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Abstract

Brain segmentation from neonatal MRI images is a very challenging task due to large

changes in the shape of cerebral structures and variations in signal intensities reflecting

the gestational process. In this context, there is a clear need for segmentation techniques

that are robust to variations in image contrast and to the spatial configuration of anatom-

ical structures. In this work, we evaluate the potential of synthetic learning, a contrast-

independent model trained using synthetic images generated from the ground truth

labels of very few subjects. We base our experiments on the dataset released by the

developmental Human Connectome Project, for which high-quality images are available

for more than 700 babies aged between 26 and 45 weeks postconception. First, we con-

firm the impressive performance of a standard UNet trained on a few volumes, but also

confirm that such models learn intensity-related features specific to the training domain.

We then confirm the robustness of the synthetic learning approach to variations in image

contrast. However, we observe a clear influence of the age of the baby on the predic-

tions. We improve the performance of this model by enriching the synthetic training set

with realistic motion artifacts and over-segmentation of the white matter. Based on

extensive visual assessment, we argue that the better performance of the model trained

on real T2w data may be due to systematic errors in the ground truth. We propose an

original experiment allowing us to show that learning from real data will reproduce any

systematic bias affecting the training set, while synthetic models can avoid this limitation.

Overall, our experiments confirm that synthetic learning is an effective solution for seg-

menting neonatal brain MRI. Our adapted synthetic learning approach combines key fea-

tures that will be instrumental for large multisite studies and clinical applications.
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1 | INTRODUCTION

1.1 | Context

Automated segmentation of perinatal brain MRI remains a challenging

task due to massive changes in the global shape of the brain and large

variations in image intensity reflecting the rapid tissue maturation that

occurs around birth Kostovi�c et al. (2019). Several segmentation

methods specifically designed for increased robustness to these fac-

tors such as multi-atlas label fusion techniques have been proposed

Makropoulos et al. (2014), Gholipour et al. (2012), Benkarim et al.

(2017), Makropoulos, Counsell, and Rueckert (2018), and Li
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et al. (2019). Those methods have been applied to large open datasets

like the developing Human Connectome Project (dHCP) Makropoulos,

Robinson, et al. (2018) enabling a better characterization of early brain

development Edwards et al. (2022) and Dimitrova et al. (2021).

More recently, supervised deep-learning techniques have been

introduced as the next generation of segmentation techniques in

medical images, showing higher performances and lower computing

time than previous approaches. In particular, the UNet architecture

Ronneberger et al. (2015) outperformed previous approaches in many

different challenges Isensee et al. (2021). Nevertheless, a well-known

limitation of supervised learning methods is their strong reduction in

performances when applied to unseen data Karani et al. (2018). This

“domain-gap” problem has been identified as a major bottleneck in

the field Pan and Yang (2010) and Zhou et al. (2022) and an extensive

body of literature investigated potential solutions and reported vari-

ous gains in robustness, depending on the context. While our focus is

not to review this large literature, we summarize the main approaches

in order to better situate our strategy in the context of perinatal brain

MRI segmentation.

A common approach consists in augmenting the training set with

synthetic perturbations that explicitly control for the deviation from

the initial training dataset Ilse et al. (2021). An obvious advantage is

that it avoids the costly solution of getting more training data. In the

context of brain development, two aspects of data augmentation cor-

responding to the two key challenges pointed above can be distin-

guished: (1) spatial augmentation to account for variations in the

spatial arrangement of the different tissues and in the shape of spe-

cific anatomical structures (e.g., increase in cortical folding with age);

(2) style (or appearance) augmentation to account for changes in tissue

contrast, which can be induced either by variations in the acquisition

settings or scanner or by variations related to brain maturation.

The design of those synthetic augmentations can either rely on a

physics-based (i.e., with a direct analytic model) or a learning-based

generative model. Examples of physics-based augmentation strategies

combine random affine or nonlinear deformations for spatial augmen-

tation and random gamma perturbations for intensity augmentation

Zhang et al. (2020) and Pérez-García et al. (2021). The efficiency of

this type of approach has been demonstrated in an intra-modality

context Zhao et al. (2019), Zhang et al. (2020), and Isensee et al.

(2021), but it is less efficient for cross-modality Karani et al. (2018).

The learning-based augmentation techniques are often referred to as

“domain adaptation.” The recent works in this field have focused on

the design of unsupervised learning approaches aiming at generating

realistic synthetic training sets without requiring manually labeled data

in the target external domain. Such techniques either learn a latent

space that is common to the original domain where ground truth

labels are available and to the target external domain Kamnitsas et al.

(2017), Ganin et al. (2017), and Tomar et al. (2022) or learn a direct

image-to-image translation Zhang et al. (2018). These two approaches

are combined in Chen et al. (2019). The use of adversarial generative

models for domain adaptation has also been considered in Chartsias

et al. (2018).

Another key feature of synthetic augmentation techniques is the

capacity to train these models using very few manually labeled train-

ing data. Indeed, one-shot learning studies propose to reduce the

training data to only one template image with corresponding ground

truth labels Tomar et al. (2022) and Zhao et al. (2019). All those

methods alleviate the need for time-consuming and expertise-

demanding ground truth segmentation in the target domain since the

training of the domain transfer model requires a pool of unlabeled

data representative of the target domain. The major drawback of the

learning-based approaches is the need to train a new model for any

new domain. Of note, the very recent work Ouyang et al. (2022) pro-

poses to leverage this limitation by generating a wide range of con-

trasts from a single domain dataset using augmentation techniques

inspired by the different acquisition processes.

Recently, Billot et al. introduced a method called SynthSeg Billot

et al. (2023, 2020) that does not rely on any real MRI data during the

training process. We refer to this type of model as “synthesis-based.”
The key is to avoid the potential bias toward the domain of the train-

ing set by introducing a framework allowing to train the models with-

out any real imaging data. A fully synthetic training dataset is

generated from a set of real labels maps using physics-based genera-

tive models of the correspondence between label maps geometry and

underlying intensity distributions. Under the assumption of homoge-

neous tissues, the image signal is sampled from a Gaussian distribution

with different mean and variance for each tissue (MR data are indeed

a mixture of Gaussian intensities). The generated signal is then

enriched with additional commonly used random transformations (bias

field, gaussian noise, and spatial deformation).

The approach proposed by Billot et al. is based on the “domain

randomization” concept Tobin et al. (2017) and Tremblay et al. (2018),

which postulates that the variations across real data from different

domains need to be encompassed within the distribution of the gen-

erated synthetic data. Therefore, the setting of the parameters in the

generative process is key, and the design of the transforms has to

generate large enough variations, without strong constraint on their

biological relevance. More specifically in the context of the present

work, robustness to variations in image intensity distributions can be

favored by randomly sampling the mean and variance of the gener-

ated signal; while the robustness to variations in brain size and cortical

folding magnitude can be induced by tuning the random deformations.

In Billot et al. (2023, 2022), the authors validated their approach on

highly heterogeneous data acquired on adults using various settings

from clinical practice, demonstrating impressive robustness to chal-

lenging variations in image contrast and resolution. They reported

higher segmentation accuracy and robustness compared to other

methods of domain adaptation. In addition, the authors of Billot et al.

(2023) investigated the influence of the size of the training set on the

performances of SynthSeg and reported that only a few training

examples are sufficient to converge towards its maximum accuracy on

a population of adults. In the present work, we assess whether these

conceptually appealing features and impressive results on the adult

population extend to the context of neonatal brain MRI segmentation.
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1.2 | Contributions

Our work focuses on a comprehensive analysis of synthetic learning

approaches for segmenting neonatal brain MRI data. To this end, we

first reimplemented the SynthSeg model Billot et al. (2023) within the

Pytorch framework relying on the torchio transformations Pérez-Gar-

cía et al. (2021). In contrast to Billot et al. (2023) who demonstrated

the robustness of SynthSeg to variations in image resolution and con-

trast on a very large clinical dataset, we focus here on the potential

advantages when applied to perinatal brain MRI, in comparison to a

classical UNet trained on real T2w data using a few shot learning

strategy. Since the SynthSeg model did not perform as well as

expected on neonatal brain MRI data, we propose two solutions to

address its limitations, yielding better performances: adding simulated

motion augmentation or subdividing the WM tissue into several sub-

compartments.

Using our improved synthesis-based model, we then confirm the

robustness of the predictions to variations in the contrast of

the images, with very consistent predictions from either T1w or T2w

images from the same subjects. We also demonstrate another key

advantage of the synthetic learning approach that has not been

highlighted in previous publications: the synthesis-based models learn

an unbiased correspondence between the geometry of the labels and

image intensities. To quantitatively support this feature, we propose

an original experiment in which we assess the influence of variations

in the design of the ground truth on the performance. To that aim, we

build a second type of ground truth from the same dataset, and

we report a much lower influence of the definition of the ground truth

on the predictions from the synthesis-based models, compared to a

model learned on real MRI data, which reproduces any systematic bias

from the ground truth.

The quantitative evaluations are complemented with a careful

visual assessment of the predictions and ground truth. This allows us

to better interpret our results, but also to report and discuss the limi-

tations of the dHCP data and segmentation.

2 | MATERIALS AND METHODS

2.1 | Neonatal MRI data and ground truth
segmentation

In this work, we evaluate the performance of the SynthSeg

approach Billot et al. (2023) on neonatal data using the third release

of the publicly available developing Human Connectome Project

(dHCP) dataset (http://www.developingconnectome.org/) Edwards

et al. (2022). The dHCP dataset contains high-quality anatomical

MRI scans of 885 neonates (age range from 26 to 45 weeks post-

conception) acquired with both T1-weighted (T1w) and

T2-weighted (T2w) sequences with a 0.5 mm isotropic resolution on

a 3T Philips scanner (see Edwards et al. (2022) for further informa-

tion about acquisitions).

2.1.1 | Ground truth based on volumetric
segmentation: GT_drawEM

We first used the segmentation in nine tissues provided by the dHCP

consortium Makropoulos, Robinson, et al. (2018) (CSF [cerebrospinal

fluid], GM [cortical gray matter], WM [White matter], Background,

Ventricles, Cereb [cerebellum], deepGM [deep gray matter], Bstem

[brainstem], HipAmy [hippocampi + amygdala]). The segmentation is

based on the multi-atlas method drawEM Makropoulos et al. (2014)

applied to the T2w data. As mentioned by the authors, drawEM is

very robust and efficient in most cases but may fail to capture the

highly complex shape of the cortical geometry. Extensive quality con-

trol was performed prior to the first release of the data, but localized

inaccuracies remain. For instance, the authors reported that entire

folds may be excluded from the automatic segmentation in 2% of

cases. As a consequence, it is important to remind throughout this

study (and other works focusing on segmentation using this dataset)

that the segmentations provided should be considered as pseudo

ground truth, although the term “ground truth” is used for simplicity.

In this work, we merged the CSF and Ventricle labels into a single

class (only for the evaluation) in order to avoid potential perturbations

in the performance related to the tedious delineation between these

two labels with similar intensity distributions. We refer to

these ground truth segmentation maps as GT_drawEM.

2.1.2 | Ground truth based on surface
reconstruction: GT_surf

We derived a second type of ground truth from the same images,

based on the internal (white) and external (pial) cortical boundaries,

represented as surfaces. Both surfaces are provided by the dHCP and

are computed using the surface deformation tool introduced in Schuh

et al. (2017). Briefly, white-matter (internal) surface extraction is per-

formed by fitting a closed, genus-0, triangulated surface mesh onto

the segmentation boundary under constraints incorporating intensity

information from the T2w, as well as controlling for surface topology

and smoothness. The external (pial) surface is then obtained by

deforming the internal surface outwards in order to fit the tissue

boundaries Makropoulos, Robinson, et al. (2018) and Schuh et al.

(2017). From these internal and external surfaces surrounding the cor-

tical tissue, we compute partial volume maps of the GM on the same

3D voxel grid as the T2w volume using a surface-based approach Kirk

et al. (2020). We then obtain a binary segmentation of the GM by

applying a threshold of 0.5. Finally, this different segmentation map

for the GM is incorporated into the DrawEM label maps by replacing

the original GM label and propagating the adjacent labels to preserve

their topology. Compared to the original segmentation maps GT_dra-

wEM, all the structures remain identical except WM, GM, and CSF.

We denote this second segmentation map as GT_surf.

We illustrate these two types of ground truth segmentation maps

in Figure 1, with a plot showing the GM volume ratio (GT_drawEM/
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GT_surf) by subject, ordered by age. While the differences might look

subtle visually on a single slice, we measured an average 25% increase

of GM volume in the GT_drawEM compared to GT_surf. This ratio is

not influenced by the age of the baby. In this study, we use these two

different, but both anatomically plausible, pseudo-ground truths to

assess the influence of the definition of the segmentation map on the

predictions of the models.

2.1.3 | Head label

The background label from drawEM maps contains only a thin layer

surrounding the CSF, as the segmentations are computed on a brain-

masked volume Makropoulos, Robinson, et al. (2018). Using only these

labels for the generative process would limit the application to segment

only skull-stripped data. We add other head tissue labels using the

MIDA template Iacono et al. (2015), which contains 153 labels seg-

mented from an adult MRI. We extract the extra-brain labels, which we

grouped into nine classes (dura mater, air, eyes, mucosa, muscle, nerves,

skin, skull, and vessel) plus the background. These labels are combined

with the nine labels of the drawem9_dseg volume after registering the

MIDA template to each subject using the FIRST method from FSL Jen-

kinson and Smith (2001) for the affine part, and reg_f3d from NiftyReg

Modat et al. (2010) for the nonlinear part. We perform the label fusion

to keep the original labels within the brain unchanged, and missing vox-

els outside the brain are set to air tissue. All these labels were used for

the synthetic data generation but were then grouped into a single class

(head) for the target objective.

2.2 | Generative model

The key idea of the SynthSeg approach proposed in Billot et al. (2023)

consists in generating the entire training set as synthetic images from

3D segmentation labels, meaning that no real image is used for train-

ing. This is based on the assumption that the MR signal is

homogeneous within each label. We implemented different trans-

forms for simulating variations in tissue intensity, shape variability,

and MRI artifacts (bias and noise) using a generative model detailed

below. We further enriched the generative model from Billot et al.

(2023) by adding simulated motion artifacts and white matter inhomo-

geneity. The generative model was implemented using PyTorch and

TorchIO Pérez-García et al. (2021).

2.2.1 | Random contrast

The first step consists in generating an MRI volume from the label set

by sampling the intensity of the voxels of each tissue from different

Gaussian distributions, resulting in a synthetic MRI with a random con-

trast. The mean and the standard deviation of the Gaussian distribution

of each tissue are sampled independently from uniform distributions U

[0,1] and U[0.02, 0.1], respectively as in Billot et al. (2023) (U[a, b] is

the uniform distribution in the interval [a, b]). We implemented this

process within TorchIO with the RandomLabelsToImage transform.

2.2.2 | Shape variability

To generate synthetic MRIs with variations in brain anatomy from a

limited number of subjects, we apply affine and nonlinear deforma-

tions to the label set with nearest-neighbors interpolation. We use a

composition of the following transforms from TorchIO: RandomAffine

(scaling factor U[0.9, 1.1] rotation U[�20�, 20�], translation U

[�10 mm, 10 mm]), and RandomElasticDeformation (12 control points

and a max displacement of 8 mm).

2.2.3 | MRI artifacts

We further augment the synthetic dataset by adding an intensity bias

field and a global Gaussian noise. We use RandomBiasField, which

(a) (b) (c) (d)

F IGURE 1 Illustration of the two different ground truths used in our study. We overlay in red and green the internal and external GM
surfaces resp. (a) Original T2w; (b) label map from GT_drawEM; (c) label map from GT_surf; and (d) volume of GM from GT_drawEM divided by
the volume of GM from GT_surf for each subject, ordered by age. The black line represents the mean value of 1.25, illustrating a 25% increase of
GM volume in GT_drawEM compared to GT_surf.
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simulates spatial intensity inhomogeneity with a polynomial function

of order 3 and a maximum magnitude of 0.5, and RandomNoise which

add a Gaussian random noise with 0 mean and a standard deviation

sampled from U[5e � 3, 0.1].

2.2.4 | Motion simulation (Mot)

We then extend the data augmentation beyond Billot et al. (2023) by

adding a RandomMotion transform to simulate subject motion dur-

ing the MRI acquisition. We use our own implementation of the

motion simulation introduced in Reguig et al. (2022), which allows us

to simulate a realistic time course of rigid head motion. As shown in

Figure 2, the motion simulation induces inhomogeneities in the dif-

ferent tissues because of the tissue mixing in the k-space induced by

motion. We use a maximum displacement sampled from U[3, 8]

(in mm) for the translation and U[3, 8] (degrees) for the rotation.

Note that we force the background signal intensity to zero when

generating motion artifacts to avoid mixing background intensity

with the motion process.

2.2.5 | White matter inhomogeneities (Inh)

Inhomogeneities in the WM tissue are expected during the develop-

mental period covered, and are visible in the MRI data. We adapted

the method proposed by Billot Billot et al. (2023) to account for such

variations within a label: we subdivide WM into smaller sub-regions

by clustering the T2w intensities, within the WM mask, using the

Expectation Maximization algorithm Dempster et al. (1977). We

choose N regions (N⊆ 2,3,4,5,6½ �) in order to represent the inhomo-

geneities with different levels of granularity. Each subregion is then

considered as a distinct tissue in the generative model (thus with a dif-

ferent random intensity) but they are regrouped for the segmentation

objective in order to predict the whole WM. (see Figure 2c). Note that

the term “transform” is used for simplicity but is not adapted here

since it is only a fixed modification of the input labels. Note also that

the subdivision of the white matter affects only the labels (not the

image) used for generating the training set. The predicted labels are

kept identical (i.e., the whole white matter). The subdivision is not

used during the evaluation since the evaluation is based on real data.

Finally, an intensity normalization is performed to scale the min

and max signal intensity between 0 and 1 for each synthetically gener-

ated dataset. This generative model is used to produce synthetic train-

ing sets based on the same ground truth segmentation maps for the

following four synthesis-based models:

Synth: SynthSeg method (same as Billot) with the following aug-

mentation: random contrast, shape variability (affine and non-

linear) and MRI artifacts (intensity Bias and noise).

SynthMot: Synth enriched with motion simulation with a proba-

bility of .5.

SynthInh: Synth with extra labels within the white matter to sim-

ulate inhomogeneities (with a probability of .5).

SynthMotInh: Synth with a combination of both WM inhomoge-

neities and simulated motion augmentations with a probability of

.5 each.

DataT2 (baseline): The performance of the four models based on

synthetic training sets are compared with a baseline model

defined as a UNet trained on real dHCP T2w acquisitions from

the same 15 subjects. We apply the same data augmentation as

for the synthesis-based models except for random contrast and

Motion. We also add a random gamma augmentation to simulate

slight variations in the intensity distribution.

2.3 | Training and backbone architecture of the
models

2.3.1 | Training and testing sets

The final sample of data used in this work was composed by selecting

the images from the 709 scanning sessions of the dHCP with both

T1w and T2w available among the 885 scanning sessions. Five were

excluded due to failure to generate the GT_surf ground truth segmen-

tation maps. Among the 176 sessions for which only the T2w was

available (without the T1w acquisition), we selected 15 sessions uni-

formly distributed across the entire age range to generate the

(a) (b) (c)

F IGURE 2 Illustration of the synthetic datasets obtained from one individual data. (a) The T1w and T2w MRI data from this subject; (b) and
(c) show respectively the two different label maps (in color) used as input of the generative model (without and with additional labels in the WM
to simulate inhomogeneities). For each label map, we show an illustrative example of augmented synthetic images, corresponding to the four
synthesis-based models. Green arrows indicate subtle artifacts induced by motion simulation.
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synthetic training sets for the models. In total, the data from 719 sub-

jects from the dHCP data were used in this study: 15 for the training

set and 704 subjects for the test set. We used the unprocessed T1w

and T2w (no brain mask or bias field correction).

2.3.2 | Network architecture

The network architecture used for all methods was the well-

established 3D UNet architecture Ronneberger et al. (2015) with

residual skip connections. We used five levels, each separated

with either a max-pooling for the encoder path or an upsampling

operation for the decoder part. All levels contained three convolution

layers, with 3�3�3 kernels. Every convolutional layer was followed by

a batch normalization, a ReLu activation function, and a 10% dropout

layer, except for the last one, which was only followed by a softmax.

The first block contained 24 feature maps and this number was dou-

bled after each max-pooling and halved after each upsampling. This

led to a total of 21.6 million parameters.

2.3.3 | Training

All the models were trained with patches of size 1283. For each gen-

erated volume, we randomly selected eight patches, sampled from a

uniform distribution with the same probability of containing each

structure. All models were trained with the average dice loss. Note

that thanks to the fully convolutional nature of the UNet architecture,

the inference was performed on the entire volume at native resolu-

tion. We used a batch size of 4 and the Adam optimizer with a learn-

ing rate of 1e�4. The training was stopped after 240,000 iterations.

The training of each model took 6 days on an NVIDIA tesla V100 GPU

(http://www.idris.fr/).

2.4 | Quantitative measures and qualitative
evaluation

We report the binary dice, which is commonly used for segmentation

evaluation, defined as dice¼1�2� X�Yð Þ= X2þY2
� �

, where X is the

binary prediction of a given tissue and Y is the ground truth label

(already binarized). We also computed the average surface distance

from MONAI Cardoso et al. (2022), but do not report this measure

since it is fully consistent with the dice score. We report the distribu-

tion of the dice score across individuals separately for the different

labels, as well as the distribution of the average of the dice across all

labels. In order to assess the potential effect of the age of the babies

on the predictions, we also report the distribution of the dice aver-

aged over all structures computed in four age groups: 29 subjects in

[26, 32]; 96 in [32, 36]; 183 in [36, 40]; 394 in [40, 45]. To assess the

robustness of the prediction to changes in image contrast, we com-

puted for each tissue type the Pearson correlation between the vol-

umes obtained from the predicted segmentation from either the T1w

or T2w images, across the 704 subjects of the test set. An ideal, fully

contrast-independent segmentation technique would produce almost

identical segmentations from either T1w and T2w images and thus

get a correlation value close to 1.

Visual assessment is critical to complement quantitative measures

and better interpret the results of segmentation tools but is time-

consuming and expertise-demanding. As a tradeoff, we focused our

visual assessment on the GM, which is the most challenging anatomi-

cal structure to segment, and thus appropriate for assessing the varia-

tions in performances across the methods. We describe and illustrate

our observations in combination with the quantitative measures for

each of our experiments in the next section.

3 | EXPERIMENTS AND RESULTS

We designed three different experiments in order to address the fol-

lowing questions: (1) What are the performances of SynthSeg and our

enriched versions compared to training on real data? (2) Is the high

robustness with respect to variations in image contrast reported in

Billot et al. (2023) confirmed on neonatal MRI data? (3) How do varia-

tions in the definition of the ground truth segmentation maps affect

the performances? For each experiment, we provide both quantitative

and qualitative assessments allowing us to interpret potential varia-

tions in the performances across the models. This extensive visual

assessment enabled us to identify different types of limitations in the

segmentation provided by the dHCP. We report in Section 3.4 our

observations that we believe are important for future studies on this

widely used dataset.

3.1 | Experiment #1: Evaluation of synthesis-based
approaches on dHCP T2w dataset

The aim of this experiment was to assess the performances of

synthesis-based methods on neonatal brain MRI data and compare

them to a learning strategy on real data in the absence of domain shift

and with high-quality data. To this end, we used the following experi-

mental setup:

• Training set: 15 subjects, ground truth = GT_DrawEM, data used

for DataT2: T2w

• Testing set: 704 subjects, ground truth = GT_DrawEM, prediction

for all methods on T2w

As can be seen in all of the plots of Figure 3, the performance of

the methods are ranked in a consistent order across all structures and

across age groups. DataT2 is performing best with an average dice of

96. The performance of the Synth model proposed by Billot et al.

(2023) is lower than the DataT2 model by 9 dice points on average

(87). The differences are smaller for WM/bstem/cereb/deepGM, but

larger for GM, Hip-Amy and CSF + ventricle. Adding the motion aug-

mentation greatly improves the performance, for all structures and
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age ranges. The difference between the SynthMot model and the

DataT2 model is reduced by a factor of 2 for all structures, with an

average dice of 92. Adding white matter inhomogeneity in the

SynthInh model is also beneficial compared to the Synth, but the gain

is mitigated: we observed an improvement for GM but not for Cereb

DeepGM and Bsteam. On the other hand the SynthMotInh model

with both, motion and WM inhomogeneity, performs best (after

DataT2) with a slight improvement compared to SynthMot.

Regarding the effect of age, we observe a drop in performance

for all methods for the younger group (below 32 weeks). While the

performance loss for DataT2 is limited, the Synth model shows

the largest decrease in performance related to age, with a drop of nine

points. Adding motion augmentation and white matter inhomogenei-

ties in SynthMotInh clearly mitigated this drop in the performance of

the synthesis-based approach. The visual assessment showed that

results are very consistent among subjects, with noticeable differ-

ences across methods on the first age bin. As illustrated in Panel (c) of

Figure 3, the predicted GM from the Synth model shows large errors

with shifts of the GM prediction within the WM for the younger sub-

jects. Those errors are largely fixed with the enriched synthesis-based

models (SynthInh/SynthMot/SynthMotInh). We observe the same

trend for older subjects but with different types of errors. The lower

dice scores compared to DataT2 are mainly due to subtle errors along

the boundary between GM and WM or CSF. Careful visual inspection

showed that the SynthMotInh prediction better follows image con-

trast than the GT_drawEM. Overall, our observations are:

• DataT2 is highly accurate at every age even when trained on only

15 subjects.

• Synth does not perform well, especially on younger subjects, with

large regions of GM shifted within the WM.

• The enriched synthesis-based models enable to fix most of the

errors but local errors still occur especially for the younger

subjects.

(a) (b)

(c)

F IGURE 3 (a) Distribution across the 704 subjects of the test set of the dice score for each structure, for the five models. (b) Distribution of
the dice averaged across all structures, computed in four age groups: 29 subjects in [26, 32]; 96 in [32, 36]; 183 in [36, 40]; 394 in [40 45].
(c) Illustrations of the predicted GM for two subjects with different cortical folding magnitudes related to their age: sub-CC00657XX14
(30 weeks) and sub-CC00570XX10 (36 weeks). The numbers correspond to the dice score computed for the slice shown. Ground truth label
(GT_drawEM) is shown in green, and the predictions in red. Red arrows indicate local errors in the predictions.
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• For older subjects, the predictions from SynthMotInh are visually

accurate and better follow the underlying image contrast than the

GT_drawEM.

• DataT2 does not make any obvious error (except for one subject),

it reproduces the same tissue boundary as the ground truth and

seems more robust to image noise than GT_drawEM. We further

examine the anatomical relevance of the predictions relative to

GT_drawEM in Section 3.4 below.

3.2 | Experiment #2: Robustness to variations in
image contrast

In the second experiment, we used the same trained model and chan-

ged the evaluation. Our aim was to assess the robustness of the

models with respect to variations in the contrast of the image of

the test set relative to the training set. We took the T1w image from

the same individuals as an extreme change in image contrast relative

to the T2w. Challenging models by predicting from both T1w and

T2w images from the same individual serves as an extreme example

of generalization. A model that is robust to changes in contrast

between T1w and T2w will also be robust to more subtle variations in

acquisition settings such as TE, TR, coil, field strength. We used the

following experimental setup:

• Training set: same as Exp. #1 (15 subjects, ground

truth = GT_DrawEM, data used for DataT2: T2w)

• Testing set: 704 subjects, ground truth = GT_DrawEM, prediction

for all methods on T1w.

We show on Figure 4 detailed results for the best synthesis-

based model from Exp. #1 SynthMotInh and report the results for all

the methods in a Supporting Information csv file1. All panels show

that DataT2, as expected, failed to predict on T1w inputs, with an

average dice below 10. The histograms within the GM shown on

Panel (e) confirm that the dataT2 model learned the correspondence

between the labels and the intensity distribution: the predicted GM

from the T1w image (in blue) corresponds to voxels that have the

same intensity range as the intensity in the GM from T2w image. On

the contrary, the SynthMotInh model gives very consistent segmenta-

tions from both T2w and T1w inputs. Indeed, the intensity distribu-

tions within the predicted GM from T1w and T2w images are very

different and match the ground truth distribution well in both cases.

Panel (b) shows the strong linear correlation between the volumes of

the GM obtained from the SynthMotInh predictions from the T1w

and T2w images across the 704 subjects of the test set. The Pearson

correlation is above .99. This plot also shows a slight deviation of the

data compared to y = x, indicative of a slightly larger estimated GM

volume on T1w compared to T2w (5% on average).

The visual assessment was critical for this experiment, as illus-

trated in Panel (c). First, we observe that the Synth model suffers from

the same limitations as in Exp. #1. Regarding the SynthMotInh model,

we observe that the predictions on T1w are visually as good as the

one from T2w, which is consistent with the high correlation shown on

Panel (b), but inconsistent with the drop of four points of dice

on average across all structures shown on Panel (a). More specifically,

robustness is excellent for DeepGM, Bstem, Cereb, and Hip-Amy. The

dice is, however, lower for GM, WM, and CSF + Ventricle.

Careful visual assessment enabled us to observe that the dis-

agreement between prediction and GT is mostly due to residual misre-

gistration between T1w and T2w images from the dHCP dataset. This

is visible on Panel (c) for SynthMotInh, with a slight shift in the loca-

tion of GM especially in the left posterior region of the brain. The

impact of such residual misregistration on the dice scores is stronger

for external tissues (GM, WM, and CSF + ventricles) than for deep

structures, as observed in Panel (a). We report further observations

regarding the impact of misregistration on our evaluation in

Section 3.4. Overall, our observations are:

• The DataT2 model cannot generalize to other contrasts;

• The synthesis-based models perform equally well on both modali-

ties; and

• Remaining differences in dice are mostly due to misregistration

between T1w and T2w and not to segmentation errors.

3.3 | Experiment #3: Influence of the definition of
the ground truth

Supervised methods are capable of learning the relationship between

image intensities and the segmentation map. Many studies have docu-

mented the ability of these models to learn very specific features that

depend on the training data, leading to the well-known problem of

lack of generalization to unseen data. Another critical aspect of super-

vised training on real data is the potential influence of the definition

of the ground truth segmentation itself. Indeed, systematic biases pre-

sent in the ground truth segmentation maps will be learnt.

The aim of this experiment was to assess the influence of the def-

inition of the ground truth on the performance of the models. We

computed another ground truth for the GM derived from the cortical

surfaces GT_surf, as explained in Section 2.1.2. We rerun the same

experiments with this new ground truth for two models only: SyntMo-

tInh and DataT2. We used the following experimental setup:

• Training and testing #1: ground truth = GT_DrawEM, prediction

on T2w compared to GT_DrawEM (same as Exp. #1);

• Training and testing #2: ground truth = GT_Surf, prediction on

T2w compared to GT_Surf; and

• The influence of the change in the ground truth is assessed by

comparing the predictions from the two training sessions.

The results from this experiment for the GM are reported on

Figure 5. The first observation is the clear impact of the ground truth

on the performance of the models. We observe a drop of 2 points for1https://github.com/romainVala/Synthetic_learning_on_dHCP
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DataT2 when using GT_surf instead of GT_DrawEM (from 95 to 93).

The drop is even larger for the SynthMotInh model: 6 points (from

92 to 86). The last column (drawEM/surf) shows the consistency

between the predictions from the two training sessions, as well as the

dice between the two ground truths. For the DataT2 model, we

observe a dice of 88, which is very close to the dice between the two

ground truths. The very high dice values for each ground truth com-

bined with the consistency value similar to the dice between the two

ground truths confirm that this model learnt the systematic bias we

simulated with the large VS tight GM ground truths. In contrast, the

dice value of 94 for the SynthMotInh model indicates that the

predictions are much more consistent, showing a lower influence of

the type of ground truth used in the training set.

Visual assessment enabled us to better interpret the drop of two

points of dice for DataT2 model trained (and evaluated) with GT_surf

compared to the same model trained on GT_drawEM. Indeed, this

drop in performance is not due to a more difficult task or less accurate

predictions, but to local inaccuracies in GT_surf. We observed focal

errors in GT_surf that are related to bad positioning of the white or

pial surfaces, probably due to the balance between topology correc-

tion and data attachment terms in the surface deformation algorithm

Schuh et al. (2017) These observations also explain the spread in the

F IGURE 4 (a) Distribution across all subjects of the dice score computed between GT_drawEM and the predictions of the SynthMotInh
model from either T2w or T1w, for the different structures. (b) Scatter plot of the GM volume computed from prediction of the SynthMotInh
model. On the y-axis predictions are made from the T2w volumes and on the x-axis from the T1w volumes. (c) Illustration of the visual
observations across the different methods. Ground truth label (GT_drawEM) is shown in green, and the prediction in red. Blue arrows indicate
regions with visible misalignment of the GT with regard to the T1w image. Red arrows indicate local errors in the predictions. (d) Histograms of
the intensities of the T1w and T2w images within the predicted GM label (in blue) and GM GT (in orange).
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distribution of dice computed between the two ground truths

(in green on Figure 5). Note also that the spread is reduced for the

prediction of DataT2 models (third column in blue compared to

green), demonstrating a better robustness of DataT2 predictions com-

pared to the both ground truths.

In summary, the DataT2 model learns very well the ground truth

whatever its definition. The synthesis-based model is less impacted by

a change in the definition of the ground truth labels used for the gen-

erative model.

3.4 | Detailed assessment of image quality and
anatomical relevance of the segmentation provided by
the dHCP

The anatomical validity of ground truth is rarely discussed in the

deep learning literature, but it plays an important role. In this work,

we used the segmentation provided by the dHCP consortium as

one of our ground truths (GT_drawEM). These segmentation maps

were obtained using automated image processing as described in

Makropoulos, Robinson, et al. (2018). The segmentation pipeline

was optimized for instance by modeling additional tissue classes to

account for inhomogeneity in WM. Such segmentations are of

great value and our study would not be feasible without such mate-

rial, as well as many other publications. In this section, we report

additional observations from our extensive visual assessment that

might serve for future works based on this dataset. We visualized

systematically all the images corresponding to potential outliers,

that is, for which the dice score was far from the mean. For com-

parison, we also visualized randomly picked images to assess the

average performance.

As illustrated in Panel (a) of Figure 6, the anatomical relevance of

the predictions from DataT2 is better than GT_drawEM. We identify

three types of outliers: Outlier type 1 (N = 23) corresponds to obvi-

ous, relatively large errors of the GT_drawEM, despite the high quality

of the T2w image; Outlier type 2 (N = 11) corresponds to lower qual-

ity T2w data for which GT_drawEM was affected by artifacts, while

the prediction from the DataT2 model looks much more anatomically

relevant; Outlier type 3 (N = 1) corresponds to the only subject for

which the prediction from DataT2 shows obvious errors with False

positive GM prediction near the ventricle. Note that this subject was

classified as pathological by the dHCP consortium (radi-

ological_score = 5), which suggests that the visually enlarged lateral

ventricles likely correspond to very large variations with respect to

the normal brain configuration.

In Panel (b) of Figure 6, we report our observations relative to the

quality of the T1w versus T2w data from the dHCP. We visually

checked the 33 outliers from the distribution of dice score obtained

for the SynthMotInh predictions of GM from T1w images and we

identified three types: Outlier type 1 (N = 11) corresponds to high-

quality images but with obvious misregistration between T1w and

T2w. Note that we show in panel (b 1) the outlier with the highest

dice score (above 0.8) but we observed eight subjects with a dice

lower than 0.5 due to obvious misregistration; Outlier type 2 (N = 12)

corresponds to subjects with bad quality T1w images, for which a low

overlap with the GT is expected; Outlier type 3 (N = 10) corresponds

to very young subjects, for which the SynthMotInh model was less

accurate (on both contrasts) than for the older ones. We do not illus-

trate this configuration since it is already shown on Figures 3 and 4.

The misalignment and quality issues from outlier types 1 and 2 explain

the loss of dice in Exp. #2 since the GT_drawEM has been defined

from the T2w volumes only.

Overall, the visual assessment of the outlier showed cases with

large errors in the GT. Either because of failure of the drawEM pipe-

line, or because of mis-coregistration issues. In addition, for both

experimental examples we also found outliers due to the poor image

quality.

4 | DISCUSSION

4.1 | Synthetic learning models require adaptations
to perform on neonatal MRI

The synthetic approach proposed by Billot et al. (model Synth) per-

formed worse than we anticipated. However, this low performance

only affects the GM of the youngest subjects (i.e., those with unfolded

GM). The method is more effective for older subjects, which agrees

with its good performance for the adult brain Billot et al. (2023,

2022). However, this finding is unexpected since the GM segmenta-

tion might appear simpler to perform on brains without convolution.

Furthermore those errors occur in regions with high image quality,

with a clear contrast between GM and surrounding tissues. We

hypothesize that this failure mode is due to a too simple generative

model that cannot account for the variations in intensity within the

immature WM, which are much larger in this dataset compared to

F IGURE 5 Dice computed between predictions and ground truth.
The column GT_DrawEM shows the dice obtained when the models
are trained and evaluated using the GT_DrawEM ground truth. (same
values as Figure 2). The column GT_surf shows the measures when
the models are trained and evaluated with the GM derived from the
surfaces. For the column drawEM/surf, the dice is computed between
the prediction of the model trained with GT_drawEM and the
prediction of the model trained with surf GT_surf. For comparison, we
also show the dice between the two ground truths (in green).
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adult brains. Our results show that adding motion augmentation in

the generative process significantly improves the performance, as

shown by the SynthMot results. The motion simulation mixes differ-

ent tissues and can lead to localized artifacts (illustrated on Figure 2)

that are qualitatively similar to the inhomogeneities in the white mat-

ter induced by maturation, with a spatial pattern in layers propagating

inward from the GM Pogledic et al. (2020). Therefore, the gain in per-

formances might be interpreted as a positive side effect rather than

an anatomically relevant data augmentation. Anyway, these observa-

tions confirm the statement from Billot et al. (2023); Tobin et al.

(2017); Tremblay et al. (2018) that in the domain randomization

approach, the key is to generate enough variations to cover the

expected variations from real data, even if the generative process

does not perfectly model the real data generation.

In addition to data augmentation with simulated motion, we also

explored the alternative solution of explicitly modeling heterogeneity

in WM by decomposing it into subregions (between 2 and 6). Our

results suggest that this approach is less efficient than the proposed

motion augmentation but still beneficial. Further work is needed to

fully understand the potential of this strategy, as performance gains

could be achieved by refining the number of subregions or by incorpo-

rating additional anatomical priors.

4.2 | Robustness to variations in image contrast

Our results confirm that the DataT2 model did learn a correspon-

dence between the spatial location and the underlying intensity in the

image, as expected. Improving the generalization properties of

the deep learning models is a very active topic, with various strategies

investigated in parallel such as, for example, Tomar et al. (2022); Zhao

et al. (2019); Ouyang et al. (2022). In this article we did not enter into

evaluating these methods since in the context of early brain develop-

ment, variations in image contrast have a biological meaning and

might not be considered as a domain adaptation problem. Indeed,

robustness to variations in image contrast is a key feature in this con-

text, which is different from generalization between two predefined

domains.

(a) (b)

F IGURE 6 (a) Dice score of DataT2 model (evaluated on T2w) for all subjects ordered by the age of the subjects. We visually checked the
35 outliers, grouped them into three categories, and provided an example for each type. (The examples shown below are indicated by a black
arrow). (b) Dice score of the SynthMotInh GM predictions (evaluated on T1w) for all subjects, after excluding the 35 outliers from Panel (a). We
visually checked the 33 outliers and grouped them into three categories. Chosen examples are shown by a black arrow. Ground truth labels
(GT_drawEM) are shown in green, and the predictions in red.
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In our experiments, we consider the variations in contrast

between T1w and T2w as a prototypal, extreme change. This experi-

mental design has an important advantage for assessing robustness

compared to prediction based on scans from different centers: the

two configurations (T1w and T2w) involve exactly the same individ-

uals, which is not possible in multicenter studies, so that the influence

of variations in the scanned populations cannot be excluded (also

known as recruitment bias). Such confounding factors may be accept-

able in adult populations, but are problematic in neonatal populations

where age has a strong influence on image contrast. We confirm the

contrast-agnostic properties of synthesis-based models with highly

consistent predictions from either T1w or T2w images. We argue that

the residual difference of 5 points of dice for GM between predictions

from T1w and T2w is not due to inaccurate predictions. We identified

three main factors explaining this finding. First, residual misregistra-

tion between the T1w and T2w images from the same subjects are

clearly present in the dHCP dataset. Second, different artifacts might

affect the two acquisitions, impacting the predictions differently but

inducing systematically a reduction of the dice score. Third, the T1w

and T2w image contrasts may be affected differently by brain matura-

tion at the cellular level Croteau-Chonka et al. (2016). Despite these

uncontrolled sources of variance, the very high correlations across tis-

sue volumes computed from T1w versus T2w confirm the robustness

of the proposed SynthMotInh segmentation to variations in image

contrast.

The residual mis-registration issues we report in Section 3.4 are

somewhat inconsistent with the dHCP image processing pipeline

description Makropoulos, Robinson, et al. (2018). The authors noted

that gradient nonlinearity correction was not necessary, and reported

that rigid co-registration was effective. However, this study was con-

ducted on the first release of the dHCP dataset, which contains

465 subjects, whereas we included 704 subjects from the third

release. Through our careful visual assessment, we observed large and

obvious residual mis-registration errors for at least 11 subjects. There-

fore, we believe that this dataset is affected by mis-registration for a

larger proportion of individuals. Our results suggest that comparing

the segmentation predicted from a synthesis-based model from T1w

and T2w is effective to detect mis-registration. This could be used to

guide the registration between these two modalities. This is consis-

tent with the recent study by Iglesias which introduced a robust multi-

contrast affine registration approach based on synthetic learning

segmentations Iglesias (2023).

4.3 | Robustness of synthesis-based approaches
relative to the definition of the ground truth

In general, the quantitative evaluation of a supervised segmentation

method, such as dataT2 in this work, measures the network's ability

to learn the ground truth from the training set (i.e., to learn the map-

ping between an image and the corresponding label map), regardless

of the quality of the ground truth. The high DICE scores observed for

dataT2 in Exp. #1 confirms this capacity to learn very accurately the

ground truth. Consequently, the predictions are highly dependent on

the ground truth, and any systematic bias affecting the ground truth

would be learnt by such models. The bias would in turn affect the pre-

dictions. This was confirmed by the result of Exp. #3 where the

predictions of DataT2 models (GT_drawEM and GT_surf) show the

same dice score (0.85) as the ground truth labels.

In contrast, the synthetic approaches do not learn the relationship

between real image intensities and segmentation maps. By design, the

synthetic framework relies on a generative model to simulate images,

which allows to control for the precision of the correspondence

between the boundaries of the structures of interest and image inten-

sities in the synthetic training set. When applying the model to real

(unseen) data, the location of the boundaries in the predicted segmen-

tation maps are not affected by the same systematic bias that we

observed for dataT2. This explains the robustness of the predictions

from the SynthMotInh method with respect to variations in the

ground truth (see Exp. #3). Synthesis-based models are thus less

biased by the quality of the ground truth than classical supervised

models.

4.4 | Limitations

The main limitation of this study is the use of pseudo ground truths.

The absence of anatomical validation of our ground truths precludes

the interpretation in terms of accuracy and limits our conclusions to

robustness and consistency aspects. We did not consider manual seg-

mentation as an option because human experts are also subject to

various sources of bias that are very difficult to control for. We

believe that synthetic learning constitutes a new path to define

boundaries between adjacent tissues with better control on the

potential sources of bias. Using synthetic learning as means to define

the initial segmentation to be manually refined by human experts will

pave the way to the design of better ground truth, which is a major

bottleneck for quantitative analysis.

5 | CONCLUSION

In this work, we confirmed that synthetic learning for data segmenta-

tion offers key advantages compared to the classical strategy based

on real data. In the context of newborn brain MRI, specific signal inho-

mogeneities affect the performance of the previously proposed syn-

thetic approach. Our enriched generative model with motion

simulation greatly improved the predictions, enabling contrast-

agnostic segmentation of neonatal brain MRI. In addition, the

synthesis-based models are not biased toward the specific intensity

distributions of the training set, and the relationship between the

geometry of the tissue and the intensity distribution is better con-

trolled than with real data. Furthermore, synthesis-based models can

be trained using a very limited amount of manual segmentation exam-

ples. All these features will provide critical performance improvements

in the perspective of large multisite studies and clinical applications.
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