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Surface electromyography (sEMG) signals have been widely used in various robotic and medical applications. Thus, Time domain features have been shown to be effective in extracting useful information from these signals for classification purposes. They are mainly based on amplitude, energy, and time statistics. Furthermore, they can be easily implemented in real-time systems and combined to conventional supervised learning algorithms. The proposed study depicts an presents an up-to-date literature review highlighting the significant time-domain features and their applications in the field.

Introduction

Electromyography (EMG) is a technique used to measure the electrical activity of muscles during contraction, which is controlled by the nervous system. There are two types of EMG signals: surface EMG (sEMG), which is recorded non-invasively using electrodes placed on the skin, and intramuscular EMG, which requires insertion of a needle electrode directly into the muscle [START_REF] Chowdhury | Surface electromyography signal processing and classification techniques[END_REF]. High Density surface electromyography (HD-sEMG) is a recent technique, combining ambulatory device, that involves recording sEMG signals from a high number of electrodes [START_REF] Merletti | Analysis of motor units with high-density surface electromyography[END_REF]. this technique provides a more detailed and spatially distributed representation of the muscle activity for medical applications using connected devices [START_REF] Harrach | Analysis of the semg/force relationship using hd-semg technique and data fusion: A simulation study[END_REF]. The sEMG signals provide valuable information for understanding the musculoskeletal system in normal and pathological conditions. They are used in both medical and engineering fields to generate device control commands for rehabilitation equipment and human-computer interfaces (HCI) [START_REF] Chowdhury | Surface electromyography signal processing and classification techniques[END_REF]. Despite its potential, the analysis and classification of EMG signals can be challenging due to the complex pattern of the signal and the presence of various types of noise during recording. To improve the accuracy of recognizing sEMG signals, researchers have focused on eficient feature extraction task. Feature extraction refers to the process of selecting the most relevant information from the signal to analyze its pattern for recognition purposes. Popular feature extraction methods include time domain features, frequency domain features, and time-frequency features [START_REF] Phinyomark | Feature reduction and selection for emg signal classification[END_REF]. However, some of these methods only provide limited neural/motor control information, and few features can fully reflect the detailed characteristics of sEMG signals. Pattern recognition based approach is often used and has shown promise as a reliable method for classifying user signals. For example, pattern recognition algorithms can be used to analyze a collection of features that describe the sEMG signals to identify the user's intended movement for controlling an external device for example [START_REF] Khezri | Real-time intelligent pattern recognition algorithm for surface emg signals[END_REF]. For illustration purpose, Figure 1 shows the process of sEMG signal based pattern recognition. The use of time domain features for the classification of EMG signals dates back to the 2000's, as in the study of Bekka et al. that combined time domain features with a neural network for the identification of motor unit features [START_REF] Bekka | The use of a neural network system in the identification of motor unit characteristics from surface detected action potentials: a simulation study[END_REF]. Since then, numerous studies have demonstrated that both offline and online testing of sEMG signals can result in classification accuracies of over 90% [START_REF] Young | Pattern recognition for prosthetic hand user's intentions using emg data and machine learning techniques[END_REF][8] [START_REF] Too | Classification of hand movements based on discrete wavelet transform and enhanced feature extraction[END_REF][10] [START_REF] Amanpreet | Machine learning-based novel approach to classify the shoulder motion of upper limb amputees[END_REF] [START_REF] Cai | Svm-based classification of semg signals for upper-limb selfrehabilitation training[END_REF]. The purpose of this short survey is to explore the effect of the commonly used sEMG features on the sEMG signal classification and determine which feature sets are the most reliable for sEMG pattern recognition. Our review focused solely on timedomain features, which are straightforward and computationally less demanding and do not require additional signal transformation. The following sections cover sEMG signal preprocessing methods, feature extraction, and results of some sEMG signal classification studies.
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Colloque JETSAN 2023 [START_REF] Harrach | Denoising of hd-semg signals using canonical correlation analysis[END_REF]. These noises can affect the signal quality and classification, so it is very important to go through signal processing to eliminate these noises and reduce their effect. In a recent tutorial, techniques and recommendations for sEMG signal detection, conditioning and pre-processing have been presented [START_REF] Merletti | Tutorial. surface emg detection, conditioning and pre-processing: Best practices[END_REF]. For denoising surface electromyography (sEMG) signals, numerous methods have been proposed in the literature, including baseline noise spectrum subtraction and power line noise subtraction methods [START_REF] Baratta | Methods to reduce the variability of emg power spectrum estimates[END_REF]. However, these techniques often make unrealistic assumptions regarding the line noise and fail to distinguish between different sources of noise. Conventional digital filters have also been proposed, but they tend to corrupt the useful signal due to spectral overlapping [START_REF] Mello | Digital butterworth filter for subtracting noise from low magnitude surface electromyogram[END_REF]. Empirical Mode Decomposition (EMD) [START_REF] De Oliveira Andrade | Emg signal filtering based on empirical mode decomposition[END_REF] followed by Ensemble EMD (EEMD) [START_REF] Zhang | Filtering of surface emg using ensemble empirical mode decomposition[END_REF] has emerged as an effective denoising procedure that overcomes the limitations of mode mixing associated with standard EMD. Additionally, wavelet and adaptive wavelet thresholding methods have been utilized [START_REF] Agante | Ecg noise filtering using wavelets with soft-thresholding methods[END_REF], which offer precise targeting of white Gaussian noise components through time-frequency representation. The HD-sEMG signals can be denoised using blind source separation (BSS) techniques, such as independent component analysis (ICA) [START_REF] Hassan | Combination of canonical correlation analysis and empirical mode decomposition applied to denoising the labor electrohysterogram[END_REF]. Canonical correlation analysis (CCA) has been used for denoising biomedical multichannel signals [20] [21]. The primary benefit of CCA is that it ranks the estimated sources based on a correlation coefficient and enables the construction of a relevant thresholding paradigm.

3 Feature extraction sEMG pattern recognition systems typically utilize a collection of standard functions to extract features from the time domain. These features are well-suited for real-time systems that must meet specific constraints, and can be easily implemented using basic hardware. Conventional time domain features are typically derived from statistical analyses of either the sEMG signal or its first derivative. The time domain features are extracted from the amplitude of the signal, which changes over time. The amplitude of the signal is influenced by the type of muscle and the observation conditions. Time domain features have several advantages over other types of features. For example, they do not require high computational complexity, can be used in real-time applications, are easy to implement, and perform well in low noise environments. Additionally, these features do not require any additional signal transformation [START_REF] Jali | Features extraction of emg signal using time domain analysis for arm rehabilitation device[END_REF]. Below, we will introduce the various time domain features. These handcrafted features are typically integrated with conventional supervised learning algorithms, such as random forest (RF), support vector machines (SVM), Decision Tree (DT), Linear Discriminant Analysis (LDA), and k-nearest neighbors (kNN). The combination between time-domain features and these classifiers gave good results in many differents type of applications. Table 1 resume the results of different studies.

Prior to exploring the specifics of the time domain features, we will be using the following notations: x ∈ R N an sEMG signal, x i its i th entry and |.| the absolute value. a a a i is the linear predictive coefficients. x is the predicted sEMG signal value.

-Mean Absolute Value (MAV) : It represents the average of the absolute value of sEMG signal amplitude. It is calculated by taking the average value of the absolute entries of the sEMG signal. MAV features are widely used to detect and measure the muscle contraction levels in hand/finger recognition applications. It is defined by :

MAV = 1 N N i=1 |x i | (1) 
-Waveform Length (WL) : It is intuitively the cumulative length of the waveform over the sample. It indicates a measures of the waveform related to time and amplitude providing a measure of the signal complexity. It is given by:

WL = N -1 i=1 |x i+1 -x i | (2) 
p.2 Colloque JETSAN 2023 where x i and x i+1 are two consecutive samples entries of the sEMG signal x.

-Modified Waveform Length (MWL) : It is a modified and improved version of the aforementioned Waveform Length (WL) features. Indeed, it is calculated based on the first derivative of the sEMG signal and formulated as follows:

MWL = N i=1 |x ′ i+1 -x ′ i | (3) 
where x ′ is the first derivative of the signal.

-Slope Sign Changes (SSC) : It counts the number of times the sign in the slope of the signal changes. It should be noted that the threshold function seeks to minimize the interference. It is given by:

SSC = N -1 i=2 f (x i -x i-1 ) • (x i -x i+1 ) (4) 
where

f (x) = 1 if x ≥ ϵ 0 otherwise
-Zero Crossing (ZC) : It counts the number of times the amplitude value of the sEMG signal crosses zero The threshold condition seeks to avoid the background noise. It is mathematically calculated as follows:

ZC =          N -1 i=1 sgn(x i • x i-1 ) (x i -x i-1 ) ≥ ϵ (5)
where sgn(.) is the sign function

sgn(x) = 1 if x < ϵ 0 otherwise
-Integrated EMG (IEMG) : also known as the Integral of Absolute Value (IAV), it represents the summation of the absolute values of the sEMG signal amplitude given by:

IEMG = N i=1 |x i | (6) 
-Simple Square Integral (SSI) : It uses the energy of the sEMG signal as a feature. It formulated as follows:

SSI = N i=1 |x i | 2 (7) 
-Mean : It represents the mean amplitude value of an sEMG signal. It is expressed by:

Mean = 1 N N i=1 x i (8) 
-Variance (VAR) : It stands to the variance value of the signal given by:

VAR = 1 N -1 N i=1 (x i -µ) 2 (9) 
where µ is the mean value.

-Standard Deviation (SD) : It is the square root of the variance and calculated as follows:

SD = 1 N -1 N i=1 (x i -µ) 2 (10) 
-Root Mean Square (RMS) : As mentioned by its name, it stands to the square root of the mean square of the signal amplitude. It is given by:

RMS = 1 N N i=1 x 2 i ( 11 
)
-Willison amplitude (WAMP) : It counts the number of times the changes in the sEMG signal amplitude exceeds a predefined threshold in order to reduce noise effect. It is given by:

WAMP = N -1 i=1 f |x i -x i+1 | (12) 
where

f (x) = 1 if x ≥ ϵ 0 otherwise
-Average Amplitude Change (AAC) : It corresponds to the averaged WL, it is given by:

AAC = 1 N N -1 i=1 |x i+1 -x i | (13) 
-Skewness : It is a measure of the symmetry of a dataset. It corresponds to the ratio of the average deviation p. [START_REF] Harrach | Analysis of the semg/force relationship using hd-semg technique and data fusion: A simulation study[END_REF] Colloque JETSAN 2023 from the mean cubed divided by the standard deviation cubed. It is defined as:

Skew = 1 N σ 3 N i=1 (x i -µ) 3 ∼ = 1 N N i=1 (x i -x) 3 1 N N i=1 (x i -x) 2 3/2 (14) 
where N , µ and σ correspond to the signal length, the mean and the standard deviation respectively.

-Kurtosis : It is a measure of the signal steepness or flatness relative to a normal distribution. It is a robust metric for detecting impulsive content within the data and it is defined as:

Kurtosis = 1 N σ 2 N i=1 (x i -µ) 4 ∼ = 1 N N i=1 (x i -x) 4 1 N N i=1 (x i -x) 2 2 (15) 
-Difference absolute standard deviation value (DASDV) : It corresponds to the standard deviation value of the difference between the adjacent samples and calculated by

DASDV = 1 N -1 N -1 i=1 (x i+1 -x i ) ( 16 
)
-Modified Mean Absolute Value 1 (MMAV1) : It is an extension of the Mean Absolute Value using a weighting window function w i and defined as

MMAV1 = 1 N N i=1 w i |x i | (17) 
where 

w i =    1 if 0.25N ≤ i ≤ 0.75N 0 
w i |x i | ( 18 
)
where

w i =                  1 if 0.25N ≤ i ≤ 0.75N 4i N if 0.25N > i 4(i -N ) i if 0.75N < i
There are other time domain features that have been used for classification of sEMG signals. Among them the integrated absolute value [START_REF] Al-Timemy | Classification of finger movements for the dexterous hand prosthesis control with surface electromyography[END_REF], EMG histogram (Hist) [START_REF] Zardoshti-Kermani | Emg feature evaluation for movement control of upper extremity prostheses[END_REF], difference between moments [START_REF] Pancholi | Advanced energy kernel-based feature extraction scheme for improved emg-pr-based prosthesis control against force variation[END_REF], Co-Contraction Index [START_REF] Rescio | Supervised machine learning scheme for electromyography-based pre-fall detection system[END_REF], Myopulse percentage rate (MYOP) [START_REF] Vijayvargiya | Comparative analysis of machine learning techniques for the classification of knee abnormality[END_REF], Sample Entropy [START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF], log-Detector (LD), v-Order [START_REF] Narayan | semg signal classification with novel feature extraction using different machine learning approaches[END_REF], Cepstral Coefficients [START_REF] Rivela | Analysis and comparison of features and algorithms to classify shoulder movements from semg signals[END_REF] and Guided Under-determined Source Signal Separation [START_REF] Rivera | Recognizing hand movements from a single semg sensor using guided under-determined source signal separation[END_REF].

Discussion and conclusion

From Table 1, the exposed features with conventional supervised learning algorithms has been shown to achieve high classification accuracy in various applications, including neuromuscular system monitoring, prosthetic control, rehabilitation, and human-computer interaction. We see that the MAV, RMS, WL, ZC and SSC features are often used for applications related to motion classification. This is mainly due to their low computational complexity, which makes them well-suited for real-time applications. In [START_REF] Kendell | A novel approach to surface electromyography: an exploratory study of electrode-pair selection based on signal characteristics[END_REF] [START_REF] Phinyomark | Emg feature evaluation for improving myoelectric pattern recognition robustness[END_REF] we see that time domain features have a better performance than frequency domain features for long term and provides a more consistent method for electrode selection. The selection of appropriate features requires a precise application knowledge and further research is needed to improve sEMG signal classification accuracy by proposing other possible low complexity features with possible interpretability to encourage medical applications. For robotic applications, that are dominant in this survey, this relationship knowledge is not needed. Applications using HD-sEMG signals allow the access to spatial information enhancing classification task. Few studies are related to musculoskeletal system evaluation for medical applications.
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Colloque JETSAN 2023 However, despite the success of time domain features in sEMG signal classification, several challenges still exist. One of the main challenges is the variability of sEMG signals between individuals, which can affect the accuracy of the classification. Furthermore, noise and artifacts can impact the quality of the extracted features and the performance of the classifier. Thus, denoising task must been done with caution to ensure noise suppression without sEMG signal corruption. Deep learning-based classification, on the other hand, can automatically learn features from the raw signal and does not require manual feature engineering and can handle complex signal patterns. It has shown superior performance compared to handcrafted feature-based classification, especially in cases where the signal is noisy, or there are multiple classes to be distinguished. However, deep learning-based classification requires a large amount of data and computing resources to train the neural network models, this may explain the use up to these days of handcrafted features.

Figure 1 :

 1 Figure 1: sEMG signal classification architecture

. 5 otherwise-

 5 Modified Mean Absolute Value 2 (MMAV2) : It is also an extension of the Mean Absolute Value with an improved continuous weighting window function. w i . It is expressed as follows:

Table 1 :

 1 Overview of handcrafted features based classification of sEMG signal.

	Reference	Year	Application	Features		Classifier	Accuracy	Dataset
	Venugopal et al [34] 2014	Muscle fatigue	MAV			KNN, SVM,	93%	Private
								NB, LDA	
	Soman et al [35]	2016	Wrist/finger	RMS			SVM		95%	Private
			movement						
	Jose et al [36]	2017	Forearm move-	IEMG, ZC, SSC, WL,	RF, NN	97.7%	Private
			ment		WAMP					
	Bhattacharya et al	2017	Hand	move-	AR, MAV, RMS, ZC,	KNN, LDA,	83.33%	Private
	[37]		ment		SSC, WL		QDA		
	Wei et al [38]	2017	Hand	move-	RMS			RF,	SVM,	98.06%	NinaPro
			ment					KNN, NN	
	Li et al [39]	2017	Hand/wrist	MAV, WL, ZC, SSC	LDA		91.7%	Private
			movement						
	Wahid et al [40]	2018	Hand	Move-	MAV, ZC, WL, SSC	KNN, DA,	96.38%	Private
			ment					NB,	RF,	
								SVM		
	Rescio et al [26]	2018	Fall risk detec-	IEMG,	CCI,	MAV,	LDA		90%	Private
			tion		RMS, VAR, WL, ZC,			
					SSI, SSC, WAMP				
	Rivela et al [30]	2018	Shoulder move-	MAV, WL, ZC, SE, CC,	LDA, NN	100%	Private
			ment		RMS, WL				
	Ga et al [41]	2018	Vocal fatigue	MAV, ZC, SSC, WL,	LDA		93.9%	Private
					WAMP, RMS, AR				
	Morbidoni et al [42] 2019	Gait recogni-	SD, RMS, MAV, IEMG,	NN		94.9%	Private
			tion		WL					
	Young et al [7]	2019	Hand	Move-	RMS, VAR, IAV, SSI,	DT, KNN,	94.8%	Private
			ment		WL, MAV		GB,	LDA,	
								AdaBoost,	
								QDA, SVM,	
								NB		
	Freitas et al [8]	2019	Hand	Move-	VAR,	RMS,	MAV,	NN, KNN,	99%	Private
			ment		IEMG			LDA, QDA,	
								DT, NB	
	Leone et al [10]	2019	Hand/wrist	MAV, RMS, SSC, WL,	LDA, NLR	98.7%	Private
			Movement	VAR					
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