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Abstract
Halophilic archaea thriving in hypersaline environments, such as salt lakes,
offer models for putative life in extraterrestrial brines such as those found on
Mars. However, little is known about the effect of the chaotropic salts that
could be found in such brines, such as MgCl2, CaCl2 and (per)chlorate salts,
on complex biological samples like cell lysates which could be expected to
be more representative of biomarkers left behind putative extraterrestrial life
forms. We used intrinsic fluorescence to study the salt dependence of pro-
teomes extracted from five halophilic strains: Haloarcula marismortui, Halo-
bacterium salinarum, Haloferax mediterranei, Halorubrum sodomense and
Haloferax volcanii. These strains were isolated from Earth environments
with different salt compositions. Among the five strains that were analysed,
H. mediterranei stood out as a results of its high dependency on NaCl for its
proteome stabilization. Interestingly, the results showed contrasting dena-
turation responses of the proteomes to chaotropic salts. In particular, the
proteomes of strains that are most dependent or tolerant on MgCl2 for
growth exhibited higher tolerance towards chaotropic salts that are abun-
dant in terrestrial and Martian brines. These experiments bridge together
global protein properties and environmental adaptation and help guide the
search for protein-like biomarkers in extraterrestrial briny environments.

INTRODUCTION

By shaping the range of conditions in which proteins
retain their stability and solubility, amino acid substitu-
tions and structural modifications influence the surviv-
ability of organisms in a given environment. Due to their
profound long-evolved specialization, extremophiles
have largely confirmed this link between molecular
traits and adaptation to the environment (Ando
et al., 2021; Carré et al., 2022; Reed et al., 2013). For
example, haloarchaea, which thrive on Earth in hyper-
saline environments, cope with hyperosmolarity by
intracellularly accumulating molar concentrations of K+.
Yet, their cytosol remains an extreme environment in
which non-halophilic proteins would lose stability and
solubility. Thanks to several molecular traits, including

reduced hydrophobicity and increased frequency of
negatively charged amino acids; proteins from halo-
philes have shown impressive tolerance and even
dependency towards high concentrations of salts. Dif-
ferences between salt-tolerance of homologous
enzymes from different halophilic organisms have been
pointed (Coquelle et al., 2010). In particular, the evolu-
tion of the model malate dehydrogenase (MDH)
enzyme within the haloarchaeal class showed complex
and non-linear trajectories leading to various adaptive
strategies and responses to salt type and pH
(Blanquart et al., 2021). These observations indicate
that even among salt-accumulating halophiles, subtle
differences in molecular traits could be related to dra-
matic differences in protein behaviour and salt-
dependency.
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While most terrestrial halophiles, including the
archaeon Halobacterium salinarum, which is the most
halophilic organism known to date, are found in Na+

dominated brines, it is important to note that halophiles
can also be found in highly chaotropic Mg2+-containing
environments such as soda lakes, Dead Sea, cryo-
brines or deep hypersaline anoxic basins (DHABs).
Chaotropicity is a concept that was first defined in 1962
(Hamaguchi & Geiduschek, 1962). It results from the
activities that solutes exert on macromolecular sys-
tems, as well as from deviations of solvation water’s
behaviour from its bulk-like state (Ball & Hallsworth,
2015). Chaotropic cations such as Mg2+ or Ca2+ desta-
bilize most proteins (Bye & Falconer, 2013; Tadeo
et al., 2007), as predicted by Hofmeister series
(Hofmeister, 1888). These ions strongly impair water
structure and interact with side-chains of negatively
charged amino acids, alleviating key interactions
involved in protein structure (General et al., 2008;
Lenton et al., 2017; Okur et al., 2017). Absolute deter-
minations of kosmotropic/chaotropic activities have
been measured for several compounds, leading to neg-
ative (kosmotropic) and similar values for NaCl and
KCl, respectively �11.0 and �11.3 kJ kg�1 mol�1, and
positive (chaotropic) values for MgCl2 and CaCl2,
respectively +54.0 and +92.2 kJ kg�1 mol�1 (Cray
et al., 2013). Along with thermodynamical approaches,
the chaotropic or kosmotropic nature of various types
of physiological solutes was also quantified biologically,
by studying how they affect microbial cell growth and
metabolism (Cray et al., 2013; de Lima Alves
et al., 2015). It revealed that, even at concentrations
that can be found in the natural environment, chaotro-
pic solutes can inhibit the growth of bacteria and induce
the accumulation of stress proteins responsible for sta-
bilizing proteins and membranes (Hallsworth, Heim, &
Timmis, 2003; Hallsworth, Prior, et al., 2003). These
observations indicate that, besides hypersalinity, chao-
tropicity represents a major challenge limiting the win-
dow of life. However, cellular activities and cultivable
microbes were obtained from a MgCl2-rich DHAB. Also,
Halorubrum sodomense and Haloferax volcanii, two
halophilic archaea isolated from the Dead Sea show
impressively high tolerance to chaotropic ions
(Oren, 1983; Pohlschroder & Schulze, 2019) and intra-
cellular concentrations of Mg2+ in H. sodomense has
been reported to be notably higher than in other halo-
philic archaea (Oren, 2013). Finally studies on halo-
philic enzymes also indicated a peculiar role of Mg in
enzyme stabilization (Blanquart et al., 2021; Madern &
Zaccai, 1997, 2004). These observations indicated that
extreme halophiles may have evolved specific mecha-
nisms to cope with high chaotropicity.

Besides a better definition of life window with
respect to hypersaline and chaotropic environments,
halophilic organisms and their related biomolecules
have also been proposed as models to test the

compatibility of biological processes and biomarker sta-
bility under simulated hypersaline Martian conditions
(Bayles et al., 2020; Carré et al., 2022; Perl &
Baxter, 2020; Sundarasami et al., 2019). Indeed, sev-
eral studies have shown that metastable hypersaline
liquid water bodies containing high amount of chaotro-
pic ions could be present beneath the southern pole ice
cap (Lauro et al., 2021; Orosei et al., 2018) or under
the regolith in subsurface environments (Abotalib &
Heggy, 2019; Clifford et al., 2010; McEwen et al., 2011;
Rivera-Valentín et al., 2020). As confirmed by experi-
mental studies (Fischer et al., 2014), such water sys-
tems would require to be hypersaline in order to remain
liquid under the low temperatures of Martian environ-
ments (Brady, 1992). A notable feature of halophilic
organisms is their capacity to survive for long periods
when trapped in salt crystals or upon salt deliques-
cence (Crits-Christoph et al., 2016; Favreau, 2023;
Favreau et al., 2022; Micheluz et al., 2022), some stud-
ies even suggesting a preservation over geological
ages (Hallsworth, 2022; Schreder-Gomes et al., 2022).
Moreover, halophilic enzymes were also shown to
maintain exceptional stability when trapped in salt crys-
tals (Tehei et al., 2002). It has also been shown that
intracellular accumulation of chaotropic cations such as
Mg2+ or Ca2+, facilitates life at low temperatures as
they counter the cold-induced stabilization of proteins
(Chin et al., 2010; Cray et al., 2015). For these reasons,
it has been proposed that traces of ancient halophilic
life could be present in Martian halites (Hallsworth,
2020; Rivera-Valentín et al., 2020). Thus, the surface of
the red planet should not be considered universally
hostile to life (Hallsworth, 2021). In this context, exten-
sive simulations have used members of the Haloarch-
aea class to test the effects of Martian-like simulated
conditions such as UV irradiation (Fendrihan et al.,
2009), desiccation-rehydration cycles (Vauclare et al.,
2020), long-term desiccation and freezing cycles
(Mancinelli et al., 2004) and low temperature (Laye &
DasSarma, 2018; Reid et al., 2006). While such experi-
mental approaches are useful to assess the capacity to
tolerate Martian-like conditions at the organism level,
they need to be complemented with studies on the bio-
molecules to get a complete picture of the molecular
limits of life. In addition, Martian brines would display
Mg2+ and Ca2+ as the dominant cations (Osterloo
et al., 2008; Squyres et al., 2004) and high concentra-
tions of chlorate and perchlorate anions (ClO3

� and
ClO4

�), have been detected in situ (Hecht et al., 2009),
especially in subsurface brines. As mentioned above,
such chaotropic conditions represent a barrier to life
(Hallsworth et al., 2007) and could make the Martian
brines more extreme than their terrestrial analogues
(Fox-Powell et al., 2016). At the molecular level, little is
known about the effects of chaotropic ions on halophilic
proteins and the existence of protein adaptation to
chaotropic ions remains questionable. Such adaptation
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would be crucial to cope with exotic conditions such as
those present in Martian brines.

Recently, the effects of perchlorate salts on the
reactivity of an halophilic enzyme (Laye &
DasSarma, 2018) and on the stability and reactivity of a
non-halophile enzyme have been investigated (Gault &
Cockell, 2021). It should, however, be stressed that the
conclusions arising from isolated model biomolecules
may not reflect the limiting biological edifice required to
cope with extreme conditions and, in the context of
astrobiology, may not indicate what biomarker resulting
from a putative extraterrestrial lifeform could be
searched for (Fairén et al., 2020; S�anchez-García
et al., 2020). Moreover, such approaches could be
biased by the choice of the enzyme. In addition to vari-
ations between organisms, even between extreme hal-
ophiles (Coquelle et al., 2010), proteins from the same
organism may display drastically different responses to
salts, notably as a consequence of the composition of
their amino acid sequence (Becker et al., 2014). There-
fore, whole-proteome approaches to study the proper-
ties of a physiologically relevant mix of proteins may
offer additional insights into global biomolecule adapta-
tion to the environment. Various techniques, including
neutron scattering (Zaccai, 2013), have been success-
fully used to unravel global protein adaptations in
thermophiles, psychrophiles (Tehei et al., 2004), piezo-
philes (Martinez et al., 2016; Peters et al., 2014) and
halophiles (Marty et al., 2013; Vauclare et al.,
2015, 2020).

By using label-free differential scanning fluorimetry
(nanoDSF), a method allowing analysis of thermal
denaturation and thermal aggregation of proteins, we
have recently revealed a difference between the stabi-
lizing effect of KCl and NaCl on the proteome of the hal-
ophilic archaeon Haloarcula marismortui (Carré
et al., 2021). In this study, we used this novel approach
to explore the effects of combinations between kosmo-
tropic (KCl, NaCl) and chaotropic salts (MgCl2, CaCl2,
NaClO3, NaClO4, Mg(ClO4)2 and Ca(ClO4)2) on prote-
ome stability in five different strains of Haloarchaea,
including Mg-tolerant strains.

EXPERIMENTAL PROCEDURES

Experimental design

This study aimed to characterize response to various
salt types and combinations at the scale of the prote-
ome through nanoDSF analysis of cell lysates of halo-
philic archaea. After diluting them in concentrated salt
solutions to achieve desired conditions, cell lysates
were loaded in capillaries and analysed with a Prome-
theus NT.48 (NanoTemper). This allowed monitoring of
denaturation and aggregation events throughout a tem-
perature gradient. We focused on the shifts of dominant

denaturation peaks (TPm) related to changes in salt
types, combinations and concentrations. Relationships
between TPm and salt concentration were fitted with a
linear model whose slopes represented proteome sen-
sitivity to the given salt.

Strains and growth conditions

All strains were grown aerobically at 37�C under mild
agitation by inoculating fresh medium with concen-
trated cell suspension stored in glycerol at �80�C.
Initial stocks were purchased at the DSMZ-German
Collection of Microorganisms (H. mediterranei,
H. sodomense) or provided by A. Oren
(H. marismortui, H. salinarum) or H. Myllykallio
(H. volcanii). Growth medium was adapted from vari-
ous references (Mevarech et al., 1976; Oesterhelt &
Stoeckenius, 1974; Oren, 1983; Rodriguez-Valera
et al., 1980).

Composition of H. marismortui medium was 208 g
L�1 NaCl, 78 g L�1 MgCl2�6H2O, 500 mg L�1

CaCl2�2H2O, 125 mg L�1 MnCl2, 5 g L�1, NaBr 580 mg
L�1, 10 g L�1 yeast extract, pH adjusted to 7.5 with
addition of 10 M NaOH after dissolution.

Composition of H. salinarum medium was 250 g L�1

NaCl, 33.8 g L�1 MgCl2�6H2O, 2 g L�1 KCl, 125 mg L�1

MnCl2, NaBr 580 mg L�1, 3 g L�1 yeast extract, 5 g L�1

tryptone, pH adjusted to 7.2 with addition of 10 M
NaOH after dissolution.

Composition of H. mediterranei medium was 195 g
L�1 NaCl, 84 g L�1 MgCl2�6H2O, 500 mg L�1 KCl, 1 g
L�1 CaCl2�2H2O, 125 mg L�1 MnCl2, NaBr 580 mg L�1,
5 g L�1 yeast extract, pH adjusted to 7.2 with addition
of 10 M NaOH after dissolution.

Composition of H. sodomense medium was 125 g
L�1 NaCl, 160 g L�1 MgCl2�6H2O, 2,1 g L�1 KCl,
130 mg L�1 CaCl2�2H2O, 125 mg L�1 MnCl2, 5 g L�1,
NaBr 580 mg L�1, 2 g L�1 yeast extract, 1 g L�1 pep-
tone, 2 g L�1 soluble starch, pH adjusted to 7.2 with
addition of 10 M NaOH after dissolution.

Composition of H. volcanii medium was 125 g L�1

NaCl, 62 g L�1 MgCl2�6H2O, 3.7 g L�1 KCl, 500 mg L�1

CaCl2�2H2O, 125 mg L�1 MnCl2, 5 g L�1, NaBr 580 mg
L�1, 3 g L�1 yeast extract, 5 g L�1 tryptone, pH
adjusted to 7.2 with addition of 10 M NaOH after
dissolution.

Proteome extracts preparation

Sixty millilitres of a culture in mid or late exponential
phase (OD600 between 0.4 and 1.0) were centrifugated
at 20,000 g for 15 min. Supernatant was discarded by
aspiration and pellet was resuspend in 3 mL of 4 M KCl
or 5 M NaCl and cells were then lysed by sonication.
For each condition, 50 μL of cell lysate was diluted with
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water and concentrated salt solutions (4 M KCl, 5 M
NaCl, 5 M MgCl2, 5 M CaCl2, 2 M NaClO3, 2 M
NaClO4, 1 M Mg(ClO4)2 or 1 M Ca(ClO4)2) to the final
volume of 500 μL in order to reach the final desired
concentration of salts.

Characterization of effects of salts on
Haloarchaea proteomes and
H. marismortui MDH by differential
scanning fluorimetry

Cell lysates extracted in various salt conditions were
centrifugated at 20,000 g for 15 min and the superna-
tants (soluble fraction of cell lysate) were loaded in
Prometheus™ NT.48 capillaries. Thermal denaturation
curves were determined by measurements of protein
intrinsic fluorescence. This analysis was performed
using label-free, native differential scanning fluorimetry
(nanoDSF; apparatus: Prometheus NT.48, NanoTem-
per). The tryptophan residues of the proteins in prote-
ome extracts were excited at 280 nm and the
fluorescence intensity was recorded at 330 and
350 nm. Excitation power was set at 80% or 100%. The
temperature of the measurement compartment
increased from 20 to 95�C at a rate of 2�C per minute.
Light scattering was also measured as a way to detect
aggregation events during heating.

To stress the inner variation of first derivative of ratio
of 350/330 nm fluorescence in each sample, data were
transformed using the highest and the lowest values
within the 25–80�C range of temperature as boundaries
by respectively setting them to 100 and 0.

Statistical analysis

All graphs and analyses were made using GraphPad
Prism 9 (GraphPad software Inc, California, USA).

Temperature associated with dominant denaturation
peaks were automatically determined by the PR.
ThermControl software (NanoTemper). When multiple
peaks were detected, we only picked the dominant one
with maximum height. When no temperature could be
automatically determined, we used instead the temper-
ature associated with maximum value of first derivative
of 350/330 nm fluorescence ratio. Since events associ-
ated with abnormally high fluorescence or light scatter-
ing signals occasionally happened at highest
temperatures in some individual experiments, the man-
ual assignment of denaturation peaks was limited to
temperatures between 25 and 80�C. Due to low signal
over noise ratio, no denaturation peak and, hence, TPm,
could be determined for several experiments, mostly
with lysates of H. salinarum.

For each condition, linear regression was made by
using the automatically and manually determined TPm.

Due to insufficient data, it could not be made for
H. salinarum with the NaCl-only salt condition. For KCl-
only and NaCl-only experiments, value of TPm mea-
sured at 0 M salt was excluded from the fit as this con-
dition is actually particularly extreme for halophilic
systems. This was not made with combinations since
the proteome was always exposed to at least 1 M or
counter-salt (KCl or NaCl). Slope of line fitting best TPm

values was determined individually for each replicate.
Statistical comparison of slopes in Figure 1A, was
made using Brown–Forsythe and Welch ANOVA tests,
comparing the mean of each column to the mean of
every other column. All peak and slope values are
given in Data S2–S5.

Since differences between slope values ranged
over several orders of magnitude, data were trans-
formed for Figure 2A. For each salt condition, the slope
with highest absolute value was set to 100 or � 100,
depending on its sign, by multiplying it by a specific
number and the other slopes were multiplied by the
same number. This made comparisons between strains
easier for every salt condition.

RESULTS

Response of the proteome of
H. marismortui to different salts

To investigate proteome responses to KCl, NaCl,
MgCl2, CaCl2 and to combinations between them, we
first used lysates of cells of H. marismortui in exponen-
tial phase. After dilution in various salt concentrations
to reach the final desired composition and centrifuga-
tion, the supernatants, which contained the soluble
fraction of the proteomes, were analysed using
nanoDSF to derive proteome thermal denaturation and
thermal aggregation curves as described in Carré et al.
(2021). Untreated thermal aggregation and denatur-
ation signals in various salt conditions are presented in
supplementary material section (Figures S2–S5). Rep-
resentative thermal denaturation curves for the prote-
ome of H. marismortui are given in Figure 3 for
solutions containing a single salt and for combinations
between 1 M KCl or NaCl and chaotropic chloride or
(per)chlorate salts. We first tested the effects of solu-
tions containing one type of salt: KCl (0–4 M), NaCl (0–
6 M), MgCl2 (0–2 M) and CaCl2 (Figure 3A). Then we
studied combinations between KCl (1, 2 or 3 M) and
chaotropic MgCl2 or CaCl2 (0–2 M) (Figure 3B) as well
as combinations between NaCl (1, 2 or 3 M) and chao-
tropic chlorate/perchlorate salts: NaClO3 (0–1 M),
NaClO4 (0–1 M), Mg(ClO4)2 (0–0.5 M) or Ca(ClO4)2 (0–
0.5 M) (Figure 3C). The reason why we used NaCl
rather than KCl with perchlorates is that immediate pre-
cipitation occurred when mixing (per)chlorate and KCl
solutions, even at low concentrations.

EFFECTS OF CHAOTROPIC SALTS ON GLOBAL PROTEOME STABILITY 2219
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F I GURE 1 Proteome melting temperatures as a function of salt condition and proteome sensibility to various Earth-relevant salts in
Haloarchaea. TPm values determined with KCl or NaCl only (A) and with combinations between KCl and MgCl2 (D). Corresponding slopes of line
fitting TPm determined with KCl (B), NaCl (C) or combinations between KCl and MgCl2 (E). Statistical analysis was made using a Brown–
Forsythe and Welch ANOVA test (**p < 0.0021; ***p < 0.0002; ****p < 0.0001). Errors bars represent standard deviation.

(A) (B) (C)

(E)(D)

F I GURE 2 Proteome melting temperatures as a function of salt condition and proteome sensibility to various Mars-relevant salts in
Haloarchaea. TPm values determined with combinations between NaCl and NaClO3 (A), NaClO4 (C), Mg(ClO4)2 (E) or Ca(ClO4)2 (G).
Corresponding slopes of line fitting TPm determined with combinations between NaCl and NaClO3 (B), NaClO4 (D), Mg(ClO4)2 (F) or
Ca(ClO4)2 (H).
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In the case of chaotropic salts, increasing the con-
centrations of both MgCl2 and CaCl2 delayed peak of
the first derivative of the ratio of 350/330 nm

fluorescence and, hence, the dominant denaturation
event (denaturation peak) reflecting a stabilizing effect
of these two salts on the H. marismortui proteome in

(A)

(C)

(E)

(G)

(B)

(D)

(F)

(H)

F I GURE 3 Representative thermal denaturation curves of Haloarcula marismortui proteome under various salt conditions. nanoDSF
analysis was made with soluble fraction of lysates with only one type of salt (A), combinations between 1 M KCl and MgCl2 or CaCl2 (B) or with
combinations between 1 M NaCl and (per)chlorate salts (C). Higher values (yellow) correspond to denaturation events. Curves were transformed
to facilitate peak observation (see Experimental Procedures section). Occasionally, abnormally high signals were measured at the end of the
heating ramp (in black). When signal over noise ratio was high, signal after 80�C may also appear in black due to the way colour range was set.
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spite of their chaotropicity (Figure 3A). However, the
relationship between CaCl2 concentration and the tem-
perature of the denaturation peak was non-linear.

Denaturation peaks followed a non-linear trend
under KCl-MgCl2 or KCl-CaCl2 conditions. However,
the denaturation events were less resolved than in
single-salt conditions (Figure 3B). Yet, one dominant
denaturation peak could still be observed with most
KCl-MgCl2 conditions. Several KCl-CaCl2 conditions
led to higher values of the first derivative of the ratio of
350/330 nm fluorescence above 80�C, which was used
as the superior temperature boundary for determining
the peak position in low-resolved curves. When exclud-
ing the events occurring above 80�C, dominant dena-
turation events could be observed at 45–65�C.

Combinations between NaCl and chlorate or per-
chlorate salts led to less resolved denaturation peaks
similar to the KCl-MgCl2 or KCl-CaCl2 conditions
(Figure 3C). The presence of chlorate or perchlorate
salts caused denaturation peaks to occur at an even
lower temperature, showing a stronger destabilizing
effect compared to the KCl-MgCl2 or KCl-CaCl2 condi-
tions. At low concentrations, chlorate or perchlorate
salts do not seem to alleviate significantly the stabiliz-
ing effect of NaCl (Figure 3A).

Since the Prometheus NT.48, which we used for the
nanoDSF assay, also measures light scattering, we
used peaks of first derivative of light scattering as a
proxy for aggregation events. However, aggregation
peaks could only be observed at high concentrations of
NaCl/KCl or with magnesium or calcium-containing
chloride or perchlorate salts (Figure S1). KCl-MgCl2
combinations allowed observation of two separated
well-resolved aggregation peaks, the first happening at
T < 75�C and the second at higher temperatures. Both
MgCl2 and CaCl2 promoted aggregation events since
increasing their concentration lowered the tempera-
tures at which these events were observed.

Salt responses of the proteomes from
H. salinarum, Haloferax mediterranei,
H. sodomense and H. volcanii (compared
to the one of H. marismortui)

To compare proteome response to salt conditions
between species, the nanoDSF experiments were
extended to cell lysates of four additional haloarchaeal
strains: H. salinarum, H. mediterranei, H. sodomense
and H. volcanii. These strains were isolated from envi-
ronments with contrasting salt conditions and displayed
different requirements for salt concentrations in their
growth media (see Experimental Procedures section).
In particular, H. salinarum is the most NaCl-dependent
and NaCl-tolerant known organism, H. sodomense is
the most Mg2+-tolerant organism known and
H. mediterranei has the largest range of NaCl

concentrations compatible with growth. Details about
salt requirements for growth and other microbiological
information about these five strains from Bergey’s Man-
ual of Systematics of Bacteria and Archaea and is
given in Table S1.

Thermal aggregation curves (Figure S2) were simi-
lar between strains either when only one type of salt
was present or with salt combinations. Qualitative dif-
ferences could only be seen between MgCl2 and
CaCl2, the latter promoting aggregation events at lower
temperatures more drastically than MgCl2. Nonethe-
less, aggregation peaks were smaller at higher concen-
trations of KCl, especially at 3 M when combined with
CaCl2. MgCl2 favoured observation of two aggregation
peaks at lower temperatures as its concentration
increased. CaCl2 leads to the observation of additional
dominant aggregation events whose temperature was
positively correlated with CaCl2 concentration. Interest-
ingly, this was not observed with proteomes of
H. marismortui and H. salinarum the two most NaCl-
dependent strains.

In contrast, the denaturation curves largely differed
between strains. Figure S3 shows representative dena-
turation curves under one-salt conditions for all tested
strains. Overall, proteomes showed similar behaviour,
all being gradually stabilized by higher KCl or NaCl con-
centrations. Stabilization by MgCl2 and CaCl2 was also
clearly observed with the proteomes of H. mediterranei
and H. sodomense and, to a lesser extent, with
H. volcanii. Cell lysates of H. salinarum were associ-
ated with the least resolved denaturation peaks, mak-
ing their observation difficult or even impossible,
especially when only MgCl2 or CaCl2 was present.
Interestingly, thermal denaturation curves of lysates of
H. mediterranei showed two clearly separated domi-
nant denaturation events.

With salt combination experiments, increasing the
concentration of chaotropic salt promoted observation
of more than one noticeable denaturation event
(Figure S4). As a reminder, variation of fluorescence
signal is a function of exposure of aromatic amino acids
to solvents upon protein denaturation.

This was observed with proteomes of
H. sodomense and H. volcanii at 1 and 2 M KCl with
increasing MgCl2 concentrations. The first event to
occur, which was observed at 1 and 2 M and unseen at
3 M KCl, was shifted towards low temperatures when
MgCl2 concentration increased. On the contrary, the
second event to occur happened at a slightly higher
temperature as MgCl2 concentration increased from
0 to 2 M. This showed that destabilizing as well as sta-
bilizing effects of MgCl2 on both proteomes could be
observed in the same conditions.

Denaturation peaks were less resolved with KCl-
MgCl2 combinations for proteomes of H. marismortui
and H. salinarum. However, it could be confirmed for
these strains that increasing concentration of MgCl2
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lowered temperatures at which denaturation peaks
could be observed at most KCl concentrations, showing
an overall destabilizing effect of MgCl2. Use of CaCl2
as the chaotropic salt reduced resolution of denatur-
ation peaks for all strains, with the notable exception of
H. mediterranei which maintained well-resolved dena-
turation peaks.

Effects of (per)chlorate-containing salts on prote-
ome stability were similar between strains (Figure S5).
NaClO3 was nearly always stabilizing while NaClO4

and Mg(ClO4)2 had destabilizing effects. However,
these effects were reduced by increasing the concen-
tration of NaCl. Ca(ClO4)2 had a complex non-linear
effect on temperature associated with dominant dena-
turation events and generally reduced signal over noise
ratio. As previously noted, denaturation curves
obtained with proteomes of H. marismortui and
H. salinarum were less resolved and, as with single-salt
experiments, denaturation curves of proteome of
H. mediterranei (Figure S5C) presented two distinct
dominant denaturation events in most conditions.

Statistical analyses to compare proteome
melting temperatures and sensitivity

To enable statistical comparisons, experiments with
KCl or NaCl only and with salt combinations (except
KCl-CaCl2) were independently replicated for the five
strains: three additional experimental points with
fewer salt concentrations for KCl or NaCl only and
two additional experimental points with the same con-
ditions for KCl-MgCl2 and NaCl-(per)chlorate combi-
nations. The temperatures associated with the peak
value of the first derivative of ratio of 350/330 nm
fluorescence associated with the main dominant
denaturation events, which we previously defined as
proteome melting temperatures (TPm) (Carré
et al., 2021), were retrieved. The slope of lines fitting
TPm as a function of the concentration of the salt were
also calculated. TPm and slope values are given in
Figures 1 and 2.

The reproducibility of the measured TPm was good
in spite of the complexity of the samples as shown by
the low standard deviation values (Figures 1 and 2)
except for H. salinarum for which it was not always pos-
sible to derive a TPm value. Variations in TPm values
could be observed and were dependent on the strain
and the salt type. The previously observed trends
showed to be robust and reproducible. Increasing KCl
or NaCl concentrations nearly always increased TPm in
salt combinations experiments (Figures 1A,D and
2A,C,E,G). At every KCl concentration, the relationship
between MgCl2 and TPm was complex and non-linear
(Figure 1D). NaClO3 reproducibly stabilized proteomes
and this effects linearly increased with its concentration
(Figure 2A). In contrast, NaClO4 gradually decreased

TPm in most of the conditions (Figure 2C). Effects of
Mg(ClO4)2 were similar to those due to NaClO4

(Figure 2E). Like MgCl2 in the presence of KCl,
Ca(ClO4)2 had complex non-linear effects on TPm,
increasing stability of proteomes of H. sodomense and
H. volcanii at low concentrations and then destabilizing
them at higher concentrations (Figure 2G).

While not all salts lead to linear relationships
between their concentration and the TPm, the slopes of
the fitting line enabled the comparison of global prote-
ome sensitivity to a given salt type, regardless of its
intrinsic thermostability. No statistically significant differ-
ences in proteome stabilization by KCl were observed
between the five tested strains (Figure 1B). In contrast,
the proteome of H. mediterranei presented a statisti-
cally significant higher stabilization response to NaCl
(Figure 1C), being more efficiently stabilized by this salt
than the other strains (with the exclusion of
H. salinarum whose proteome did not offer enough
well-resolved denaturation peaks). In addition, the pro-
teome of H. salinarum was more destabilized by MgCl2
(Figure 1E), less stabilized by NaClO3 (Figure 2B) and
more destabilized by NaClO4 (Figure 2D).
H. sodomense and H. volcanii presented strikingly simi-
lar proteome responses to all salt types, being the least
sensitive to NaClO4 or Mg(ClO4)2 and the only ones
being stabilized by Mg(ClO4)2 (Figure 2F) or Ca(ClO4)2
(Figure 2H) in the presence of 3 M NaCl. Proteomes of
H. marismortui and H. mediterranei showed intermedi-
ary behaviours between those observed for
H. salinarum on the one hand and H. volcanii/sodo-
mense on the other hand. In addition, both were very
sensitive to Mg(ClO4)2 (Figure 2F).

To assess possible correlations between sensitivity
to the tested salt conditions, Pearson correlation coeffi-
cients were calculated using slope values from the five
tested strains and the corresponding correlation matrix
determined (Figure 4A). Sensitivities to MgCl2, NaClO3

and NaClO4 were positively correlated as were sensi-
tivities to Mg(ClO4)2 and Ca(ClO4)2. However, positive
and negative correlations were dependent on the
counter-salt (NaCl or KCl) concentration.

Our results clearly show that the proteome
response to chaotropic salts differs between strains.
This is summarized in Figure 4B, highlighting distinct
behaviours, such as high sensitivity to NaCl in the case
of H. mediterranei proteome and its peculiar response
to Martian or Earth-relevant salts.

DISCUSSION

Cellular proteomes contain different types of proteins
with different biochemical and biophysical properties
thus, studies related to single proteins cannot properly
reflect the adaptative nature of the whole proteome.
With this respect, nanoDSF is a valuable approach to
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probe molecular response to chemical conditions at the
proteome scale. In the present work, we extended our
proof of concept experiment (Carré et al., 2021) to the
comparison of several halophilic extremophiles. Obvi-
ously, the intrinsic fluorescence signal depends on the
existence of aromatic residues within the sample and
comparison between strains may be biased if aromatic
residue content differed. Thus, we compared frequen-
cies of Phe/Tyr/Trp residues in the proteomes of the
five strains and within a set of 93 representative pro-
teins listed in Data S1, distribution being represented in
Figure S6. While the genomes of both strains encode
on average similar frequencies of the aromatic amino
acids, H. sodomense showed a reproducibly strong
nanoDSF signal in our experiments, unlike
H. salinarum. Nonetheless, the frequency of the

aromatic amino acids in H. salinarum within the 93 rep-
resentative proteins set is also close to the frequencies
found in the genomes with H. marismortui and
H. sodomense. Another aspect that may influence
nanoDSF signal interpretation is the relative abundancy
of certain protein families within the proteome. How-
ever, our study relies only on haloarchaea strains, limit-
ing the differences in proteome complexity and relative
composition. Our exploration of the halophilic proteome
response revealed the existence of limited protein
denaturation and/or aggregation events happening at
clearly distinct temperatures in several salt conditions,
depending on the strain. This observation could be
related to the fact that distinct protein populations
behave differently with respect to salt nature and
concentration.

F I GURE 4 Correlation between strains and sensitivities to salt. (A) Correlation matrix of sensitivities to salt over the five strains. Dotted lines
separate conditions with same main salt with, when applicable, the conditions of counter-salt concentrations. (B) Radar chart of the normalized
slopes of line fitting TPm values of proteomes of each haloarchaeal strain for every tested salt condition. Grey zone corresponds to negative
slopes and, hence, destabilizing effects of salts whereas white zone corresponds to positive slopes and stabilizing effects.
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The first important information provided by the
nanoDSF experiments performed is that the proteome
stability, with respect to salt, differed between the con-
sidered strains in spite of the fact that they are all
strictly hyperhalophilic Haloarchaea accumulating
molar concentrations of potassium ions in their cytosol.
Of the five tested strains, H. salinarum and
H. mediterranei showed the most distinctive behav-
iours. The proteome of H. salinarum gave the least
resolved denaturation curves. This happened with
every tested salt type, including the most chaotropic.
This could be explained by a reduced frequency of aro-
matic residues contributing to the measured intrinsic
protein fluorescence, hence reducing the peak height.
As discussed, frequency of aromatic amino acids in the
five considered strains is close. Therefore, scarcity of
aromatic amino acids does not offer a reasonable
explanation for the low-resolution denaturation peaks
obtained with lysates of H. salinarum. Our observations
and the similar aromatic residue frequency may indi-
cate that proteins composing the cell lysates of
H. salinarum may denature on a broader range of tem-
peratures, thus limiting peak sharpness.

H. mediterranei stands out in another way: its prote-
ome stability displayed significantly higher dependency
on Na+ than the other strains. While all haloarchaea,
including H. mediterranei (Pérez-Fillol & Rodriguez-
Valera, 1986), intracellularly accumulate K+ rather than
Na+, the latter remains the dominant cation in most
hypersaline environments. Most studies about intracel-
lular salt composition in haloarchaea and its depen-
dency on extracellular environment have essentially
investigated intracellular K+ associated to medium with
modified NaCl concentrations at constant K+ supply. In
spite of the fact that no study has, to our knowledge,
measured the intracellular concentration of Na+ as a
function of K+ concentration in the growth medium,
some studies with H. marismortui (Ginzburg
et al., 1970; Jensen et al., 2015) and in H. salinarum
(Lanyi & Silverman, 1972; Matheson et al., 1976) pre-
sented evidences of, respectively, decreased and
increased accumulation of K+ and Na+ when K+ is
scarce in the medium. This indicates that haloarchaea
may accumulate Na+ instead when K+ is scarce. In
such conditions, proteome of H. mediterranei could
therefore benefit from K+ scarcity by having a proteome
that can still benefit from Na+ abundancy. It should also
be pointed out that H. mediterranei possess fewer
carotenoid pigments and lacks both bacteriorhodopsin
and halorhodopsin (Oren, 2017; Oren & Hallsworth,
2014), which are photodependent H+ and Cl� pumps
essential for K+ accumulation and for intracellular ion
homeostasis in Haloarchaea (Oren, 1999). Moreover,
H. mediterranei is the only strain among the five tested
whose genome encodes the mechanosensitive trans-
porter MscS protein, which promotes K+ effusion out of
the cell, and all known haloarchaeal Mg2+ transporter

whereas genome of H. volcanii encodes only two of
them (MgtA and MgtB) and H. salinarum and
H. marismortui none (Table S2) (Becker et al., 2014).

Our study shows a positive correlation between the
NaCl requirement for growth and proteome sensitivity
to chaotropicity nature. Indeed, among the five studied
strains, H. salinarum is the one requiring the highest
amount of NaCl for optimal growth and is also the one
that tolerates the highest NaCl concentration in its envi-
ronment (Oren & Ventosa, 2017). Interestingly,
H. salinarum proteome was destabilized by chaotropic
salts, MgCl2 as well as (per)chlorate salts. By compari-
son, H. sodomense and H. volcanii optimally grow at
lower NaCl concentrations (McGenity & Grant, 2015;
Ventosa et al., 2015) and showed proteomes that are
the least destabilized and even distinctively stabilized
in some occasions by chaotropic salts. Moreover,
H. mediterranei has the largest NaCl concentration
range compatible with growth and tolerates both high
and low NaCl concentrations (Oren, 2017; Oren &
Hallsworth, 2014) and showed a proteome with inter-
mediary behaviour in our measurements. Therefore,
growth requirement for NaCl appears to be correlated
with proteome sensitivity to MgCl2 and (per)chlorate
salts, underlying the link between proteome intrinsic
properties and adaptation to the environment. More-
over, our results indicate that proteome tolerance to
MgCl2 is correlated to tolerance to perchlorate salts,
suggesting the existence of common proteome traits
allowing tolerance to general salt-induced chaotropicity.
Whether this tolerance resulted from primary structure
of proteins, compatible solutes accumulation, intracellu-
lar salinity, or expression of specific proteins such as
chaperones or ion channels remains to be determined.

In cell lysates of H. mediterranei, two subpopula-
tions of proteins denaturing at different temperatures
were observed in NaCl or KCl single-salt conditions.
One explanation could be that the proteins of this
organism are, on average, more soluble over a larger
range of KCl/NaCl conditions and, hence, more
diverse with respect to the salt concentration effect.
As this organism has one of the largest range of NaCl
concentrations compatible with growth among
haloarchaea (Oren, 2017; Oren & Hallsworth, 2014),
this could reflect an adaptative trait allowing proteins
to function over a broader range of environmental salt
conditions. With H. sodomense and H. volcanii, which
are two strains whose growths are exceptionally toler-
ant to MgCl2 (Mullakhanbhai & Larsen, 1975;
Oren, 1983), increasing MgCl2 concentration at con-
stant KCl concentration also segregated two subpopu-
lations of proteins denaturing at different temperatures
with one subpopulation stabilized by this divalent salt
while the second is destabilized. These results further
stress the complexity of the proteomes, which con-
tains proteins with various response to high concen-
trations of Mg2+.
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Besides denaturation, multiple aggregation events
were observed with all halophilic strains at reproducibly
similar temperatures with combinations of KCl-MgCl2
and NaCl-Mg(ClO4)2. Both populations of aggregates
formed at lower temperatures as the concentration of
Mg-containing salt increased. Mg2+ hence segregates
protein populations during thermal aggregation in a
similar manner across strains. Interestingly, Hofmeister
series predict instead that this salt should increase sol-
ubility and, hence, could limit aggregation. However,
these predictions are mostly based on observations
made with non-halophilic proteins, at a constant tem-
perature, lower concentrations of chaotropic salts and
generally for folded proteins. The thermal aggregation
which happened during the experiments is made
through hydrophobic interactions between residues
exposed to solvent by the thermal unfolding. Since we
observed, at least with some of the strains, two peaks
in both denaturation and aggregation curves, it could
be hypothesized that they are both formed by the same
two distinct protein subpopulations. For example, a
subpopulation more sensitive to Mg2+ could denature
and aggregate before the other, hence producing the
first peaks, followed by the other subpopulation forming
the latter peaks.

High concentrations of chaotropic salts such as
MgCl2 correspond to complex extreme conditions as
they combine high salinity, high ionic strength, low
water activity and high chaotropicity. This is especially
true with magnesium/calcium perchlorate salts which
also add oxidative stress. Hence, it is commonly
accepted that the effects of such salts on biomolecules
are not well predictable and depend on the system.
While the Hoffmeister series predict some of their
effects, MgCl2 and CaCl2 increasing protein solubility
and reducing protein stability, they do not indicate pre-
cisely the concentrations at which these salts become
deleterious to biological systems.

We showed that increasing concentration of MgCl2
reproducibly increased average thermostability of the
proteomes, especially when the medium contained low
concentrations of KCl. This effect continued to be
observable at the highest MgCl2 concentration values
in H. sodomense and H. volcanii. This observation is
astonishing as the concentrations of MgCl2 or CaCl2
tested in this study are considered to be particularly
extreme at scales of both cellular life and biomolecular
systems (Hallsworth et al., 2007; Yakimov et al., 2015),
especially in the context of astrobiology and Martian
brines (Fox-Powell et al., 2016; Hallsworth, 2021). For
example, 2 M of CaCl2 reduces by 20�C the Tm of
bovine pancreatic ribonuclease (Von Hippel &
Wong, 1965) and the model MDH enzyme from
H. marismortui has previously shown to be fully dena-
tured by 2 M CaCl2.

Interestingly, in spite of being more chaotropic and
oxidizing than chloride salts, Mars-relevant salts had

contrasting effects on proteome stability as illustrated
by the TPm values (Figure 4). NaClO3, was always sta-
bilizing all halophilic proteomes, except for
H. salinarum at 3 M NaCl. NaClO4 had a destabilizing
effect, especially for H. salinarum, but only marginally
for H. sodomense and H. volcanii. The trend remained
the same for Mg(ClO4)2 with even more destabilized
proteomes of H. marismortui, H. salinarum and
H. mediterranei, and again significantly less effect on
H. sodomense and H. volcanii. In contrast, concentra-
tions of Ca(ClO4)2 below 0.5 M induced noticeable pro-
teome stabilization with H. sodomense and H. volcanii
at every NaCl concentration. The proteome of
H. mediterranei was also stabilized by Ca(ClO4)2 but
only at 1 M NaCl. Since adding Ca(ClO4)2 drastically
diminished peak resolution with H. salinarum, TPm

determination may be even more biased with this
strain. Interestingly, a recent study showed, with a simi-
lar thermostability-based approach, that the bovine α-
chymotrypsin was stabilized by MgSO4, slightly stabi-
lized by low concentrations of MgCl2 and significantly
destabilized by NaClO4, Mg(ClO4)2 and Ca(ClO4)2
(Gault & Cockell, 2021). Another recent study consid-
ered instead the effects of perchlorate salts on the ß-
galactosidase enzyme from Halorubrum lacusprofundi,
an extremely cold-adapted halophilic archaeon (Laye &
DasSarma, 2018), which is phylogenetically close to
H. sodomense (Becker et al., 2014; Kamekura & Dyall-
Smith, 1995). It has been found that the ClO4

� anion
acted as a very weak non-competitive inhibitor at con-
centrations above 0.88 M NaClO4. Unlike the study on
bovine α-chymotrypsin, the effects on stability were not
investigated. In summary, over the five considered
strains, H. sodomense and H. volcanii proteomes stand
out with an outstanding tolerance to perchlorate salts
such as those encountered on Mars, while
H. salinarum proteome displays a high sensibility to
these salts.

This work stresses the fact that simpler systems
made with purified proteins may not represent the
behaviour of the whole proteome. It has been previ-
ously shown that model MDH enzyme from
H. marismortui and other Haloarchaea can be stabi-
lized by low concentrations of MgCl2 and CaCl2, which
only become destabilizing above 0.5–1 M (Blanquart
et al., 2021; Madern & Zaccai, 1997). However, each
enzyme from a single organism may display a specific
salt response. For example, various enzymes
(Bräsen & Schönheit, 2005; Camacho et al., 2009;
Cendrin et al., 1994; Goldman et al., 1990) and large
molecular assemblies (Franzetti et al., 2002; Shevack
et al., 1985) from H. marismortui are stable below 2 M
KCl. Since these proteins may be significantly abun-
dant in the proteomes, highly salt-sensitive enzymes
like MDH may not represent properly the proteome as a
whole. This is especially critical in the context of the
search for biomarkers. Indeed, putative extraterrestrial
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microorganisms would probably not leave behind puri-
fied systems but rather complex mixtures of their
molecular components, based on their individual stabil-
ity and eventual interactions. Hence, study of the bio-
physical effects of extraterrestrial-like simulated
conditions on proteomes provides additional insights
into how such conditions would shape habitability and
the chances of finding biomarkers.

As pointed out by this study, halophilism, defined as
NaCl-dependency, does not necessarily make the most
relevant criterion for choosing a halophilic model for all
astrobiological studies. Instead, organisms whose bio-
molecules present higher tolerance to MgCl2, such as
H. sodomense and H. volcanii, should be considered
as more relevant in the context of chaotropic extrater-
restrial brines.

The fact that NaClO3 stabilized proteomes of all
tested Haloarchaea and that some displayed low sensi-
tivity to NaClO4 and Mg(ClO4)2 and even some stabili-
zation by MgCl2 and Ca(ClO4)2 in low concentrations of
KCl and NaCl may also increase the chances of finding
salt-adapted biomarkers in Martian brines where these
two monovalent salts are scarcer. In particular, low
amounts of NaCl/KCl, which are not expected to be
abundant in Martian brines, are not a limit per se for
halophilic proteome stability which can be increased by
various other salts.

Further studies could also consider other factors
which may compensate effects of Martian-relevant salts
on halophilic proteomes. For example, high pressure,
which reduces perchlorate enzymatic inhibition on
bovine α-chymotrypsin (Gault et al., 2020) and deleteri-
ous effects of MgCl2, MgSO4 and Mg(ClO4)2 on ligand
biding by tRNA (Jahmidi-Azizi et al., 2021). Moreover,
low temperatures of the surface and upper subsurface
of Mars would also counteract chaotropic effects of
Martian salts (Chin et al., 2010; Cray et al., 2015).
Other factors compensating the effects of Martian-
relevant salts include trimethylamine N-oxide (TMAO),
a common intracellular osmolyte, which mitigates chao-
tropic effect of Mg(ClO4)2 on water structure (Laurent
et al., 2020). Similarly, other kosmotropic salts, solutes
and osmolytes counteract chaotropicity of chaotropic
salts (de Lima Alves et al., 2015; Hallsworth et al.,
2007; Stevenson et al., 2015; Yakimov et al., 2015).

Another important implication may arise from this
work. While effects of pure water solutions on halophilic
systems were out of the scope of this study, the dena-
turation curves obtained with only one type of salt show
that all tested salts increased average thermostability in
comparison to pure water conditions. This was seen
with proteomes of all tested strains, except
H. salinarum which should not always be considered as
the most-used halophilic model for astrobiology.
Indeed, sample returns are challenging goals of future
Mars missions. Therefore, we stress the fact that
extreme caution should be taken when analysing

samples from brines or salt-containing rocks. In particu-
lar, special attention should be paid to the composition
of the hypersaline buffers that should be used to resus-
pend the Mars samples.
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