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Abstract

Surface electromyography (sEMG) signals have been widely used in various robotic and medical ap-
plications. Thus, Time domain features have been shown to be effective in extracting useful information
from these signals for classification purposes. They are mainly based on amplitude, energy, and time
statistics. Furthermore, they can be easily implemented in real-time systems and combined to conven-
tional supervised learning algorithms. The proposed study depicts an presents an up-to-date literature
review highlighting the significant time-domain features and their applications in the field.
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1 Introduction

Electromyography (EMG) is a technique used to measure
the electrical activity of muscles during contraction, which
is controlled by the nervous system. There are two types
of EMG signals: surface EMG (sEMG), which is recorded
non-invasively using electrodes placed on the skin, and in-
tramuscular EMG, which requires insertion of a needle elec-
trode directly into the muscle [1]. High Density surface
electromyography (HD-sEMG) is a recent technique, com-
bining ambulatory device, that involves recording sEMG
signals from a high number of electrodes [2]. this technique
provides a more detailed and spatially distributed repre-
sentation of the muscle activity for medical applications
using connected devices [3]. The sEMG signals provide
valuable information for understanding the musculoskele-
tal system in normal and pathological conditions. They
are used in both medical and engineering fields to generate
device control commands for rehabilitation equipment and
human-computer interfaces (HCI) [1]. Despite its potential,
the analysis and classification of EMG signals can be chal-
lenging due to the complex pattern of the signal and the
presence of various types of noise during recording. To im-
prove the accuracy of recognizing sEMG signals, researchers
have focused on eficient feature extraction task. Feature
extraction refers to the process of selecting the most rele-
vant information from the signal to analyze its pattern for
recognition purposes. Popular feature extraction methods

include time domain features, frequency domain features,
and time-frequency features [4]. However, some of these
methods only provide limited neural/motor control infor-
mation, and few features can fully reflect the detailed char-
acteristics of sEMG signals. Pattern recognition based ap-
proach is often used and has shown promise as a reliable
method for classifying user signals. For example, pattern
recognition algorithms can be used to analyze a collection
of features that describe the sEMG signals to identify the
user’s intended movement for controlling an external device
for example [5]. For illustration purpose, Figure 1 shows the
process of sEMG signal based pattern recognition. The use
of time domain features for the classification of EMG sig-
nals dates back to the 2000’s, as in the study of Bekka et al.
that combined time domain features with a neural network
for the identification of motor unit features [6]. Since then,
numerous studies have demonstrated that both offline and
online testing of sEMG signals can result in classification ac-
curacies of over 90% [7][8][9][10][11][12]. The purpose of this
short survey is to explore the effect of the commonly used
sEMG features on the sEMG signal classification and de-
termine which feature sets are the most reliable for sEMG
pattern recognition. Our review focused solely on time-
domain features, which are straightforward and computa-
tionally less demanding and do not require additional signal
transformation. The following sections cover sEMG signal
preprocessing methods, feature extraction, and results of
some sEMG signal classification studies.
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Figure 1: sEMG signal classification architecture

2 Signal preprocessing

Despite its numerous advantages, sEMG signals are fre-
quently affected by various forms of noise, including white
Gaussian noise, power line interference (PLI), and other
electrophysiological signals such as ECG artifact [13]. These
noises can affect the signal quality and classification, so it is
very important to go through signal processing to eliminate
these noises and reduce their effect. In a recent tutorial,
techniques and recommendations for sEMG signal detec-
tion, conditioning and pre-processing have been presented
[14]. For denoising surface electromyography (sEMG) sig-
nals, numerous methods have been proposed in the liter-
ature, including baseline noise spectrum subtraction and
power line noise subtraction methods [15]. However, these
techniques often make unrealistic assumptions regarding the
line noise and fail to distinguish between different sources of
noise. Conventional digital filters have also been proposed,
but they tend to corrupt the useful signal due to spectral
overlapping [16]. Empirical Mode Decomposition (EMD)
[17] followed by Ensemble EMD (EEMD) [18] has emerged
as an effective denoising procedure that overcomes the limi-
tations of mode mixing associated with standard EMD. Ad-
ditionally, wavelet and adaptive wavelet thresholding meth-
ods have been utilized [19], which offer precise targeting of
white Gaussian noise components through time-frequency
representation. The HD-sEMG signals can be denoised us-
ing blind source separation (BSS) techniques, such as inde-
pendent component analysis (ICA) [20]. Canonical correla-
tion analysis (CCA) has been used for denoising biomedical
multichannel signals [20] [21]. The primary benefit of CCA
is that it ranks the estimated sources based on a correla-
tion coefficient and enables the construction of a relevant
thresholding paradigm.

3 Feature extraction

sEMG pattern recognition systems typically utilize a collec-
tion of standard functions to extract features from the time
domain. These features are well-suited for real-time sys-
tems that must meet specific constraints, and can be easily
implemented using basic hardware. Conventional time do-
main features are typically derived from statistical analyses
of either the sEMG signal or its first derivative. The time
domain features are extracted from the amplitude of the sig-
nal, which changes over time. The amplitude of the signal
is influenced by the type of muscle and the observation con-
ditions. Time domain features have several advantages over
other types of features. For example, they do not require
high computational complexity, can be used in real-time
applications, are easy to implement, and perform well in
low noise environments. Additionally, these features do not
require any additional signal transformation [22]. Below,
we will introduce the various time domain features. These
handcrafted features are typically integrated with conven-
tional supervised learning algorithms, such as random for-
est (RF), support vector machines (SVM), Decision Tree
(DT), Linear Discriminant Analysis (LDA), and k-nearest
neighbors (kNN). The combination between time-domain
features and these classifiers gave good results in many dif-
ferents type of applications. Table 1 resume the results of
different studies.

Prior to exploring the specifics of the time domain
features, we will be using the following notations: x ∈ RN

an sEMG signal, xi its i
th entry and |.| the absolute value.

aaai is the linear predictive coefficients. x̂ is the predicted
sEMG signal value.

- Mean Absolute Value (MAV) : It represents the
average of the absolute value of sEMG signal amplitude.
It is calculated by taking the average value of the abso-
lute entries of the sEMG signal. MAV features are widely
used to detect and measure the muscle contraction levels in
hand/finger recognition applications. It is defined by :

MAV =
1

N

N∑
i=1

|xi| (1)

- Waveform Length (WL) : It is intuitively the cumu-
lative length of the waveform over the sample. It indicates
a measures of the waveform related to time and amplitude
providing a measure of the signal complexity. It is given by:

WL =

N−1∑
i=1

|xi+1 − xi| (2)
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where xi and xi+1 are two consecutive samples entries of
the sEMG signal x.

- Modified Waveform Length (MWL) : It is a mod-
ified and improved version of the aforementioned Waveform
Length (WL) features. Indeed, it is calculated based on
the first derivative of the sEMG signal and formulated as
follows:

MWL =
N∑
i=1

|x
′

i+1 − x
′

i| (3)

where x′ is the first derivative of the signal.

- Slope Sign Changes (SSC) :
It counts the number of times the sign in the slope of the sig-
nal changes. It should be noted that the threshold function
seeks to minimize the interference. It is given by:

SSC =
N−1∑
i=2

f
[
(xi − xi−1) · (xi − xi+1)

]
(4)

where

f(x) =

{
1 if x ≥ ϵ
0 otherwise

- Zero Crossing (ZC) : It counts the number of times
the amplitude value of the sEMG signal crosses zero The
threshold condition seeks to avoid the background noise. It
is mathematically calculated as follows:

ZC =


N−1∑
i=1

sgn(xi · xi−1)

(xi − xi−1) ≥ ϵ

(5)

where sgn(.) is the sign function

sgn(x) =

{
1 if x < ϵ
0 otherwise

- Integrated EMG (IEMG) : also known as the Inte-
gral of Absolute Value (IAV), it represents the summation
of the absolute values of the sEMG signal amplitude given
by:

IEMG =
N∑
i=1

|xi| (6)

- Simple Square Integral (SSI) : It uses the energy
of the sEMG signal as a feature. It formulated as follows:

SSI =

N∑
i=1

|xi|2 (7)

- Mean : It represents the mean amplitude value of an
sEMG signal. It is expressed by:

Mean =
1

N

N∑
i=1

xi (8)

- Variance (VAR) : It stands to the variance value of
the signal given by:

VAR =
1

N − 1

N∑
i=1

(xi − µ)2 (9)

where µ is the mean value.

- Standard Deviation (SD) : It is the square root of
the variance and calculated as follows:

SD =

√√√√ 1

N − 1

N∑
i=1

(xi − µ)2 (10)

- Root Mean Square (RMS) : As mentioned by its
name, it stands to the square root of the mean square of
the signal amplitude. It is given by:

RMS =

√√√√ 1

N

N∑
i=1

x2
i (11)

- Willison amplitude (WAMP) : It counts the num-
ber of times the changes in the sEMG signal amplitude ex-
ceeds a predefined threshold in order to reduce noise effect.
It is given by:

WAMP =
N−1∑
i=1

f
(
|xi − xi+1|

)
(12)

where

f(x) =

{
1 if x ≥ ϵ
0 otherwise

- Average Amplitude Change (AAC) : It corre-
sponds to the averaged WL, it is given by:

AAC =
1

N

N−1∑
i=1

|xi+1 − xi| (13)

- Skewness : It is a measure of the symmetry of a
dataset. It corresponds to the ratio of the average deviation
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from the mean cubed divided by the standard deviation
cubed. It is defined as:

Skew =
1

Nσ3

N∑
i=1

(xi − µ)3 ∼=

1

N

N∑
i=1

(xi − x̄)3

(
1

N

N∑
i=1

(xi − x̄)2
)3/2

(14)

where N , µ and σ correspond to the signal length, the
mean and the standard deviation respectively.

- Kurtosis : It is a measure of the signal steepness
or flatness relative to a normal distribution. It is a robust
metric for detecting impulsive content within the data and
it is defined as:

Kurtosis =
1

Nσ2

N∑
i=1

(xi −µ)4 ∼=

1

N

N∑
i=1

(xi − x̄)4

(
1

N

N∑
i=1

(xi − x̄)2
)2

(15)

- Difference absolute standard deviation value
(DASDV) : It corresponds to the standard deviation value
of the difference between the adjacent samples and calcu-
lated by

DASDV =

√√√√ 1

N − 1

N−1∑
i=1

(xi+1 − xi) (16)

- Modified Mean Absolute Value 1 (MMAV1) :
It is an extension of the Mean Absolute Value using a
weighting window function wi and defined as

MMAV1 =
1

N

N∑
i=1

wi|xi| (17)

where

wi =

 1 if 0.25N ≤ i ≤ 0.75N

0.5 otherwise

- Modified Mean Absolute Value 2 (MMAV2) :
It is also an extension of the Mean Absolute Value with an

improved continuous weighting window function. wi. It is
expressed as follows:

MMAV2 =
1

N

N∑
i=1

wi|xi| (18)

where

wi =



1 if 0.25N ≤ i ≤ 0.75N

4i

N
if 0.25N > i

4(i−N)

i
if 0.75N < i

There are other time domain features that have been used
for classification of sEMG signals. Among them the inte-
grated absolute value [23], EMG histogram (Hist) [24], dif-
ference between moments [25], Co-Contraction Index [26],
Myopulse percentage rate (MYOP) [27], Sample Entropy
[28], log-Detector (LD), v-Order [29], Cepstral Coefficients
[30] and Guided Under-determined Source Signal Separa-
tion [31].

4 Discussion and conclusion

From Table 1, the exposed features with conventional su-
pervised learning algorithms has been shown to achieve
high classification accuracy in various applications, includ-
ing neuromuscular system monitoring, prosthetic control,
rehabilitation, and human-computer interaction. We see
that the MAV, RMS, WL, ZC and SSC features are of-
ten used for applications related to motion classification.
This is mainly due to their low computational complexity,
which makes them well-suited for real-time applications. In
[32] [33] we see that time domain features have a better
performance than frequency domain features for long term
and provides a more consistent method for electrode selec-
tion. The selection of appropriate features requires a pre-
cise application knowledge and further research is needed to
improve sEMG signal classification accuracy by proposing
other possible low complexity features with possible inter-
pretability to encourage medical applications. For robotic
applications, that are dominant in this survey, this rela-
tionship knowledge is not needed. Applications using HD-
sEMG signals allow the access to spatial information en-
hancing classification task. Few studies are related to mus-
culoskeletal system evaluation for medical applications.

p.4 Colloque JETSAN 2023



Table 1: Overview of handcrafted features based classification of sEMG signal.

Reference Year Application Features Classifier Accuracy Dataset

Venugopal et al [34] 2014 Muscle fatigue MAV KNN, SVM,
NB, LDA

93% Private

Soman et al [35] 2016 Wrist/finger
movement

RMS SVM 95% Private

Jose et al [36] 2017 Forearm move-
ment

IEMG, ZC, SSC, WL,
WAMP

RF, NN 97.7% Private

Bhattacharya et al
[37]

2017 Hand move-
ment

AR, MAV, RMS, ZC,
SSC, WL

KNN, LDA,
QDA

83.33% Private

Wei et al [38] 2017 Hand move-
ment

RMS RF, SVM,
KNN, NN

98.06% NinaPro

Li et al [39] 2017 Hand/wrist
movement

MAV, WL, ZC, SSC LDA 91.7% Private

Wahid et al [40] 2018 Hand Move-
ment

MAV, ZC, WL, SSC KNN, DA,
NB, RF,
SVM

96.38% Private

Rescio et al [26] 2018 Fall risk detec-
tion

IEMG, CCI, MAV,
RMS, VAR, WL, ZC,
SSI, SSC, WAMP

LDA 90% Private

Rivela et al [30] 2018 Shoulder move-
ment

MAV, WL, ZC, SE, CC,
RMS, WL

LDA, NN 100% Private

Ga et al [41] 2018 Vocal fatigue MAV, ZC, SSC, WL,
WAMP, RMS, AR

LDA 93.9% Private

Morbidoni et al [42] 2019 Gait recogni-
tion

SD, RMS, MAV, IEMG,
WL

NN 94.9% Private

Young et al [7] 2019 Hand Move-
ment

RMS, VAR, IAV, SSI,
WL, MAV

DT, KNN,
GB, LDA,
AdaBoost,
QDA, SVM,
NB

94.8% Private

Freitas et al [8] 2019 Hand Move-
ment

VAR, RMS, MAV,
IEMG

NN, KNN,
LDA, QDA,
DT, NB

99% Private

Leone et al [10] 2019 Hand/wrist
Movement

MAV, RMS, SSC, WL,
VAR

LDA, NLR 98.7% Private
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Reference Year Application Features Classifier Accuracy Dataset

Too et al [9] 2019 Hand Move-
ment

MAV, WL, ZC, SSC,
AAC, LD, RMS,
DASDV, MYOP, SSI,
WA, VAR, MMAV1,
MMAV2

KNN, LDA,
NB, SVM

97.56% NinaPro

Kaur et al [11] 2019 Shoulder Move-
ment

MAV, Median, Mean,
MAV, RMS, VAR

SVM, DT,
RF, NB

98.8% Private

Cai et al [12] 2019 Upper-limb
movement

RMS, WL, VAR, MAV,
SSI

SVM 98.89% Private

Marcovic et al [43] 2019 Wrist Move-
ment

RMS, ZC, SSC, WL LDA 90% Private

Fazeli et al [44] 2020 Hand Move-
ment

MAV, WL, ZC, SSC SVM, LDA,
QDA, DT,
KNN

87.3% Private

Nsugbe et al [45] 2020 Hand Move-
ment

MAV, RMS, ZC, SSC,
WAMP, AR, SampEN,
Cepstrum, VAR

NN 83% Private

Devaraj and Nair
[46]

2020 Hand Move-
ment

IEMG, MAV, MMAV,
MAV, VAR, RMS, WL

KNN, SVM 93.92% NinaPro

Vijayvargiya et al
[27]

2020 Limb Move-
ment

MAV, RMS, ZC, SSC,
VAR, WAMP, MYOP,
DASDV, AAC, Skew-
ness, Kurtosis

KNN, SVM,
DT, RF,
Extra Tree
(ET)

91.3% UCI

Sattar et al [47] 2020 Arm Movement Mean, VAR, Skewness,
Kurtosis, SSC, MAV,
RMS, WL, WAMP, ZC

LDA, KNN,
SVM, QDA

95.8% Private

Ahlawat et al [48] 2021 Hand Move-
ment

RMS, MMAV1, MMAV2 SVM, NN 99.3% Private

Vijayvargiya et al
[49]

2021 Lower limb
Movement

MAV, RMS, ZC, SSC,
VAR, WAMP, MYOP,
AAC, DASDV, Skew-
ness, Kurtosis

Regression
Tree, GB,
RF, Extra
Tree

91.9% UCI

Khairuddin et al
[50]

2021 Upper limb
Movement

WL, MAV, RMS, SD,
MIN, MAX

LDA, LR,
DT, SVM,
KNN

99% Private
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However, despite the success of time domain features
in sEMG signal classification, several challenges still exist.
One of the main challenges is the variability of sEMG signals
between individuals, which can affect the accuracy of the
classification. Furthermore, noise and artifacts can impact
the quality of the extracted features and the performance
of the classifier. Thus, denoising task must been done with
caution to ensure noise suppression without sEMG signal
corruption. Deep learning-based classification, on the other
hand, can automatically learn features from the raw sig-
nal and does not require manual feature engineering and
can handle complex signal patterns. It has shown superior
performance compared to handcrafted feature-based clas-
sification, especially in cases where the signal is noisy, or
there are multiple classes to be distinguished. However,
deep learning-based classification requires a large amount
of data and computing resources to train the neural net-
work models, this may explain the use up to these days of
handcrafted features.

Conflict of interest: The authors declare no conflict of
interest.
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