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Département d’Hydrologie et Gestion des Ressources en Eau
Institut National de l’Eau, University of Abomey-Calavi

01 BP 4521 Cotonou 01, Bénin
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Abstract

Building from the level index, a Wiener-like topological index proposed by Balaji
and Mahmoud, we define level matrix and study level energy and level charac-
teristic polynomial of rooted trees. We establish some relations between level
matrix and the usual distance matrix. Moreover, we determine various lower
and upper bounds on the level energy and calculate the level energy in specific
tree families. We also give an explicit expression of the level characteristic poly-
nomial of so-called rooted double stars and rooted binary caterpillars. Finally,
we propose and provide some evidence to a conjecture that the rooted path
maximises the level energy among all trees with a given number of vertices.
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1 Introduction

The first distance based topological index was introduced byWiener in 1947 [14].
Distances between the vertices of graphs can be showed with a matrix which is
called distance matrix. Moreover, the sum of absolute values of the eigenvalues
of distance matrix is known as distance energy. Distance energy was intro-
duced by Indulal, Gutman and Vijaykumar, who computed distance energy of
graphs having diameter two [8], and several bounds were obtained in [4, 7, 9, 10]
thereafter. More details about distance spectra of graphs can be found in the
survey [1, 5].

Level index, a Wiener-like topological index, was proposed by Balaji and
Mahmoud in 2017 for rooted trees [2]. The authors introduced the level index
for statistical investigations, and used it as a measure of disparity/balance within
a rooted tree.

In this paper, we build from the level index by defining level matrix and
studying level energy and level characteristic polynomial of rooted trees. We
also obtain some relations between the level matrix and the distance matrix of
rooted trees. Moreover, we establish bounds on the level energy and calculate
the level energy of some classes of rooted trees. Finally, we compute the level
characteristic polynomial of so-called rooted binary caterpillars, also known as
binary Gutman trees or binary benzenoid trees in chemical graph theory [3].

In Section 2 we introduce some preliminaries about distance matrix of con-
nected graphs and level index of rooted trees. Thereafter, we build the level
matrix from the level index and provide basic illustrations. The rest of the
paper is devoted to the study of the level energy and level characteristic poly-
nomial. In Subsection 3.1 we establish various bounds on the level energy of
rooted trees, while we examine the level characteristic polynomial in specific
tree classes such as all rooted versions of stars, so-called rooted double stars
and rooted binary caterpillars in Subsection 3.2. Finally, we furnish a conjec-
ture that the rooted path has the maximum level energy among all trees, given
the number of vertices, and conclude with some remarks.

2 Preliminaries

We only consider simple, connected and undirected graphs. A graph G consists
of a vertex set V (G) and an edge set E(G). The notation d(u, v) is used to show
the distance between two vertices u and v in a graph.

2



Definition 2.1 ([8]). Let G be a connected graph and let its vertices be labelled
as v1, v2, ..., vn. The distance matrix of G is defined as the square matrix D =
D(G) = [dij ] where dij is the distance between vertices vi and vj in G.

Definition 2.2 ([8]). The eigenvalues of the distance matrix D(G) are denoted
by λ1, λ2, . . . , λn and are called the D-eigenvalues of G.

Since the distance matrix is symmetric, its eigenvalues are real and can be
ordered as λ1 ≥ λ2 ≥ · · · ≥ λn.

Definition 2.3 ([8]). The distance energy ED = ED(G) of a graph G is defined
as

ED(G) =

n∑
i=1

|λi| .

Definition 2.4. Let T be a rooted tree and let its vertices be labelled as
v1, v2, ..., vn. The level of v ∈ V (T ) is the distance from the root of T to v.
The level matrix of T is defined as the square matrix L = L(T ) = [lij ] where lij
is the absolute value of the levels’ difference of vertices vi and vj in T .

Some basic properties of the level matrix are immediate: it is clearly always a
symmetric matrix, and the diagonal entries are all equal to 0.

Definition 2.5 ([2]). The level index of a rooted tree T , denoted by LI(T ), is
given by:

LI(T ) =
∑

1≤i<j≤n

|li(T )− lj(T )| ,

where li(T ) shows the level of the vertex vi in T .

The level of a most distant vertex of T is called maximum level and we denote
it by lmax. We can define the level energy and the level characteristic
polynomial as follows.

Definition 2.6. The level energy EL = EL(T ) of a rooted tree T is defined as

EL(T ) =

n∑
i=1

|λi| ,

where λ1, λ2, . . . , λn are the L-eigenvalues of T .

For example, consider the tree shown in Figure 1 whose root is the black
vertex. The level matrix of T is given as follows:

L(T ) =


0 1 1 2 2 2
1 0 0 1 1 1
1 0 0 1 1 1
2 1 1 0 0 0
2 1 1 0 0 0
2 1 1 0 0 0

 ,
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and the level index of T is computed by

LI(T ) =
1

2

6∑
i=1

6∑
j=1

lij = 14 .

Figure 1: A rooted tree T .

Before stating the main theorems of the paper, we also have to report on some
important results about distance matrix, distance energy and determinant of
block matrices.

Lemma 2.1 ([8]). Let G be a connected n-vertex graph and let λ1, λ2, . . . , λn

be its D-eigenvalues. Then

n∑
i=1

λi = 0 and

n∑
i=1

λ2
i = 2

∑
1≤i<j≤n

d2ij .

Lemma 2.2 ([8]). Let G be a connected n-vertex graph and △ be the absolute
value of the determinant of the distance matrix D(G). Then√

2
∑

1≤i<j≤n

d2ij + n(n− 1)△ 2
n ≤ ED(G) ≤

√
2n

∑
1≤i<j≤n

d2ij .

Lemma 2.3 ([9]). If G is a connected graph with n vertices, then√
n(n− 1) ≤ ED(G) .

Lemma 2.4 ([12]). Let A,B,C,D be square matrices of the same order, and

M =

(
A B
C D

)
be a block matrix such that CD = DC. Then

det(M) = det(AD −BC)

holds.

3 Main Results

In this section we give several properties of the level energy and compute the
level characteristic polynomial of stars, double stars and binary caterpillars.
We also formulate a conjecture on a rooted tree with a prescribed number of
vertices that maximises the level energy. To begin with, we first establish further
intermediate results that are crucial to proving our main theorems.
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By a rooted path, we mean a path whose root is one of the endvertices. The
n-vertex rooted path is denoted by Pn.

Lemma 3.1. Let T be a rooted tree but not a rooted path. Then

det(L(T )) = 0 .

Proof. If T is a rooted path, then there is only one vertex on each level. There-
fore, differences between the levels can be computed as distances between the
vertices. Thus, we get

L(Pn) = D(Pn).

If T is a rooted tree different from a rooted path, then there are two vertices
with the same level. This means that two rows of the matrix L(T ) are identical
and we obtain that det(L(T )) = 0.

The Wiener index of a connected graph G is the sum of distances between all
unordered pairs of vertices of G. Lemma 3.2 below shows, in particular, that
the level index of a tree never exceeds its Wiener index and that the two
indices coincide only for the rooted path.

Lemma 3.2. Let T be a rooted tree. The following relation is attained between
the entries lij and dij of L(T ) and D(T ):

lij ≤ dij .

Equality holds if and only if vertices vi and vj are on the same path from the
root of T . In particular, LI(T ) < W (T ) for T ̸= Pn.

Proof. If vertex vi and vertex vj are on the same path from the root of T , then
lij = |li(T )− lj(T )| is precisely the distance between vi and vj .
If vi and vj are not on the same path from the root of T , then let u be the last
vertex on the common subpath from the root (possibly, u can coincide with the
root of T ): in this case, we have

li(T )− lj(T ) = d(vi, u)− d(vj , u) and dij = d(vi, u) + d(vj , u) .

Therefore, we get lij = |li(T )− lj(T )| < dij since none of the vertices vi and vj
coincides with u. Now it is clear that LI(T ) ≤ W (T ) with equality only for the
rooted path.

Lemma 3.3. Let T be a rooted tree. The following relation is attained between
entries lij and dij of L(T ) and D(T ):

dij ≤ li + lj .

Proof. If vi and vj are in different branches/arms of T , then dij is computed by
sum of the distances from the root to the vertices vi and vj , i.e. dij = li + lj . If
vi and vj are in the same branch of T , it is clear that dij ≤ li + lj .
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By tr(M) we mean the trace of a square matrix M . We obtain an analogue of
Lemma 2.1 for the level matrix.

Lemma 3.4. Let T be a rooted tree and let λ1, λ2, . . . , λn be the L-eigenvalues
of T . Then

n∑
i=1

λi = 0 and

n∑
i=1

λ2
i = 2

∑
1≤i<j≤n

l2ij .

Proof. We have
n∑

i=1

λi = tr(L(T )) =

n∑
i=1

lii = 0 .

A (i, i)-component of L(T )2 equals

n∑
j=1

lij lji =

n∑
j=1

l2ij .

Thus, we get

n∑
i=1

λi
2 = tr(L(T )2) =

n∑
i=1

n∑
j=1

l2ij = 2
∑

1≤i<j≤n

l2ij .

3.1 Bounds on the level energy

In what follows, we consistently assume n > 1. Our first main theorem on the
level energy states as follows.

Theorem 3.1. Let T be an n-vertex rooted tree and △ be the absolute value
of the determinant of the level matrix L(T ). We have√

2
∑

1≤i<j≤n

l2ij + n(n− 1)△ 2
n ≤ EL(T ) ≤

√
2n

∑
1≤i<j≤n

l2ij .

In particular,

EL(Pn) ≥
√
2

∑
1≤i<j≤n

l2ij + n(n− 1)
(
(n− 1)2n−2

) 2
n

holds.

Proof. The upper bound can be established by Cauchy-Schwartz inequality to-
gether with Lemma 3.4:( n∑

i=1

aibi

)2

≤
( n∑

i=1

a2i

)( n∑
i=1

b2i

)
.
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Put ai = 1 and bi = |λi| in this inequality to obtain( n∑
i=1

|λi|
)2

≤ n

n∑
i=1

λi
2 ,

which is equivalent to

EL(T )
2 ≤ 2n

∑
1≤i<j≤n

l2ij .

The lower bound on the level energy is computed as follows:

EL(T )
2 =

( n∑
i=1

|λi|
)2

≥
n∑

i=1

λi
2 = 2

∑
1≤i<j≤n

l2ij .

If T is not a rooted path, then △ = 0 (see Lemma 3.1) and we are done.
If T is a rooted path, then T = Pn and L(Pn) = D(Pn) (see the proof of
Lemma 3.1). Thus, EL(Pn) = ED(Pn). Furthermore, a result by Graham and
Pollack [6] implies ∆ = (n− 1)2n−2. By virtue of Lemma 2.2, we conclude that

EL(Pn) = ED(Pn) ≥
√

2
∑

1≤i<j≤n

l2ij + n(n− 1)
(
(n− 1)2n−2

) 2
n .

To the best of our knowledge, no one knows a neat formula for ED(Pn),
although ED(Pn) ≈ 0.69482n2 − 0.7964 seems to hold [1].

Our next result shows an inequality between the level energy and the distance
energy.

Theorem 3.2. Let T be a rooted tree with n vertices and with maximum level
lmax. We have

EL(T ) ≤ lmax

√
nED(T ).

Proof. We know an upper bound on level energy from Theorem 3.1 as

EL(T ) ≤
√
2n

∑
1≤i<j≤n

l2ij .

The difference between the levels of any two vertices of T satisfies

lij = |li − lj | ≤ lmax

with equality if and only if one of the vertices vi and vj is the root and another
is the most distant from the root. Thus, we get√

2n
∑

1≤i<j≤n

l2ij ≤
√
2n

∑
1≤i<j≤n

l2max ≤ lmax

√
2n

n(n− 1)

2
≤ lmax

√
nED(T )

since
√
n(n− 1) ≤ ED(T ) by Lemma 2.3.
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In the next theorem, we derive another upper bound on the level energy of a
rooted tree with n vertices as well as of the rooted path with n vertices.

Theorem 3.3. Let T be a rooted tree on n vertices. We have

EL(T ) ≤
√
2n

∑
1≤i<j≤n

d2ij and EL(Pn) ≤
√

n5 − n3

6
.

If equality holds, then T = Pn.

Proof. Using Theorem 3.1 and Lemma 3.2, we obtain

EL(T ) ≤
√
2n

∑
1≤i<j≤n

l2ij ≤
√

2n
∑

1≤i<j≤n

d2ij

with the second equality holding only if L(T ) = D(T ), i.e. if T = Pn. For the
rooted path Pn, we have

∑
1≤i<j≤n

d2ij =

n∑
i=1

i(n− i)2 = n2
n−1∑
i=1

i− 2n

n−1∑
i=1

i2 +

n−1∑
i=1

i3

= n2n(n− 1)

2
− 2n

n(n− 1)(2n− 1)

6
+

n2(n− 1)2

4
=

n4 − n2

12
.

It follows that

EL(Pn) ≤
√

n5 − n3

6
.

It is known that the path maximises the distance energy among all trees with
a given number of vertices. Since EL(Pn) = ED(Pn), we can formulate the
following.

Conjecture 3.1. If T is a rooted tree with n vertices, then

EL(T ) ≤ EL(Pn) .

3.2 Level characteristic polynomials of some rooted trees

The identity matrix of order n is denoted by In. By a rooted star, we mean a
star whose root is the central vertex. The n-vertex rooted star is denoted by
Sn. We show in Figure 2 the rooted star with 6 vertices.

Theorem 3.4. The level energy of the rooted star Sn is given by:

EL(Sn) = 2
√
n− 1 .
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Figure 2: The rooted star S6.

Proof. We obtain the level matrix and the characteristic matrix of the rooted
star Sn as follows:

L(Sn) =


0 1 1 · · · 1
1 0 0 · · · 0
1 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0

 , det(λIn − L(Sn)) =

∣∣∣∣∣∣∣∣∣∣∣

λ −1 −1 · · · −1
−1 λ 0 · · · 0
−1 0 λ · · · 0
...

...
...

. . .
...

−1 0 0 · · · λ

∣∣∣∣∣∣∣∣∣∣∣
.

Since L(Sn) has rank 2, then there are only two nonzero eigenvalues. Moreover,
we note that L(Sn) is the same as the adjacency matrix of Sn. Therefore,

φ(λ) = λn−2(λ2 − (n− 1)) and λ1,2 = ±
√
n− 1 ,

implying that EL(Sn) = 2
√
n− 1.

Denote by Rn the n-vertex star rooted at one of its non-central vertex, see
Figure 3.

Figure 3: The star R6.

Theorem 3.5. The level characteristic polynomial of Rn is given by:

φ(λ) = λn−3
(
λ3 + (−5n+ 9)λ− 4n+ 8

)
.

Proof. We obtain the level matrix and the level characteristic matrix of Rn as
follows:

L(S) =


0 1 2 · · · 2
1 0 1 · · · 1
2 1 0 · · · 0
...

...
...

. . .
...

2 1 0 · · · 0

 and det(λIn−L(S)) =

∣∣∣∣∣∣∣∣∣∣∣

λ −1 −2 · · · −2
−1 λ −1 · · · −1
−2 −1 λ · · · 0
...

...
...

. . .
...

−2 −1 0 · · · λ

∣∣∣∣∣∣∣∣∣∣∣
.
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We can compute the determinant of the characteristic matrix of L(S) by adding
minus two times of second row to the first row, giving us

det(λIn − L(Rn)) = det


λ+ 2 −2λ− 1 0 · · · 0
−1 λ −1 · · · −1
−2 −1 λ · · · 0
...

...
...

. . .
...

−2 −1 0 · · · λ

 .

Next, we compute the determinant with respect to the first row:

det(λIn − L(Rn)) = (λ+ 2)det


λ −1 −1 · · · −1
−1 λ 0 · · · 0
−1 0 λ · · · 0
...

...
...

. . .
...

−1 0 0 · · · λ



+ (2λ+ 1)det


−1 −1 −1 · · · −1
−2 λ 0 · · · 0
−2 0 λ · · · 0
...

...
...

. . .
...

−2 0 0 · · · λ

 .

We notice that the matrix in the first term equals the characteristic matrix of
L(Sn−1). Morover we can substract the second row from all the remaining rows
in the matrix of second term. This yields

det(λIn − L(Rn)) = (λ+ 2)det(λIn − L(Sn−1))

+ (2λ+ 1)det


−1 −1 −1 · · · −1
−2 λ 0 · · · 0
0 −λ λ · · · 0
...

...
...

. . .
...

0 −λ 0 · · · λ

 .

It follows that

φ(λ) = (λ+ 2)λn−3(λ2 − (n− 2)) + (2λ+ 1)(−λn−2 − 2(n− 2)λn−3)

= λn−3(λ3 + (−5n+ 9)λ− 4n+ 8) .

By double rooted star, we mean the tree DSn rooted at vertex v1 and depicted
in Figure 4.
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v2 v3 vn−1

v1

u1 u2 un

vn

Figure 4: The double rooted star DSn.

Theorem 3.6. The level characteristic polynomial of DSn is given by:

φ(λ) = λ2n−3
(
λ3 − (n2 + 4n− 1)λ− 4n2 + 4n

)
.

Proof. The level matrix of DSn can be given in the following block form:

v1 v2 · · · vn u1 u2 · · · un

v1 0 1 · · · 1 2 2 · · · 2
v2 1 0 · · · 0 1 1 · · · 1
...

...
...

. . .
...

...
...

. . .
...

vn 1 0 · · · 0 1 1 · · · 1
u1 2 1 · · · 1 0 · · · · · · 0

u2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
un 2 1 · · · 1 0 · · · · · · 0

.

Thus, the level characteristic polynomial of DSn is the determinant of the fol-
lowing matrix in block form:

λ −1 −1 · · · −1 −1 −2 · · · · · · · · · −2
−1 λ 0 · · · 0 0 −1 · · · · · · · · · −1
... 0

. . .
. . .

. . .
...

...
...

...
...

...
...

...
. . .

. . .
. . .

...
...

...
...

...
...

−1 0 · · ·
. . . λ 0

...
...

...
...

...
−1 0 0 · · · 0 λ −1 · · · · · · · · · −1
−2 −1 −1 · · · −1 −1 λ 0 · · · · · · 0
...

...
...

...
...

... 0
. . .

. . .
. . .

...
...

...
...

...
...

...
...

. . .
. . .

. . .
...

...
...

...
...

...
...

...
. . .

. . .
. . . 0

−2 −1 −1 · · · −1 −1 0 · · · · · · 0 λ

:=
A B
BT λIn

.

We apply Lemma 2.4 to obtain

det(λI2n − L(DSn)) = det(λA−BBT ) .
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On the other hand, we compute that

BBT =


4n 2n · · · 2n
2n n · · · n
...

...
. . .

...
2n n · · · n


and

λA−BBT =



λ2 − 4n −λ− 2n · · · · · · · · · · · · −λ− 2n
−λ− 2n λ2 − n −n · · · · · · · · · −n

... −n λ2 − n −n · · · · · · −n

...
... −n

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . . −n
−λ− 2n −n −n · · · · · · −n λ2 − n


.

In order to compute the determinant of this matrix, we perform some elementary
row and column operations. First, we add all the remaining rows to the first
row to obtain the following matrix:

λ2 + (1− n)λ− 2n2 − 2n λ2 − λ− n2 − n · · · · · · · · · · · · λ2 − λ− n2 − n
−λ− 2n λ2 − n −n · · · · · · · · · −n

... −n λ2 − n −n · · · · · · −n

...
... −n

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . . −n
−λ− 2n −n −n · · · · · · −n λ2 − n


.

Next, we substract the second column from every other column to obtain the
equivalent matrix:

(2− n)λ− n2 − n λ2 − λ− n2 − n 0 · · · · · · · · · 0
−λ2 − λ− n λ2 − n −λ2 · · · · · · · · · −λ2

−λ− n −n λ2 0 · · · · · · 0
...

... 0
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . . 0

−λ− n −n 0 · · · · · · 0 λ2


.
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Next, we expand the determinant with respect to the first row. This gives us:

(
(2− n)λ− n2 − n

)
det



λ2 − n −λ2 · · · · · · · · · −λ2

−n λ2 0 · · · · · · 0
... 0

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . . 0
−n 0 · · · · · · 0 λ2



−
(
λ2 − λ− n2 − n

)
det



−λ2 − λ− n −λ2 · · · · · · · · · −λ2

−λ− n λ2 0 · · · · · · 0
... 0

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . . 0
−λ− n 0 · · · · · · 0 λ2


,

where each submatrix is of order n− 1. Finally, for each of these submatrices,
we add all the remaining rows to the first:

(
(2− n)λ− n2 − n

)
det



λ2 − n(n− 1) 0 · · · · · · · · · 0
−n λ2 0 · · · · · · 0
... 0

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . . 0
−n 0 · · · · · · 0 λ2



−
(
λ2 − λ− n2 − n

)
det



−λ2 − (n− 1)(λ+ n) 0 · · · · · · · · · 0
−λ− n λ2 0 · · · · · · 0

... 0
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . . 0

−λ− n 0 · · · · · · 0 λ2


.

Since these two matrices are triangular, we arrive at:

det(λI2n − L(DSn)) =
(
(2− n)λ− n2 − n

)
λ2(n−2)

(
λ2 − n(n− 1)

)
−
(
λ2 − λ− n2 − n

)
λ2(n−2)

(
− λ2 − (n− 1)(λ+ n)

)
= λ2n−3

(
λ3 − (n2 + 4n− 1)λ− 4n2 + 4n

)
.

This completes the proof of the theorem.
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We move our attention to another particular class of rooted trees to which the
Gini index was applied in a broader sense, see [2].

Define Tm to be the rooted tree depicted in Figure 5, whose root is v1. This
tree belongs to the family of so-called rooted binary caterpillars [3].

v1 v2

vm+2 vm+3

vm−1 vm

v2m vm+1

Figure 5: The rooted binary caterpillar Tm.

Theorem 3.7. For m > 2, the characteristic polynomial of the rooted tree Tm

is given by

φ(λ) = (2λ)m−1
(
λ · Cm(λ/2) + Cm+1(λ/2)

)
with

Cn(y) =

yn −
n∑

k=2

2k−2(k − 1)
n2(n2 − 1)(n2 − 22) . . . (n2 − (k − 1)2)

k2(k2 − 1)(k2 − 22) . . . (k2 − (k − 1)2)
yn−k .

Proof. According to Lemma 3.1, we assume that λ ̸= 0.
For every j ∈ {2, 3, . . . ,m}, there are precisely two vertices on the same level,
namely vj and vj+m. The subtree induced by vertices v1, v2, . . . , vm+1 is a path
rooted at v1. Thus the level matrix of T has the following block decomposition:

v1 v2 · · · vm vm+1 vm+2 vm+3 · · · v2m
v1
v2
... D(Pm+1) B
vm

vm+1

vm+2

vm+3

... A C
v2m

Denote the rows of this matrix (as well as for the identity matrix I2m) by
R1, R2, . . . , R2m in this order, starting from the first to the last. Then Rj and
Rj+m are identical rows of L(Tm) for any j ∈ {2, 3, . . . ,m}.

14



Now we substract Rj from Rj+m in both L(Tm) and I2m; so the rows

Rm+2, Rm+3, . . . , R2m

in L(Tm) all change to zero rows, and the corresponding rows in I2m become

0 −1 0 · · · 0 1 0 0 · · · 0 ,
↑

Pos. m+ 2
0 0 −1 0 0 · · · 1 0 · · · 0 ,

↑
Pos. m+ 3

...
0 0 · · · 0 −1 0 0 · · · 0 1 ,

↑ ↑
Pos. m Pos. 2m

respectively. Thus, we have

det
(
xI2m − L(T )

)
= det


xIm+1 −D(Pm+1) −B

0 −x 0 0 · · · 0
0 0 −x 0 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · 0 −x 0

xIm−1

 .

Denote the columns of L(Tm) (as well as for I2m) by C1, C2, . . . , C2m in this
order, starting from the first to the last. Then Cj and Cj+m are identical rows
of L(Tm) for any j ∈ {2, 3, . . . ,m}. Now we substract Cj from Cj+m in the
above matrix to obtain the following matrix:

xIm+1 −D(Pm+1)

0 0 0 · · · 0
−x 0 0 · · · 0
0 −x 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 −x 0
0 0 · · · 0 −x
0 0 · · · 0 0

0 −x 0 0 · · · 0
0 0 −x 0 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · 0 −x 0

2xIm−1



,
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which implies that det
(
xI2m−L(Tm)

)
is also the determinant of the above block

matrix. On the other hand, the product



1 2 3 · · · m− 1

1 0 0 0 · · · 0

2 −x 0 0 · · · 0

3 0 −x 0 · · · 0
...

...
. . .

. . .
. . .

...

m 0 · · · 0 −x 0

m 0 0 · · · 0 −x

m+ 1 0 0 · · · 0 0


×

(m+ 1)× (m− 1) size


0 −x 0 0 · · · 0
0 0 −x 0 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · 0 −x 0


(m− 1)× (m+ 1) size

yields the square matrix

0 0 0 0 · · · 0
0 x2 0 0 · · · 0
0 0 x2 0 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · 0 x2 0
0 0 0 0 · · · 0


of order m+ 1. It is known (Schur Complement formula) that

det

(
E1 E2

E3 E4

)
= det(E4)det(E1 − E2E

−1
4 E3) ,

provided that E4 is invertible. Applying this formula for x ̸= 0, we obtain:

det
(
xI2m − L(Tm)

)
= (2x)m−1det

(
xIm+1 −D(Pm+1)−

1

2
xE

)
,

where E is the (m+ 1)× (m+ 1) matrix defined by

E =



0 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · 0 1 0
0 0 0 0 · · · 0


.

Furthermore, we can write

Im+1 −
1

2
E =

1

2
Im+1 +

1

2


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0
0 · · · 0 1

 :=
1

2
(Im+1 + F ) ,
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so that

xIm+1 −D(Pm+1)−
1

2
xE =

1

2
xIm+1 −D(Pm+1) +

1

2
xF ,

where

F =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0
0 · · · 0 1

 = e1e
T
1 + em+1e

T
m+1

with

e1 =


1
0
...
0

 and em+1 =


0
...
0
1

 .

Moreover, the matrix determinant lemma gives

det(G+ uvT ) = (1 + vTG−1u)det(G) ,

provided that G is an invertible matrix. A generalisation (see [13]) of this
formula to the noninvertible matrices states that

det(G+ uvT ) = det(G) + vT adj(G)u ,

where adj(G) is the adjugate (transpose of cofactor matrix) of G. In what
follows, we use this formula twice.
By setting

Gm+1 =
1

2
xIm+1 −D(Pm+1) +

1

2
xem+1e

T
m+1 ,

and vT = 1
2xe

T
1 , u = e1, we establish that

det
(
xI2m − L(Tm)

)
= (2x)m−1det(Gm+1 + uvT )

= (2x)m−1
(
det(Gm+1) + vT adj(Gm+1)u

)
.

However, adj(Gm+1)u is just the first column of the matrix adj(Gm+1). Conse-
quently, vT adj(Gm+1)u = 1

2xgm+1 with gm+1 being the entry in first row and
first column of adj(Gm+1). It follows that

det
(
xI2m − L(Tm)

)
= (2x)m−1

(
det(Gm+1) +

1

2
xgm+1

)
. (1)

We can get a similar expression for det(Gm+1) by setting

Hm+1 =
1

2
xIm+1 −D(Pm+1), vT =

1

2
xeTm+1, u = em+1 .
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This gives us

det(Gm+1) = det(Hm+1 + uvT ) = det(Hm+1) + vT adj(Hm+1)u .

On the other hand, vT adj(Hm+1)u = 1
2xhm+1 with hm+1 representing the entry

in last row and last column of adj(Hm+1). It follows that

det(Gm+1) = det(Hm+1) +
1

2
xhm+1 . (2)

We remark that Hm+1 is the characteristic matrix of the distance matrix of the
path Pm+1 evaluated at 1

2x. Now we combine equations (1) and (2) to obtain:

C
(
L(Tm);x

)
= det

(
xI2m − L(Tm)

)
= (2x)m−1

(
det(Gm+1) +

1

2
xgm+1

)
= (2x)m−1

(
det(Hm+1) +

1

2
xhm+1 +

1

2
xgm+1

)
.

for all x ̸= 0, where C(M ; y) denotes the characteristic polynomial of a matrix
M evaluated at y. Fortunately, Hosoya, Murakami and Gotoh [7] computed
that

det(Hn) = C
(
D(Pn); y

)
=

yn −
n∑

k=2

2k−2(k − 1)
n2(n2 − 1)(n2 − 22) . . . (n2 − (k − 1)2)

k2(k2 − 1)(k2 − 22) . . . (k2 − (k − 1)2)
yn−k .

Furthermore, we note that the (m + 1,m + 1)-cofactor of Hm+1 is also the
determinant of the matrix Hm, i.e. hm+1 = det(Hm). Similarly, the (1, 1)-
cofactor of Gm+1 is also the determinant of the matrix 1

2xIm −D(Pm) = Hm,
not that of the matrixGm. Thus gm+1 = det(Hm). Putting everything together,
we arrive at

C
(
L(Tm);x

)
= (2x)m−1

(
det(Hm+1) +

1

2
xhm+1 +

1

2
xgm+1

)
= (2x)m−1

(
det(Hm+1) +

1

2
xdet(Hm) +

1

2
xdet(Hm)

)
= (2x)m−1

(
x · C

(
D(Pm);

1

2
x
)
+ C

(
D(Pm+1);

1

2
x
))

.

This completes the proof of the theorem.

4 Conclusion

There are many open problems concerning the level matrix [2]. Some of them
are studied in this paper. Naturally, the extremal trees in the set of rooted trees
with a given number of vertices deserve to be determined. We have conjectured
that the rooted path Pn maximises the level energy, which is an analogue of the
distance energy result among n-vertex trees. We know that the level energy of
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Pn coincides with its distance energy. Ruzieh and Powers [11] provided in 1990
formulas for all the eigenvalues of the distance matrix of paths. However, these
formulas are implicit and can only be approximated.

As for the case of Wiener index, it is not difficult to see that the rooted
star (resp. rooted path) uniquely minimises (resp. maximises) the level index
among all trees with a prescribed number of vertices. In this paper, we have
shown that the Wiener index furnishes a sharp upper bound for the level index.
It is natural to ask whether there is a similar lower bound that uses other tree
invariants.

Given that we have established the level characteristic of the rooted binary
caterpillar as a function of the distance characteristic polynomial of paths, we
wonder whether a similar explicit formula can be obtained for the general case
where the caterpillar is formed by attaching the central vertex of Sn to every
vertex of a path, see [2].

On the other hand, in chemistry the electrons of atoms are located on the
orbits with respect to their energy levels. Energy levels are related to atomic
orbital theory. Therefore, it can be more suitable to find relations between
energy levels of electrons and level energy of rooted trees.
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