
HAL Id: hal-04199417
https://hal.science/hal-04199417v1

Submitted on 8 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Definition of Exergy in the Field of
Aerodynamics

Ilyès Berhouni, Didier Bailly, Ilias Petropoulos

To cite this version:
Ilyès Berhouni, Didier Bailly, Ilias Petropoulos. On the Definition of Exergy in the Field of Aerody-
namics. AIAA Journal, 2023, 61 (10), pp.4356-4366. �10.2514/1.J062833�. �hal-04199417�

https://hal.science/hal-04199417v1
https://hal.archives-ouvertes.fr


On the definition of exergy in the field of aerodynamics

Ilyès Berhouni∗, Didier Bailly†, Ilias Petropoulos‡
ONERA - The French Aerospace Lab, Meudon, F-92190, France

The exergy concept originates from the field of static thermodynamics and expresses the

maximum theoretically recoverable mechanical work from a system while it evolves towards

its dead thermodynamic state. It accounts for both mechanical and thermal mechanisms, and

allows to separate reversible and irreversible losses in the system’s transformations. The physical

insight provided by this concept motivated the development of an exergy-based performance

evaluation method in the field of aerodynamics. The resulting formulation has the advantage of

being independent of the feasibility of a drag/thrust breakdown (ambiguous for highly-integrated

engine concepts) and includes thermal effects in the performance metrics. It however relies on

an adapted definition of exergy, in particular involving a dead state in motion. This adapted

definition is not trivial and raises theoretical concerns due to fundamental thermodynamic

properties of exergy not being always satisfied. This paper aims at proposing a corrected

version of this definition which ensures that the fundamental properties of exergy are respected.

First, the exergy concept is presented alongside the concerns raised by its original adaptation,

which to the best of the authors’ knowledge has been used in all exergy-based flowfield analyses

in the field of applied aerodynamics. Then, an unsteady exergy balance is derived in the

geocentric reference frame (in which there are no ambiguities in the definition of exergy) and

then transformed to a reference frame in translation. The corrected adaptation of the exergy

definition for aerodynamics applications is extracted from this transformation and the impact

on the exergy balance is analysed.

I. Nomenclature

¤A𝑡𝑜𝑡 = ¤A𝜙 + ¤A∇𝑇 + ¤A𝑤 , Rate of total anergy generation, J.s-1

¤A𝑤 = Rate of anergy generation by shockwaves, J.s-1

¤A∇𝑇 = Rate of anergy generation by thermal mixing, J.s-1

¤A𝜙 = Rate of anergy generation by viscous dissipation, J.s-1
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𝐸 = Mass-specific total energy, J.kg-1

¤𝐸𝑢 = Streamwise kinetic energy outflow, J.s-1

¤𝐸𝑣𝑤 = Transverse kinetic energy outflow, J.s-1

¤𝐸𝑝𝜏 = Boundary surface forces’ rate of work, J.s-1

𝑒 = Mass-specific internal energy, J.kg-1

𝐻 = Mass-specific total enthalpy, J.kg-1

ℎ = Mass-specific static enthalpy, J.kg-1

𝐼 = Identity tensor

𝑘 = Thermal conductivity, W.m-1.K-1

𝑀 = Mach number

n = Unit normal vector

𝑝 = Static pressure, kg.m.s-2

q = Heat flux by conduction, J.s-1

𝑆𝑏 = Body surface

𝑆𝑜 = Outer boundary of the control volume

𝑆𝑤 = Shockwave surface

𝑠 = Mass-specific entropy, J.K-1.kg-1

𝑇 = Static temperature, K

V = Control volume

V = Fluid velocity vector, m.s -1

W = Shockwave velocity vector, m.s -1

¤X𝑚 = Rate of mechanical exergy outflow, J.s-1

¤X𝑞 = Rate of thermal exergy supplied by conduction, J.s-1

¤X𝑡 𝑓 𝑏 = Rate of throughflow exergy, J.s -1

¤X𝑡ℎ = Rate of thermocompressible exergy outflow, J.s-1

x = Mass-specific exergy, J.kg-1

x 𝑓 = Mass-specific flow exergy, J.kg-1

𝛿( ) = Perturbation of a quantity relative to the freestream, = ( ) − ( )∞

𝜇 = Fluid dynamic viscosity, kg.m.s-1

𝜌 = Density, kg.m-3

𝜏 = Viscous stress tensor, N

𝜙 = Dissipation rate per unit volume, J.s-1.m-3
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( )∞ = Quantity ( ) at freestream conditions
˜( ) = Quantity ( ) expressed in the geocentric frame �̃�

∇ = Nabla operator

:= = Equal by definition

⟦ ⟧ = Discontinuous jump of a quantity

II. Introduction
The precise investigation of aircraft performance through relevant metrics has been a driving factor of research

since the birth of the aviation sector. While the efficiency of various aircraft configurations was initially quantified

experimentally, the development of numerical tools has progressively allowed to perform accurate simulations for precise

performance evaluations. This improved precision, together with the lower costs associated to numerical computations

compared to experiments, led to the incorporation of Computational Fluid Dynamics (CFD) into design processes.

Consequently, post-processing tools were developed in parallel to enhance the accuracy of physical and numerical

analyses of the results obtained from numerical simulations or experiments. The possibility to link any performance

degradation to physical aspects of the flow field via appropriate efficiency metrics quickly became a major stake of such

post-processing tools.

The most mature approach developed and adopted in the case of aircraft consists in analysing aerodynamic

performance with force-based methods. Such a method was developed with a near-field/far-field balance by van

der Vooren and Destarac [1, 2], which allows to perform a phenomenological breakdown of drag components. By

quantifying the components of the generated drag, as well as providing a clear link to the physical phenomena in the

flow, their formulation gives indications on the design modifications which could be carried out in order to achieve a

better aircraft performance. Since then, a large amount of work was dedicated to the refinement and extension of this

drag decomposition method [3], such as an extension to rotating frames of reference [4, 5] or to unsteady flow analyses

[6–8]. These force-based methods allow to consider the mechanical aspects of the performance analysis, yet are less

adapted to configurations involving significant thermal exchanges (e.g. aerothermal effects in heat exchanger flows) or

for which a clear thrust/drag separation is not possible (e.g. boundary-layer-ingesting configurations).

Another analysis, based on a mechanical energy balance and referred to as power balance, was more recently

developed by Drela [9]. This approach gives a clear physical breakdown of the flow of mechanical energy, and is

not dependent on the feasibility of a thrust/drag separation. As in far-field drag decomposition methods, sources of

loss can be identified by a separation between reversible and irreversible losses (the latter being linked to viscous

and shock phenomena). The power balance physical interpretation was since further studied and used to evaluate the

performance benefits from the Boundary Layer Ingestion (BLI) concept [10–13]. While this method allows to study
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concepts involving strong engine-airframe interactions, it still does not account for thermal effects present in the flow

field, which are often small for adiabatic cases, yet non-negligible for a wide range of aerodynamics applications.

These considerations led to the development of another approach at ONERA based on the concept of exergy, which

corresponds to the maximum mechanical work that can theoretically be extracted from the system while it evolves

towards its dead state. The exergy concept is inherited from thermodynamics [14, 15], where it is commonly used in

order to perform static analyses. Arntz et al. [16, 17] proposed an adaptation of the exergy definition for aerodynamics

applications, and developed an exergy balance adapted to such configurations. This allows to perform a separation

between reversible and irreversible losses of exergy, with a clear link to the physical phenomena involved. This method

has been applied to conventional and disruptive aircraft configurations [17–20], as well as improved and studied from

a numerical point of view [21]. In recent years, further work was performed to use this exergy balance for various

numerical and experimental applications [22–24], extend it to rotating frames of reference [25, 26] and for the analysis

of unsteady flows [27]. These developments are all based on the exergy definition of Arntz et al., yet the latter raises

questions as it does not guarantee that fundamental properties of exergy are always satisfied (such as the guaranteed

positivity of exergy [15]).

The main objective of this paper is to present a rigorous clarification on the adaptation of the exergy definition for

flowfield analyses in the context of aerodynamics studies. The exergy concept as defined in thermodynamics, alongside

its adaptation by Arntz et al. and the concerns it raises are detailed in Sec. III. Sec. IV then presents the derivation of an

unsteady exergy balance for an aircraft configuration in the geocentric reference frame, for which there is no ambiguity

in the exergy definition, as the reference state used in the exergy definition possesses no kinetic energy. In Sec. V,

this balance is transformed in a frame of reference attached to an aircraft-type configuration, from which the correct

exergy definition is extracted and the impact on the exergy balance (derivation and final form) is evaluated. Finally,

the theoretical evolution of the exergy balance components in the schematic case of a converging nozzle is detailed in

Sec. VI.

III. On the definition of exergy in aerodynamics applications

A. Definition of an exergy balance

Let us consider a volume of fluid surrounded by a thermodynamic reservoir with which it exchanges mechanical

work (noted𝑊), heat (noted 𝑄) and mass, as illustrated in Fig. 1. An inertial reference frame �̃� is defined so that the

reservoir is considered to be at rest with no velocity. The dead state of the system under study (here the fluid) is defined

as the thermodynamic state in which the fluid is at a thermodynamic equilibrium with its environment, i.e. there is no

potential for work recovery as no thermodynamic exchanges take place between the system and its environment. In this

particular case, the dead state of the fluid corresponds to the thermodynamic state of the reservoir surrounding it, since
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the latter is supposed to be large enough (in comparison to the system studied) for its thermodynamic state variables to

be considered constant.

�̃�∞ = 0
𝑇∞

𝑝∞

�̃�∞

𝑠∞

𝑇

𝑝

�̃�

𝑠

�̃�

𝑑V

x̃ỹ

z̃ �̃�

𝑄

𝑊

Fig. 1 Volume of fluid exchanging work and heat with a thermodynamic reservoir at rest.

The goal is to quantify the maximum mechanical work that could be extracted from the mechanical and thermal

thermodynamic processes that the fluid undergoes while it evolves towards its dead state. This is equivalent to quantifying

the exergy of the fluid [15], which corresponds to the case where the mechanical work available is completely recovered

and the thermal exchanges are converted into useful work by the use of a Carnot machine. When considering a perfect

gas and neglecting the kinetic and gravitational potential energy, specific exergy is defined as:

x̃ = (𝑒 − 𝑒∞) + 𝑝∞
(
1
�̃�
− 1
�̃�∞

)
− 𝑇∞ (𝑠 − 𝑠∞) (1)

This quantity is always positive [15]. It means that physically, there is always a potential for work recovery as long

as the fluid is not completely at a thermodynamic equilibrium with its environment. If the fluid is considered to be in

motion with respect to its dead state, the kinetic energy cannot be neglected, but must be included in the above exergy

definition to get:

x̃ = (𝑒 − 𝑒∞) + 𝑝∞
(
1
�̃�
− 1
�̃�∞

)
− 𝑇∞ (𝑠 − 𝑠∞) +

1
2

Ṽ2 (2)

where Ṽ is defined as the fluid velocity relative to its velocity in its dead state. As kinetic energy is also positive,

the specific exergy is mathematically always positive. This is physically correct as it represents the work that can be

extracted from the thermodynamic transformations of the fluid between its considered state and its dead state. It cannot

be negative mathematically or physically, as it would not be possible to extract a negative quantity of useful work. An

exergy balance can be directly established from this definition as:

𝑑

𝑑𝑡 Ṽ

∫
V
�̃�x̃ dV = ¤𝑊︸︷︷︸

Rate of mechanical
work extracted

+
(
1 − 𝑇∞

𝑇

)
¤𝑄︸        ︷︷        ︸

Rate of mechanical work extracted
from thermal exchanges using a Carnot Machine

− ¤𝐷∗︸︷︷︸
Rate of exergy

destruction in the volume

(3)
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where ¤𝑊 can be further decomposed by introducing the boundary pressure mechanical work ¤𝑊𝑝 as ¤𝑊 = ¤𝑊 ′ + ¤𝑊𝑝 . Thus,

¤𝑊 ′ represents the part of mechanical work exchanged which is not linked to boundary pressure work. When considering

a steady-flow open system, another quantity referred to as flow exergy [15] can be introduced. It is defined by including

the transfer power (corresponding to the pressure forces driving the flow) to the exergy definition of Eq. (2). This gives:

x̃ 𝑓 = 𝛿𝑒 + 𝑝∞𝛿
(
1
�̃�

)
− 𝑇∞𝛿𝑠 +

1
2

Ṽ2 +𝛿𝑝
�̃�︸︷︷︸

Transfer power

(4)

= 𝛿ℎ̃ − 𝑇∞𝛿𝑠 +
1
2

Ṽ2 (5)

where 𝛿() = () − ()∞ is the perturbation of the quantity () relative to the dead state. This quantity represents the exergy

of a steady stream of matter and can be positive or negative. The exergy balance can then be reexpressed for a volume

without the presence of a discontinuity in the flow field as:

∫
V

𝜕�̃�x̃
𝜕𝑡
dV +

∫
𝜕V

�̃�x̃ 𝑓 Ṽ · ñ d𝑆 = ¤𝑊 ′ +
(
1 − 𝑇∞

𝑇

)
¤𝑄 − ¤𝐷∗ (6)

In this form of the exergy balance, the boundary pressure work is included in the exergy flux through the volume

boundaries in order to let the flow exergy appear. The equation established above shows that, in the case of a steady-flow

hypothesis, the specific flow exergy is conserved. In non-steady flows, the conserved quantity is rather the specific

exergy. The link between specific exergy and specific flow exergy is thus similar to the link between total energy and

total enthalpy.

B. Previous work on exergy analysis in the field of aerodynamics

The use of an exergy balance for flow field analyses in aerodynamics applications was first introduced by Arntz et al.

[16, 17]. The equations for a steady flow were derived in a reference frame 𝑅 attached to a body in translation and the

formulation was applied to several configurations with different levels of geometrical and physical complexity [18, 19].

These derivations were based on the conservation equations, the entropy equation and a definition of exergy where the

atmosphere is considered as the fluid’s dead state (which is not at rest for a translating frame of reference). Due to the

kinetic energy of the atmosphere being non-zero in the reference frame in translation (attached to an object moving with

velocity −𝑉∞), the specific exergy was defined by Arntz et al. as:

x 𝐴𝑓 = (𝑒 − 𝑒∞) +
(
𝑝

𝜌
− 𝑝∞
𝜌∞

)
− 𝑇∞ (𝑠 − 𝑠∞) +

1
2

V2 − 1
2

V2∞ (7)

Note that this definition of exergy rather corresponds to a flow exergy, the use of which is still valid in those authors’

derivation since it was made for a steady flow (cf. Eq (6)). Since then, multiple works have been based on this definition
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of exergy in order to use the same exergy-based formulation for experimental and numerical applications [21–24] as

well as unsteady flow analyses [27]. Other works have considered a reference state at rest, but have formulated an

unsteady balance of flow exergy rather than exergy (cf. Sec. III.A) [25, 28]. Defining exergy through Eq. (7) leads to

several unclear considerations:

• As explained in Sec. III.A, an energy balance leads to the conservation of total energy and not total enthalpy,

for which a conservation equation can be written only under a steady flow assumption. Similarly, in the exergy

balance, the quantity transported is exergy and not flow exergy. Hence, for unsteady (and steady to be fully

rigorous) applications, the exergy definition used as a starting point when deriving the exergy balance must be

Eq. (2).

• Exergy is always positive by definition (cf. Eq. (2)), where Ṽ is considered to be the velocity relative to the

dead state. For external aerodynamics applications, the dead state is commonly taken as the atmosphere’s

thermodynamic state. Considering a fixed frame of reference with no fluid velocity in the atmosphere, this means

that the flow under study has no kinetic energy in its dead state. This case is similar to the case detailed in Fig. 1,

which means that Eq. (2) defines exergy.

Now let us consider the same dead state with a reference frame 𝑅 moving at a velocity −𝑉∞. In this case, Arntz et

al. implicitly adapted the flow exergy definition by substracting the kinetic energy of the flow in its dead state to

the flow exergy (cf. Eq. (7)). Doing the same for the specific exergy definition would lead to:

x 𝐴 = (𝑒 − 𝑒∞) + 𝑝∞
(
1
𝜌
− 1
𝜌∞

)
− 𝑇∞ (𝑠 − 𝑠∞) +

1
2

V2 − 1
2

V2∞ (8)

This definition, rather than the one of flow exergy (Eq. (7)), was the one used as a starting point for the exergy

balance extension to steady flows in rotating reference frames investigated at ONERA [26]. This however is not

trivial and leads to the loss of a fundamental property of exergy, as the specific exergy is not guaranteed to remain

positive regardless of the reference state considered. As a result, the exactness of the above definition raises

questions and requires careful investigation.

The following sections aim at clarifying these issues and at evaluating the potential impact of an error in the exergy

definition used for the derivation of an exergy balance adapted to aerodynamics applications. To this purpose, the

derivation of an unsteady exergy balance is first presented in a reference frame for which the atmosphere, considered

as the dead state of the gas under study, has no kinetic energy. In this case, it is clear that the exergy of the fluid is

defined by Eq. (2) (where velocity is defined in the fixed frame of reference) excluding any ambiguity in the final

balance. The final balance equation is then transformed to a reference frame in translation, which corresponds to the

classical approach in applied aerodynamics studies. From this transformation, a new definition of exergy expressed in a

translating frame of reference (thus different from Eq. (8)) is then introduced.
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IV. Derivation of an unsteady exergy balance in the geocentric reference frame

A. System definition

The analysis is performed in a continuous control volumeV limited by an outer boundary 𝑆𝑜 and the aircraft surface

𝑆𝑏, as shown in Fig. 2. This volume is closed and its limits can be permeable, with a vector n normal to the surface and

pointing outwards of the volume. A shockwave discontinuity surrounded by a surface 𝑆𝑤 with a normal vector n is also

considered in the calculations. This last normal vector is pointing outwards of the control volume, i.e. towards the

interior of the shockwave volume.

�̃�∞ = 0

𝑉0
𝑇∞

𝑝∞

�̃�∞

𝑠∞

𝑆𝑏

𝑆𝑜

𝑑V

x̃ỹ

z̃
�̃�

n

𝑆𝑤

nn

Fig. 2 2D cross section of a 3D control volume surrounding the aircraft.

The system is thermodynamically open as it exchanges mass, work and heat with the surrounding fluid across its

boundaries. The atmosphere is considered as a thermal and mechanical reservoir which also corresponds to the dead

state in the exergy definition. In this case, the analysis is carried out in a fixed reference frame �̃�, assumed inertial.

The control volume is therefore moving with the aircraft at a velocity V0 = 𝑉0x̃. It is supposed that the shockwave

discontinuity is attached to the aircraft and moves with a velocity W̃ in �̃�, which is equal to V0 in the case of a steady

shockwave. As a consequence of this choice of reference frame, the atmosphere is considered to be at rest with Ṽ∞ = 0,

and the flow is unsteady in �̃�.

The divergence theorem and the definition of the material derivative in this case are written as:

∫
V
∇ · ( ) dV =

∫
𝑆𝑏

( ) · n d𝑆 +
∫
𝑆𝑜

( ) · n d𝑆 −
∫
𝑆𝑤

⟦ ⟧ · n d𝑆 (9)

𝑑

𝑑𝑡 V

∫
V
( ) dV =

∫
V

𝜕 ( )
𝜕𝑡
dV +

∫
𝜕V

( )V · n d𝑆 −
∫
𝑆𝑤

⟦ ⟧W · n d𝑆 (10)

where ( ) is a continuous tensor and ⟦ ⟧ is the jump across the discontinuous shockwave surface 𝑆𝑤 .
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B. Conservation equations

The Navier-Stokes conservation equations for the mass, momentum and energy of the fluid expressed in the reference

frame �̃� are: 

∫
V

𝜕�̃�

𝜕𝑡
dV = −

∫
𝜕V

�̃�Ṽ · ñ d𝑆 +
∫
𝑆𝑤

⟦�̃�W̃⟧ · ñ d𝑆∫
V

𝜕�̃�Ṽ
𝜕𝑡
dV = −

∫
𝜕V

( �̃�Ṽ ⊗ Ṽ + (𝑝 − 𝑝∞)𝐼 − 𝜏) · ñ d𝑆

+
∫
𝑆𝑤

⟦�̃�Ṽ ⊗ W̃⟧ · ñ d𝑆∫
V

𝜕�̃��̃�

𝜕𝑡
dV = −

∫
𝜕V

( �̃��̃�Ṽ + (𝑝𝐼 − 𝜏) · Ṽ + q̃) · ñ d𝑆

+
∫
𝑆𝑤

⟦�̃��̃�W̃⟧ · ñ d𝑆

(11)

(12)

(13)

With the corresponding compatibility equations for the jump across the shockwave:


⟦�̃�(Ṽ − W̃)⟧𝑤 · n = 0

⟦�̃�Ṽ ⊗ (Ṽ − W̃) + 𝑝𝐼 − 𝜏⟧𝑤 · n = 0

⟦�̃��̃� (Ṽ − W̃) + (𝑝𝐼 − 𝜏) · Ṽ + q̃⟧𝑤 · n = 0

(14)

(15)

(16)

Due to Eq. (11), the energy equation can be rewritten as:

∫
V

𝜕�̃�𝛿�̃�

𝜕𝑡
dV = −

∫
𝜕V

( �̃�𝛿�̃�Ṽ + (𝑝𝐼 − 𝜏) · Ṽ + q̃) · ñ d𝑆 +
∫
𝑆𝑤

⟦�̃�𝛿�̃�W̃⟧ · ñ d𝑆 (17)

where, under the assumptions made previously, 𝛿�̃� = 𝛿𝑒 + 12 Ṽ
2.

C. Entropy equation

In addition to the conservation laws, the equation for the entropy evolution inside the control volume is needed to

quantify the anergy production in the exergy balance. This equation is derived from the Gibbs equation applied to a

fluid element during a time variation 𝑑𝑡:

𝑇
𝑑𝑠

𝑑𝑡
=
𝑑𝑒

𝑑𝑡
− 𝑝

�̃�2
𝑑�̃�

𝑑𝑡
(18)

The local forms of the mass, momentum and energy equations are injected in this expression, and the equation is

integrated over the control volumeV to obtain:

∫
V
( 𝜕�̃�𝑠
𝜕𝑡

+ ∇̃ · ( �̃�𝑠Ṽ)) dV =

∫
V
− 1
𝑇
∇̃ · q̃ dV +

∫
V

1
𝑇
(𝜏 · ∇̃) · Ṽ dV (19)

The next step is to introduce Fourier’s law q̃ = −𝑘∇̃𝑇 where k is the thermal conductivity and Φ̃ = (𝜏 · ∇̃) · Ṽ as the
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dissipation rate per unit volume. Then, using the divergence theorem, Eq. (11) and multiplying Eq. (19) with 𝑇∞ leads to:

𝑇∞

∫
V

𝜕�̃�𝛿𝑠

𝜕𝑡
dV = −𝑇∞

∫
𝜕V

�̃�𝛿𝑠Ṽ · ñ d𝑆 −
∫
𝜕V

𝑇∞

𝑇
q̃ · ñ d𝑆

+
∫
V

𝑇∞

𝑇2
𝑘 (∇̃𝑇)2 dV +

∫
V

𝑇∞

𝑇
Φ̃ dV + 𝑇∞

∫
𝑆𝑤

⟦ 1
𝑇

q̃+�̃�𝛿𝑠Ṽ⟧ · ñ d𝑆 (20)

D. Exergy balance

The goal of this section is to derive an exergy balance based on the most straightforward definition of exergy for a

reference state at rest. In �̃�, the fluid is at rest in its dead state, meaning that specific exergy is defined as:

x̃ = 𝛿𝑒 + 𝑝∞𝛿
(
1
�̃�

)
− 𝑇∞𝛿𝑠 +

1
2

Ṽ2 (21)

without any ambiguity regarding the kinetic energy at its reference state.

The unsteady variation of specific exergy in the control volume can be expressed using the above definition as:

∫
V

𝜕�̃�x̃
𝜕𝑡
dV +

∫
𝜕V

�̃�x̃ Ṽ · ñ d𝑆 −
∫
𝑆𝑤

⟦�̃�x̃ W̃⟧ · ñ d𝑆 =

∫
V

𝜕

𝜕𝑡

(
�̃�𝛿𝑒 − �̃�𝑇∞𝛿𝑠 +

1
2
�̃�Ṽ2

)
dV

+
∫
𝜕V

(
�̃�𝛿𝑒 − �̃�𝑇∞𝛿𝑠 +

1
2
�̃�Ṽ2

)
Ṽ · ñ d𝑆 +

∫
V

𝜕

𝜕𝑡

(
�̃�𝑝∞𝛿

(
1
�̃�

))
dV +

∫
𝜕V

�̃�𝑝∞𝛿

(
1
�̃�

)
Ṽ · ñ d𝑆

−
∫
𝑆𝑤

⟦�̃�
(
𝛿𝑒 − 𝑇∞𝛿𝑠 +

1
2

Ṽ2
)

W̃⟧ · ñ d𝑆 −
∫
𝑆𝑤

⟦�̃�𝑝∞𝛿
(
1
�̃�

)
W̃⟧ · ñ d𝑆 (22)

The following terms are grouped as:

∫
V

𝜕

𝜕𝑡

(
�̃�𝑝∞𝛿

(
1
�̃�

))
dV +

∫
𝜕V

�̃�𝑝∞𝛿

(
1
�̃�

)
Ṽ · ñ d𝑆 −

∫
𝑆𝑤

⟦�̃�𝑝∞𝛿
(
1
�̃�

)
W̃⟧ · ñ d𝑆 =

∫
𝜕V

𝑝∞Ṽ · ñ d𝑆 (23)

where several terms are simplified due to Eq. (11) and 𝑝∞ being constant. Eqs. (23), (17) and (20) are then injected into

Eq. (22):

∫
V

𝜕�̃�x̃
𝜕𝑡
dV = −

∫
𝜕V

�̃�x̃ Ṽ · ñ d𝑆 +
∫
𝑆𝑤

⟦�̃�x̃ W̃⟧ · ñ d𝑆

−
∫
𝜕V

((𝑝𝐼 − 𝜏) · Ṽ) · ñ d𝑆 +
∫
𝜕V

𝑝∞Ṽ · ñ d𝑆 −
∫
𝜕V

(
1 − 𝑇∞

𝑇

)
q̃ · ñ d𝑆

−
∫
V

𝑇∞

𝑇
Φ̃ dV −

∫
V

𝑇∞

𝑇2
𝑘 (∇̃𝑇)2 dV − 𝑇∞

∫
𝑆𝑤

⟦ 1
𝑇

q̃ + �̃�𝛿𝑠(Ṽ − W̃)⟧ · ñ d𝑆 (24)

This equation is an exergy balance expressed in a fixed reference frame in which the atmosphere possesses no kinetic

energy. Its terms can be interpreted as follows:

10



•
∫
V
𝜕�̃�x̃
𝜕𝑡
dV is the time rate of specific exergy change inside the control volume.

•
∫
𝜕V �̃�x̃ Ṽ · ñ d𝑆 −

∫
𝑆𝑤

⟦�̃�x̃ W̃⟧ · ñ d𝑆 is the exergy flux through the boundaries of the control volume. It can be an

overall exergy inflow or outflow.

•
∫
𝜕V ((𝑝𝐼 − 𝜏) · Ṽ) · ñ d𝑆 is the rate of work done by the pressure and viscous forces on the boundaries of the

control volume.

•
∫
𝜕V 𝑝∞Ṽ · ñ d𝑆 is the rate of isobaric work done at the boundary of the control volume. In the case where the

work is performed in order to compress the gas in its transformation towards its dead state, this term represents

a usable rate of work done by the atmospheric pressure. In the case where the gas is expanding against the

atmospheric pressure, this term is an additional work that has to be provided for the transformation towards the

dead state to take place.

•
∫
𝜕V

(
1 − �̃�∞

�̃�

)
q̃ · ñ d𝑆 is the thermal exergy provided or retrieved by thermal conduction through 𝜕V.

•
∫
V
�̃�∞
�̃�
Φ̃ dV is the rate of anergy generated (or equivalently the rate of exergy destroyed irreversibly) due to

viscous effects inside the control volume.

•
∫
V
�̃�∞
�̃�2
𝑘 (∇̃𝑇)2 dV is the rate of anergy generated by thermal mixing inside the control volume.

• 𝑇∞
∫
𝑆𝑤

⟦ 1
�̃�

q̃ + �̃�𝛿𝑠(Ṽ − W̃)⟧ · ñ d𝑆 is the rate of anergy generated by the shockwave(s) inside the control volume.

In physical terms, this balance equation expresses that the change of exergy with respect to time inside the control

volume is due to any inflow/outflow of exergy through the external surfaces, the rate of work done by external surface

forces and irreversible exergy losses inside the control volume.

V. Transformation of the exergy balance for a reference frame in translation

A. System definition

Let us consider a frame of reference 𝑅 in translation at a velocity V0 with respect to the fixed reference frame �̃�

defined in Fig. 2 (as shown in Fig. 3):

𝑥

𝑦

𝑧 𝑥

�̃�

V0
𝑧

𝑅 �̃�

Fig. 3 Moving frame 𝑅 at a velocity V0 with respect to the fixed frame �̃�.

This reference frame is commonly used in aerodynamics studies to simplify analyses. In this frame the aircraft

is motionless, and the flow is steady. However, the fluid is not at rest in its dead state, but in motion with a velocity

V∞ = −V0.

At 𝑡 = 0, the two frames are considered to be coincident with a common origin. Under these conditions, the variables

11



in the translating frame of reference 𝑅 can be expressed as functions of the ones linked to �̃�:



𝑡 = 𝑡

𝑥 = 𝑥 −𝑉0𝑡

𝑦 = �̃�

𝑧 = 𝑧

(25)

The time derivative must be transformed using:

𝜕𝐾

𝜕𝑡
=
𝜕𝐾

𝜕𝑡

𝜕𝑡

𝜕𝑡
+ 𝜕𝐾
𝜕𝑥

𝜕𝑥

𝜕𝑡
+ 𝜕𝐾
𝜕𝑦

𝜕𝑦

𝜕𝑡
+ 𝜕𝐾
𝜕𝑧

𝜕𝑧

𝜕𝑡

=
𝜕𝐾

𝜕𝑡
− V0 · ∇𝐾

=
𝜕𝐾

𝜕𝑡
− ∇ · (𝐾V0) + 𝐾���∇ · V0 (26)

where K is any continuous scalar quantity and the third equality is obtained due to V0 being constant in space and time.

When considering an integral expression, this gives:

∫
V

𝜕𝐾

𝜕𝑡
dV =

∫
V

𝜕𝐾

𝜕𝑡
dV −

∫
V
∇ · (𝐾V0) dV

=

∫
V

𝜕𝐾

𝜕𝑡
dV −

∫
𝜕V

𝐾V0 · n d𝑆 +
∫
𝑆𝑤

⟦𝐾V0⟧ · n d𝑆 (27)

The system presented in Fig. 2 is then considered with respect to 𝑅, as shown in Fig. 4. The system is

thermodynamically open as it exchanges mass, work and heat with the surrounding fluid across its boundaries. The

atmosphere is considered as a thermal and mechanical reservoir which also corresponds to the dead state in the

exergy definition. In this case the analysis is carried out in 𝑅, assumed inertial. The control volume is therefore fixed

with the fluid flowing in and out of it. 𝑅 is chosen so that the aircraft velocity is null, whereas the atmosphere is

considered to have a velocity V∞ = −V0. In general, the fluid velocity expressed in the reference frame in translation is

V = Ṽ − V0 = Ṽ + V∞, and similarly the shock velocity is expressed asW = W̃ + V∞. In the case where the shock is

steady in 𝑅, this givesW = 0.

The gradient operator is not affected when moving from �̃� to 𝑅, nor is any quantity that is not directly dependent on

Ṽ (i.e. ∇̃ = ∇ and �̃� = 𝑏 where b is any scalar quantity not dependent on the fluid velocity). As a consequence, the

conservative variables are not affected by this change of reference frame, with the exception of the total energy which is

expressed in 𝑅 as:

𝐸 = 𝑒 + 1
2

V2 = �̃� + V · V∞ − 1
2

V2∞ (28)

12



V∞

𝑇∞

𝑝∞

𝜌∞

𝑠∞

𝑆𝑏

𝑆𝑜

𝑑V

xy

z
𝑅

n

𝑆𝑤

nn

Fig. 4 2D cross section of a 3D control volume surrounding the aircraft as seen in 𝑅.

The above equation highlights that the value of the total energy changes between �̃� and 𝑅 (i.e. �̃� ≠ 𝐸). An

additional component depending on 𝑉∞ appears in the definition of 𝐸 , which is linked to the kinetic energy difference

that is perceived due to the translation of 𝑅. The forms of the conservation equation obtained separately for �̃� in �̃� and

𝐸 in 𝑅 are however identical, as the terms depending of 𝑉∞ are cancelled due to the mass and momentum conservation

equation being expressed in 𝑅.

B. Exergy balance

1. Exergy definition

As discussed in Sec. III, exergy is a scalar quantity that represents an amount of recoverable mechanical work from a

system as it evolves towards its dead state through thermodynamic processes. Thus, it is not dependent on the reference

frame it is expressed in (i.e. x = x̃ ). The exergy definition must however be written with the fluid velocity expressed in

𝑅:

x = x̃ = 𝛿𝑒 + 𝑝∞𝛿
(
1
𝜌

)
− 𝑇∞𝛿𝑠 +

1
2
(V − V∞)2 (29)

= x 𝐴 − V · V∞ + V2∞ (30)

In contrast to the definition of total energy in 𝑅, which is expressed as a function of V (cf. Eq. (28)), the above

expression is not further modified. This is because, as mentioned previously, the specific exergy quantifies the maximum

amount of work that could be recovered as the system evolves towards its dead state. Thus, the consideration of a

relevant dead state for the calculations is essential, and the dead state must correspond to the atmosphere thermodynamic

state in aerodynamics applications.
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To further detail this explanation, let us consider a fluid system which would only be composed of the atmosphere

at rest. In this case, Eq. (29) guarantees that the exergy of the system equals zero independently of the choice of

reference frame between �̃� and 𝑅. In the case where any additional thermodynamic perturbation is considered (such

as a compression or an expansion), the exergy would still be independent on the choice of reference frame, and its

thermodynamic properties (in particular the guaranteed positivity of exergy) would be respected.

Another option would have been to adapt the exergy definition to the reference frame considered, in which case the

kinetic energy component would be expressed in 𝑅 as 12𝑉
2 (similarly to what is done for the total energy conservation).

In that case, an identical form of the exergy balance could have been derived for this new definition of exergy, as the

terms depending of 𝑉∞ would have been cancelled using the conservation equations. However, adapting the definition of

specific exergy to each reference frame (similarly to what is performed for the total energy) would lead to a modification

of the system’s exergy depending on the chosen frame of reference. Considering the case of a system only composed of

the atmosphere as above, the exergy would still be equal to zero in �̃� but would be equal to 12𝑉
2
∞ in 𝑅, even though this

would not correspond to a physical acceleration of the fluid. Thus, a fictive non-zero exergy resulting from the change

of reference frame would have been mistakenly interpreted as a potential for mechanical work recovery. A different

option would have been to adopt the definition x 𝐴. This remediates the reference frame inconsistency, since the exergy

computed in each reference frame correctly equals zero as the atmosphere kinetic energy is subtracted. Nevertheless, it

leads to the loss of the guarantee that specific exergy is always positive when considering more complex systems.

As a consequence, Eq. (29) constitutes the only definition of the specific exergy that both guarantees the

thermodynamic properties of x̃ (and in particular its positivity) and does not lead to an inconsistency when a change of

reference frame is performed. This reasoning is essential, as it shows that the exergy definition introduced by Arntz et al.

[16, 17] and used in following aerodynamics studies is not consistent in that aspect.

2. Transformed exergy balance

The time derivative in Eq. (24) is transformed in the reference frame 𝑅 in translation, and the fluid velocity expressed

in 𝑅 is injected to obtain:

∫
V

𝜕𝜌x
𝜕𝑡
dV +

∫
𝜕V

𝜌x V · n d𝑆 −
∫
𝑆𝑤

⟦𝜌x W⟧ · n d𝑆 = −
∫
𝜕V

((𝑝𝐼 − 𝜏) · (V − V∞)) · n d𝑆

+
∫
𝜕V

𝑝∞ (V − V∞) · n d𝑆 −
∫
𝜕V

(
1 − 𝑇∞

𝑇

)
q · n d𝑆 −

∫
V

𝑇∞
𝑇

Φ dV

−
∫
V

𝑇∞
𝑇2
𝑘 (∇𝑇)2 dV − 𝑇∞

∫
𝑆𝑤

⟦ 1
𝑇

q + 𝜌𝛿𝑠(V − W)⟧ · n d𝑆 (31)
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Note that since 𝑉∞ is constant:

𝜏 = 𝜇

(
−2
3
∇ · (V −��V∞) + ∇(V −��V∞) + (∇(V −��V∞))𝑇

)
= 𝜏 (32)

and thus:

Φ̃ = (𝜏 · ∇) · (V −��V∞) = Φ (33)

Eq. (31) is an exergy balance that is obtained by projecting Eq. (24) in 𝑅. It can also be derived by starting from the

conservation equations expressed in 𝑅 and by deriving an exergy balance as was done for �̃� in Sec. IV. The exergy

balance in the form of Eq. (31) is rather compact, but it can be further detailed in order to allow fine near-field/far-field

analyses. For this purpose, the balance must be further decomposed in order to separate contributions on 𝑆𝑏 and 𝑆𝑜 as

well as allow a clear identification of physical mechanisms in the flow associated to the components obtained.

C. Further decomposition of the exergy balance

1. Phenomenological decomposition

Whereas Eq. (31) allows a clear physical interpretation by itself, the decomposition is carried on in order to further

refine the exergy balance interpretation. The exergy flux is decomposed using the exergy definition in 𝑅 as:

x = 𝛿𝑒 + 𝑝∞𝛿
(
1
𝜌

)
− 𝑇∞𝛿𝑠︸                       ︷︷                       ︸

x𝑠

+ 1
2
(V − V∞)2︸          ︷︷          ︸

𝐾𝐸

(34)

where x𝑠 is referred to as the static exergy and 𝐾𝐸 is the kinetic energy.

Static exergy is the exergy that would have been available if the gas had no kinetic energy and no flowstream was

considered. This corresponds to the useful work that could be retrieved from a gas compressed by (or expanding

against) a piston in a closed container by recovering the mechanical work (equal to exergy) and transforming the thermal

transfers into useful work (by a Carnot machine).

Kinetic energy can also be rewritten as 12 (V − V∞)2 = 1
2 Ṽ
2. This highlights that the actual kinetic energy, as seen

in the fixed reference frame �̃�, is perceived as a perturbation kinetic energy when seen from the reference frame in

translation 𝑅. This observation is useful for the following comparisons between this derivation and previous studies

performed on the exergy balance.

The kinetic energy is directly expressed using Ṽ = 𝛿V = (𝑢, 𝑣, 𝑤)𝑇 , giving:

1
2

Ṽ2 = 1
2
(𝑢2 + 𝑣2 + 𝑤2) (35)
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The exergy flux appearing in Eq. (31) can thus be decomposed to get:

∫
V

𝜕𝜌

(
x𝑠 + 12 (𝑢

2 + 𝑣2 + 𝑤2)
)

𝜕𝑡
dV = −

∫
𝜕V

𝜌x𝑠V · n d𝑆 +
∫
𝑆𝑤

⟦𝜌x𝑠W⟧ · n d𝑆

−
∫
𝜕V

1
2
𝜌(𝑢2 + 𝑣2 + 𝑤2)V · n d𝑆 +

∫
𝑆𝑤

⟦1
2
𝜌(𝑢2 + 𝑣2 + 𝑤2)W⟧ · n d𝑆

−
∫
𝜕V

(((𝑝 − 𝑝∞)𝐼 − 𝜏) · (V − V∞)) · n d𝑆 −
∫
𝜕V

(
1 − 𝑇∞

𝑇

)
q · n d𝑆

−
∫
V

𝑇∞
𝑇

Φ dV −
∫
V

𝑇∞
𝑇2
𝑘 (∇𝑇)2 dV − 𝑇∞

∫
𝑆𝑤

⟦ 1
𝑇

q + 𝜌𝛿𝑠(V − W)⟧ · n d𝑆 (36)

Several notations are introduced from this equation:

• ¤X𝑣 (𝑡) :=
∫
V
𝜕𝜌x𝑠
𝜕𝑡
dV +

∫
V
𝜕 12 𝜌(𝑢

2+𝑣2+𝑤2 )
𝜕𝑡

dV is the unsteady rate of change of exergy inside the control volume.

It is composed of two terms respectively representing a static and a kinetic contribution.

• ¤X𝑡ℎ := −
∫
𝜕V 𝜌x𝑠V · n d𝑆 +

∫
𝑆𝑤

⟦𝜌x𝑠W⟧ · n d𝑆 is the static exergy flux. This term is usually referred to as thermal

or thermocompressible exergy flux.

• ¤X𝑚 := −
∫
𝜕V 𝜌 12 (𝑢

2 + 𝑣2 +𝑤2)V · n d𝑆 +
∫
𝑆𝑤

⟦ 12 𝜌(𝑢
2 + 𝑣2 +𝑤2)W⟧ · n d𝑆 −

∫
𝜕V ((𝑝 − 𝑝∞)𝐼 − 𝜏) · (V−V∞) · n d𝑆

is the mechanical exergy flux, composed of the flow of kinetic perturbation exergy and the transfer power linked to

velocity perturbations on the volume boundaries. It is purely dependent on the velocity as perceived in the fixed

reference frame �̃�, which is considered to be a perturbation velocity when analysing the configuration in 𝑅.

• ¤X𝑞 := −
∫
𝜕V

(
1 − 𝑇∞

𝑇

)
q · n d𝑆 is the exergy transferred by thermal conduction through non-adiabatic boundaries.

• ¤A𝜙 :=
∫
V
𝑇∞
𝑇
Φ dV is the viscous anergy, corresponding to the rate of irreversible exergy destruction due to

viscous effects.

• ¤A∇𝑇 :=
∫
V
𝑇∞
𝑇2
𝑘 (∇𝑇)2 dV is the thermal anergy, corresponding to the rate of irreversible exergy destruction due

to thermal mixing.

• ¤A𝑤 := 𝑇∞
∫
𝑆𝑤

⟦ 1
𝑇

q + 𝜌𝛿𝑠(V − W)⟧ · n d𝑆 is the wave anergy, corresponding to the rate of irreversible exergy

destruction due to the presence of shockwaves.

Using these notations, the exergy balance is rewritten in a compact form as:

¤X𝑣 (𝑡)︸︷︷︸
Unsteady exergy variation
in the control volume

= ¤X𝑚 + ¤X𝑡ℎ + ¤X𝑞︸            ︷︷            ︸
Exergy flux through the
control volume limits

− ( ¤A𝜙 + ¤A∇𝑇 + ¤A𝑤)︸                   ︷︷                   ︸
Exergy destruction (i.e. anergy generation)

inside the control volume

(37)

The above equation corresponds to a classical balance of a physical quantity in which any unsteady variation comes

from its fluxes at the domain borders and its production or destruction within the volume. It is a more detailed equivalent

of Eq. (6) in 𝑅.
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2. Separation of the contributions on 𝑆𝑏 and 𝑆𝑜

The above analysis can be refined by separating the contributions on 𝑆𝑏 (referred to as near field) and 𝑆𝑜 (referred to

as far field) for the exergy flux terms. For example, the mechanical exergy is decomposed as ¤X𝑚 = ¤X𝑚𝑏 − ¤X𝑚𝑜 where:

¤X𝑚𝑏 = −
∫
𝑆𝑏

(
𝜌
1
2
(𝑢2 + 𝑣2 + 𝑤2)V + ((𝑝 − 𝑝∞)𝐼 − 𝜏) · (V − V∞)

)
· n d𝑆 (38)

¤X𝑚𝑜 =

∫
𝑆𝑜

(
𝜌
1
2
(𝑢2 + 𝑣2 + 𝑤2)V + ((𝑝 − 𝑝∞)𝐼 − 𝜏) · (V − V∞)

)
· n d𝑆 −

∫
𝑆𝑤

⟦1
2
𝜌(𝑢2 + 𝑣2 + 𝑤2)W⟧ · n d𝑆 (39)

The sign convention is chosen so that any near-field contribution is considered as an exergy inflow while any far-field

contribution is considered as an exergy outflow. The exergy balance then becomes:

¤X𝑚𝑏 + ¤X𝑡ℎ𝑏 + ¤X𝑞𝑏 = ¤X𝑣 (𝑡) + ¤X𝑚𝑜 + ¤X𝑡ℎ𝑜 + ¤X𝑞𝑜 + ¤A𝜙 + ¤A∇𝑇 + ¤A𝑤 (40)

where the farfield terms are arbitrarily placed on the same side as the unsteady exergy variation. For the development of

a phenomenological drag breakdown adapted to unsteady flows, this choice was made by Toubin et al. [6–8] to account

for delay effects (any drag generated by the body studied 𝑆𝑏 is perceived on 𝑆𝑜 with a time delay). However, in the

case of exergy-based analyses, placing the unsteady variation on the side of near-field integrals (i.e. on 𝑆𝑏) would also

make a physical sense since the evolution of exergy in the volume is also considered through anergy generation. Further

studies would thus be required to provide additional physical insight on this choice.

3. Decomposition of the near-field mechanical exergy

While the exergy balance derived above is complete, the analysis can be further refined. In particular, a desirable

feature for the investigation of external aerodynamic flows in previous studies is the clear appearance of the contribution

of the aerodynamic force in the balance, which allows to link the exergy balance to force-based analyses. This is achieved

by first decomposing the mechanical contribution to the near-field exergy inflow (defined as ¤X𝑏 = ¤X𝑚𝑏 + ¤X𝑡ℎ𝑏) as:

¤X𝑏 =−
∫
𝑆𝑏

(
𝜌

(
x𝑠 +

1
2
𝑉2

)
V + ((𝑝 − 𝑝∞)𝐼 − 𝜏) · V

)
· n d𝑆

+
∫
𝑆𝑏

(𝜌V∞ · V)V · n d𝑆 −
∫
𝑆𝑏

1
2
𝑉2∞𝜌V · n d𝑆 + V∞ ·

∫
𝑆𝑏

((𝑝 − 𝑝∞)𝐼 − 𝜏) · n d𝑆 (41)

This decomposition consists in separating the contributions depending on V∞, i.e. related to the change of reference

frame, and the ones depending on 𝑉 . The second and third terms of the above equation are obtained by expanding the

kinetic contribution to specific exergy as x = x𝑠 +𝑉2/2 − V · V∞ +𝑉2∞/2. They represent fluxes of the terms responsible
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for the kinetic energy difference (associated to a reference frame transformation) through permeable parts of 𝑆𝑏. The

second term of Eq. (41) represents a kinetic energy difference associated to a variation of momentum, while the third one

is representative of a kinetic energy difference associated to a non-zero massflow variation along 𝑆𝑏 (e.g. unbalanced

massflow rate across the propulsion system permeable boundaries). The last term of Eq. (41) is finally representative

of the variation of work rate of surface forces on 𝑆𝑏 associated to the reference frame transformation. From this

decomposition and by separating the contributions on permeable and non-permeable surfaces of 𝑆𝑏 (respectively noted

𝑆𝑏𝑝 and 𝑆𝑏𝑛𝑝), ¤X𝑏 can be expressed as ¤X𝑏 = ¤X𝑡 𝑓 𝑏 − ¤X𝑡𝑟𝑏, with:

¤X𝑡 𝑓 𝑏 := −
∫
𝑆𝑏𝑝

(
𝜌

(
x𝑠 +

1
2
𝑉2

)
V + ((𝑝 − 𝑝∞)𝐼 − 𝜏) · V

)
· n d𝑆 (42)

¤X𝑡𝑟𝑏 := −V∞ ·
∫
𝑆𝑏𝑝

(𝜌V ⊗ V + (𝑝 − 𝑝∞)𝐼 − 𝜏) · n d𝑆 − V∞ ·
∫
𝑆𝑏𝑛𝑝

((𝑝 − 𝑝∞)𝐼 − 𝜏) · n d𝑆 +
∫
𝑆𝑏𝑝

1
2
𝑉2∞𝜌V · n d𝑆

(43)

¤X𝑡 𝑓 𝑏 is referred to as the throughflow exergy, and represents the flux of a flow exergy defined for a reference state at

rest in 𝑅 (instead of �̃�). As this is not the real flow exergy flux (which is defined with respect to a reference state at rest

in �̃�, cf. Sec. V.B.1), an exergy difference ¤X𝑡𝑟𝑏 composed of three different terms which are linked to the momentum

and mass conservation in 𝑅 appears in the decomposition. This difference appears for the sole reason that the analysis is

performed in a reference frame in translation, in which the atmosphere is not at rest. The first two terms of Eq. (43)

represent the difference of the rate of work of surface forces on walls due to the reference frame transformation from �̃�

to 𝑅. Note that the first term is representative of the interior of the propulsion system (limited by permeable surfaces).

In the specific case where 𝑅 translates at the same velocity as the body, the sum of these first two terms corresponds to

the rate of work of aerodynamic forces applied to the body as perceived in �̃� (no aerodynamic work is perceived in 𝑅 as

the body is motionless). The rate of work of aerodynamic forces perceived in �̃� is different from zero in cases where

thrust and drag do not balance each other, leading to the need for a non-aerodynamic force to work for the body to be

at equilibrium (as also mentioned by Drela [9], Arntz [17], Sanders and Laskaridis [13]). Note that the third term in

Eq. (43) is unchanged with respect to Eq. (41). Thus, in the case where 𝑅 translates at the same velocity than the body,

the exergy difference associated to the reference frame transformation can be written as:

¤X𝑡𝑟𝑏 = −V∞ · F𝑎𝑒𝑟𝑜 −
1
2
𝑉2∞ ¤𝑚𝑏 (44)

where F𝑎𝑒𝑟𝑜 is the overall aerodynamic force acting on the body and ¤𝑚𝑏 = −
∫
𝑆𝑏𝑝

𝜌V · n d𝑆 is the mass flow variation

on 𝑆𝑏𝑝 .

¤X𝑡𝑟𝑏 can vanish in different cases, the first being the trivial case where V∞ = 0, i.e. �̃� = 𝑅 and thus no exergy

difference arises from the reference frame transformation. Otherwise, it can vanish if ¤𝑚𝑏 = 0 and F𝑎𝑒𝑟𝑜 = 0. The
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condition F𝑎𝑒𝑟𝑜 = 0 corresponds to the case where the body is at equilibrium due to aerodynamic forces, i.e. thrust

balances drag. In this case, there is no overall work exchange between the body and the fluid in �̃� or in 𝑅, as aerodynamic

forces are not modified between the two reference frames. It should however be noted that thrust and drag applied to

the body separately lead to non-zero rates of work (modified when moving from �̃� to 𝑅), but the two rates of work

compensate each other in both reference frames. It is important to note that F𝑎𝑒𝑟𝑜 = 0 does not lead to ¤X𝑡𝑟𝑏 = 0 if

¤𝑚𝑏 ≠ 0 (or vice versa), thus both effects should be considered in the evaluation of the exergy difference associated to the

reference state not being at rest in 𝑅.

The cases where ¤X𝑡𝑟𝑏 = 0 and ¤X𝑡𝑟𝑏 ≠ 0 should also be discussed in terms of near-field exergy inflow variation.

If ¤X𝑡𝑟𝑏 = 0, we obtain ¤X𝑏 = ¤X𝑡 𝑓 𝑏, i.e. the near-field flow exergy flux is equal between choosing a reference state

which is at rest in 𝑅 or one which is at rest in �̃� for the definition of exergy (even though both the exergy and flow

exergy themselves are not the same, cf. Sec. V.B.1). If ¤X𝑡𝑟𝑏 ≠ 0 and ¤𝑚𝑏 = 0, the body is not at an aerodynamic force

equilibrium. This force is balanced by a non-aerodynamic force (e.g. its weight [9]), the work rate of which is equal in

magnitude to the work rate of aerodynamic forces on the body. When the reference frame is moved from �̃� to 𝑅, the

near-field aerodynamic rate of work is no longer perceived (as the body appears motionless) but can be estimated using

the exergy difference ¤X𝑡𝑟𝑏. ¤X𝑡 𝑓 𝑏 is then representative of the near-field exergy inflow that would be perceived if the

body was at an aerodynamic equilibrium. Although the decomposition into ¤X𝑡 𝑓 𝑏 and ¤X𝑡𝑟𝑏 is practical because it allows

to isolate the aerodynamic force contribution, it should be noted that the real near-field exergy inflow corresponds to ¤X𝑏

rather than ¤X𝑡 𝑓 𝑏. Finally, if ¤X𝑡𝑟𝑏 ≠ 0, F𝑎𝑒𝑟𝑜 ≠ 0 and ¤𝑚𝑏 ≠ 0, an additional fictive (and thus unavailable) kinetic energy

associated to a massflow variation across 𝑆𝑏 is considered in ¤X𝑡𝑟𝑏. This exergy difference consideration is similar to the

one discussed in Sec. V.B.1.

Overall, this reasoning highlights a fundamental difference between the thermodynamic variables in the dead state

and V∞ for aerodynamics applications. Whereas 𝑝∞, 𝜌∞, 𝑇∞ and 𝑠∞ have a direct physical link with the thermodynamic

dead state of the gas, 𝑉∞ will always be equal to zero in the reference frame in which exergy is correctly defined (i.e. �̃�).

The non-zero reference state velocity V∞ is thus representative of the change of reference frame that is performed to

simplify aerodynamics analyses (e.g. 𝑅 is usually chosen in order to carry out a steady analysis of the flow). As such,

V∞ does not correspond to a physically different thermodynamic dead state.

The unsteady exergy balance is finally written as:

¤X𝑡 𝑓 𝑏 + ¤X𝑞𝑏 = ¤X𝑣 (𝑡) + ¤X𝑡𝑟𝑏 + ¤X𝑚𝑜 + ¤X𝑡ℎ𝑜 + ¤X𝑞𝑜 + ¤A𝜙 + ¤A∇𝑇 + ¤A𝑤 (45)

The unsteady exergy variation can also be distributed between the mechanical and thermocompressible exergy

outflow to get:

¤X𝑡 𝑓 𝑏 + ¤X𝑞𝑏 = ¤X𝑡𝑟𝑏 + ¤X𝑚𝑜 (𝑡) + ¤X𝑡ℎ𝑜 (𝑡) + ¤X𝑞𝑜 + ¤A𝜙 + ¤A∇𝑇 + ¤A𝑤 (46)
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where ¤X𝑚𝑜 (𝑡) :=
∫
V
𝜕 12 𝜌(𝑢

2+𝑣2+𝑤2 )
𝜕𝑡

dV + ¤X𝑚𝑜 and ¤X𝑡ℎ𝑜 (𝑡) :=
∫
V
𝜕𝜌x𝑠
𝜕𝑡
dV + ¤X𝑡ℎ𝑜.

4. Link with the exergy balance derived by Arntz et al.

Eqs. (45) and (46) are not directly equivalent to the exergy balance derived by Arntz et al. [16, 17]. This equivalence

could however be recovered by adding and substracting 12𝑉
2
∞ to the near-field mechanical exergy of Eq. (41) and

performing a different separation of the contributions as:

¤X𝑏 = −
∫
𝑆𝑏

(
𝜌

(
x𝑠 +

1
2
(𝑉2 −𝑉2∞)

)
V + ((𝑝 − 𝑝∞)𝐼 − 𝜏) · V

)
· n d𝑆︸                                                                            ︷︷                                                                            ︸

¤X𝑝𝑟𝑜𝑝

+ V∞ ·
∫
𝑆𝑏

(𝜌(V − V∞) ⊗ V + (𝑝 − 𝑝∞)𝐼 − 𝜏) · n d𝑆︸                                                              ︷︷                                                              ︸
−𝑊 ¤Γ

(47)

where ¤X𝑝𝑟𝑜𝑝 is referred to as the propulsive exergy by Arntz et al. [16, 17] and𝑊 ¤Γ is another definition of the exergy

difference. This separation is consistent with the flow exergy definition x 𝐴
𝑓
introduced by Arntz et al. (cf. Eq. (7))

in which the reference state kinetic energy is subtracted from the flow exergy expressed in 𝑅, a choice that does not

guarantee the positivity of exergy (as discussed in Section V.B.1). Consequently, ¤X𝑝𝑟𝑜𝑝 corresponds to ¤X𝑡 𝑓 𝑏 (i.e. the

flow exergy flux defined for a dead state that is at rest in 𝑅 instead of �̃�) from which the reference state kinetic energy is

subtracted. 𝑊 ¤Γ then corresponds to the associated exergy difference linked to the reference frame translation, which

was introduced as part of the far-field mechanical exergy outflow by Arntz et al.

In the case of a steady flow analysis in external aerodynamics, a hypothesis was made by Arntz et al. on the fact that

the fuel mass flow rate is negligible with respect to the air mass flow rate, giving ¤𝑚𝑏 ≈ 0. For studies in which this

hypothesis is respected (as those performed by Arntz et al.), this gives ¤X𝑡 𝑓 𝑏 = ¤X𝑝𝑟𝑜𝑝 and ¤X𝑡𝑟𝑏 = 𝑊 ¤Γ. Thus, a direct

equivalence can be retrieved between the results obtained by Arntz et al. and the exergy balance derived in this paper

from the corrected exergy definition. Additionally, in this specific case, the expression of ¤X𝑡𝑟𝑏 is identical to that of the

potential energy rate introduced by Drela in the power balance method [9]. Note however that the equivalence between

¤X𝑡𝑟𝑏 and𝑊 ¤Γ is not respected for cases where ¤𝑚𝑏 ≠ 0.

Finally, both Eqs. (45) and (46) allow to recover the exergy balance of Arntz et al. [16, 17] when considering a

steady-state flow. The derivation is however more direct with the corrected exergy definition of Eq. (29), as the different

contributions can be directly decomposed without the need to add and substract any term to retrieve the ¤X𝑡𝑟𝑏 expression.

Additionally, the ¤X𝑡𝑟𝑏 contribution appears naturally with its near-field expression (as part of the mechanical exergy

provided/consumed by the configuration under study), while𝑊 ¤Γ appeared with its far-field expression in previous works

(after specific operations to extract this term from a total enthalpy flux term). The corrected definition of exergy also
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provides a clearer and more general physical interpretation of the term ¤X𝑡𝑟𝑏, which is different from the one suggested

in previous works.

It should finally be noted that similarly to the work of Drela and Arntz et al., the mechanical far-field exergy outflow

can be decomposed as:

¤X𝑚𝑜 =

∫
𝑆𝑜

𝜌
1
2
𝑢2V · n d𝑆︸                ︷︷                ︸
¤𝐸𝑢

+
∫
𝑆𝑜

𝜌
1
2
(𝑣2 + 𝑤2)V · n d𝑆︸                          ︷︷                          ︸

¤𝐸𝑣𝑤

+
∫
𝑆𝑜

((𝑝 − 𝑝∞)𝐼 − 𝜏) · (V − V∞) · n d𝑆︸                                             ︷︷                                             ︸
¤𝐸𝑝𝜏

(48)

where ¤𝐸𝑢 and ¤𝐸𝑣𝑤 are respectively the axial and transversal perturbation kinetic energy, while ¤𝐸𝑝𝜏 is the associated

surface forces rate of work. Note that, in contrast to previous works, it has been chosen to define the last term as an

overall surface force rate of work, including the viscous contribution.

5. Fully-transformed exergy balance in the reference frame 𝑅

The exergy balance of Eq. (46) is practical in the frame of near-field/far-field analyses, with a clear separation of

contributions on 𝑆𝑏 and 𝑆𝑜. In particular, a desirable feature is that the contribution from the aerodynamic force acting

on 𝑆𝑏 in the balance is clearly identified through the term ¤X𝑡𝑟𝑏 when V∞ corresponds to the body’s translation velocity.

Nonetheless, the exergy balance letting ¤X𝑡𝑟𝑏 appear is not fully transformed in the reference frame attached to the body,

as the entrainment velocity is still explicitly present in the equation through V∞. In this section, the shock velocityW

is assumed to be null for simplicity (it should however be noted that the following manipulations can still be applied

without this hypothesis for integrals on 𝑆𝑤). An additional step towards the complete exergy balance transformation

consists in decomposing the mechanical component of the far-field exergy outflow as:

¤X𝑜 = ¤X𝑡ℎ𝑜 + ¤X𝑚𝑜 =

∫
𝑆𝑜

(
𝜌

(
x𝑠 +

1
2
(V − V∞)2

)
V + V · ((𝑝 − 𝑝∞)𝐼 − 𝜏)

)
·n d𝑆−V∞ ·

∫
𝑆𝑜

((𝑝− 𝑝∞)𝐼 −𝜏) ·n d𝑆 (49)

where the second integral represents the variation of the rate of work of surface forces on 𝑆𝑜 associated to the reference

frame transformation. This term can be grouped with its near-field equivalent appearing in ¤X𝑡𝑟𝑏 (cf. Eq. (43)), and the

momentum conservation equation expressed in 𝑅 then gives:

− V∞ ·
∫
𝜕V

((𝑝 − 𝑝∞)𝐼 − 𝜏) · n d𝑆 =

∫
V

𝜕𝜌V∞ · V
𝜕𝑡

dV +
∫
𝜕V

𝜌(V∞ · V)V · n d𝑆 (50)

The above equation shows that the variation of the rate of work of surface forces at the limits of the domain due to

the reference frame transformation is equivalent to a variation of kinetic energy in the domain (itself due to a variation of

momentum). This kinetic energy variation is composed of a local unsteady variation as well as a flux variation through
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the permeable limits of the domain. Using the above relation allows to rewrite the following right-hand-side terms of

Eq. (45) as:

¤X𝑣 (𝑡) + ¤X𝑡𝑟𝑏 + ¤X𝑜 =
∫
V

𝜕𝜌

(
x𝑠 + 12 (V − V∞)2 + V∞ · V

)
𝜕𝑡

dV +
∫
𝑆𝑏

1
2
𝑉2∞𝜌V · n d𝑆

+
∫
𝑆𝑜

(
𝜌

(
x𝑠 +

1
2
(V − V∞)2 + V∞ · V

)
V + V · ((𝑝 − 𝑝∞)𝐼 − 𝜏)

)
· n d𝑆 (51)

This expression is further modified by developing the term 1
2 (V − V∞)2:

¤X𝑣 (𝑡) + ¤X𝑡𝑟𝑏 + ¤X𝑜 =
∫
V

𝜕𝜌

(
x𝑠 + 12V

2
)

𝜕𝑡
dV +

∫
𝑆𝑜

(
𝜌

(
x𝑠 +

1
2

V2
)

V + V · ((𝑝 − 𝑝∞)𝐼 − 𝜏)
)
· n d𝑆

+ 1
2
𝑉2∞

(∫
V

𝜕𝜌

𝜕𝑡
dV +

∫
𝜕V

𝜌V · n d𝑆
)

︸                                  ︷︷                                  ︸
0

(52)

where the last term is cancelled by using the mass conservation equation expressed in 𝑅. Two terms are introduced from

this manipulation:

• ¤X𝑅
𝑣 (𝑡) :=

∫
V
𝜕𝜌(x𝑠+ 12𝑉

2)
𝜕𝑡

dV is the unsteady rate of exergy variation defined with respect to a reference state at

rest in 𝑅.

• ¤X𝑅
𝑚𝑜 :=

∫
𝑆𝑜

(
𝜌 12𝑉

2V + V · ((𝑝 − 𝑝∞)𝐼 − 𝜏)
)
· n d𝑆 is the dynamic exergy flux defined for a reference state at rest

in 𝑅.

The transformed exergy balance in 𝑅 is then written:

¤X𝑡 𝑓 𝑏 + ¤X𝑞𝑏 = ¤X𝑅
𝑣 (𝑡) + ¤X𝑡ℎ𝑜 + ¤X𝑅

𝑚𝑜 + ¤X𝑞𝑜 + ¤A𝜙 + ¤A∇𝑇 + ¤A𝑤 (53)

The contribution of the aerodynamic force does not explicitly appear in this form of the exergy balance, as there is

no work from near-field surface forces on 𝑆𝑏 in 𝑅 (due to the body being motionless). Instead, the variation of the

rate of work of surface forces on the limits of the domain is implicitly contained in the kinetic energy computed at

the permeable limits of the domain (cf. Eq. (50)). In the case of an airfoil with adiabatic walls (i.e. a body with no

permeable surface nor heat conduction), the left-hand side of the above equation would be null. Indeed, there would be

no exchange of exergy between the body and the fluid since the former would appear motionless in 𝑅. The exergy-related

contribution from drag acting on the body would then be implicitly contained in the term ¤X𝑅
𝑚𝑜 (through the far-field

kinetic energy flux), and cannot be separately quantified with Eq. (53). This quantification would require to retrieve the
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term ¤X𝑡𝑟𝑏 via its far-field contribution by explicitly adding and subtracting its components (as was done in previous

studies based on the original definition of exergy).

Overall, the use of the transformed exergy balance in 𝑅 is not desirable in near-field/far-field analyses. Indeed

Eq. (50) highlights that, as a result of the transformation, near-field and far-field contributions due to surface forces

acting on the limits of the domain are mixed in a kinetic energy variation at permeable limits of the domain. As a

result, it is not possible to clearly identify which kinetic variation is due to the variation of the rate of work of surface

forces in the near- or the far-field. Nonetheless, Eq. (53) possesses the advantage of being independent of V∞ (this is a

direct consequence of defining exergy with respect to a reference state at rest in 𝑅). This advantage is very useful for

the analysis of cases where the translation velocity of the body is not known (e.g. internal turbomachinery elements).

In such cases, the interpretation of ¤X𝑡𝑟𝑏 is limited to an exergy difference associated to a hypothesis made on the

body’s translation velocity. It is then useful to work with Eq. (53) (which is independent of this hypothesis and actually

corresponds to Eq. (45) with V∞ = 0). This aspect is further detailed in Sec. VI with the theoretical analysis of a

schematic case of a converging nozzle.

VI. Evolution of the exergy balance components in the schematic case of a converging nozzle
As detailed in Sec. V.C.3, the interpretation of ¤X𝑡𝑟𝑏 in the case of internal flows cannot always be directly linked to

the total streamwise aerodynamic force applied on the aircraft. This situation occurs when the external aerodynamic

state, and therefore the aircraft velocity, is unknown. To illustrate the interpretation of the exergy balance components

and the transfers that occur between them, the schematic case of a steady flow analysis inside an axisymmetrical

converging nozzle is considered (as illustrated in Fig. 5).

𝑆𝑏

𝑆𝑜 = 𝑆1 ∪ 𝑆2

𝑥𝑆1 = 0.0𝑚

𝑥𝑆2

𝑆2𝑆1

𝑑V
x

z

n

Fig. 5 2D cross section of a 3D control volume representative of a converging nozzle.
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The surface 𝑆𝑜 is composed of the inlet and the outlet surfaces (respectively noted 𝑆1 and 𝑆2), and the wall surface

is noted 𝑆𝑏. The walls are considered adiabatic ( ¤X𝑞𝑏 = 0) and non-permeable ( ¤X𝑡 𝑓 𝑏 = 0). It is also considered that no

shockwave discontinuity is present in this configuration ( ¤A𝑤 = 0), and that thermal transfers by conduction through 𝑆𝑜

are negligible ( ¤X𝑞𝑜 = 0). In this case, Eq. (45) is simplified to:

0 = ¤X𝑡𝑟𝑏 + ¤X𝑚𝑜 + ¤X𝑡ℎ𝑜 + ¤A𝜙 + ¤A∇𝑇 (54)

As discussed in Sec. V.C.5, the transformed exergy balance in 𝑅 is also useful for the investigation of this case since

V∞ is not known. Under the hypotheses described above, it is written as:

0 = ¤X𝑅
𝑚𝑜 + ¤X𝑡ℎ𝑜︸        ︷︷        ︸

¤X𝑅
𝑜

+ ¤A𝜙 + ¤A∇𝑇︸       ︷︷       ︸
¤A𝑡𝑜𝑡

(55)

with ¤X𝑅
𝑚𝑜 = ¤X𝑡𝑟𝑏 + ¤X𝑚𝑜. Note that forV∞ = 0, ¤X𝑡𝑟𝑏 = 0 and ¤X𝑚𝑜 = ¤X𝑅

𝑚𝑜 (since �̃� = 𝑅), i.e. there is no exergy difference

linked to the translation of the reference frame. The sum of ¤X𝑅
𝑚𝑜 and ¤X𝑡ℎ𝑜 then represents the flux of flow exergy defined

with respect to a reference state at rest in 𝑅 through 𝑆𝑜, whereas the sum of ¤A𝜙 and ¤A∇𝑇 is the total anergy generated

in the control volume.

A common analysis consists in performing a series of exergy balance computations for different fixed x-coordinate

positions (noted 𝑥𝑇𝑃) of a transverse plane limiting the control volume downstream [17]. For each control volume, the

different terms are evaluated and the trend obtained is plotted as a function of 𝑥𝑇𝑃 . The goal of the analysis below is

to illustrate the expected trends of such a study in the case of a converging nozzle (presented in Fig. 5), in order to

highlight the transfers occurring between the different terms as the limiting plane is moved downstream. To keep this

illustration as simple as possible, the unrealistic hypothesis is made that the evolutions of all the terms are linear (as

shown in Fig. 6).
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𝑥𝑇𝑃/𝑥𝑆2
|
1

¤A𝑡𝑜𝑡

¤X𝑅
𝑜 = − ¤A𝑡𝑜𝑡

= ¤X𝑅
𝑚𝑜 + ¤X𝑡ℎ𝑜

¤X𝑡ℎ𝑜

¤X𝑅
𝑚𝑜 = ¤X𝑡𝑟𝑏 + ¤X𝑚𝑜

¤X𝑡𝑟𝑏

¤X𝑚𝑜

Fig. 6 Schematic illustration of transfers between exergy balance components in the theoretical case of a
converging nozzle

The first value of 𝑥𝑇𝑃 is assumed to be close enough to the nozzle inlet so that every component of the exergy

balance is null. As the limiting plane position is moved further downstream, an increase of anergy generation ¤A𝑡𝑜𝑡 is

expected in the nozzle due to irreversible losses (viscous dissipation and thermal mixing). Equivalently, the flux of

flow exergy ¤X𝑅
𝑜 = − ¤A𝑡𝑜𝑡 would decrease by the same amount between the inlet and the outlet section. This first step

represents an overall interpretation in which any exergy decrease in the flow is due to anergy generation in the volume.

The flux of flow exergy defined for a reference state at rest in 𝑅 can then be decomposed as ¤X𝑅
𝑜 = ¤X𝑅

𝑚𝑜 + ¤X𝑡ℎ𝑜 to

refine this interpretation. Between the inlet and outlet sections, the thermocompressible exergy outflow is expected to

decrease. Consequently, ¤X𝑅
𝑚𝑜 is expected to increase. One mechanism involved in this process is the conversion of

thermocompressible into mechanical exergy as the flow is accelerated (i.e. there is a change in the nature of exergy), the

other being the destruction of part of it through irreversible processes (i.e. anergy generation). In an ideal case, for

which losses are neglected, the decrease of ¤X𝑡ℎ𝑜 and the increase of ¤X𝑅
𝑚𝑜 would have been equal (i.e. ¤X𝑡ℎ𝑜 = − ¤X𝑅

𝑚𝑜).

Finally, in the case where the external aerodynamic state is known, ¤X𝑅
𝑚𝑜 can be decomposed between ¤X𝑚𝑜 and

¤X𝑡𝑟𝑏. This allows to quantify the part of the mechanical exergy flux defined for a reference state at rest in 𝑅 that is not

available for conversion into useful work downstream of the exit section (i.e. ¤X𝑡𝑟𝑏), which is linked to the reference

frame moving at a velocity −V∞ (making the configuration appear motionless and the flow analysis steady). ¤X𝑚𝑜 then

represents the part of ¤X𝑅
𝑚𝑜 that is actually convertible into mechanical work downstream (which is wasted in case the

exhaust directly leads to the atmosphere). In the present case, the total streamwise force inside the nozzle is assumed to

be directed opposite to the x axis (i.e. V∞ = 𝑉∞x > 0). This corresponds to an increase of ¤X𝑡𝑟𝑏 between the inlet and

the outlet sections (in Fig. 6, it is arbitrarily assumed that ¤X𝑡𝑟𝑏 > ¤X𝑚𝑜, this being dependent on the value of V∞). In

physical terms, this means that over the mechanical exergy outflow computed with respect to a reference state at rest in

𝑅, an amount ¤X𝑡𝑟𝑏 would have already been converted to useful work as this part would allow the configuration to

translate at a velocity V0 = −V∞ in �̃� (which is why it appears motionless in 𝑅). As such, in the case where no device

25



capable of recovering the mechanical exergy outflow exists downstream, it is only the part equal to ¤X𝑚𝑜 that is indeed

wasted out of the total mechanical exergy flux ¤X𝑅
𝑚𝑜. If such a device is present downstream, then ¤X𝑚𝑜 is the part of ¤X𝑅

𝑚𝑜

that can be converted into mechanical work.

VII. Conclusion and perspectives
This paper presents a clarification of the notion of exergy and its difference with the notion of flow exergy, with a

particular focus on aerodynamics applications. The theoretical derivation of an unsteady exergy balance is first carried

out in the geocentric reference frame, in which exergy is defined without an ambiguity. At a second step, the definition

of exergy is transformed in the case of a translating frame of reference, resulting in a corrected definition with respect

to previous exergy-based flowfield analyses in aerodynamics (in particular respecting the positivity of exergy). The

corrected definition also highlights that the freestream fluid velocity is directly linked to the choice of a translating

reference frame different from the one in which exergy is defined (in which the atmosphere is always at rest), whereas

the rest of the dead state variables are representative of the thermodynamic state of the atmosphere. The impact of

this modification is then assessed on the exergy balance expressed in a reference frame in translation, showing that

the derivation, decomposition and interpretation of the different terms is more direct compared to previous works.

In particular, the term ¤X𝑡𝑟𝑏 is introduced as a part of the near-field mechanical exergy, and is interpreted in physical

terms as an exergy difference linked to the atmosphere not being at rest in the translating reference frame. The relation

between the newly derived exergy definition and previous works is also investigated in detail, showing that the same

form of exergy balance is obtained in the case of steady flow with no near-field mass flow variation. Differences should

however appear in studies where the previously mentioned conditions are not respected. Finally, the specific case of

internal flow is discussed, with different levels of decomposition suggested depending on the availability of external

aerodynamic state data (and in particular the value of the global configuration velocity). Future works should focus on

cases for which the correction of the exergy definition has a clear impact on the balance. This includes both cases with a

non-negligible mass flow rate variation in the near field and unsteady flows. The new interpretation of ¤X𝑡𝑟𝑏 provided by

the correction of the exergy definition, as well as the different levels of decomposition of the exergy balance, will also

allow to investigate confined flows for which knowledge of the external reference state aerodynamic data is limited.
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