.0

2.5

5.0

7.5

10.0

12.5

AE
PE

 (p
ix

)

Shared_pipeline_F32
Shared_pipeline_F16

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (ms)

0

5

10

15

20

25

AA
E

(°
)

Shared_pipeline_F32
Shared_pipeline_F16

(b) MPI-Sintel datasets.

Fig. 13: Average Endpoint Error (AEPE) and Average Angular Error (AAE) versus Execution time (ms) of our

best TV-L1 implementations on AGX.

2.5 ms 5 ms 10 ms

AEPE AAE AEPE AAE AEPE AAE

Dataset F32 F16 F32 F16 F32 F16 F32 F16 F32 F16 F32 F16

Dimetrodon 0.91 0.55 19.60 10.74 0.29 0.25 5.47 4.52 0.20 0.19 3.43 3.36

Grove2 1.52 0.74 24.54 10.28 0.40 0.26 5.74 3.78 0.22 0.24 3.33 3.45

Grove3 2.47 1.71 27.15 15.99 1.34 1.10 11.71 9.73 1.01 0.98 8.88 8.74

Hydrangea 1.69 0.93 17.88 7.78 0.37 0.33 3.52 3.35 0.30 0.32 2.92 3.13

RubberWhale 0.42 0.34 13.39 10.84 0.28 0.27 9.05 8.82 0.24 0.25 7.74 7.87

Urban2 7.44 6.77 40.04 28.32 6.38 5.92 22.36 17.23 5.59 5.30 14.12 12.08

Urban3 6.34 5.58 50.08 35.48 5.03 4.33 27.70 20.65 3.95 3.53 17.89 15.62

Venus 1.86 1.42 21.51 15.88 0.89 0.72 10.77 9.68 0.52 0.52 8.05 8.12

Average

all datasets
2.83 2.25 26.77 16.91 1.87 1.65 12.04 9.72 1.50 1.42 8.30 7.80

(a) Middlebury sequences.

2.5 ms 5 ms 10 ms

AEPE AAE AEPE AAE AEPE AAE

Dataset F32 F16 F32 F16 F32 F16 F32 F16 F32 F16 F32 F16

alley 2 4.48 3.07 25.65 18.37 1.44 0.94 9.00 6.27 0.79 0.79 5.16 5.16

sleeping 1 1.48 1.05 19.09 13.63 0.54 0.38 7.07 4.95 0.28 0.27 3.66 3.52

cave 4 15.39 12.73 51.80 40.25 9.57 7.92 25.77 19.79 7.07 6.84 17.39 16.95

Average
all datasets

14.99 13.91 37.38 31.85 12.33 11.47 22.74 19.37 10.65 10.35 16.38 15.99

(b) MPI-Sintel sequences.

Table 2: Average Endpoint Error (AEPE) and Average Angular Error (AAE) compared to ground-truth of our

TV-L1 implementations on AGX at 2.5, 5 and 10 ms of execution time.

the F16 versions are faster than the F32 versions, more

iterations can be computed in the same time span.

Table 2a details both endpoint error and angular

error at the fixed time intervals of 2.5 ms, 5 ms and 10

ms of execution time. For nearly all the datasets, the

F16 is always better for both error metrics at each of

the three intervals. Before the convergence point that

occurs roughly at around 10 ms of execution time, we

can observe an average decrease of 20% concerning the

end-point error and a decrease of 37% for the angular

error at 2.5 ms of execution time. At 5 ms, the F16 ver-

sion has an end-point error 12% lower and an angular

error 19% lower on average. For some sequences such

as “Grove 2” or “Hydrangea”, the error is even lower

and reaches 50% for the 2.5 ms mark and 35% for the

5 ms mark.

Overall, the use of F16 on the Middlebury dataset

is beneficial as it performs more TV-L1 iterations in

the same time span as the F32 implementation. The

lower precision of F16 numbers is compensated and the

computed flow is as much as or more precise than when

using F32 numbers.

Optical flow algorithms optimized for speed, energy and accuracy on embedded GPUs 11

5 ms 10 ms 20 ms 40 ms

Implementation
Max

resolution
W

Max

resolution
W

Max

resolution
W

Max

resolution
W

OpenCV GPU (F32) 320× 320 23.8 616× 616 24.9 1000× 1000 26.2 1484× 1484 27.8

Best GPU F32 644× 644 23.2 962× 962 25.7 1416× 1416 28.1 2050× 2050 29.7
Best GPU F16 896× 896896× 896896× 896 24.9 1314× 13141314× 13141314× 1314 28.0 1984× 19841984× 19841984× 1984 31.6 2848× 28482848× 28482848× 2848 34.2

Table 3: Maximum frame resolution that can be computed in 5, 10, 20 and 40 ms depending on the TV-L1

implementation on the AGX. The TV-L1 configuration is a 3-scale, 1 warp per scale and 10 iterations per warp.

4.3.2 MPI-Sintel dataset

This dataset is composed of 23 sequences with asso-

ciated ground truth along with 12 testing sequences.

These sequences contain between 20 and 50 images of

resolution 1024×436 pixels. The computed flow is com-

pared with provided ground-truth flow for each consec-

utive pair of images for each sequences.

Figure 13a shows the impact of F16 precision on

the computed flow accuracy. Like for the Middlebury

database, the F16 versions have a lower average error

compared to the F32 versions for both the end-point

error and the angular error. This is less pronounced

in figure 13a since this dataset contains about 3 times

the number of sequences and more than 10 times the

number of frames per sequences.

As such, table 2a focuses on the 3 sequences with

the lowest average errors at the fixed time intervals of

2.5 ms, 5 ms and 10 ms of execution time. For these 3

sequences, the F16 versions have approximately a 30%

lower end-point and angular error compared to their

F32 counterparts. This is the case for times up to 5 ms.

After the convergence point at around 10 ms, both F16

and F32 versions present similar end-point and angu-

lar errors. On average, the F16 version present a 7%

lower end-point error and a 15% lower angular error
for both 2.5 ms and 5 ms of execution time. Some se-

quences feature greater and more complex movements

and increase both average error metrics for the entire

MPI-Sintel datasets. The F16 version still remains the

most accurate one compared to the F32 version for 2.5

ms and 5 ms of execution time.

4.4 Overall optimizations synthesis

Table 3 shows the maximum resolution and its associ-

ated required power that can be computed in 5, 10, 20

and 40 ms for the OpenCV TV-L1 reference version and

our best F32 and F16 implementations on the Jetson

AGX Xavier. Our optimizations enable the use of big-

ger images frames between 7.8× larger for the smallest

duration (5 ms) and 3.7× larger for the largest duration

(40 ms) while limiting the increase in power to 1.23×.

As shown before, F16 numbers are very efficient. Their

use reduces the optical flow errors compared to ground-

truth and increases the frames resolution compared to

F32 versions.

5 Conclusion

Designing a fast, low power and accurate implementa-

tion of TV-L1 algorithm for embedded GPUs is chal-

lenging. It needs many optimizations and trade-offs.

This article has shown that the proposed optimiza-

tions outperform the OpenCV reference by a factor of

×3.7. But the most important and counter-intuitive ex-

perimental result is that half-precision F16 computa-

tions, despite a smaller precision than F32 computa-

tions, and thank to a higher number of iterations, for

the same amount of time, provide more accurate results.

Finally, we are confident that this work can be

adapted to any iterative optical flow algorithms and

more generally, to many stencil-based algorithms.

Acknowledgement

This work has been partially funded by the Direction

Générale de l’Armement (DGA), French Ministry of

Armed Forces.

References

1. Adarve, J.D., Mahony, R.: A filter formulation for com-
puting real time optical flow. IEEE Journal of Robotics
and Automation Letters (RA-L) 1(2), 1192–1199 (2016)

2. Anger, J., Meinhardt-Llopis, E.: Implementation of local
Fourier burst accumulation for video deblurring. Image
Processing On Line 7, 56–64 (2017)

3. Aslani, S., Mahdavi-Nasab, H.: Optical flow based mov-
ing object detection and tracking for traffic surveillance.
International Journal of Electrical, Computer, Energetic,
Electronic and Communication Engineering 7(9), 1252–
1256 (2013)

4. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J.,
Szeliski, R.: A database and evaluation methodology for
optical flow. International Journal of Computer Vision
(IJCV) 92(1), 1–31 (2011)

5. Bao, L., Jin, H., Kim, B., Yang, Q.: A comparison of TV-
L1 optical flow solvers on GPU. GTC Posters 6 (2014)

6. Beretta, I., Rana, V., Akin, A., Nacci, A.A., Sciuto, D.,
Atienza, D.: Parallelizing the Chambolle algorithm for
performance-optimized mapping on FPGA devices. ACM
Transactions on Embedded Computing Systems (TECS)
15(3), 1–27 (2016)

7. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal
of Software Tools (2000)

8. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A nat-
uralistic open source movie for optical flow evaluation.
In: European conference on computer vision, pp. 611–
625. Springer (2012)

12 Thomas Romera et al.

9. Carreira, J., Zisserman, A.: Quo vadis, action recogni-
tion? a new model and the kinetics dataset. In: Proceed-
ings of the 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 6299–6308 (2017)

10. Champagnat, F., Plyer, A., Le Besnerais, G., Leclaire,
B., Davoust, S., Le Sant, Y.: Fast and accurate PIV com-
putation using highly parallel iterative correlation maxi-
mization. Experiments in fluids 50(4), 1169–1182 (2011)

11. Chao, H., Gu, Y., Napolitano, M.: A survey of opti-
cal flow techniques for robotics navigation applications.
Journal of Intelligent & Robotic Systems 73(1), 361–372
(2014)

12. d’Angelo, E., Paratte, J., Puy, G., Vandergheynst, P.:
Fast TV-L1 optical flow for interactivity. In: Proceedings
of the 18th IEEE International Conference on Image Pro-
cessing (ICIP), pp. 1885–1888 (2011)

13. Etiemble, D., Bouaziz, S., Lacassagne, L.: Customizing
16-bit floating point instructions on a NIOS II processor
for FPGA image and media processing. In: 3rd Workshop
on Embedded Systems for Real-Time Multimedia, 2005.,
pp. 61–66. IEEE (2005)

14. Feichtenhofer, C., Pinz, A., Wildes, R.P.: Spatiotempo-
ral multiplier networks for video action recognition. In:
Proceedings of the 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4768–4777
(2017)

15. Garcia, P., Bhowmik, D., Stewart, R., Michaelson, G.,
Wallace, A.: Optimized memory allocation and power
minimization for FPGA-based image processing. Jour-
nal of Imaging 5(1), 7 (2019)

16. Haggui, O., Tadonki, C., Sayadi, F., Ouni, B.: Efficient
GPU implementation of Lucas-Kanade through Ope-
nACC. In: VISIGRAPP (5: VISAPP), pp. 768–775
(2019)

17. Haggui, O., Tadonki, C., Sayadi, F., Ouni, B.: Memory
efficient deployment of an optical flow algorithm on GPU
using OpenMP. In: International Conference on Image
Analysis and Processing, pp. 477–487. Springer (2019)

18. Horn, B.K., Schunck, B.G.: Determining optical flow.
Journal of Artificial Intelligence (AIJ) 17(1-3), 185–203
(1981)

19. Hui, T.W., Loy, C.C.: LiteFlowNet3: Resolving corre-
spondence ambiguity for more accurate optical flow esti-
mation. In: Proceedings of the 2020 European Conference
on Computer Vision (ECCV), pp. 169–184 (2020)

20. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy,
A., Brox, T.: Flownet 2.0: Evolution of optical flow es-
timation with deep networks. In: Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2462–2470 (2017)

21. Kale, K., Pawar, S., Dhulekar, P.: Moving object tracking
using optical flow and motion vector estimation. In: 2015
4th international conference on reliability, infocom tech-
nologies and optimization (ICRITO)(trends and future
directions), pp. 1–6. IEEE (2015)

22. Lacassagne, L., Etiemble, D., Hassan Zahraee, A.,
Dominguez, A., Vezolle, P.: High level transforms for
SIMD and low-level computer vision algorithms. In: Pro-
ceedings of the 2014 Workshop on Programming mod-
els for SIMD/Vector processing (WPMVP), pp. 49–56
(2014)

23. Lazcano, V., Rivera, F.: GPU based Horn-Schunck
method to estimate optical flow and occlusion. In: In-
ternational Conference on Theory and Applications of
Models of Computation, pp. 424–437. Springer (2019)

24. Lin, F., Fookes, C., Chandran, V., Sridharan, S.: Investi-
gation into optical flow super-resolution for surveillance

applications. In: WDIC 2005: APRS Workshop on Digi-
tal Image Computing: Workshop Proceedings, pp. 73–78.
University of QLD (2005)

25. Lin, J., Gan, C., Han, S.: Tsm: Temporal shift module
for efficient video understanding. In: Proceedings of the
2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 7083–7093 (2019)

26. Lucas, B.D., Kanade, T., et al.: An iterative image reg-
istration technique with an application to stereo vision.
In: Proceedings of the 7th International Joint Conference
on Artificial Intelligence (IJCAI) (1981)

27. Newcombe, R.A., Davison, A.J.: Live dense reconstruc-
tion with a single moving camera. In: Proceedings of the
2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1498–1505
(2010)

28. Pérez, J.S., Meinhardt-Llopis, E., Facciolo, G.: TV-L1
optical flow estimation. Image Processing On Line
(IPOL) 3, 137–150 (2013)

29. Petreto, A.: Débruitage vidéo temps réel pour systèmes
embarqués. Ph.D. thesis, Sorbonne université (2020)

30. Petreto, A., Hennequin, A., Koehler, T., Romera, T.,
Fargeix, Y., Gaillard, B., Bouyer, M., Meunier, Q.L., La-
cassagne, L.: Energy and execution time comparison of
optical flow algorithms on SIMD and GPU architectures.
In: Proceedings of the 2018 Conference on Design and
Architectures for Signal and Image Processing (DASIP),
pp. 25–30 (2018)

31. Petreto, A., Romera, T., Lemaitre, F., Masliah, I., Gail-
lard, B., Bouyer, M., Meunier, Q.L., Lacassagne, L.: A
new real-time embedded video denoising algorithm. In:
Proceedings of the 2019 Conference on Design and Archi-
tectures for Signal and Image Processing (DASIP), pp.
47–52 (2019)

32. Piskorski, S., Lacassagne, L., Bouaziz, S., Etiemble, D.:
Customizing CPU instructions for embedded vision sys-
tems. In: Computer Architecture, Machine Perception
and Sensors (CAMPS), pp. 59–64. IEEE (2006)

33. Plyer, A., Le Besnerais, G., Champagnat, F.: Massively
parallel Lucas Kanade optical flow for real-time video
processing applications. Journal of Real-Time Image Pro-
cessing (JRTIP) 11(4), 713–730 (2016)

34. Romera, T., Petreto, A., Lemaitre, F., Bouyer, M., Meu-
nier, Q., Lacassagne, L.: Implementations impact on iter-
ative image processing for embedded GPU. In: 2021 29th
European Signal Processing Conference (EUSIPCO), pp.
736–740. IEEE (2021)

35. Seznec, M., Gac, N., Orieux, F., Naik, A.S.: Real-time
optical flow processing on embedded gpu: an hardware-
aware algorithm to implementation strategy. Journal of
Real-Time Image Processing 19(2), 317–329 (2022)

36. Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D.:
An improved algorithm for TV-L1 optical flow. In: Statis-
tical and geometrical approaches to visual motion analy-
sis, pp. 23–45. Springer (2009)

37. Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cre-
mers, D., Bischof, H.: Anisotropic Huber-L1 optical flow.
In: BMVC, vol. 1, p. 3 (2009)

38. Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video
enhancement with task-oriented flow. International Jour-
nal of Computer Vision (IJCV) 127(8), 1106–1125 (2019)

39. Yang, G., Ramanan, D.: Volumetric correspondence net-
works for optical flow. NeurIPS 5, 12 (2019)

40. Zach, C., Pock, T., Bischof, H.: A duality based approach
for realtime TV-L1 optical flow. In: Proceedings of the
29th DAGM Conference on Pattern Recognition (DAGM
GCPR), pp. 214–223 (2007)

