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Highlights 

Most detailed analysis of cataract formation in free-living wild animals exposed to radiation 

Protein aggregation, epithelial cell density and focal length studied 

Epithelial cell density study helps to inform on radiation impacts over time as the lens develops 

No evidence found of radiation-related lens opacities 

No evidence found of early stage cataract formation  
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Abstract 

 

Recent studies apparently finding deleterious effects of radiation exposure on cataract formation in birds 

and voles living near Chernobyl represent a major challenge to current radiation protection regulations. 

This study conducted an integrated assessment of radiation exposure on cataractogenesis using the most 

advanced technologies available to assess the cataract status of lenses extracted from fish caught at both 

Chernobyl in Ukraine and Fukushima in Japan. It was hypothesised that these novel data would reveal 

positive correlations between radiation dose and early indicators of cataract formation. 

The structure, function and optical properties of lenses were analysed from atomic to millimetre length 

scales. We measured the short-range order of the lens crystallin proteins using Small Angle X-Ray 

Scattering (SAXS) at both the SPring-8 and DIAMOND synchrotrons, the profile of the graded 

refractive index generated by these proteins, the epithelial cell density and organisation and finally the 

focal length of each lens.  

The results showed no evidence of a difference between the focal length, the epithelial cell densities, 

the refractive indices, the interference functions and the short-range order of crystallin proteins (X-ray 

diffraction patterns) in lens from fish exposed to different radiation doses. It could be argued that 

animals in the natural environment which developed cataract would be more likely, for 

example, to suffer predation leading to survivor bias. But the cross-length scale study presented 

here, by evaluating small scale molecular and cellular changes in the lens (pre-cataract 

formation) significantly mitigates against this issue.  
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Introduction 1 

 2 

The formation of cataract in humans due to occupational or accidental exposure to acute 3 

ionising radiation is well documented (ICRP, 2012). Data on cataract incidence with long 4 

follow up periods of atomic bomb survivors, astronauts, residents of the Chernobyl nuclear 5 

exclusion zone and radiation workers have shown that radiation associated lens opacities 6 

occurred at much lower doses than previously thought (Bouffler et al., 2012). Consequently, 7 

the International Commission on Radiological Protection (ICRP) decreased the risk threshold 8 

of the absorbed dose from 2 to 0.5 Gy (ICRP, 2012), which is within the range of possible 9 

cumulative lifetime doses to which animals at Chernobyl and Fukushima could be exposed. 10 

  11 

Little is known about the effect of long-term chronic exposure through the life span of 12 

organisms exposed to ionising radiation in the natural environment. In the laboratory, 13 

amphibians, rabbits, rodents and fish have all been used as models for the effects of radiation 14 

upon the eye and the lens (Worgul et al, 1976; Barnard et al, 2019; von Sallmann 1951; Geiger 15 

et al., 2006). Lens development is very highly conserved from teleost fish to man (Wu et al., 16 

2015; Greiling et al., 2010; Cardozo et al., 2023; Morishita et al., 2021; Kamei and Duan, 2021; 17 

Wang et al., 2021). Studies in the natural environment have proved contradictory. While a 18 

significant increase in cataract incidence was claimed in birds and voles at Chernobyl 19 

(Mousseau and Møller, 2013; Lehmann et al., 2016) (the latter at cumulative doses lower than 20 

1 mGy). A study at Fukushima at cumulative dose rates up to 1600 mGy did not, however, find 21 

any significant effects on cataract formation in wild boar (Pederson et al., 2020).  22 

 23 

An in-vitro laboratory study (Kocemba and Waker, 2021) on rainbow trout lenses found no 24 

change in focal length variability at doses up to 2200 mGy (acute). Studies finding significant 25 

effects of radiation on cataract in wildlife at Chernobyl (Mousseau and Møller 2013, Lehmann 26 

et al., 2016) have generated significant media coverage and, if true, would represent a major 27 

challenge to current radiation protection regulation. The Lehman et al. (2016) study has, 28 

however, been criticised due to its subjective nature, poor sample preservation and the lack of 29 

evidence to support its conclusions (Smith 2020). Similarly, a study of cataracts in birds 30 

(Mousseau and Møller 2013) has been criticised for lack of ophthalmologic expertise in 31 

identifying cataract incidence (Pederson et al. 2020). 32 

 33 
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An opaque lens is highly disadvantageous for the survival of wild organisms as clear vision is 34 

required for hunting, feeding and to evade predation. Therefore, studies finding no effect of 35 

radiation on cataract incidence could select for individuals lacking cataracts or with 36 

compromised vision. Pre-cataract phenotypes can be identified by in vivo evaluation methods 37 

that measure the loss of lens transparency because of protein aggregation and epithelial cell 38 

density changes (Markiewicz et al., 2015; Barnard et al 2018; Vigneux et al 2022). Our study 39 

uses two different techniques to measure such changes which can indicate early-stage cataract 40 

formation and are therefore more sensitive and less subjective than previous evaluations which 41 

apparently observed radiation induced cataract in free-living organisms (Mousseau and Møller 42 

2013; Lehmann et al., 2016). The first method we use measures cell densities using confocal 43 

light microscopy and image analysis software to create three-dimensional maps for the 44 

epithelium (Kalligeraki et al., 2020). The second method measures potential ultrastructural 45 

changes to the constituent crystallin proteins within the lens fibre cells using the low angle X-46 

ray diffraction method. Changes in the structural conformation of lens crystallin proteins 47 

manifest themselves as protein aggregates leading then to an opacity. The degree of this opacity 48 

can be accurately and sensitively measured using small angle X-ray scatter (SAXS) (Regini et 49 

al., 2004; Regini and Meek, 2009).  50 

 51 

Fish species are highly relevant to study ionising radiation effects since they reflect the health 52 

of the environment and can be used as surrogates in the assessment of the effects of stressors 53 

on human health (Sipes et al., 2011; Horzmann & Freeman, 2018; Pinna et al., 2023). 54 

Moreover, they are considered as the most radiosensitive aquatic species (Sazykina and 55 

Kryshev, 2003) and have been highly exposed in freshwater systems at Chernobyl and both 56 

freshwater and marine systems in Fukushima. At Chernobyl, the total dose absorbed in a year 57 

for perch and roach can reach 142 and 129 mGy respectively and a cumulative dose at the time 58 

of catch is, respectively, about 645 and 710 mGy over a 5-year life span. These levels are more 59 

than 100 times higher than the levels hypothesised to induce cataract in voles from Chernobyl 60 

(Lehmann et al., 2016) and higher than the ICRP recommended thresholds for human cataract 61 

risk. It should be noted, however, that (as discussed below) dose estimation to the lens of free-62 

living organisms is highly uncertain. 63 

 64 

For the first time, the methods applied here provide an objective and quantitative analysis of 65 

potential radiation influence of cataract formation in free-living organisms. Uniquely, fish lens 66 
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sample from both Chernobyl and Fukushima are analysed, allowing comparison of fish of 67 

different exposure and life histories. It was hypothesised that these novel data would reveal 68 

positive correlations between radiation dose and cataract formation. 69 

 70 

Methods 71 

 72 

Optimisation of lens cryopreservation 73 

An experiment was performed to optimise the cryopreservation buffer composition suitable to 74 

preserve the structure of the fresh lens from collection in the field to the laboratory analyses. 75 

To our knowledge this is the first cryopreservation buffer composition optimised for lens 76 

preservation. Rainbow trout lenses were used to test the efficiency of 21 different 77 

cryopreservation buffers by using a teleost buffer (composed of 111 mM NaCl; 5.4 mM KCl; 78 

1 mM CaCl2; 0.6 mM MgSO4 and 5 mM HEPES) and varying the concentration of sucrose 79 

(100 to 200 mM), glycerol (0 to 100%) and DMSO (0 to 100%) for optimal preservation of the 80 

lens. A total of 31 fish and their 62 lenses were used. Three replicates were used for each 81 

condition except for one in which two replicates were used. Samples were kept for a period of 82 

8 days at - 196 °C in the dry shipper used for field samples collection. They were defrosted at 83 

4°C for 24h. 84 

The most intact lenses were assessed by observing transparency and any signs of opacity or 85 

structural changes using an optical microscope (Zeiss) together with statistical analyses (glm, 86 

binomial).  87 

 88 

Field study 89 

Field studies were carried out in seven lakes in Ukraine and Belarus and two ponds and a river 90 

in Japan (Figure 1). Studies on the genetic and physiological health of fish in seven lakes in 91 

Belarus and Ukraine with a long-term exposure history to a gradient of radiation dose have 92 

brought significant accompanying data to enable calculation of dose rate and quantification of 93 

potential confounding factors such as parasite loads, water chemistry (major cations, nitrates) 94 

environmental parameters (pH, T°C, dissolved oxygen) and other radioisotopes specific 95 

activity (Lerebours et al., 2018; 2020). Several studies in Japan in fish from water ponds and 96 

rivers from Fukushima prefecture characterised the Cs activity and distribution (Wakiyama et 97 

al., 2017; Wada et al., 2019) also enabling a robust dose rate calculation.  98 



8 
 

One lens of each of 103 perch (Perca fluviatilis) collected in spring 2016 at Chernobyl in seven 99 

lakes representing a gradient of radiation dose were analysed for refractive index, length radius 100 

and focal length measurements (Table S1). Perch from a control lake (Dvorische), outside the 101 

exclusion zone, and from a highly contaminated lake (Glubokoye), inside the exclusion zone, 102 

were analysed for refractive index and Bragg Spacing using the Spring 8 synchrotron and using 103 

the Diamond synchrotron (Table S2). An old (>12 years) carp (Cyprinus carpio) with visible 104 

cataract from the cooling pond was collected and analysed as a positive control. Carp 105 

(Carassius auratus) were also collected in ponds inside the exclusion zone in the Fukushima 106 

prefecture (Suzuuchia and Funazawa Ponds; Wakiyama et al., 2017) and outside the exclusion 107 

zone, in Abukuma river (Shinobu Dam; Mitamura et al., 2022) for SAXS analyses (Table S2). 108 

  109 

The age was determined by counting the number of annuli on the scales (Chernobyl lakes) and 110 

otoliths (ponds from Fukushima prefecture). Age is given in SI Table S1, being in the range 4-111 

5 years for Chernobyl fish and 6-7 years for fish at Fukushima. 112 

 113 

Dose estimation 114 

Internal and external dose was estimated from measurements of radioactivity in whole fish, 115 

fish lenses and sediments.  116 

 117 

Lens samples were analysed at GAU-Radioanalytical were as follows: lenses were transferred 118 

to counting vials for analysis as received by gamma spectrometry. High-resolution gamma 119 

spectrometric analysis was performed using HPGe detectors. Detectors were calibrated against 120 

a mixed radionuclide standard solution. The standard was used to prepare a source of identical 121 

geometry to that of the samples. Gamma spectra were analysed and individual radionuclides 122 

quantified using Fitzpeaks spectral deconvolution software (JF Computing Services).   123 

 124 

For radiochemical analysis, lens samples were spiked with 85Sr, 232U, 242Pu and 243Am tracers 125 

for chemical recovery monitoring.  126 

 127 
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Measurements of radioactivity in sediments at Fukushima were taken from Konoplev et al. 128 

(2018) and those in fish followed the radioanalytical method described in Wada et al. (2019) 129 

Measurements of radioactivity in sediments and fish at Chernobyl were taken from Lerebours 130 

et al. (2018). Internal and external doses were calculated using the ERICA tool (Brown et al. 131 

2008). 132 

 133 

Focal length and effective refractive index measurements 134 

The effective focal length and (uniform) refractive index measurements were made using a 135 

previously published approach (Young et al., 2018) with a modified set up, as shown in 136 

Supplementary Information Figure S1. A custom 3D printed holder was used to suspend the 137 

sample lens in a diluted solution of fluorescein such that its optical axis was aligned vertically. 138 

A 488 nm fibre-coupled laser source (Stradus Versalase, Vortran) was mounted directly above 139 

the sample lens above a collimator. The incident illumination was focused by the sample lens 140 

into the fluorescein solution causing localised fluorescence excitation. The fluorescence 141 

emission was imaged through a glass viewing window and a spectral filter (MDF-GFP, 142 

Thorlabs) by a CCD (QI Click Mono, 01-QICLICK-R-F- M-12, QImaging) that was aligned 143 

horizontally on the bench. A brightfield image was also captured by removing the fluorescence 144 

filter. The pixel scale of the camera was calibrated by imaging a diffraction grating with two 145 

line pairs per mm and the line separation determined to be 10.4 pixels.  146 

 147 

The optimum value for the refractive index was recorded and the effective focal length of the 148 

lens was calculated using the ball lens equation: 149 

 150 

𝑓 =
𝑛𝑅

2(𝑛 − 1)
 151 

 152 

where n is ratio of the refractive index of the lens, nlens, to the refractive index of the 153 

surrounding medium (assumed to be water, nwater = 1.333) and R is the radius of the lens. The 154 

method and calibration were verified using a BK7 glass ball lens (04VQ06, Comar), which was 155 

found to have a refractive index of 1.526 ± 0.008. This was in good agreement with the 156 

refractive index of BK7 Schott glass at 488 nm, which is 1.522. 157 
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 158 

Hoechst Staining, cell density measurements of the lens epithelia 159 

The measurement of the epithelial cell densities in lenses taken from fish caught in control and 160 

exposed lakes is as described (Kalligeraki et al., 2020). The globes had been fixed in 4% (w/v) 161 

PFA in phosphate buffered saline (PBS) and the lenses were removed from the globe prior to 162 

staining with 10µM Hoechst 33324 (Merck Life Sciences, UK) after permeabilising with 0.5% 163 

(w/v) Triton-X-100 in PBS for up to an hour at room temperature. The lenses were washed in 164 

PBS, then mounted on the acrylamide support and positioned prior to imaging using a Leica 165 

SP5 II confocal microscope equipped with an HXC APO × 10/0.40 NA oil (n = 1.518) 166 

immersion objective (Supplementary Information Figure S2). Data collection and analysis are 167 

as described (Kalligeraki et al., 2020), collecting data from the meridional rows of the lens 168 

epithelium where radiation damage has been reported in mouse models exposed to low dose 169 

ionising radiation (IR) (Markiewicz et al., 2015). 170 

 171 

SPring-8 X-ray interferometric analyses 172 

Fresh piscine lenses from four perch P. fluviatilis, two inside (Lake Glubokoye) and two 173 

outside (Lake Dvorische) the exclusion zone of Chernobyl and an old carp, C. carpio, from the 174 

Cooling Pond used as a positive control, were transported from UK to Japan for measurement 175 

of refractive index at the SPring-8 synchrotron. One lens was analysed from each of the fish 176 

from Dvorische and two lenses from each fish from Glubokoye. Samples were set in 2% 177 

agarose gel within a special cell for measurement on beamline BL20B2 using X-ray phase 178 

tomography based on X-ray Talbot interferometry (Hoshino et al., 2010; Hoshino et al., 2011; 179 

Momose, 2005). More detail on the Spring-8 methods can be found in Supplementary 180 

Information.  181 

DIAMOND synchrotron analyses  182 

Small angle X-ray scattering (SAXS) studies on the fish lenses collected from Chernobyl and 183 

Fukushima were also conducted at the Diamond Synchrotron (Didcot, Oxfordshire UK) on 184 

small angle beam line I22 (Smith et al., 2021).  The lenses were placed in an airtight Perspex 185 

sample holder with Mylar windows which are X-ray transparent. Each sample holder was 186 

secured on to a motorised stage which could be moved horizontally and vertically in respect to 187 

the X-ray beam. The X-ray diffraction patterns were collected separately from each lens. The 188 

X-ray camera was 6.25 metres in length. The data were collected using an X-ray beam size 189 

80µm x 250µm, with a wavelength of 1Å, directed perpendicularly to the whole lens for a 2D 190 
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grid scan of each lens. The exposure time for each individual X-ray diffraction pattern was 0.1 191 

sec at 0.5 mm intervals along the lens horizontal and vertical meridians. Individual X-ray 192 

diffraction patterns were recorded using a Pilatus P3-2M(SAXS) detector. Each 2D grid scan 193 

varied in size length in both the x and y directions depending on the size of each individual 194 

lens. After the data were processed and the background subtracted from each individual X-ray 195 

pattern, a montage of all X-ray patterns for each lens was created separately using Diamond’s 196 

in house DAWN 2.11.0 software package (Basham et al., 2015; Filik et al., 2017). 197 

 198 

Statistical analyses 199 

All statistical tests were performed using R Studio (v4.0.1). Any potential difference in the 200 

refractive index, lens radius and focal length was assessed by performing a t-test. The 201 

efficiency of the different buffers on the structural appearance of the lenses after a freezing 202 

period of 8 days was assessed by using a generalised linear model (glm) and using a binomial 203 

family.  204 

 205 

Results 206 

 207 

Cryopreservation optimisation 208 

 The cryopreservation buffer showing the best result (p < 0.05) was composed of the teleost 209 

buffer and 200 mM of sucrose, 60% (v/v) of glycerol and 40% (v/v)  DMSO and was thus used 210 

to preserve field samples.    211 

Dose estimation 212 

Fish lens samples were analysed for 60Co, 90Sr, 137Cs, 241Am and isotopes of Pu as well as a 213 

range of natural radionuclides. All artificial radionuclides were below l.o.d. except for 137Cs 214 

which ranged from 0.08 Bq/g (f.w.) in lake Suuzuchi to 0.32 Bq/g (f.w.) in lake Glubokoye. 215 

All natural radionuclides were below l.o.d. except for 40K which was 0.56 Bq/g (f.w.) in 216 

Funazawa and 0.64 Bq/g (f.w.) in the Chernobyl Cooling Reservoir, all others being below 217 

l.o.d. 218 

 219 

As expected, uptake of artificial radionuclides to the lens was very low, so dose to the lens 220 

from radioactivity within the lens is negligible compared to that from the fish body and bed 221 

sediment. It was therefore appropriate to estimate dose to the lens from the combination of 222 

internal dose from 134,137Cs in the fish body and external dose from sediment. The ERICA 223 
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software was used to estimate internal and external dose based on measured fish and sediment 224 

activity concentration. Sediment activity concentration from the lakes in Japan were obtained 225 

from Konoplev et al., (2018). It was assumed that each fish spent 50% if its time near to the 226 

sediment and 50% in open water. 227 

 228 

Estimated doses to the lens are given in Table 1. External dose rates are estimated to be 229 

significantly greater than internal in the Japanese lakes, but are of the same order as internal in 230 

the three most contaminated Ukrainian lakes due to the significance of 90Sr beta dose within 231 

the CEZ. Uncertainty in external dose estimates is driven primarily by the assumed occupancy 232 

factor (the amount of time the fish is close to bed sediments). Given this and other uncertainties, 233 

estimated dose rates should be treated as relative rather than absolute. Natural background 234 

radiation doses to aquatic organisms hve been estimated to be in the range 0.022-0.18 µGy h-1 235 

(Garnier-Laplace et al., 2006) though could be significantly higher in high natural background 236 

radiation areas. In the Chernobyl Cooling Pond, Kryshev and Sazykina (1995) estimated 237 

natural radiation dose rates to be approximately 0.04-0.08 µGy h-1. 238 

 239 

Cell density and optical properties 240 

Optical properties of the lenses taken from fish from seven different lakes across a gradient of 241 

contamination at Chernobyl are summarised in Supplementary Information Table S3. No 242 

significant differences were seen between the optical properties of the lenses taken from fish 243 

caught from different lakes at Chernobyl (Figure 2). 244 

 245 

Nucleus density measured in 20 lenses from one low contamination lake (Dvorische) and one 246 

high contamination lake (Glubokoye) showed no significant differences between lakes (Figure 247 

3 see also SI Figures S3; S4 for data from other lakes). Variance increased in areas of higher 248 

density, whereas areas of lower density showed higher order in both lakes. To demonstrate 249 

variance within samples, we have included standard deviation on error bars in Figure 3.  250 

 251 

Spring-8 Refractive Index analysis 252 

High resolution refractive index analysis at Spring-8 showed no evidence of a difference in 253 

refractive index between the relatively uncontaminated Lake Dvorische and the most 254 

contaminated lake in this study, Lake Glubokoye (Figure 4). 255 
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 256 

A montage from a Spring-8 2D grid scan from a Crucian Carp lens collected from the Shinobu 257 

dam of the Abukuma river, Fukushima, is shown in Supplementary Information Figure S5. 258 

Each individual X-ray pattern from the lens in the montage is dominated by a single X-ray 259 

reflection which is a broad diffuse ring. The putative interpretation of this reflection is that it 260 

is an interference function, and originates from the average nearest neighbour spacing between 261 

the crystallin proteins. This measurement is known as the Bragg spacing (d). The width or 262 

thickness of this reflection gives an indication of crystallin proteins ordering within the lens 263 

fibre cells, with a narrower interference function indicating a high degree of ordering (Regini 264 

et al, 2004, Regini and Meek, 2009).  265 

 266 

The inference function spacings from a lens taken from Suzuuchi Pond (approx. dose rate 5.5 267 

µGy h-1) were calculated. From each montage, a column of individual X-ray diffraction 268 

patterns was chosen next to the vertical meridian of the lens. A circular integration was 269 

performed on each pattern and the resulting X-ray intensity (I) profiles plotted as a function of 270 

inverse space (Q). Figure 5 shows a typical intensity profile from a Suzuuchi Crucian Carp lens 271 

with the peak of the interference clearly visible.   272 

 273 

Figure 6 shows a plot of the Bragg spacings from the central meridians of the 2D grid scans of 274 

Crucian Carp lenses from Glubokoye lake and the relatively uncontaminaded Lake Dvorische 275 

as a function of distance across the lens. As can be seen in both lenses, the Bragg spacing 276 

decreases from one periphery of the lens towards to centre, and then increases again to the 277 

opposite periphery. This is expected due to increase in crystallin protein concentration, and 278 

hence a decrease in the average nearest neighbour spacing between the crystallin proteins. The 279 

change in the protein concentration is directly responsible for the refractive index gradient 280 

found in many different types of animal lenses (Pierscionek and Regini, 2012).  There is an 281 

asymmetry in the spacing trends in both lenses towards the edge of each lens. This may be due 282 

to the individual differences in refractive index gradients of the lenses at the edges (see Figure 283 

6), which in turn would lead to a localised variation in the Bragg spacings. Overall, the spacings 284 

between the two lenses is remarkably similar and only vary by a maximum of 10 Å. If there 285 

had been a large amount of insoluble large amorphous aggregates leading to cataract formation 286 

in one of the lenses, we would expect to see a much larger change in the spacings between the 287 

two accompanied by a dramatic widening of the profile of the interference function as observed 288 
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by Suárez et al. (1993). Therefore, the data indicate that there are no appreciable structural 289 

differences at this length scale between the Crucian Carp lenses from the contaminated 290 

(Glubokoye) compared to uncontaminated (Dvorische) lake.   291 

 292 

As a positive control, we performed a DIAMOND 2D grid scan on a Chernobyl Carp lens with 293 

a dense nuclear cataract which was clearly visible. The density and location of this opacity 294 

suggests that it is age-related and not caused by radiation. The oldest cells in the lens are found 295 

in its centre (lens nucleus) and these are more prone to age-related cataract formation (Quinlan 296 

and Clark, 2022). It was found that in the vast majority of the individual X-ray diffraction 297 

patterns from the lens that the interference function was not present. We attribute this to the 298 

formation of many large insoluble amorphous aggregates. Some extremely diffuse interference 299 

functions were observed in some individual X-ray diffraction patterns at the edges of the lens, 300 

away from the nucleus. Figure 5 (b) shows the Log X-ray intensity profile of a such a pattern. 301 

As can be seen, the interference function has become so broad that it has almost disappeared, 302 

it is also much closer to the centre of the pattern when compared to that in Figure 5 (a) i.e. a 303 

larger Bragg spacing.  304 

 305 

Discussion  306 

 307 

This study spans the length scales from mm to sub-nm resolution by measuring the optical 308 

properties, refractive index profiles, epithelial cell densities and X-ray synchrotron analysis of 309 

molecular aggregation and cataract formation. We found no evidence of a significant impact 310 

of radiation on lens development, protein and cell organisation and optical function in fish 311 

sampled from waterbodies at Chernobyl and Fukushima. The total dose absorbed in a year for 312 

perch and roach in Chernobyl lakes reached 142 and 129 mGy respectively with a cumulative 313 

dose at the time of catch of 645 and 710 mGy respectively over a 5-year life span. These levels 314 

are more than 100 times higher than the doses previously hypothesised to induce cataract in 315 

voles from Chernobyl (Lehmann et al., 2016).  Our study agrees with more recent findings 316 

reported for animals at Fukushima where wild boar were exposed to cumulative doses up to 317 

1600 mGy without any significant signs of cataract formation (Pederson et al., 2020). 318 

 319 

Exposure to high acute dose or chronic low dose IR can result in measurable changes in lens 320 

structure and function (see Uwineza et al., 2019 for a recent review). For example, 321 
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accumulative doses of 0.5, 1 and 2 Gy for different dose rates of 0.063 Gy/min and 0.3 Gy/min 322 

increased epithelial cell division (Barnard et al., 2022; Markiewicz et.al., 2015) altered 323 

epithelial cell density and disorganisation of the epithelial cells in the transitional zone and 324 

meridional rows at the most distal edge of the epithelium (Markiewicz et. al., 2015). Long-term 325 

consequences of such exposures can be altered lens shape (Markiewicz et. al., 2015) and lens 326 

opacification (Barnard et. al., 2022) depending on the radiosensitivity of the mouse strain used. 327 

When the loss of visual acuity was monitored by Optical Coherence Tomography (OCT), then 328 

posterior subcapsular cataracts were the most prevalent cataract type observed (Pawliczek 329 

et.al., 2022), even after a single acute dose of 0.5 Gy (Kunze et. al., 2021).  330 

 331 

For humans, the Lifespan Study of atomic bomb survivors and other studies showed that the 332 

eye lens is a particularly radiosensitive tissue with a long latency observed between exposure 333 

and the appearance of vision-impairing cataract (Hamada et al., 2020). This has called into the 334 

question the concept of a defined threshold dose (Hamada et.al., 2020). The United States 335 

National Council on Radiation Protection and Measurements (NCRP) has not assigned a 336 

specific threshold dose because of the limitations associated with available epidemiological 337 

studies (NCRP 2016), demonstrating the importance of gathering data from all sources to 338 

determine whether cataract is either a tissue reaction or a stochastic effect or a mixture of both 339 

by the lens (Hamada et. al., 2020).    340 

 341 

We did not find a significant difference in density of lens epithelial cells between fish from 342 

waterbodies of different levels of ionising radiation. The density and organisation of the 343 

meridional rows of lens epithelial cells at the very periphery of the lens epithelium is altered 344 

by aging Wu et al., 2015, by diet (Gona, 1984) and by exposure to radiation, both ionising 345 

(Zintz and Beebe, 1986, Pendergrass et al., 2010, Markiewicz et al., 2015) and non-ionising 346 

radiation Wei, Hao et al. 2021). Zebrafish are an established radiobiological model (Geiger, 347 

Parker et al. 2006, Liu et al., 2020, Marques et al., 2020) and the developing eye and fish lens 348 

is a key sensor of both toxic (Sipes et al., 2011) and radioprotective agents (Liu et al., 2020). 349 

In early zebrafish development, a total IR exposure of 1.62mGy was sufficient to differentially 350 

regulate genes that would be expected to have lens effects as they are transcription factors 351 

expressed during and following lens development (trp53, TGFb1, cebpa, crabp2 and vegfa; 352 

https://research.bioinformatics.udel.edu/iSyTE/). A dose of 0.4 mGy/hr continuous for 92 353 
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hours produced developmental deformities which included head and eye deformities (Hurem 354 

et al., 2017).  For non-ionising radiation, early studies had indicated the sensitivity of teleost, 355 

mouse, rabbit and human to UVB (290-320nm) was similar (Cullen and Montieth-McMaster 356 

1993; Cullen et al 1994).The chronic exposure of trout to levels of UVB radiation equivalent 357 

to the daily accumulative dose of 500J/cm2  over a 205 day period demonstrated the formation 358 

of anterior opacities detected by slit-lamp analyses (Cullen et al., 1994). This study also 359 

suggested that the age of the fish could influence cataract incidence (Cullen et al; 1994) and 360 

that UVB exposure could accelerate the aging process (Zigman, 1983). Exposure to ionising 361 

radiation is also believed to accelerate age-related cataract (Uwineza et al., 2019). In later 362 

studies, the near to threshold UVB dose for rats (Michael and Brismar, 2001; Galichanin et al 363 

2010; Hurem et al 2017) produced changes in the refractive index gradient (Michel and Bismar 364 

2001) that were irreversible (Galichanin et al., 2008). It seems reasonable therefore to expect 365 

the eyes and lenses of teleosts to be similar to other animal models. 366 

 367 

In the perch fish taken from the lakes around Chernobyl, no statistically significant changes in 368 

the distribution and density of the lens epithelial cells in the and adjacent to the meridional 369 

rows in the epithelium were observed. We know that dose (Markiewicz, Barnard et al. 2015)) 370 

and dose rate (Barnard et al., 2019, Barnard et al., 2022) affect the mouse lens response to 371 

ionising radiation.  The response to low dose ionising radiation by human lenses (Della Vecchia 372 

et al., 2020; Little et al., 2021; Su et al., 2021) can be associated with increased cataract 373 

incidence. There is evidence the doses and dose rates experienced by voles in the Chernobyl 374 

area would be sufficient to cause opacities and cataract (Kleiman et al., 2017), though methods 375 

and interpretation are not presented in the Kleiman et al. (2017) summary abstract. Lens 376 

opacities affect species fitness (Flink et al., 2017), responses to predators (Flink et al., 2017) 377 

and diet selection (Vivas Muñoz et al., 2021), but the perch examined in the different Chernobyl 378 

locations showed no statistically significant differences in their lens metrics or optical 379 

properties.   380 

 381 

A previous SAXS study of human lenses (Suárez et al., 1993) found that the inference function 382 

becomes much broader and the spacing increases greatly with the age of the lenses, especially 383 

past the age of 55 years in humans. These authors found that Bragg spacing (which arises from 384 

the average centre to centre distance between the crystallin proteins) from a single X-ray pattern 385 
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from the centre of each lens increased from 142Å from a very young lens to 200Å in a lens 386 

with more insoluble protein and increasing light scatter has aging events that eventually lead 387 

to lens opacification (reviewed in Quinlan and Clark, 2022). The dramatic changes in the 388 

interference function are explained in terms of the structural conversion of the crystallin 389 

proteins with age (Regini and Meek, 2009). These proteins become denatured in response to 390 

environmental stresses such as radiation, temperature, glycation and oxidation. The denatured 391 

proteins are thought to combine to form water insoluble amorphous aggregates. As these 392 

amorphous aggregates grow, they increase the average nearest neighbour spacing between the 393 

crystallin proteins and detrimentally affect the order of proteins and water which is integral to 394 

maintaining transparency. When the amorphous aggregates become comparable in size to the 395 

wavelengths of the visible spectrum, they scatter light causing lens opacities. If the cataract is 396 

very dense, the average nearest neighbour spacing between the crystallin proteins becomes so 397 

large that the inference function disappears from the X-ray diffraction pattern (Figure 5b). This 398 

isolated case is most likely to be related to the age of the fish (>12 years), given its position in 399 

the central and oldest part of the lens.  400 

 401 

We would expect that lenses which have been exposed to ionising radiation of a sufficient dose 402 

would have increased levels of insoluble proteins in the form of amorphous aggregates, even 403 

before opacities in the lens become visible as conceptualised in the cataractogenic load 404 

hypothesis (Uwineza et.al., 2019; Quinlan and Cark, 2022). This would result in a large 405 

increase in the Bragg spacing of around 60 Å. As Figure 6 illustrates, such a large increase was 406 

not evident in any of the lenses (15 lenses studied) of fish from Chernobyl and Fukushima, 407 

except the sample from the old (>12 years) Crucian Carp with a visible central cataract. Of 408 

course, it was only feasible to study a proportion of the fish population by synchrotron methods. 409 

We cannot rule out the existence of cataract or pre-cataract in fish which were not studied. 410 

Nevertheless, the synchrotron method is the most sensitive available to detect altered protein-411 

protein associations and protein aggregation as indicators of any pre-cataract or cataract 412 

phenotype. For 15 lenses studied by synchrotron, 40 lenses (from contaminated lakes) studied 413 

for refractive index and 20 (from contaminated lakes) for epithelial cell density,  this was not 414 

the case, suggesting that this the likely situation for the wider fish population. 415 

 416 
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It is further noted that we cannot completely exclude radiation-induced cataractogenesis in the 417 

fish populations of these lakes. Other potential indicators of cataract formation (including 418 

biochemical differences such as oxidative stress) were not studied. Further, it was only possible 419 

to gain a representative sample of similar age (4-5 years) fish from each of the lakes. Older fish 420 

may provide better evidence of radiation induced cataract but it was not feasible to obtain a 421 

large and age consistent sample of old fish due to their relatively much lower numbers in the 422 

population.It should also be noted that in all studies of wild animals, particularly aquatic 423 

organisms, dose rate estimation is highly uncertain owing to changes in exposure during the 424 

development and lifetime of the organism and to uncertainty of movement and habitat. Thus 425 

the estimated doses calculated here should be treated with caution, though relative doses 426 

between groups of fish from different sites are much more accurate since development and 427 

habitat occupancy factors are similar between sites. Further laboratory experiments which can 428 

better control dose and dose rate (albeit with the limitation of relatively short duration) would 429 

be valuable to complement studies in the natural environment. 430 

 431 

It could also be argued that animals in the natural environment that developed cataract would 432 

be more likely to be predated leading to survivor bias, but the small scale molecular and cellular 433 

changes we have studied (ie pre-cataract formation) would mitigate against this.  434 

 435 

Uncertainty in dose rate estimation could explain some differences in findings about cataract 436 

formation in wild animals. However, because relative doses between waterbodies are much 437 

more accurate than absolute doses, they are not sufficient to explain the difference between our 438 

findings and those of Lehman et al. (2016) (voles) and Mousseau and Moller (2013) (birds) 439 

studies. These latter findings of cataract formation at very low doses and dose rates are in 440 

contradiction to ICRP guidance based on laboratory animal and human epidemiological data. 441 

They are further not supported by the field study findings reported here for fish and previously 442 

for wild boar Pederson et al. (2020)). It has been suggested that the earlier studies (Lehman et 443 

al. 2016; Mousseau et al. 2013) had significant methodological and interpretation issues (Smith 444 

et al. 2017, Pederson et al. 2020).  445 

 446 

There may be differences in lens development and structure between species which could affect 447 

the formation of radiation-induced cataract. Lens development across vertebrates is very well 448 
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conserved as discussed in the Introduction. The development and structure of fish lenses are 449 

similar in terms of their protein content, type of proteins and in the protein distribution across 450 

the lens which creates the refractive index (Sivak 2004; Kocemba and Waker, 2021). Hence, 451 

any response to factors that cause cataract will be broadly similar. However, whilst both fish 452 

and rodent lenses are abundant in -crystallin, the latter contain S-crystallin, but the former 453 

are rich in M-crystallin (Mahler et al, 2013). The low tryptophan and high methionine content 454 

in M-crystallin may offer a protective effect given that methionine has been shown to provide 455 

radiation protection (Vuyyuri et al, 2008; Mahler et al 2013).  456 

 457 

The present study has observed no radiation induced cataract or evidence of pre-cataract lens 458 

damage in wild fish exposed to relatively high cumulative dose (but relatively low dose rate) 459 

radiation. As the lens grows, each layer of lens fibres laid down by the differentiated epithelial 460 

cells is a ‘snap shot’ or ‘time capsule’ of its history recorded for posterity in a similar manner 461 

to tree rings. Consequently, the lens represents both an endpoint of exposure history and a 462 

timeline of accumulated damage which is highly relevant under chronic exposure scenarios.  463 

 464 
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Table 1 Estimated dose rates from Japanese, Belarussian and Ukrainian lakes. The values in 685 

the table represent dose rates from artificial radionuclides.  686 

Site 137Cs 

sediment 

kBq/kg 

w.w.* 

134Cs 

sediment 

kBq/kg 

w.w.* 

Ext. 

dose 

µGy/h 

Int. dose 
137Cs 

w.w. 

kBq/kg 

Int. dose 
134Cs 

kBq/kg 

Int. dose 
90Sr 

kBq/kg 

Int. 

dose 

µG/h 

Total 

dose 

µGy/h 

Chernobyl         

Dvorische 0.26 n.d. Backgr. 0.19 n.d. Not meas. Backgr. 0.1 

Gorova 0.026 n.d. Backgr. 0.004 n.d. Not meas. Backgr. Backgr. 

Stoyacheye 0.75 n.d. 0.1 0.088 n.d. Not meas. Backgr. 0.1 

Svyatoye 4.56 n.d. 0.7 6.09 n.d. Not meas. 1.1 1.7 

Glubokoye 39.7 n.d. 5.9 7.8 n.d. 13.6 9.8 15.7 

Yanovsky 

Crawl 

47.8 n.d. 7.1 2.6 n.d. 3.60 2.7 9.8 

Cooling 

Pond 

49.1 n.d. 7.3 3.0 n.d. 0.079 0.6 7.9 

Fukushima         

Suzuuchi 23.2* 3.5* 4.6 3.9 0.57 Not meas. 0.86 5.5 

Funasawa 32* 4.7* 6.3 3.8 0.56 Not meas. 0.83 7.1 

Abukuma 35* 5.3* 7.0 0.008 0.0012 Not meas. 0.0018 7.0 

* Based on sediment data from Konplev et al. (2018) and a f.w./d.w. ratio of 5.0 687 
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 711 

 712 

Figure 1. Maps showing location of sampling sites at (a) Chernobyl and (b) Fukushima. The 713 

reference dates for the radiation levels are 1986 for Chernobyl and 2011 for Fukushima. 714 

Figure 2. Lens maximum refractive index ([ ]), focal length (mm) and radius (mm) in lakes 715 

across a gradient of contamination density at Chernobyl. Error bars show 1 Std Error (too 716 

small to be seen for refractive index). 717 

Figure 3. Mean of cell density measurements for Lake 1; low contamination Dvorische and 718 

2; high contamination Glubokoye; standard deviation on error bars. A t-test reveals pmean= 719 

0.08.  720 

Figure 4. High resolution refractive index measurements at Spring-8 showing no difference 721 

between Lake Dvorische (relatively low radiation dose; one lens from each of two perch) and 722 

Lake Glubokoye (relatively high radiation dose; 2 lenses from each of two perch). 723 

Figure 5. A plot of the Log X-ray intensity scale against inverse space from an individual 724 

DIAMOND X-ray diffraction pattern from (a) a Lake Suzuuchi Crucian Carp lens showing a 725 

peak corresponding to the interference function which arises from the average centre to 726 

centre distance between the crystallin proteins; (b) a Chernobyl Carp lens with a dense 727 

nuclear age related cataract. The interference function has become swamped in the 728 

background radiation due to the disordering of the crystallin proteins in the lens with the age-729 

related cataract. 730 

Figure 6. A plot of the Bragg spacings from the central meridians of the 2D grid scans of 731 

Crucian Carp lenses from DIAMOND. Glubokoye (Open circles; “contaminated”) and 732 

Dvorische (Filled circles; “uncontaminated”). Neither Bragg spacing pattern shows evidence 733 

of protein aggregation and therefore early stage cataract formation.  734 
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 739 

 740 

Figure 1. Maps showing location of sampling sites at (a) Chernobyl and (b) Fukushima. The reference dates for 741 
the radiation levels are 1986 for Chernobyl and 2011 for Fukushima. 742 
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 749 

 750 

 751 

 752 

Figure 2. Lens maximum refractive index ([ ]), focal length (mm) and radius (mm) in lakes across a gradient of 753 
contamination density at Chernobyl. Error bars show 1 Std Error (too small to be seen for refractive index). 754 
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 771 
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 774 

 775 

 776 

Figure 3. Mean of cell density measurements for Lake 1; low contamination Dvorische and 2; high contamination 777 
Glubokoye; standard deviation on error bars. A t-test reveals pmean= 0.08.  778 
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Figure 4 High resolution refractive index measurements at Spring-8 showing no difference between Lake 804 
Dvorische (relatively low radiation dose; one lens from each of two perch) and Lake Glubokoye (relatively 805 
high radiation dose; 2 lenses from each of two perch). 806 
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 830 

 831 

 832 

 833 

 834 

 835 

 836 

  837 

 838 

Figure 5 A plot of the Log X-ray intensity scale against inverse space from an individual DIAMOND X-ray 839 
diffraction pattern from (a) a Lake Suzuuchi Crucian Carp lens showing a peak corresponding to the 840 
interference function which arises from the average centre to centre distance between the crystallin 841 
proteins; (b) a Chernobyl Carp lens with a dense nuclear age related cataract. The interference function has 842 
become swamped in the background radiation due to the disordering of the crystallin proteins in the lens 843 
with the age-related cataract. 844 
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 866 

 867 

Figure 6 A plot of the Bragg spacings from the central meridians of the 2D grid scans of Crucian Carp lenses from 868 
DIAMOND. Glubokoye (Open circles; “contaminated”) and Dvorische (Filled circles; “uncontaminated”). 869 
Neither Bragg spacing pattern shows evidence of protein aggregation and therefore early stage cataract 870 
formation.  871 
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