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come    

October 1843, and immediately carved the fundamental equation for quaternion algebra in the stone of the nearby Brougham Bridge:

i 2 = j 2 = k 2 = ijk = -1, (1) 
where i, j and k define imaginary units. While the carving has now disappeared, a plaque honoring Hamilton's memory can be found at the same place today. Hamilton devoted his last 20 years to the study of his quaternions which culminated in his book, Elements of quaternions. After his death in 1865 quaternions remained fashionable for some time, but they were rapidly superseded by the advent of linear algebra as we know it today through the work of Gibbs and Heaviside at the end of the 19 th century 1 .

Still, Hamilton was a precursor in many aspects and influenced many. For instance, he invented the term vector well before the advent of modern linear algebra: at the time, it simply referred to the three dimensional imaginary part of a quaternion.

The set of quaternions is usually denoted by H as a tribute to Hamilton's discovery. Just like complex numbers are well known to describe algebraically the geometry of the 2D plane, quaternion algebra permits straightforward descriptions of geometric transformations in 3D and 4D spaces. As a generalization of complex numbers to higher dimensions, quaternions are the first and simplest example of hypercomplex numbers 2 . Formally, a quaternion is defined by a real (or scalar) part and an imaginary (or vector) part made of three components along imaginary units i, j and k. This close relationship between purely imaginary (or simply pure) quaternions and vectors in R 3 is fundamental. In fact, the triplet of imaginary units (i, j, k) can be identified with the canonical Cartesian basis of R 3 given by (e 1 , e 2 , e 1 × e 2 ) where × denotes the cross-product between vectors of R 3 . Remarkably, quaternion algebra encodes the cross-product operation in a natural way since ij = k, jk = i or ki = j. More generally, the product of two quaternions involves 3D scalar products and cross-products. This also explains why the multiplication of two quaternions is non-commutative: it results from the well-known non-commutativity of the cross-product, and translates the fact that geometric transformations in 3D and higher dimensions lack commutativity as well. For later reference, Table I collects essential definitions, sets, properties and polar forms related to quaternion algebra.

Perhaps one of the most striking examples of quaternion utilization in today's applications lies in their ability to represent 3D rotations. Representing a 3D rotation with a single unit quaternion has many 1 To learn more about the fascinating history of quaternions and linear algebra, we recommend the reading of A History of Vector Analysis: Evolution of the Idea of a Vectorial System, by Michael J. Crowe, Dover Publications, 1994. 2 For more details on the topic of hypercomplex algebras, we refer the insterested reader to Hypercomplex Numbers: an Elementary Introduction to Algebras, by I.L. Kantor and A.S. Solodovnikov, Springer New-York, 1989. 

Basic definitions

Canonical basis H = span{1, i, j, k}

Elementary relations i 2 = j 2 = k 2 = ijk = -1, ij = -ji = k ki = -ik = j, jk = -kj = i
Cartesian representation q = a + ib + jc + kd, a, b, c, d ∈ R

Real and imaginary parts Re(q) = a, Im i (q) = b,

Im j (q) = c, Im k (q) = d
Scalar and vector parts S(q) = a, V(q) = ib + jc + kd Conjugation q = a -ibjckd = S(q) -V(q)

Modulus |q| = √ qq = √ qq = √ a 2 + b 2 + c 2 + d 2 Inverse q -1 = q |q| 2 , q ̸ = 0 Involution q µ = -µqµ, µ 2 = -1 Sets Pure quaternions V(H) = {q ∈ H | Re(q) = S(q) = 0} Unit quaternions Sp(1) = {q ∈ H | |q| = 1}
Complex subfields of H, µ ∈ V(H) ∩ Sp(1) Cµ = {α + µβ | α, β ∈ R} Properties p, q ∈ H Addition Re(p + q) = Re(p) + Re(q)

Imµ(p + q) = Imµ(p) + Imµ(q), µ = i, j, k Product pq = S(p)S(q) -⟨V(p), V(q)⟩ R 3 + S(p)V(q) + S(q)V(q) + V(p) × R 3 V(q)

Compatibility with operations conjugation (pq) = q p involution (pq) µ = p µ q µ inverse (pq) -1 = q -1 p -1 3D rotation by axis µ, angle α ∈ [0, π] Rµ,α(q) = exp(µ α 2 )q exp(-µ α 2 )

benefits over standard Euler angles rotation matrices: a lower number of parameters, no gimbal lock singularities 3 , nice interpolation properties between rotations. These advantages have been acknowledged

for a long time in robotics [START_REF] Chou | Quaternion kinematic and dynamic differential equations[END_REF] and computer graphics [START_REF] Shoemake | Animating rotation with quaternion curves[END_REF], where the use of quaternions is well-established.

On the contrary, the use of quaternions in signal and image processing is still blooming, with first works dating back to the early 1990s [START_REF] Schutte | Hypercomplex numbers in digital signal processing[END_REF].

This article aims at providing an overview of the current use of quaternions in signal and image processing, ranging from data representation using quaternions to dedicated quaternion-domain methods and algorithms. It is intended to demystify the field for the newcomers, and make it accessible to the many. We hope to demonstrate that, up to the special care required to extend standard signal and image processing tools to quaternion algebra, the use of quaternion-domain approaches enables a compact, elegant and interpretable way to handle geometric properties of signals and images.

II. REPRESENTING SIGNALS AND IMAGES WITH QUATERNIONS

Many physical phenomena can be probed using (electronic) sensors. In a very broad viewpoint, sensors transform complex physical properties into electrical properties (such as output voltage or current) that can be processed by further electronics. For that reason, physical measurements always boil down to acquiring real values: intensity of light passing through a color filter or variations of amplitude along one direction in an accelerometer, for instance. Data recordings therefore correspond to arrays of real numbers, such as vectors (e.g. univariate signals) or matrices (e.g. grayscale images). However, even if raw data are intrisically real-valued, one often takes advantage of other representations to facilitate their modeling, analysis or processing. One of the most striking examples is perhaps the use of complex numbers in signal and image processing. They arise naturally when transforming raw data using the (complex)

Fourier transform. Such a manipulation enables many insights that would have been otherwise (almost) impossible. For instance, complex numbers define unambiguously the essential notions of magnitude and phase, which are pivotal to signal processing practice: spectral analysis, filter design, time-frequency analysis, array processing, etc. They also provide a compact and elegant way to write pairs of signals such as in-phase and quadrature components in communications or functional magnetic resonance imaging.

These several convenient properties explain the popularity of complex-valued representations in signal and image processing.

Quaternions are no different in that respect. Just like complex numbers, they offer a novel representation space which exhibits several unique properties such as polar forms and natural handling of 3D geometry, which can be interesting to exploit in applications. More importantly, quaternions define a (skew)-field:

this means that except noncommutativity of the quaternion product, quaternions have the same desirable properties as the real and complex fields. This ensures that the mathematical foundations crucial to signal processing (Fourier transform, vector spaces, linear algebra, etc.) can all be defined in a meaningful way. Moreover, the similarity between methodologies developed for quaternion-valued signal and image processing and their real counterparts tend to demonstrate that noncommutativity is not an issue in general -provided that it is handled in an adequate manner. Since their introduction in the signal processing community more than three decades ago, the usage of quaternion-valued representations has focused on two complementary settings, namely the encoding of 3D and 4D signals and the construction of interpretable algebraic embeddings of signals and images.

A. Encoding 3D and 4D vector signals

This first setting may arguably be seen as the most natural one. The main idea is to encode the components of 3D or 4D vector signals on the three (imaginary only) or four (real and imaginary) parts of a quaternion. This allows to extend the standard arithmetic operations over real numbers (addition, subtraction, multiplication, division) to three and four dimensional real vectors. In the case of the twodimensional real vectors, this extension is naturally performed by the complex numbers. This way, one can handle vector quantities using algebraic operations in a way similar to what can be done with scalars. This can be very helpful especially for the case when 3D or 4D vector data is acquired with respect to one or two diversities (time, space, wavelength, etc.). As an illustrative example, consider the case of a color image defined by the triplet of real matrices {R, G, B} encoding red, green and blue color channels respectively. This triplet can be conveniently represented as the pure quaternion matrix Q = iR + jG + kB. This algebraic representation follows directly from the identification of the imaginary units i, j, k with the canonical Cartesian basis of R 3 . It permits to separate between the internal multivariate nature of the color image (i.e. a 3D vector encoding colors at each pixel) and its external multidimensional nature (an array of M × N spatial pixels) in an elegant way. In comparison, the equivalent real-domain representation of such data is often cumbersome, and usually handled by stacking the 3 or 4 components in a single long-vector or matrix. While this stacking procedure is mathematically sound, it may hinder the intimate relationships between the internal components and the geometric properties of such vector data. On the contrary, the algebraic quaternion encoding of 3D and 4D

vectors enables natural representations of multi-diversity vector data as quaternion vectors and quaternion matrices. This also means that many fundamental signal processing operations for 3D and 4D vector data can be formulated in terms of quaternion linear algebra operations in a rather straightforward way. Building on these advantages, quaternions have been effectively employed to encode vector measurements in seismology [START_REF] Hobiger | Multicomponent Signal Processing for Rayleigh Wave Ellipticity Estimation: Application to Seismic Hazard Assessment[END_REF], wind and temperature forecasting [START_REF] Took | The Quaternion LMS Algorithm for Adaptive Filtering of Hypercomplex Processes[END_REF], electromagnetics [START_REF] Chen | Augmented Quaternion ESPRIT-Type DOA Estimation With a Crossed-Dipole Array[END_REF], telecommunications [START_REF] Gu | Quaternion Modulation for Dual-Polarized Antennas[END_REF],

or color image processing [START_REF] Barthelemy | Color Sparse Representations for Image Processing: Review, Models, and Prospects[END_REF], [START_REF] Chen | Low-Rank Quaternion Approximation for Color Image Processing[END_REF], to name a few.

B. Algebraic embeddings of signals and images

This second setting is a little bit more intricate. It relies on carefully designed transforms that map signals or images into the quaternion domain. These transforms define quaternion embeddings which facilitate the analysis, understanding and processing of the original data. They ship with highly interpretable parameters, making it possible to decipher geometric features of the original signal or image.

So far, most of the research towards interpretable quaternion-valued embbedings has focused on two areas: the construction of quaternion transforms for analyzing local features in grayscale images and the development of a geometric signal processing toolbox for bivariate signals. It is worth noting that albeit being apparently unrelated, both approaches consider generalizations of the analytic signal in higherdimensions by exploiting quaternion algebra; they also both leverage extensively quaternion polar forms for meaningful interpretations of the embeddings. These two areas are reviewed in detail here below.

Quaternions transforms for grayscale image analysis

The importance of the analytic signal for the understanding and modeling of instantaneous amplitude and phase of real-valued signals has been recognized for a long time in signal processing. This motivated the study of its generalizations in higher dimensions, the most prominent one being the definition of a meaningful 2D-"analytic signal" to analyze the local content of images (grayscale). The main difficulty in directly extending definitions from the 1D case is that higher dimensions (notably 2D) lack a natural multidimensional Hilbert transform. To fill this gap, several approaches have been designed for the 2D case: the most salient ones exploit the higher degrees of freedom offered by the quaternion algebra to formulate meaningful 2D counterparts of the 1D analytic signal. A first approach, proposed by Bülow and Sommer [START_REF] Bulow | Hypercomplex signals-a novel extension of the analytic signal to the multidimensional case[END_REF], uses a carefully designed 2D Quaternion Fourier Transform (QFT) enjoying desirable symmetry properties for grayscale images. This permits to define a one-to-one mapping between a grayscale image and a quaternion-valued image obtained by restricting its QFT to the first orthant.

Further decomposing this quaternion-valued signal using the Euler quaternion polar form (see Table I) allows identification of a local amplitude and three phases, which are meaningful for texture analysis.

This QFT-based approach was further explored in [START_REF] Chan | Coherent Multiscale Image Processing Using Dual-Tree Quaternion Wavelets[END_REF] with the design of a dual-tree quaternion wavelet transform for coherent multiscale analysis of grayscale images.

Another line of work, perhaps the most popular one, revolves around the monogenic signal. It was first introduced by Felsberg and Sommer [START_REF] Felsberg | The monogenic signal[END_REF] as a generalization of the analytic signal to the 2D case.

The monogenic signal is a quaternion-valued image, built from the original grayscale image and two Riesz transforms. The interpretation as a 2D-"analytic signal" essentially comes from the intuition that, "the Riesz transform is to the Hilbert transform what the gradient is to the derivative operator", to quote [START_REF] Unser | Multiresolution Monogenic Signal Analysis Using the Riesz-Laplace Wavelet Transform[END_REF]. Given a grayscale image f (r) with spatial coordinates r = (r 1 , r 2 ), the Riesz transform

Rf = (R 1 f, R 2 f
) is defined in the spatial domain as

R i f (r) = p.v. 1 π R 2 (r i -r ′ i ) ∥r -r ′ ∥ 3 2 f (r)dr, i = 1, 2 , (2) 
where p.v. stands for Cauchy principal value. The Riesz transform is translation-and scale-invariant. It also exhibits a nice compatibility with 2D rotations, a property known as steerability. The monogenic signal Mf is constructed in the quaternion domain as Mf = f +iR 1 f +jR 2 f . Being quaternion-valued, it can be uniquely decomposed using the quaternion polar form q = |q|e µqϕq , where the axis µ q is a pure unit quaternion (i.e. such that µ 2 q = -1) and ϕ q ∈ [0, π) is the phase. Applying this polar decomposition to the monogenic signal enables identification of local features of the image f (r) in a straightforward way. It reads

Mf (r) = A(r) exp(µ θ (r)ϕ(r)) , (3) 
where A(r) := |Mf (r)| defines the local amplitude, ϕ(r) is the local phase, and where the axis µ θ (r) = i cos θ(r) + j sin θ(r) defines a local orientation θ(r) ∈ [-π, π). Note that the axis µ θ (r) has no k-component, as a result of the construction of the monogenic signal Mf (r) along the imaginary axes i and j. As a first example, consider a plane wave f (r) = A 0 cos (κ • r) where κ = (κ 1 , κ 2 ) ∈ R 2 is the wavenumber vector. Direct computations of the Riesz transform yield the monogenic signal

Mf (r) = A 0 exp [(κ • r)(i cos θ 0 + j sin θ 0 ))] with θ 0 = arg(k 1 + ik 2 ).
Hence the local amplitude is constant A(r) = A 0 , the local phase ϕ(r) = κ • r is directly that of the cosine wave, and local orientation is constant θ(r) = θ 0 corresponding to that of the wavenumber vector k in the 2D plane. Fig. 1 depicts a more sophisticated example corresponding to a 2D AM-FM mode. The monogenic signal permits a direct identification of Gaussian amplitude modulation kernel A(r) and local orientation θ(r). The local phase ϕ(r) allows to detect lines (ϕ(r) = 0 mod π), simultaneously with contours (ϕ(r) = π/2).

The monogenic signal provides key insights into the geometry of 2D grayscale images. However, it suffers from the same limitations as the standard 1D analytic signal approach. It exhibits poor performance in noisy settings and fails to capture meaningful local features when considering multicomponent 2D signals, such as superposition of 2D AM-FM modes. Therefore, an important line of research has focused on extending the monogenic signal approach towards multiscale or multiresolution analysis of grayscale images. The general idea is to devise multiple filterbanks built from monogenic wavelets functions at different scales. Then, at each scale or resolution, one can identify corresponding local features by computing the quaternion polar form of coefficients 4 . We mention hereafter some of these extensions.

One is the monogenic continuous wavelet transform [START_REF] Olhede | The Monogenic Wavelet Transform[END_REF], which can be seen as a generalization of the 1Danalytic wavelet transform to the case of grayscale images. In the discrete case, a minimally-redundant monogenic multiresolution analysis was proposed in [START_REF] Unser | Multiresolution Monogenic Signal Analysis Using the Riesz-Laplace Wavelet Transform[END_REF] using so-called Riesz-Laplace wavelets. A generalization of the curvelet transform to the monogenic case, called monogenic curvelet transform, was proposed in [START_REF] Storath | Directional Multiscale Amplitude and Phase Decomposition by the Monogenic Curvelet Transform[END_REF]. Other proposed approaches include transposing ideas from mode reconstructions in time-frequency analysis to the case of the monogenic signal, leading to the monogenic synchrosqueezing transform [START_REF] Clausel | The monogenic synchrosqueezed wavelet transform: a tool for the decomposition/demodulation of AM-FM images[END_REF], or extending monogenic wavelet decompositions to the case of color images [START_REF] Soulard | Elliptical Monogenic Wavelets for the Analysis and Processing of Color Images[END_REF].

Monogenic signal-based approaches have found many applications (e.g. texture segmentation, target recognition, boundary detection) in various domains such as medical imaging, synthetic aperture radar imaging and geophysics.

Quaternion Fourier transform for bivariate signal processing

Bivariate signals appear in a broad range of applications where the joint analysis of two real-valued time series is required: polarized waveforms in seismology and optics, eastward and northward current velocities in oceanography, or even gravitational waves emitted by coalescing compact binaries. In 4 For completeness, it is worth noting that not all works subsequent to the original seminal paper [START_REF] Felsberg | The monogenic signal[END_REF] use an explicit quaternion formulation of the monogenic signal. However, they largely make use of local angle and axis features, which are naturally connected to the quaternion polar form (3) of the monogenic signal. Therefore, these approaches can be labeled as quaternionbased, in a broad sense.

ti m e [s ] such applications, it is crucial to provide clear and straightforward interpretations of the joint geometric and dynamic properties of the two components x 1 (t) and x 2 (t) that define the bivariate signal.

4 3 2 1 0 x 1 ( t ) 1 e 2 0 2 1 0 1 2 x 2 (t) 1e 20 2 1 0 1 2 i, S 3 S 0 j, S 1 S 0 k, S 2 S 0 µ 2θ 2χ x 1 x 2 x(t) = x 1 (t) + ix 2 (t) χ θ ϕ • |a | c o s χ |a | s in |χ | ⟲ χ > 0 ⟳ χ < 0 4 3 2 
Formally, a bivariate signal can be represented in two equivalent ways: a 2D time-evolving vector

x(t) = [x 1 (t), x 2 (t)] ∈ R 2 or a complex-valued signal x(t) = x 1 (t) + ix 2 (t) ∈ C encoding the two
components on its real and imaginary parts. While the vector representation is generic (meaning that it is not restricted to the bivariate case), it also hinders a natural understanding of the geometric properties of bivariate signals. On the other hand, the complex representation permits the definition of a meaningful quaternion framework for bivariate signals relying on: (i) a dedicated Quaternion Fourier Transform (QFT) and (ii) the extensive use of quaternion calculus (such as polar forms) to extract relevant physical and geometric information.

The key intuition for a quaternion spectral representation of bivariate signals is rather simple. For realvalued (that is, univariate) signals, the use of the standard complex Fourier transform enables a complexvalued spectral representation. This complex embedding of univariate signals is at the heart of definitions of amplitude and phase, which are crucial to many tasks of signal processing such as spectral analysis, filtering or time-frequency analysis. Now, if one represents bivariate signals as complex-valued signals, a quaternion embedding can be constructed in a similar way. First, observe that

x(t) = x 1 (t) + ix 2 (t) ∈ C i ⊂ H:
it is a special case of a quaternion-valued signal. However, contrary to the complex Fourier transform, the QFT has no unique (or canonical) definition. Freedom of definition comes from the position of exponential, which can appear either left or right of the signal x(t), and from the choice of the axis µ (a pure unit quaternion such that µ 2 = -1) in the exponential. For instance, by choosing µ = i with x(t) ∈ C i one recovers the standard complex Fourier transform. For bivariate signals, the right-sided QFT definition with µ = j is usually adopted [START_REF] Flamant | Time-frequency analysis of bivariate signals[END_REF] 

X(f ) = R x(t)e -j2πf t dt, x(t) ∈ C i . (4) 
The definition (4) exhibits every desirable property of FTs: it is well-defined for typical bivariate signals, it preserves energy and inner products (Parseval-Plancherel theorem) and it can be computed efficiently with 2 FFTs by observing that X(f

) = X 1 (f ) + iX 2 (f ), where X 1 (f ), X 2 (f ) are standard (C j -valued)
complex Fourier transforms of x 1 (t) and x 2 (t), respectively. More importantly, for bivariate signals viewed as C i -valued signals, it exhibits a Hermitian-like symmetry X(-f ) = -iX(f )i, meaning that only the positive frequency spectrum carries relevant information. This makes it possible to define the quaternion embedding of a bivariate signal by canceling out the negative frequency spectrum. This bivariate analogue of the well-known analytic signal of real-valued univariate signals is defined as

x + (t) = R+ X(f )e j2πf t df. (5) 
The signal x + (t) is quaternion-valued. Therefore, at each time instant, it can be decomposed thanks to the Euler polar form of a quaternion q = ae iθ e -kχ e jϕ which identifies a magnitude a := |q| and three phases corresponding to successive rotations around axes i, j and k. The Euler polar form plays the same role as the standard polar form for the usual analytic signal. It establishes a one-to-one mapping between the original bivariate signal x(t) and a canonical quadruplet of instantaneous parameters

[a(t), θ(t), χ(t), ϕ(t)], obtained by decomposing the quaternion embedding x + (t) as

x + (t) = a(t)e iθ(t) e -kχ(t) e jϕ(t) .

Under a classical narrow-band assumption on x(t), it is now possible to attach a very insightful interpretation to the canonical parameters [a(t), θ(t), χ(t), ϕ(t)].

Fig. 2a) displays the instantaneous ellipse traced out by x(t) in the (x 1 , x 2 ) plane. The ellipse is characterized by its size a(t), orientation θ(t) and shape χ(t): the last canonical parameter ϕ(t) corresponds to the dynamical phase, i.e. the instantaneous position of x(t) within the ellipse. This shows that the instantaneous parameters have a natural geometric interpretation, which also corresponds to the physical notion of polarization in optics. The geometric insights provided by the quaternion representation do not stop there. Fig. 2b) gives the Poincaré sphere of polarization states, where each point of the 2-sphere corresponds to a given polarization state. Strikingly, it can be shown that the two quadratic quantities appearing in the Parseval-Plancherel theorem for the QFT correspond directly to the physical Stokes parameters S 0 , S 1 , S 2 , S 3 , a set of four real-valued parameters widely used in optics to describe the polarization properties of light. The Poincaré sphere representation is particularly helpful, as it shows that normalized Stokes parameters S 1 /S 0 , S 2 /S 0 , S 3 /S 0 are Cartesian coordinates for polarization states.

For instance, the poles of the Poincaré sphere correspond to counter-rotating circularly polarized states, whereas its equator contain linear polarization states, with orientation given by the longitude. This key property enables the definition of power spectral densities or time-frequency representations (such as spectrograms or scalograms) that have a straightforward interpretation in terms of physical polarization parameters.

Fig. 2c) and Fig. 2d) showcase the time-frequency analysis of a gravitational wave (GW) bivariate signal thanks to the quaternion Fourier transform framework. Gravitational waves are bivariate signals,

with two components x 1 (t) and x 2 (t) corresponding to plus and cross gravitational wave polarizations, respectively. Fig. 2c) depicts a simulated GW emitted by a binary black hole, a typical GW astrophysical source. The instantaneous variations of the interrelations between amplitude and phase of each component yields polarization modulation, which provides crucial insights towards the orbital motion of the GW (e.g. precession or orbital eccentricity). Fig. 2d) represents the quaternion spectrogram of the bivariate GW signal depicted in Fig. 2c). The quaternion spectrogram is a natural generalization of the classical spectrogram: it relies on the definition of the quaternion short-term Fourier transform (QSTFT), which follows directly by considering the QFT (4) of windowed, time-translated signal segments x(t)g(tτ ), where τ is a time-shift and g(t) is usually a real symmetric window with compact support [START_REF] Flamant | Time-frequency analysis of bivariate signals[END_REF].

Second-order conservation properties of the QSTFT lead to representing and interpreting the quaternion the definition of power spectral densities and their estimation [START_REF]Spectral Analysis of Stationary Random Bivariate Signals[END_REF] and the design of linear time-invariant filters [START_REF] Flamant | A Complete Framework for Linear Filtering of Bivariate Signals[END_REF]. Quaternions provide considerable insights into the geometric properties of bivariate signals by levaraging the well-established language of polarization in optics, without sacrificing the usual mathematical guarantees nor the availability of computationally cheap implementations.

III. THE QUATERNION TOOLBOX FOR SIGNAL PROCESSING

The interesting upper mentioned benefits of quaternion-valued representations immediately raise a natural question: is it possible to extend standard signal processing tools (e.g. low-rank decompositions, minimization of cost functions, least mean squares algorithms, etc.) to the quaternion setting in some natural way? If the answer was negative, then quaternion-valued representations would be of little practical use, since the insights gained by choosing quaternion representations would be canceled out by cumbersome processing. Fortunately this is not the case: standard tools of signal and image processing extend nicely over quaternion algebra. Still, this is not straightforward: the non-commutativity of the multiplication of two quaternions usually prevents direct extensions from the real and complex case.

Over the last three decades, researchers have dedicated a lot of energy to establish a meaningful signal processing toolbox to deal with quaternion-valued data. We propose hereafter a tour of these important tools, and illustrate their relevance on flagship applications.

A. Low-rank quaternion models

Among the numerous applications of linear algebra in signal processing, low-rank approximation plays a central role and algorithms for performing EigenValue Decomposition (EVD) or Singular Value Decomposition (SVD) of data matrices are used on a daily basis in a wide range of applications. Existence of EVD and SVD for quaternion matrices is known for a long time, even though standard concepts of linear algebra have to be considered with caution because of the non-commutativity of the quaternion product. For instance, one must distinguish between right and left eigenvalues, depending on the side position of the scalar in eigenvalue problems. Given a square quaternion-valued matrix A ∈ H N ×N , its right eigenvalues λ r ∈ H are defined as solutions of Ax = xλ r , where x ∈ H N is a nonzero quaternion vector. Similarly, left eigenvalues λ l ∈ H are defined as solutions of Ax = λ l x. Right eigenvalues are well understood and have been used in many quaternion signal processing applications [START_REF] Took | A Quaternion Widely Linear Adaptive Filter[END_REF]- [START_REF] Ortolani | Frequency domain quaternion adaptive filters: Algorithms and convergence performance[END_REF]. On the contrary, left eigenvalues are much more cumbersome, see e.g., [START_REF] Zhang | Quaternions and matrices of quaternions[END_REF] for more details. For signal processing practice, dealing with right eigenvalues is sufficient: they define natural quaternion counterparts of usual real and complex eigenvalues and can be computed efficiently. They also share some similar properties with their classical counterparts: for instance, a Hermitian matrix A (i.e. A H = A, where (•) H is the usual conjugate-transpose operator) necessarily has real-valued right eigenvalues. Moreover, a necessary and sufficient condition for Hermitian A to be positive semidefinite (i.e. x H Ax ≥ 0 for any x) is to have all its right eigenvalues nonnegative.

The quaternion singular value decomposition (Q-SVD) of a rectangular quaternion-valued matrix A ∈ H N ×P is defined as [START_REF] Zhang | Quaternions and matrices of quaternions[END_REF]:

A = U ∆V H , with U ∈ H N ×N , V ∈ H P ×P , ∆ ∈ R N ×P + . (7) 
The comes down computing its Q-SVD, for which efficient algorithms exist [START_REF] Le Bihan | Singular value decomposition of quaternion matrices: a new tool for vectorsensor signal processing[END_REF]. This result is particularly important for subspace methods in array processing, which rely on diagonalization of covariance matrices built from quaternion-valued samples, such as quaternion MUSIC (Q-MUSIC). See details below.

The Q-SVD plays a crucial role in the definition of any subspace methods over quaternions. In vectorsensor array processing, for example, Q-SVD allows to separate quaternion data into signal and noise subspaces and to take advantage of vector-sensors measurements to perform source localization [START_REF] Le Bihan | Singular value decomposition of quaternion matrices: a new tool for vectorsensor signal processing[END_REF]- [START_REF] Sajeva | Characterisation and extraction of a Rayleigh-wave mode in vertically heterogeneous media using quaternion SVD[END_REF].

However, one may question the relevance of using quaternions for subspace estimation. The mathematical soundness of quaternion subspace methods relies on the orthogonality constraint inherited from the scalar product over H N . The columns of U and of V in [START_REF] Gu | Quaternion Modulation for Dual-Polarized Antennas[END_REF] are orthogonal, meaning that u H ℓ u ℓ ′ = 0 and v H ℓ v ℓ ′ = 0 for ℓ ̸ = ℓ ′ . This actually imposes that the real and the three imaginary parts of this scalar product cancel out simultaneously. Such a constraint is much stronger than complex orthogonality (considering pair of complex-valued vectors rather than quaternion vectors). As a consequence, quaternion subspace methods are usually more robust to model errors than their long-vector complex counterparts.

Quaternion-MUSIC for vector-sensor array processing An illustrative example of application of subspace methods in signal processing is the estimation of the Direction Of Arrival (DOA) of polarized sources impinging on a vector-sensor array using the quaternion MUSIC (Q-MUSIC) algorithm introduced in [START_REF] Miron | Quaternion-MUSIC for vector-sensor array processing[END_REF] . For 2D vector-sensors (crossed dipoles, geophones, acoustic vector-sensors, etc.), a narrow-band fully polarized source can be represented as the quaternion embedding of a bivariate signal [START_REF] Chen | Augmented Quaternion ESPRIT-Type DOA Estimation With a Crossed-Dipole Array[END_REF] with linear phase ϕ(t) = ω 0 t, slowly varying amplitude a(t) and constant polarization parameters [θ, χ]. Consider a uniform linear array made of M 2D vector-sensors, identically oriented, with equal spacing ∆x. Assuming a single far-field source, the response of the m-th sensor reads x m (t) = a(t) exp[iθ] exp[-kχ] exp[jω 0 t] exp[-jτ m (α)] where τ m (α) = (2π/λ)(m -1)∆x sin α, is the phase delay between the first and mth sensors. Here λ denotes the wavelength and α the DOA of the source in the array plane. Therefore, a snapshot of the array at time instant t can be written as the quaternion-valued vector x(t) ∈ H M such that

x(t) = x 0 (t)v(α), with v(α) = 1, e -jτ2(α) , . . . , e -jτM (α) ⊤ , (8) 
where x 0 (t) is the quaternion-valued signal measured by the first sensor and (•) ⊤ denotes the transpose of a matrix. Generalizing this model to a noise-corrupted linear superposition of K far-field polarized sources, a snapshot of the output of the sensor-array can be expressed as:

y(t) = K k=1 x 0k (t)v k (α k ) + n(t), (9) 
with v k the steering vector associated to source k of DOA α k and where n(t) ∈ H M is the noise vector on the array. Following the rationale of subspace methods developed in the real and complex cases, one forms the quaternion-valued covariance matrix of the data C yy = E{y(t)y H (t)} ∈ H M ×M , where E{•} denotes the mathematical expectation. Then, under some commonly accepted assumptions (uncorrelated sources and white noise), the matrix C yy is shown [START_REF] Miron | Quaternion-MUSIC for vector-sensor array processing[END_REF] to be written as:

C yy = DΣD H + σ 2 n I M , (10) 
where the columns of D ∈ H M ×K correspond to the K source vectors

d k (θ k , χ k , α k ) = e iθk e -kχk v k (α k ), Σ = diag(σ 2 1 , . . . , σ 2 K ) with σ 2 k = |x 0k (t)| 2
the kth source power and σ 2 n is the noise power. Now, classical arguments yield that the signal subspace of the observations is spanned by the K quaternion eigenvectors associated to the K largest eigenvalues of C yy . The remaining M -K eigenvectors form an orthonormal basis in the noise subspace. Recall that in this case, the Q-EVD of C yy boils down to the Q-SVD (since it is Hermitian positive semidefinite). By leveraging the orthogonality between the signal and noise subspaces, the expression of the Q-MUSIC functional is:

S Q-MUSIC (θ, χ, α) = 1 d H (θ, χ, α) Π d(θ, χ, α) , (11) 
where d(θ, χ, α) = e iθ e -kχ v(α) is the steering vector and Π = U K+1: U H K+1: is the orthogonal projector on the noise subspace spanned by U K+1: = [u K+1 , . . . , u M ]. Similarly to standard MUSIC algorithm for scalar sensors, the K highest local maxima of (11) correspond to the DOAs and polarization parameters of the K sources.

Classically, when dealing with 2D vector-sensors, the two complex-valued components of size M of the array are simply concatenated in a long-vector of size 2M . Then, the standard MUSIC algorithm is applied to this enhanced data vector. This is commonly known as the long-vector MUSIC (LV-MUSIC). Compared to LV-MUSIC, where classical orthogonality is imposed globally over the two stacked components of the array, the quaternion-vector orthogonality associated with Q-MUSIC implies stronger orthogonality constraints (component-wise) between signal and noise subspaces. It was shown in [START_REF] Miron | Quaternion-MUSIC for vector-sensor array processing[END_REF] that these quaternion constraints enable a better separation between subspaces. This results in improved performance (in terms of estimation error and resolution) compared to LV-MUSIC, while reducing the size of the data covariance representation. Fig. 3 provides a brief illustration of the advantages of Q-MUSIC compared to its long-vector counterpart. Following these results, several other quaternion methods [START_REF] Hobiger | Multicomponent Signal Processing for Rayleigh Wave Ellipticity Estimation: Application to Seismic Hazard Assessment[END_REF], [START_REF] Chen | Augmented Quaternion ESPRIT-Type DOA Estimation With a Crossed-Dipole Array[END_REF], [START_REF] Gong | Quaternion ESPRIT for direction finding with a polarization sentive array[END_REF], extending the standard subspace-based DOA estimation algorithms to the quaternion framework have been proposed.

B. Solving optimization problems in the quaternion domain

Modern signal and image processing problems can often be formulated as solutions of optimization problems. Quaternion domain problems are no exception. For instance, the quaternion least mean squares (QLMS) algorithm described in Section III-C or the sparse coding of 3D/4D data (see further below) can all be formulated as the problem of minimizing a real-valued cost function f with quaternion arguments.

Formally, one is interested in solving optimization problems of the form

q = arg min q∈H f (q), (12) 
where f : H → R is a cost function (e.g. a quadratic form) and q is the solution of the minimization problem. This formulation extends easily to the case of quaternion vectors q ∈ H M and quaternion matrices Q ∈ H M ×N variables. Now, how can one solve (12)? If q was a standard real-valued variable, it would be sufficient to explore the stationary points of f (points where the derivative of f vanishes, at least in the differentiable case) to obtain the different local minima of the cost function f . Unfortunately, the same approach cannot be applied directly with quaternion variables. The main reason is that quaternion differentiability (in a quaternion analysis sense) can only be defined for analytic functions f : H → H.

In particular, cost functions -which are of interest for signal and image processing -are not analytic as they only take values in R. On the other hand, the real-valued cost function f in (12) of quaternion argument q = q a + iq b + jq c + kq d can also be considered as a function of its four real-valued components q a , q b , q c , q d , such that f (q) = f (q a , q b , q c , q d ), with little abuse of notation. This formal identification suggests that one could compute the derivative of the function f as if it was a function of R 4 . This apparent contradiction between real-domain and quaternion-domain derivatives is addressed by the theory of (generalized) HR-calculus, developed in the first half of the 2010 decade [START_REF] Xu | The Theory of Quaternion Matrix Derivatives[END_REF]- [START_REF] Mandic | A Quaternion Gradient Operator and Its Applications[END_REF]. In essence, it forms a complete set of calculus rules that permits computations of derivatives of functions of quaternion variables, as if they were functions of their real and imaginary parts. Still, it operates directly in the quaternion domain, meaning that the burden of transforming ( 12) into an equivalent real-domain optimization problem can be completely avoided.

Before going further, let us mention that the construction of HR-calculus is closely related to the framework of CR-calculus (also known as Wirtinger calculus) for solving optimization problems in complex variables -often encountered in complex-valued signal processing. Still, the derivation of HRcalculus is far from being trivial. Many differences and subtleties arise when generalizing from complex variables to quaternion variables, in particular due to the noncommutativity of the quaternion product.

While we will only survey the basics of HR-calculus here to illustrate its usefulness, we refer the interested reader to the seminal papers [START_REF] Xu | The Theory of Quaternion Matrix Derivatives[END_REF]- [START_REF] Xu | Enabling quaternion derivatives: the generalized HR calculus[END_REF] for detailed proofs and extensive results.

Let us consider a cost function f : H → R. We suppose, for convenience, that f is real-differentiable [START_REF] Xu | Enabling quaternion derivatives: the generalized HR calculus[END_REF], that is the function f (q a , q b , q c , q d ) is differentiable with respect to its four variables q a , q b , q c and q d . The HR-derivatives of f with respect to q and q are defined as [START_REF] Mandic | A Quaternion Gradient Operator and Its Applications[END_REF] 

∂f ∂q = 1 4 ∂f ∂q a - ∂f ∂q b i - ∂f ∂q c j - ∂f ∂q d k , ( 13 
)
∂f ∂q = 1 4 ∂f ∂q a + ∂f ∂q b i + ∂f ∂q c j + ∂f ∂q d k . ( 14 
)
More generally, it is also possible to define HR-derivatives with respect to canonical involutions q i , q j , q k and their respective conjugates. Equations ( 13) -( 14) show that HR-derivatives are quaternion-valued, as they collect partial derivatives of f (q) with respect to each one of the components of q along the canonical basis {1, i, j, k}. Remark that since we assume f to be real-valued, the two HR-derivatives [START_REF] Xu | The Theory of Quaternion Matrix Derivatives[END_REF], [START_REF] Xu | Enabling quaternion derivatives: the generalized HR calculus[END_REF].

Scalar functions f : H → R ∂f ∂q notes f (q) = Re(αqβ + γ) 1 4 α β α, β, γ ∈ H f (q) = |αqβ + γ| 1 4 α(αqβ + γ)β |αqβ + γ| α, β, γ ∈ H f (q) = |αqβ + γ| 2 1 2 α (αqβ + γ) β α, β, γ ∈ H Vector functions f : H M → R ∇ q f f (q) = Re b H q 1 4 b b ∈ H M f (q) = q H Aq 1 2 Aq A ∈ H M ×M , A H = A f (q) = ∥Aq -b∥ 2 H M 1 2 A H (Aq -b) A ∈ H M ×N , b ∈ H M Matrix functions f : H M ×N → R ∇ Q f f (Q) = Re (trace{AQB}) 4 A H B H A ∈ H L×M , B ∈ H N ×L f (Q) = ∥A -BQC∥ 2 F 1 2 B H (BQC -A) C H A ∈ H L×P , B ∈ H L×M , C ∈ H N ×P
are related through conjugation (∂f /∂q) = ∂f /∂q. However, to turn the fundamental definitions ( 13) -( 14) into a practical framework for computing quaternion derivatives, it is necessary to consider additional derivatives with respect to q µ and q µ where µ ∈ H and µ ̸ = 0. This leads to the generalized HR-calculus [START_REF] Xu | Enabling quaternion derivatives: the generalized HR calculus[END_REF], which equips ( 13) -( 14) with convenient product and chain rules. It is worth noting that these properties hold for arbitrary quaternion-valued functions f : H → H, i.e. the theory is not limited to cost functions. Importantly, the (generalized) HR-calculus framework has been extended [START_REF] Xu | The Theory of Quaternion Matrix Derivatives[END_REF] to compute derivatives with respect to quaternion vector and matrix variables. Vector and matrix counterparts of ∂f /∂q and ∂f /∂q are denoted in quite a natural way, i.e. ∇ q f and ∇ q f denote HR-gradients of f (q), while ∇ Q f and ∇ Q f correspond to matrix derivatives of the function f (Q). Table II collects such derivatives for some elementary cost functions in the scalar, vector and matrix case. Only derivatives with respect to conjugates q, q and Q are given; since the considered functions are real-valued, it suffices to take the quaternion conjugate to obtain derivatives with respect to q, q or Q. Moreover, observe the similarity between HR-derivatives and usual real-domain functions: the only noticeable difference being the unusual 1/4 prefactor arising from definitions ( 13) -( 14).

As explained earlier, solving [START_REF] Felsberg | The monogenic signal[END_REF] requires the ability to find stationary points of the cost function. The HR-calculus enables their characterization as one would expect: for instance, a vector q ⋆ is a stationary point of f (q) if the HR-gradient vanishes at this point, i.e. ∇ q f (q ⋆ ) = ∇ q f (q ⋆ ) = 0. Moreover, the direction of the maximum rate of change of f at point q is given by ∇ q f (q), that is the HR-gradient with respect to q. This yields immediately the steepest gradient descent method in the quaternion domain as iterations

q (k+1) = q (k) -η k ∇ q f (q (k) ) (15) 
where η k > 0 is the step size at iteration k. Eq. ( 15) is one of the first building blocks of quaterniondomain optimization. For instance, it represents a cornerstone of the derivation of the quaternion LMS (QLMS) algorithm and its variants -as we shall explain in detail in Section III-C. The generalized HRderivatives framework can be further refined. For instance, it is possible to define a meaningful quaternion Hessian matrix, thus paving the way to extend well-known second-order algorithms such as the Newton method to the quaternion domain. We refer the interested reader to [START_REF] Xu | Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms[END_REF] for further details on this topic.

To further illustrate the generalized HR-calculus framework, let us consider the quaternion sparse coding problem. Let y ∈ H M be a vector of observations which one seeks to represent in a dictionary D ∈ H M ×N as y ≈ Dq where q is a sparse vector and N > M . This problem appears naturally in color imaging, where y is a color patch encoded as a pure quaternion vector, D is an overcomplete collection of color atoms and q is a sparse quaternion vector. Just like in the real and complex case, this problem can be solved using greedy algorithms based on ℓ 0 penalty, such as quaternion orthogonal matching pursuit (Q-OMP) [START_REF] Barthelemy | Color Sparse Representations for Image Processing: Review, Models, and Prospects[END_REF], [START_REF] Xu | Vector Sparse Representation of Color Image Using Quaternion Matrix Analysis[END_REF]. On the other hand, following standard practice, one can relax the non-convex ℓ 0 -penalty into a convex ℓ 1 -norm regularization leading to the quaternion LASSO (Q-LASSO) problem [START_REF] Zou | Quaternion Collaborative and Sparse Representation With Application to Color Face Recognition[END_REF], [START_REF] Zou | Quaternion block sparse representation for signal recovery and classification[END_REF] (or equivalently, quaternion basis pursuit denoising):

arg min q∈H M ∥y -Dq∥ 2 2 + λ∥q∥ 1 , λ ≥ 0. (16) 
In ( 16) the quaternion ℓ 1 -norm of vector q ∈ H M is defined as the sum of moduli of its entries ∥q∥ 1 := M m=1 |q m |. Interestingly, since the quaternion ℓ 1 -norm collects a sum of moduli, it can be interpreted as a mixed norm ℓ 2,1 on the real matrix A obtained by concatenating the four real-valued components of q such that A = [q a q b q c q d ] ∈ R M ×4 , i.e. ∥q∥ 1 = ∥A∥ 2,1 . This means that the Q-LASSO ( 16) can be interpreted in the real domain as a group Lasso with M groups of size 4.

The problem ( 16) defines a convex optimization problem in quaternion variables. In practice, quaternion convex optimization problems can be solved by translating usual real domain algorithms to the quaternion case by leveraging the generalized HR-calculus. Still, this generalization is not trivial and requires special care [START_REF] Flamant | A General Framework for Constrained Convex Quaternion Optimization[END_REF]. In particular, the general form of equality constraints in quaternion convex optimization problems is widely affine: i.e. it reads A 1 q + A 2 q i + A 3 q j + A 3 q k = b, where matrices and vectors are quaternion-valued with appropriate sizes. In comparison, in real-domain convex optimization, only affine equality constraints of the form Ax = b, where vectors are all real-valued, are considered. To solve the (unconstrained) problem [START_REF] Clausel | The monogenic synchrosqueezed wavelet transform: a tool for the decomposition/demodulation of AM-FM images[END_REF], one can adapt the celebrated Iterative Shrinkage-Thresholding Algorithm (ISTA) to handle quaternion variables. Generalized HR-calculus makes it possible to derive the quaternion ISTA iterations in a intuitive way. Letting f (q) = ∥y -Dq∥ 2 2 , the iterations read

q (k+1) = T ληk q (k) -η k ∇ q f (q (k) ) , (17) 
where η k > 0 is the step size at iteration k and T β is the soft-thresholding operator (i.e. the proximal operator associated to the quaternion ℓ 1 -norm) given entry-wise by [START_REF] Chan | Complex and Quaternionic Principal Component Pursuit and Its Application to Audio Separation[END_REF]: T β (q) = max(0, 1-β/|q|)q. Note that in this case, the gradient can be directly computed thanks to Table II as ∇ q f (q) = 1 2 D H (Dqb). Of course, more sophisticated optimization problems can be formulated and solved directly in the quaternion domain. For instance, in the case of 3D data sparse coding (such as color images) that uses pure quaternions, it might be relevant to impose that the solution q ⋆ satisfies Re(Dq ⋆ ) = 0. This constraint is widely linear -meaning that constraining the problem ( 16) preserves its convex nature. Solving this type of constrained quaternion optimization problems can be carried out within the same general framework, for instance using the quaternion alternating direction of multiplier method (Q-ADMM), as explained in [START_REF] Flamant | A General Framework for Constrained Convex Quaternion Optimization[END_REF].

C. Statistics for quaternion random variables

Statistics for quaternion random variables and vectors has been developed in order to extend classical signal processing algorithms relying on probabilistic models. As 4D variables, quaternions can either be understood as four dimensional real vector-valued random variables, i.e. variables in R 4 or as two dimensional complex random vectors, i.e. variables in C 2 . Just like for complex-valued random variables and vectors, detecting and taking into account symmetries in the probability density function (pdf) of quaternion random variables is essential in devising powerful signal processing tools. The notion of properness (also known as second order circularity) captures such rotation invariance of the pdf. It was considered in many scenarios and exploited in several algorithms either as an extra parameter in the signal model or as a signature of the absence/presence of a targeted signal hidden in a noisy environment. A solid literature is available for the complex case, (see e.g., [START_REF] Schreier | Statistical Signal Processing of Complex-Valued Data: The Theory of Improper and Noncircular Signals[END_REF] and references therein).

In the quaternion case, the original study and definition of properness traces back to Vakhania's work [START_REF] Vakhania | Random Vectors with Values in Quaternion Hilbert Spaces[END_REF], before being considered by the signal processing community [START_REF] Amblard | On Properness Of Quaternion Valued Random Variables[END_REF]- [START_REF] Bihan | The geometry of proper quaternion random variables[END_REF]. The major difference between the complex and quaternion cases is the existence of different levels of properness over H while only one level can be identified over C. The three levels of properness of a quaternion-valued random variable 5 are denoted R-properness, (1, µ)-properness (where µ is a pure unit quaternion, also denoted C µ -properness) and H-properness [START_REF] Via | Properness and Widely Linear Processing of Quaternion Random Vectors[END_REF], [START_REF] Bihan | The geometry of proper quaternion random variables[END_REF]. These levels correspond to different invariance properties of the random variable distribution. In the Gaussian case, properness means invariance properties of the 4×4 real (augmented) covariance matrix Γ R = E{q R q ⊤ R }, where q R = [q a , q b , q c , q d ] ⊤ ∈ R 4 . Thus, symmetries of the quaternion Gaussian pdf can be interpreted as symmetries of the equivalent real covariance matrix of the augmented vector q R gathering the real and imaginary parts of q ∈ H. Fig. 4 gives an illustration of the structure induced by two levels of properness on the 4 × 4 real covariance matrix Γ R in the case of centered quaternion-valued Gaussian variables. While the H-properness level is the "simplest" (the four components of the quaternion variables are uncorrelated and have the same variance), the (1, µ)-proper case has a much more complicated correlation structure (here µ = j for illustration purposes).

Accounting for properness is essential in quaternion-valued signal processing. It means that the symetries, or invariances, of the distribution are correctly taken into account. Therefore, an important research effort has been dedicated to develop and formulate statistical tools to deal with proper and improper quaternion signals. This includes extensions of generalized likelihood ratio method to test properness levels of quaternion variables [START_REF] Via | Generalized Likelihood Ratios for Testing the Properness of Quaternion Gaussian Vectors[END_REF] or the development of quaternion independent component analysis based on second-order statistics [START_REF] Via | Quaternion ICA From Second-Order Statistics[END_REF]. In estimation, accounting for properness naturally yields to the notion of widely linear processing [START_REF] Via | Properness and Widely Linear Processing of Quaternion Random Vectors[END_REF], [START_REF] Navarro-Moreno | A Quaternion Widely Linear Model for Nonlinear Gaussian Estimation[END_REF], which exploits the dependence between a quaternion random variable x and its three canonical involutions x i , x j and x k to capture the full second-order information, hence providing optimal estimation performance. (QLMS) algorithm. The first formulation of QLMS was proposed in [START_REF] Took | The Quaternion LMS Algorithm for Adaptive Filtering of Hypercomplex Processes[END_REF] and applied to temperature and 3D-wind data measurements. Subsequently, various forms of quaternion adaptive filters have been introduced along with their performance analysis [START_REF] Took | A Quaternion Widely Linear Adaptive Filter[END_REF], [START_REF] Ortolani | Frequency domain quaternion adaptive filters: Algorithms and convergence performance[END_REF], [START_REF] Xu | Enabling quaternion derivatives: the generalized HR calculus[END_REF], [START_REF] Ujang | Quaternion-Valued Nonlinear Adaptive Filtering[END_REF]- [START_REF] Xiang | Performance Analysis of Deficient Length Quaternion Least Mean Square Adaptive Filters[END_REF].
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We provide hereafter, an overview of the derivation of the update expression for the QLMS filter weights. QLMS algorithm is generally used to estimate the quaternion valued vector w of coefficients of a desired filter, by minimizing the least mean square of the error signal (difference between the desired and the actual signal). If n is the number of the current input sample x(n), QLMS aims at minimizing the real-valued cost function of quaternion variables

J (n) = |e(n)| 2
, where e(n) = d(n) -y(n) is the error between the desired signal d(n) and the filter output y(n) = w(n) H x(n). This minimization is performed using a steepest descent procedure, and the QLMS weights update is given by (see [START_REF] Storath | Directional Multiscale Amplitude and Phase Decomposition by the Monogenic Curvelet Transform[END_REF]):

w(n + 1) = w(n) -η∇ wJ (n), (18) 
where η > 0 is the step size. Using the HR-calculus rules from Table II and the general quaternion calculus rules, it can be easily shown that ∇ wJ (n) = -x(n)ē(n)/2. Thus, absorbing the scalar factor in the step size η, the QLMS update of the weight vector reads:

w(n + 1) = w(n) + ηx(n)ē(n). (19) 
One can observe that the quaternion update ( 19) has a similar form to the one obtained in the complex case. It is well-known that the performance of the LMS filter depends on the second-order statistics on the input vector x. When x is H-proper, the standard Hermitian covariance matrix C xx = E{xx H } contains the full second-order information of the data. However, when x is not H-proper, it is necessary to consider the so-called augmented statistics, i.e. the correlations between x and its three involutions

x i , x j and x k to capture the full second-order information. This leads the widely-linear QLMS (WL-QLMS) [START_REF] Xu | Enabling quaternion derivatives: the generalized HR calculus[END_REF], [START_REF] Xiang | Performance Analysis of Quaternion-Valued Adaptive Filters in Nonstationary Environments[END_REF], [START_REF] Xiang | Performance Analysis of Deficient Length Quaternion Least Mean Square Adaptive Filters[END_REF], that has a similar form to [START_REF]Spectral Analysis of Stationary Random Bivariate Signals[END_REF], but for which the input vector x is replaced by the augmented input x a = [x T , x i T , x j T , x k T ] T . A detailed analysis of QLMS performance for different types of properness can be found in [START_REF] Xiang | Performance Analysis of Quaternion-Valued Adaptive Filters in Nonstationary Environments[END_REF]. Application of QLMS and WL-QLMS on benchmark 3D data (Lorenz attractor) as well as real-world 3D and 4D data [START_REF] Took | The Quaternion LMS Algorithm for Adaptive Filtering of Hypercomplex Processes[END_REF] has shown that the quaternion approach outperforms LMS and complex LMS (CLMS) in terms of accuracy, proving the capacity of quaternion models to fusion heterogenous data sources.

IV. REMAINING CHALLENGES AND OPEN PROBLEMS IN QUATERNION-VALUED SIGNAL AND IMAGE

PROCESSING

It has been more than three decades now since the first appearance of quaternions in the signal and image processing literature. Still, the use of quaternions in these domains regularly raises scepticism. For instance, the question "Do quaternion-valued approaches perform better than standard real or complexvalued methods?" is perhaps the most encountered. Even though this might be an interesting question to ask, it misses a more fundamental point. Rather, we believe one should be questioning whether the use of a quaternion-valued representation should be preferred over a more conventional real-valued representation. Answering explicitly this question is crucial. It justifies the use of quaternions in the first place, which can be motivated e.g. by the geometric insights offered by the algebra, or by the ease of formulating compact and explicit models for the data at hand. In essence, one must identify the unique properties offered by quaternion algebra that are relevant to the considered setting. Once the motivation for using quaternion representations is clearly established, the comparison of quaternion methods with other real-valued approaches could be conducted. It is important to keep in mind that quaternion models can always be transformed into equivalent (often structured) real-domain models. In that case, comparisons between quaternion and real approaches are usually meaningless, since they describe the same model or methodology, just expressed using different algebra rules. However, one can legitimately wonder whether such equivalent real-domain model could have been directly formulated without the design of a quaternion model in the first place. Therefore, we believe that discussions should focus on pros and cons for the respective modeling approaches.

Quaternion representations call for dedicated tools. Indeed, if one wishes to advocate for the benefits of quaternion-valued representations and models, then one should also develop the associated signal processing methodologies in the quaternion domain. Doing otherwise, e.g. resorting to an equivalent real-domain formulation to solve the problem at hand, would imply losing any advantages gained using the original quaternion formulation. The tour of the current quaternion-valued signal and image processing toolbox presented in Section III paves the way for end-to-end quaternion domain approaches. Nonetheless, many questions remain open. In a nutshell, these define exciting research directions for quaternion-valued signal and image processing: the search for new insightful quaternion embeddings, the design of dedicated quaternion-valued statistical models, novel decompositions for large quaternion datasets, and machine learning with quaternions. These promising avenues of research are briefly outlined below:

• Novel models in the quaternion domain. Often, models for quaternion signal and data are built by mimicking standard linear algebra. This is the case, e.g. for the linear mixing model used in many quaternion signal processing scenarios. However, the intrinsic link between quaternions and 3D / 4D geometry, such as rotations or reflections, allow for much more diverse modeling opportunities.

Future research should take into account this specificity of quaternion algebra to develop original and innovative models capable of revealing further geometric insights into the studied phenomena.

This includes, for instance, models capable of identifying and separating features in polarimetric or color imaging that are invariant to some geometric transformation.

• Statistical quaternion signal processing. While there exists an important literature in complex-valued statistical signal processing [START_REF] Schreier | Statistical Signal Processing of Complex-Valued Data: The Theory of Improper and Noncircular Signals[END_REF], the quaternion domain counterpart still exhibits plenty of opportunities for theoretical and methodological developments. Indeed, until now, most of the research effort has been concentrated towards establishing the notions of properness and widely linear filtering. As a result, fundamental building blocks of quaternion statistical signal processing are still missing.

For example, the definition of general quaternion probability distributions beyond the Gaussian case is still a largely open question. Constructing a satisfying and complete probabilistic framework for quaternions would pave the way for meaningful end-to-end quaternion domain statistical approaches such as Bayesian inference, hypothesis testing, performance bounds for estimators, etc.

• Structured decompositions of multidimensional quaternion arrays. We have illustrated in this article the fact that orthogonal low-rank decompositions of quaternion-valued matrices (Q-SVD, Q-EVD) have been successfully used in various applications such as color image compression or vectorsensor array processing. However, these orthogonal decompositions quickly reach their limits when we must deal with either structured (e.g. Hankel matrices) or constrained (e.g. non-negative) data, as it is often the case in machine learning applications, for example. There is a need for new versatile low-rank decomposition tool allowing to account for these various constraints. Several authors already proposed such structured decompositions for dictionary learning [START_REF] Barthelemy | Color Sparse Representations for Image Processing: Review, Models, and Prospects[END_REF], sparse coding [START_REF] Zou | Quaternion Collaborative and Sparse Representation With Application to Color Face Recognition[END_REF], [START_REF] Zou | Quaternion block sparse representation for signal recovery and classification[END_REF], or for learning features from polarized imaging data [START_REF] Flamant | Quaternion Non-Negative Matrix Factorization: Definition, Uniqueness, and Algorithm[END_REF], but this research area is still in its infancy. Another interesting research direction is the extension of multilinear (tensor) algebra models and decompositions to quaternions. Because of the non-commutativity of quaternion multiplication, a general definition of multilinearity in the quaternion framework is a challenging but important theoretical question, for which there are already some promising leads [START_REF] Imhogiemhe | Low-rank tensor decompositions for quaternion multi-way arrays[END_REF].

• Quaternion neural networks. Motivated by the success of quaternion encoding of 3D/4D signals, the recent years have witnessed the development of quaternion (convolutional, recurrent) neural networks (NNs) [START_REF] Parcollet | A survey of quaternion neural networks[END_REF]. By leveraging the benefits of quaternion algebra that permits efficient accounting for inter-channel relations, such NNs allow improved feature learning from 3D and 4D data. This usually results in overall better performance than standard real-valued NNs in terms of classification / prediction rates and in a lower number of learned parameters. This is the case, for example, for the convolutional NNs that exploit correlations between the red, green and blue channels of a color image seen as a quaternion matrix. However, there is still a long way to go before using these NNs on a large scale. One of the main bottlenecks for these approaches is the hardware implementation of the quaternion product which is a powerful but expensive operation in the context of quaternion NNs.

Optimized GPU implementations for this operation would allow to drastically improve computation efficiency for these systems, and therefore their practical utility. An exciting prospect lies in devising quaternion NNs that take full advantage of quaternion-based optimization (the HR-calculus) and which are likely to reduce the computational burden and improve the efficiency of learning algorithms in applications relying on quaternion representations.

Almost 180 years after their discovery nearby Brougham bridge, quaternions are still surrounded by a hint of mystery for the newcomer. We hope the present article will help to demystify their use and benefits to researchers in signal and image processing. If a large set of works have already illustrated the power of quaternions to propose elegant and interpretable solutions to difficult problems, there remains some necessary effort to even better understand and exploit their potential. Quaternions will certainly continue to intrigue and inspire the signal processing community for the years to come.

modulus |pq| =

  |p| |q| Polar forms and geometry Euler formula (axis-angle representation) q = |q|e µq Φq = |q| (cos ϕq + µq sin ϕq) axis µq ∈ V(H) with |µq| = 1, angle ϕq ∈ [0, 2π] Euler angle polar form (xzy convention) q = |q|e iθ e -kχ e jϕ θ
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 1 Fig. 1. Monogenic signal analysis of a AM-FM mode. The quaternion polar form enables identification of local amplitude (Gaussian kernel envelope); local orientation (shown as direction for visualization purposes) which gives the orientation of the tangent vector of contour lines; local phase which encodes image lines (0 or π values) and contours (π/2 values).

Fig. 2 .

 2 Fig. 2. a) Instantaneous ellipse parameters [a, θ, χ, ϕ] associated to the bivariate signal x(t) thanks to the Euler polar form (6) of its quaternion embedding. b) Poincaré sphere of polarization states, a visual tool appearing naturally in the quaternion spectral representation of bivariate signals. Second-order properties of bivariate signals have a straightforward interpretation in terms of physical Stokes parameters S0, S1, S2, S3. In turn, normalized Stokes parameters S1/S0, S2/S0, S3/S0 correspond to Cartesian coordinates of points on the Poincaré sphere. c) Typical gravitational wave bivariate signal emitted by a compact binary black hole system exhibiting precession of the orbital plane. d) Quaternion spectrogram of the bivariate signal depicted in c). It describes the time-frequency content of the signal, both in terms of energy (S0) and polarization properties (normalized Stokes parameters S1/S0, S2/S0, S3/S0).

  spectrogram in terms of time-frequency Stokes parameters. This four time-frequency maps must be analyzed jointly: S 0 is alike the standard well-know spectrogram and gives the energy distribution of the signal in the time-frequency plane; the normalized Stokes parameters S 1 /S 0 , S 2 /S 0 , S 3 /S 0 reveal the instantaneous polarization state along ridges (i.e. lines of maximal energy in S 0 ). More generally, the quaternion spectral representation of bivariate signals enables the definition of a full algebraic signal processing framework. It puts polarization at the heart of many fundamentals tools of bivariate signal processing, such as general time-frequency or time-scale representations[START_REF] Flamant | Time-frequency analysis of bivariate signals[END_REF],

  expression of Q-SVD looks very familiar: ∆ is a rectangular diagonal matrix with non-negative real numbers (the singular values of A) on its diagonal ∆ ii = δ i , U and V are unitary quaternion matrices, meaning that U H U = I N and V H V = I P where I is the identity matrix. Columns of U define the left singular vectors of A, whereas columns of V give its right singular vectors. Moreover, Q-SVD enables the computation of the best rank-ℓ approximation of a quaternion matrix in the Frobenius norm: one simply truncates the Q-SVD by keeping only the first ℓ terms corresponding to the ℓ largest singular values. As an important special case of the Q-SVD, consider the case of an Hermitian matrix A ∈ H N ×N . Its Q-SVD reads A = U ΣU H , where Σ = diag(|λ 1 |, . . . , |λ N |) and λ 1 , . . . , λ N ∈ R are the (right) eigenvalues of A. Therefore, if A is positive semidefinite, then its right eigenvalues are real nonnegative, and the Q-SVD of A is identical to its quaternion right EVD (Q-EVD). In particular, columns of U correspond to (right) eigenvector of A. As a result, computing the Q-EVD of a positive definite Hermitian matrix

Fig. 3 .

 3 Fig. 3. Comparison between Q-MUSIC and LV-MUSIC for a uniform linear array with M = 10 sensors with spacing ∆x = λ/4. SNR was set to 0 dB assuming H-proper Gaussian noise. Sample covariance matrix were computed using 32 samples in all experiments. a) Plots of the Q-MUSIC (red) and LV-MUSIC (blue) functionals for two far fields polarized sources with DOAs α1 and α2. The two panels depicts values of functionals with respect to angle α, along two slices corresponding to polarization parameters of each source (left: θ = π/3, χ = π/5, right: θ = -π/6, χ = -π/5). b) Performance comparison in terms of MSE on the DOA in a single source scenario. Curves depicts average values computed using 1000 independents runs.

  Quaternion adaptive filtering for 3D and 4D signals Another important application of quaternionvalued signal processing is provided by the quaternion implementation of the popular Least Mean Square (LMS) adaptive filter. When dealing with 3D and 4D signals, using quaternion representations along with the linear quaternion model allows exploiting the geometric coupling between channels in a natural and structured manner. This is what motivated the development of the Quaternion Least Mean Squares
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 4 Fig. 4. Two different properness levels for a centered quaternion scalar Gaussian variable. Insets show the corresponding structure of the augmented covariance matrix Γ R , where identical colors indicate equal values.

  TABLE II HR-DERIVATIVES OF USUAL COST FUNCTIONS OF QUATERNION SCALAR, VECTOR AND MATRIX ARGUMENTS. ADAPTED

	FROM

This refers to the loss of one degree of freedom that can occur when using Euler angles to parameterize 3D rotations, causing important practical issues when representing a sequence of rotations.

The notion can be directly extended to vectors, but we illustrate here the concept on scalar-valued variable for clarity.
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