
HAL Id: hal-04199204
https://hal.science/hal-04199204

Preprint submitted on 7 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Science in the digital era
Konrad Hinsen

To cite this version:

Konrad Hinsen. Science in the digital era. 2023. �hal-04199204�

https://hal.science/hal-04199204
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr


Science in the digital era

Konrad Hinsen

Centre de Biophysique Moléculaire
UPR4301 CNRS
Rue Charles Sadron
45071 Orléans Cedex 2
France

Synchrotron SOLEIL
Division Expériences
Saint Aubin - BP 48
91192 Gif sur Yvette Cedex
France

Date: 2023-08-31



Welcome

This is an archival copy of my digital garden whose current on-line version
can be consulted at

https://github.com/khinsen/science-in-the-digital-era

This archival copy corresponds to commit 2c60077481295d2de0290c3bc657d0e58d4c2833,
which was published on 2023-08-31.

This digital garden contains essays, thoughts, random ideas, and references
that relate to the practice of scientific research in the digital era, characterized
by computers (personal, high-performance, cloud, . . . ), software, the Internet,
global collaborations, social networks, and more. They represent exclusively
my personal views and in particular not those of my employer.

There are many empty pages in this collection, and you may wonder why.

One reason is that this digital garden is work in progress. When I work on a
page, I often insert links to pages that I intend to write, but haven’t written
yet. So you see an empty page. If you come back later, you may find some
real content there. So. . . come back often.

The second reason is that empty pages are useful link targets, due to the
backlink feature in the online version of my digital garden. At the end of
each page, you see a list of other pages that link to the current one. Empty
pages thus fulfill the role of a subject index in a traditional book: they help
you find where some topic is discussed. Unfortunately, this feature is lost in
this archival copy.

License

The pages of this digital garden are covered by a Creative Commons License
(CC BY-SA 4.0 to be precise).

1

https://github.com/khinsen/science-in-the-digital-era
https://github.com/khinsen/science-in-the-digital-era/tree/2c60077481295d2de0290c3bc657d0e58d4c2833
https://www.cnrs.fr/
https://creativecommons.org/licenses/by-sa/4.0/


About the author

My name is Konrad Hinsen, and I have been a research scientist at CNRS in
France since 1998. You can find me on Mastodon

My scientific career started in statistical physics, with a thesis on colloidal
suspensions at RWTH Aachen in Germany. My thesis was based mostly on
computer simulations that ran on the Cray Y-MP at the Forschungszentrum
Jülich. The simulation programs were small Fortran codes that I wrote and
tested myself.

After my thesis I moved to computational biophysics, applying various
simulation techniques to proteins and (to a much lesser degree) DNA. I
fell into a different universe, one where most researchers are users of a
small number of simulation packages written by an equally small number of
groups. As a consequence, most scientists cannot inspect in detail, let alone
modify, the models and methods they apply in their research. Computational
disempowerment. While this situation is understandable in its historical
context (the models for biomolecules are complex and the size of the simulated
systems requires optimized code), I consider it unacceptable in the long run.
Models and methods are at the heart of science and we should never allow
them to be obfuscated or hidden.

This experience, together with my first encounter with computational
(ir)reproducibility around the same time (1995), was the starting point for
my second topic of research: the methodology of computational science, or,
as I prefer to frame it nowadays, computer-aided research.

My first idea was to make scientific software more accessible through the use of
high-level languages, and after I discovered the Python language, I ended up
becoming a founding member of the Matrix-SIG, which developed Numerical
Python, the predecessor of NumPy. On that basis I then developed the
Molecular Modelling Toolkit. In contrast to the popular simulation packages

2

https://khinsen.net/
https://www.cnrs.fr/
https://de.book-info.com/isbn/3-86073-050-9.htm
https://de.book-info.com/isbn/3-86073-050-9.htm
https://www.rwth-aachen.de/
https://en.wikipedia.org/wiki/Cray_Y-MP
http://www.fz-juelich.de/
http://www.fz-juelich.de/
https://www.python.org/community/sigs/retired/matrix-sig/
https://numpy.org/
https://github.com/khinsen/MMTK


ABOUT THE AUTHOR 3

of the time (1997), it was not a program with a fixed feature set, but a
toolkit of basic algorithms that researchers could use from their own Python
scripts.

The move from Fortran to Python did indeed lower the entrance barrier to
becoming a developer, but still most biophysicists did not want to become
developers, and, more importantly, models and methods were still hidden in
computer code that had to respect constraints related to efficient executability.
It takes less time to find and read the relevant code section in MMTK than
in older software, but scientists still cannot study and work with their models
directly. And then, the lower entrance barrier of Python completely changed
to way scientists write and use software, with one big negative impact being
the fragility of the scientific Python ecosystem. Whereas the Fortran code of
my thesis still compiles and runs, many of my Python scripts of ten years
ago have become hard to use, and even harder to trust. Reproducibility has
become a major challenge, not only in the Python ecosystem.

The approaches I am currently exploring for giving scientists more control
over their models and methods are digital scientific notations and re-editable
software, within the larger goal of creating computational media for science. I
am also closely following research on similarly-minded topics, such as explain-
ability in machine learning and human-computer interaction. As Richard
Hamming famously said, the purpose of computing is insight, not numbers.
There is no point in performing massive computations if nobody knows if
their results can be trusted or how they can be interpreted scientifically.

https://www.brainyquote.com/quotes/richard_hamming_645682


Agent-based model

This page is empty

4



Between Scripts and
Applications. Computational
Media for the Frontier of
Nanoscience

An article (also available as a free preprint) that describes common problems
with today’s state of the art in computer-aided research, and proposes a
solution via the introduction of computational media.

The article describes a study of how a team working in experimental biomolec-
ular nanoscience uses computational tools in their daily work. The compu-
tational environment of this team is quite typical for the natural sciences
today:

• multiple platforms (Windows, Linux, macOS, . . . )
• black-box applications that provide a rigid set of well-known function-

ality
• badly documented scripts that were written by researchers for a specific

project, with no intention of maintenance
• dependencies of those scripts (that nobody could even list exhaustively)

This situation creates computational disempowerment, as scientists cannot
work safely and productively with this mess, but they cannot work at all
without it.

The authors report on the experimental introduction of a computational
medium (Webstrates) into the workflow of this research team.

5

https://dl.acm.org/doi/abs/10.1145/3313831.3376287
https://pure.au.dk/ws/files/177499843/iNano_CHI_2020.pdf


Binary code

This page is empty

6



Blockchain

This page is empty

7



Building a Web of Trust for
Open Science

The goal of science is to construct collectively a corpus of reliable knowledge.
This requires strong quality control, which is in fact what makes the difference
between science and other ways of acquiring knowledge. In the following, I
will explain why I see Open Science as an essential ingredient to keep quality
control in science effective.

In the early days of science, quality control was informal. Scientists could read
and understand all publications in their field and form their own judgment,
because both scientists and publications were few in number. With the
enormous growth of science starting in the 1950s, peer review of publications
became the cornerstone of quality control. Scientists trusted work that they
had not examined themselves because they trusted the peer review system
and the people who supervised it, in particular journal editors. Indirect trust,
through the reputation acquired over time by journals, research institutions,
and also individual researchers, became a very important aspect of figuring
out which results to consider reliable. However, reputation is a reliable
source of trust only if it is ultimately grounded in real expertise, i.e. scientists
judging the work of others based on their own understanding of it.

Today, this traditional chain of trust does not work any more. The repro-
ducibility crisis is perhaps the most visible symptom of scientists losing trust
in peer review. The public debate on climate change illustrates that the
general public is losing trust in science. Something has gone wrong.

The peer review system was set up at a time when a typical publication had
one to three authors, from a single discipline. Collecting reports from two
or three experts in the same discipline was then a reasonable approach to
evaluating the quality of the work. All reviewers could be expected to fully

8



BUILDING A WEB OF TRUST FOR OPEN SCIENCE 9

understand the work, and having several reviewers would reduce the risk of
problematic aspects going unnoticed. In some disciplines, e.g. theoretical
physics, nothing much has changed since the 1950s, and peer review continues
to work rather well.

In other disciplines, such as the life sciences or climate research, a typical
publication summarizes the work of a large multi-disciplinary collaboration.
A proper evaluation of such work cannot be done by any individual in a
week. It takes another multi-disciplinary team, and it takes a lot more time.
Moreover, it takes access to much more than a few-page summary of the
work. This is something the Open Science movement has recognized and
improved. Publication of data and code is still not universal, and many
details remain to be worked out, but it seems uncontroversial to me that this
is where we need to go, and the transition has started.

However, publishing data and code is not enough to build trust in large-scale
multidisciplinary research. It’s not even enough to build trust in datasets
and code. For each form of research output, we need techniques for acquiring
expert judgment and then summarizing and relaying it to a wider audience.
And perhaps even “research output” is the wrong unit of evaluation. Perhaps
the only practicable way to proceed is to have independent experts follow
along as a research project, or a software development project, progresses
through its various phases.

Ultimately, what we need to construct is a Web of Trust, much like the
concept of the same name in cryptography. For a start, we could ask authors
of a scientific paper to indicate, for each artifact that they rely on (paper,
software, dataset, . . . ), to what degree and for what reason they consider
it reliable. We could also collect such judgments outside of the publication
process, for example on social media. At the very least, it would force
everyone to think about the question. After a while, we’d have an interesting
graph of trust relation to analyze. I expect some surprises, in particular
“trust bubbles”: artifacts that people trust because everybody else seems to
trust them, without any grounding in qualified expert judgment.

Now is a good time to think about this. Elon Musk buying Twitter has led
scientists to discover and adopt Mastodon, a social network based on an
open protocol. We now have a social network that scientists know and use,
and which is open to extensions. Developing the infrastructure for building
a trust graph is within reach.

If you have ideas or suggestions about this, please comment on Mastodon!

https://en.wikipedia.org/wiki/Web_of_trust
https://en.wikipedia.org/wiki/Web_of_trust
https://scholar.social/@khinsen/109382151772277162


Cellular automaton

This page is empty

10



Cheap complexity

In a 2018 talk at CyCon, a conference on cyber conflict, Thomas Dullien
identifies one of the root causes of increasing security issues with computing
technology as “the anomaly of cheap complexity.” A quote from page 8:

For most of human history, a more complex device
was more expensive to build than a simpler device.

This is not the case in modern computing. It is
often more cost-effective to take a very
complicated device, and make it simulate simplicity,
than to make a simpler device.

What causes this anomaly is economies of scale driving the development
of complex general-purpose computing hardware, which can then simulate
any simpler machine using software, whose cost at scale is much lower.
Unfortunately, the complexity of the general-purpose hardware tends to
create unexpected behavior, which evil-minded adversaries can exploit in
attacks.

What I would like to point out in the following is that (1) cheap complexity
is also an issue in science and (2) it occurs in software for much of the same
reasons as in hardware. I will start with point 2, because it is the main
contribution to point 1.

Software may be cheaper at scale (i.e. as the number of its users grows)
than hardware, requiring no material resources, but producing software
is nevertheless very expensive. It thus becomes advantageous to develop
complex general-purpose software, whose development cost is shared by
a larger number of users, than simpler situated software serving only few
users. Assuming, of course, that the complexity incurs no excessive cost in
development. Every software developer knows that complexity does come at

11

http://rule11.tech/papers/2018-complexitysecuritysec-dullien.pdf
https://cycon.org/


CHEAP COMPLEXITY 12

a price, in the form of technical debt. However, the software industry has
so far escaped from paying the cost because it is not held responsible for
the problems caused by bad software. As an illustration, computer viruses
have caused enormous economic damage, and yet the companies selling the
software that viruses attack are not held responsible for this damage, which
is attributed to inadequate vigilance by its users instead. It’s thus users who
pay the price for the complexity of software.

So why does all this matter for science? Security is rarely a concern in
computer-aided research, at least not beyond issues such as viruses, which
affect all users of computers. The enemy of science is not an evil-minded
hacker, but good old human nature, well-known to be prone to making
mistakes. Science is all about the acquisition of reliable knowledge. If
the knowledge is encoded in computational media, using computational
tools, then those tools had better be reliable as well. Complexity is the
enemy of reliability. And we all know from first-hand experience that our
computers and the software they run are not reliable. How often do you
reboot your computer to fix a problem? How often do you install security
updates? Is it reasonable to believe that scientific software is exempt from
these complexity-related reliability issues, just because its failures are less
spectacular?

So what do complexity-related failures in computer-aided research look like?
The first ones that come to mind are wrong results. Unfortunately, we
most often don’t know the correct result when we compute something in
research, so we never know if a result is correct. Perhaps the most visible
failures that we can easily observe are reproducibility failures. If a computed
result is not reproducible, we don’t really know what has been computed
(because computation, being deterministic, is reproducible). In most cases,
we don’t know what has been computed because we don’t know which
precise software stack we have been running. And we don’t know the precise
software stack because the software stack is too complex to be easily described
and reconstructed. As I explain under Computational reproducibility, that
problem is solved in principle, and increasingly also solved in practice, by
delegating the management of software stacks to computers. Except that. . .
the management software for software stacks is pretty complex as well!

The ultimate solution to the problem of cheap complexity is, of course,
paying the higher price for simpler technology. In the not-so-distant past
when complexity wasn’t cheap, innovation, whether in science or technology,
was followed by a phase of consolidation. New scientific knowledge, once it



CHEAP COMPLEXITY 13

became reliable, was reformulated in ever simpler and more compact ways.
Compare, for example, Isaac Newton’s “Principia Mathematica” to a modern
explanation of the same theory in a textbook for physics students. The
modern version is more compact and much easier to understand. The same
process happens in technology, for example when breadboard prototypes
for electronic circuits get redesigned into printed circuit boards and then
integrated circuit chips for industrial mass production. Could this approach
work for software and digital scientific knowledge as well? We won’t know
before we try!



Code over data

A computation is, from a bird’s eye view, the application of code to input
data, producing output data. Usually the code is a tool to manipulate or
transform data. Computer users tend to care more about their data than
their tools. They want to write a letter, not use Microsoft Word. They want
to watch a movie, not start VLC. They want to simulate the behavior of a
protein, not run GROMACS. Computing should be data-centric, for most
use cases.

Reality is quite the opposite. It’s code over data everywhere you look. Your
phone shows “apps”, meaning tools. They work on data that is handled
opaquely. You don’t really know where it is, what it represents, who can
access it. All you get is the view on the data that the app shows you.

On the desktop, it’s very similar. You probably know the name of your word
processor, but not the name of the file format it uses to store the data. You
probably cannot name other software that could use that same file format.
Contrary to phones, desktop systems let you see and manipulate the files
that contain your data, but offer you only very generic operations (copy,
delete), or running “the app” that effectively owns the data.

In the university classroom, we see the same predominance of code over data.
Whether you look at the titles of computer science classes or textbooks, you
see a lot more on software or algorithms than on data models.

Computing is obsessed with tools, which seem more important than the
tasks they are designed to perform and the information that they process.
Computer-aided research is inheriting this obsession. More and more papers
cite software (which is good!) but don’t describe in sufficient detail what
the software does (which is bad), nor how the input and output data are
structured, making it difficult for readers to examine the work in detail,
possibly using different software.

14



CODE OVER DATA 15

Another illustration is the use of computational notebooks in data science.
Data science is about data, but notebooks are about code. If you want to
show and explain data in a notebook, you have to write the code for this
yourself. A computational medium for data science would put the data in
the primary focus of attention, not the code that loads and processes the
data.



Computational
disempowerment

Many scientists today find themselves depending on computational tools
that they do not fully understand and that they are unable to modify to fit
their needs. Their research is thus constrained by their software tools, and
sometimes that constraint only leaves the choice of doing research badly or
not at all.

The paper Between Scripts and Applications: Computational Media for the
Frontier of Nanoscience.md describes this situation with the very fitting term
“computational disempowerment”, which I am happy to borrow here.

My current view of a way out of this situation consists of two major ingredi-
ents:

1. The introduction and use of computational media as the main human-
computer interface in science.

2. The creation of a digital infrastructure for science, consisting of software
components and services that are designed, developed, and maintained
explicitly for scientific research, with appropriate governance mecha-
nisms.

16



Computational environment

Although now frequently used in the context of computational reproducibility,
the term “computational environment” is rather recent. It usually refers to
the software infrastructure required to run a specific computation: operating
system, compilers, interpreters, support libraries, etc. Sometimes it is used
in a wider sense that includes the actual hardware on which a computation
runs.

Computational environments are the main focus of research and development
around computational reproducibility because now that the actual preserva-
tion of code is a solved problem (see Software Heritage), the documentation
and preservation of computational environments is the biggest unsolved one.

A computation, as defined by Alan Turing in his famous 1937 paper that
introduced the Turing machine, is a transformation of a a string of input
symbols into a string of output symbols via the application of well-defined
rules. In today’s computers, the symbols are bits (0 or 1), so a computation
is the transformation of an input bit sequence to an output bit sequence, the
rules being roughly the processor’s instruction set.

Human computer users like to divide the input bit sequence into code and
input data, the idea being that “active” code operates on “inert” data. While
this is very useful distinction in terms of computer applications, it belongs to
the realm of interpretation. For the computer, it’s all bits. One way to see
that code vs. data is a matter of interpretation is to consider an alternative
one: the format of the input data can be seen as a formal language, for which
the code reading the data is an interpreter. In this interpretation, everything
is code.

Next, human users like to divide the code into a program that is run and
the environment that supports the program. This is an even more arbitrary
dividing line. It comes down to a distinction between “the code that I

17

https://www.softwareheritage.org/
https://doi.org/10.1112/plms/s2-42.1.230


COMPUTATIONAL ENVIRONMENT 18

care about” (the program) and “the code that I don’t care about” (the
environment). The computer cares equally about each bit in its input.

A computation is reproducible if the full input bit sequence is preserved and
can be replayed: input data, the code that the authors of the computation
care about, but also the code they don’t care about. Is it really surprising
that all the trouble comes from the code we don’t care about? Starting to
care about one’s computational environments is the key step to improving
computational reproducibility.

Today, preserving and replaying computational environments bit by bit has
become relatively easy. Container images, via management tools such as
Docker or Singularity, do the trick. Unfortunately, that has proven insufficient
for making computer-aided research reproducible. Container images ensure
reproducibility for computers (bits, it’s all just bits!), but not for humans.
For a human user, a container image proves exactly one fact: that there exists
a computer program that produces a given result. Which, for a digital result,
is a rather trivial fact. Human users need to understand the computation at
the level of their interpretation of inputs, code, and outputs. Human users
need source code.

Computational environments being digital artifacts, created via computation
(see “The dual nature of software”), they always have source code, but we
don’t yet care enough about environments to (1) preserve this source code
(it’s often a few lines of shell commands typed in by hand) and (2) make it
reproducible. The good news is that this is possible, and even supported by
existing tools such as Guix. As a simple example, the following two source
code files fully define a computational environment, bit by bit:

File “manifest.scm”:

(specifications->manifest
(list "python"

"python-matplotlib"
"python-numpy"))

File “channels.scm”:

(list (channel
(name 'guix)
(url "https://git.savannah.gnu.org/git/guix.git")
(branch "master")
(commit

https://www.docker.com/
https://sylabs.io/docs/


COMPUTATIONAL ENVIRONMENT 19

"35b176daf1a466f136f0b77c03de78f482a30702")))

Given those two files, and a computer with an installation of Guix, the
environment can be re-created using the command

guix time-machine -C channels.scm -- guix shell -m manifest.scm

On two computers that have compatible processor instruction sets, this will
create environments that are identical, bit for bit.

Why does the source code of an environment consist of two files? Because the
creators of Guix decided to separate the list of the software building blocks
in the environment (manifest.scm) from the list of their precise versions
(channels.scm), in order to make it easier to vary the versions and thus test
for the robustness of the computation. It’s a minor technical design decision.

Are you ready to start caring about your computational environments? Then
take a serious look at Guix.

Recommended reading: - Dealing with software collapse (preprint) - A Dream
of Simplicity: Scientific Computing on Turing Machines (preprint)

https://doi.org/10.1109/MCSE.2019.2900945
https://hal.archives-ouvertes.fr/hal-02117588
https://doi.org/10.1109/MCSE.2017.39
https://doi.org/10.1109/MCSE.2017.39
https://hal.archives-ouvertes.fr/hal-02117720


Computational media

Media are substrates for encoding information. They can serve many pur-
poses, the most common ones being communication, archival, or interfacing
with tools. Printed paper is a medium. An abacus is a medium. The
telephone is a medium. Television is a medium.

Digital media are media defined by software, amenable to processing with a
computer. MP3 audio files are digital media, as are Word documents, PNG
images, and many others.

Computational media are digital media that can encode computation among
other information. Spreadsheets (e.g. Excel and its many clones) are probably
the most well-known example. Game engines are another example, well known
as well though most people are probably unaware of their capacity to encode
computation.

Programming languages can be seen as a degenerate form of computational
media, which can encode computation but nothing else. I consider the
predominance of programming languages in today’s computing technology,
and in particular the widespread idea of “general purpose” programming
languages, a sign of the immaturity of this technology. It goes along with an
exaggerated focus on code over data.

Computational science suffers from this exaggerated focus as well. The
core entities of science are observations, models, and the relations between
them. Computational media for science should encode these entities, and let
scientists explore and refine them. Tools, such as computers and software,
are merely means to this end. Astronomy is about stars and galaxies, not
about telescopes. Particle physics is about elementary particles, not about
particle colliders. Biology is about living organisms, not about microscopes
or test tubes. The computational branches of these disciplines should also
be about entities in nature and the models we make of them, not about

20



COMPUTATIONAL MEDIA 21

computers and software.

What could a computational medium for science look like? I’ll stick to what
I know: physics and chemistry, and in particular biophysics. My current
idea of a computational medium for these disciplines takes the shape of
a Wiki, a collection of cross-references pages, much like Wikipedia. Some
pages in this Wiki describe entities, such as proteins. Other pages describe
models for entities in nature, such as the elastic network model for proteins.
Yet other pages describe observations on these entities, i.e. typically the
outcomes of experimental studies. Below this surface of human-readable
narratives, the pages contain machine-readable representations of everything,
made explorable and refineable by suitable tools.

Much of the technology required for such a computational medium already
exists. We have Wikis, and we have the semantic Web as a backbone for
encoding relations in a machine-readable way. The Nanopublications project
(and others!) illustrates how the semantic Web can be used to encode relations
between observations and models, as well as statements about observations
and models, such as claims or evidence as part of a discourse graph. We
also have good digital representations for observations, though the multitude
of data formats makes them hard to manage. What’s lacking do far is a
suitable representation of models - that’s what I hope to achieve with digital
scientific notations.

Computational tools will still exist, of course. But instead of the scientist
going to the tool and set it in motion, loading data from files etc., the tools
will be an extension to the computational medium. One possibility is to run
tools from code cells inside a Wiki page, which then functions much like a
computational notebook does today.

Recommended reading:

• Beyond programming languages, by Terry Winograd. A 1979 paper
whose vision has not yet been realized.

• The computer revolution hasn’t happened yet, by Alan Kay. A recorded
talk from 1997, but it hasn’t happened in the following 25 years either.

• Software as Computational Media, by Clemens Nylandsted Klokmose
(video, recorded keynote speech at the conference LIVE’21)

• Computational science: shifting the focus from tools to models, by
yours truly.

https://en.wikipedia.org/wiki/Wikipedia
https://nanopub.org/
https://doi.org/10.1145/359131.359133
https://archive.org/details/AlanKayAtOOPSLA1997TheComputerRevolutionHasntHappenedYet
https://www.youtube.com/watch?v=I-aGF-47hqI
https://doi.org/10.12688/f1000research.3978.2


Computational notebook

An electronic document embedding a computation into a narrative.

Computational notebooks differ from literate programming in documenting
a computation, i.e. code with all required input data, whereas literate pro-
gramming documents programs, i.e. code designed to accept varying input
data. It is the focus on fully specified computations that makes it possible
to include intermediate and final results. On the other hand, this same focus
means that notebooks can only deal with the surface layer of a computation.
The library code called from that surface layer remains inaccessible to the
reader of a notebook.

22



Computational replicability

This page is empty

23



Computational
reproducibility

In the context of computer-aided research, reproducibility refers to the
possibility to re-execute a computation and check that the results are identical.
It differs from computational replicability, which is about the robustness
of results under minor changes in the software. Unfortunately, terminology
hasn’t settled yet and some authors use these two terms in exactly the
opposite way.

Computational reproducibility became a subject of debate because its prac-
tical impossibility came as a surprise. Computations are supposed to be
deterministic. 2 + 2 is 4 today, as it has been for centuries, and we have little
doubt that the result will be the same 100 years from now. Computations
done by a computer usually perform a huge number of such steps, but that
shouldn’t make a difference: 1 million deterministic steps still make for a
deterministic result. The practical experience of scientists using computers
is quite the opposite: it is the rule rather than the exception that re-running
someone else’s computation leads to a slightly different result.

This apparent mystery has a simple explanation. If you re-do a computation
twice in succession on your computer, you will get the same answer (ignoring
special cases such as random number generators or parallel computing).
If you re-do a computation a day later on the same computer, you will
also get the same answer, most of the time. In fact, if you get a different
result, then something has changed on your computer in between. Most
probably, you have updated some software, possibly without being aware of
it. And when you re-do someone else’s computation on your computer, you
are actually transferring a small component of one software system into a
different software environment - yours. In other words, when a reproduction

24



COMPUTATIONAL REPRODUCIBILITY 25

attempt for a computation yields a different result, the by far most frequent
explanation is that the computations were subtly different.

So how can it happen that two people who are convinced of doing the same
computation are actually doing different ones? The two main culprits are the
complexity and the opacity of today’s software stacks. What you think of as
“the software” you are running is really just the tip of the iceberg. Between
that code and the processor that is doing the work inside your computer,
there are many layers of software that have an impact on the results you will
get. Obtaining a full description of those layers is very difficult to impossible
on most of today’s computing platforms. Transferring all of them to another
machine is even more difficult, and often impossible.

A case study
An interesting case study from chemistry was published in 2019 by Neupane
et al.. It starts from a 2014 publication of a computational protocol for
obtaining molecular structures from chemical shifts measured by NMR (don’t
worry if you don’t understand what this means). The supplementary material
for that publication contains two Python scripts that are essential parts of
the protocol. What Neupane et al. discovered is that these scripts access
the data files they process in a way that tacitly assumes a behavior specific
to the Windows operating system. When run under Linux, the scripts can
read the data files in a wrong order, depending on circumstances that are
outside of the scripts’ control. As Neupane et al. note:

This simple glitch in the original script calls into question the
conclusions of a significant number of papers on a wide range of
topics in a way that cannot be easily resolved from published
information because the operating system is rarely mentioned.

Yes, your operating system is part of the software that you are running. As
are, in the case of this specific example, the Python interpreter, the Python
libraries it depends on, and a much larger number of nearly invisible libraries
that Python itself depends on. All of these software components are regularly
updated by their authors, with the goal of fixing bugs, adding features, or
improving performance. This explains why the software environment on your
computer changes all the time, and why two different computers are highly
unlikely to have the same software environment.

The two Python scripts that are the focus of this case study have been fixed

https://doi.org/10.1021/acs.orglett.9b03216
https://doi.org/10.1021/acs.orglett.9b03216
https://doi.org/10.1038/nprot.2014.042


COMPUTATIONAL REPRODUCIBILITY 26

in the meantime, but I suspect that many scientists still have and use the
original ones.

Is there a way out?
Yes. Computational reproducibility is, in principle, a solved problem. There
are well-understood techniques to document a software assembly completely
and precisely, in such a way that it can be transferred to a different computer.
Not just any computer though, it has to be sufficiently similar to the original
one, and in particular use the same type of processor (which, in a way, is also
part of your software stack). Better yet, there are freely available tools that
manage software (and computations) reproducibly for you: Nix and Guix. A
key insight behind these two tools is that every computation on a modern
computing system is actually a staged computation, with reproducibility of
the last stage (the one we most care about) requires the reproducibility of
all prior stages.

This isn’t the end of the story though. The existence of support tools that
guarantee computational reproducibility is only the first step. In terms of
user-friendliness, these tools still leave a lot to be desired. And most research
software has not yet been integrated into their management scheme, and
for some software this is nearly impossible. In particular, only Open Source
software can be managed reproducibly, because controlled compilation of the
source code is a crucial step. And that also means that the only operating
system that can be supported is Linux.

A few years ago, a frequently discussed question was “is computational
reproducibility possible?”. Today it is clear that the answer is “yes”. Now
the question is how much reproducibility is worth to researchers. Enough to
support the development of Nix and Guix? Enough to invest into learning how
to use them? Enough to abandon proprietary software, including the popular
operating systems Windows and macOS? Time will tell. Computational
reproducibility is no longer a technical issue, it’s a social one.

Further reading: - Is reproducibility practical? by Ludovic Courtès

https://hpc.guix.info/blog/2022/07/is-reproducibility-practical/
https://people.bordeaux.inria.fr/lcourtes/


Computational science

This page is empty

27



Computer-aided research

Scientific research in which computers and software are essential parts of
the research workflow. The term computational science is usually reserved
for research in which computation is the dominant tool. Computer-aided
research is a much wider category, including most of today’s experimental
research that relies on computational data processing in various stages of
the overall workflow.

28



Content-addressable storage

This page is empty

29



Data science

According to Wikipedia,

Data science is an interdisciplinary field that uses scientific meth-
ods, processes, algorithms and systems to extract knowledge and
insights from noisy, structured and unstructured data, and apply
knowledge and actionable insights from data across a broad range
of application domains.

This sounds very modern, but it’s really only the label that is recent. Re-
searchers such as Apollonius, Hipparchus, and Ptolemy, practiced data
science about 2000 years ago.

The focus of interest of these early researchers was a topic that had kept
humanity busy for quite a while already, all over the world: the motion
of heavenly bodies. The main motivation was making predictions for the
near future. The configuration of the stars and planets was widely believed
to have an impact on human affairs (a belief we call astrology today), so
knowing them in advance was of obvious interest. They had astronomical
observations at their disposal, but numbers alone are not sufficient to make
predictions. You also need a model for extrapolating the numbers to the
future.

The tool that Apollonius, Hipparchus, Ptolemy, and probably others, de-
veloped and improved to near perfection was epicycles: a model for the
orbit of a heavenly body consisting of a superposition of circles, with each
circle’s center moving along a bigger circle’s circumference. Epicycles are
similar in spirit to Fourier series. Any periodic orbit can be described as a
superposition of circular motions. Given enough data, one can fit an epicycle
model and make predictions. But since the epicycle model does not contain
any physics, it doesn’t come with any safeguards against mistakes. Epicycles
can equally well describe real and completely unrealistic orbits, and therefore

30

https://en.wikipedia.org/wiki/Data_science
https://en.wikipedia.org/wiki/Apollonius_of_Perga
https://en.wikipedia.org/wiki/Hipparchus
https://en.wikipedia.org/wiki/Ptolemy
https://en.wikipedia.org/wiki/Deferent_and_epicycle


DATA SCIENCE 31

the quality of the data is very important.

Today’s data science works much the same. Very general models, such as
neural networks, are fitted to large datasets via machine learning techniques,
and then used to make predictions. Again the models contain very few
assumptions about underlying laws of nature. They are by design very
general (see e.g this visual proof that neural networks can compute any
function) in order to capture any kind of regularity in the input datasets. As
for epicycles, data quality is important, which is why data scientist invest a
significant effort into cleaning up the raw data they work on.

Aside from the obvious technological aspects and the associated change of
scale in the size of datasets, the main improvement of today’s data science
on epicyle models for orbits is even more generality. Early astronomers had
periodicity baked into their models from the start. Neural networks (and
other models used in data science) could predict the motion of heavenly
bodies with even less theoretical input. However, it is important to realize
that every model imposes some a priori assumptions, even if, as in the case
of neural networks, these assumptions are not fully understood and therefore
not formalized. Seen in this light, the improvement of modern data science
over epicycles is gradual rather than fundamental. It is also interesting to
note that neural network research has (re-)discovered the benefits of more
specialized models, as e.g. in convolutional neural networks.

Adopting an historical perspective, data science turns out to mark the
beginning of scientific disciplines rather than their refinement. It permits the
very first step from raw observations to a description of regularities in the
form of empirical models. Connecting these regularities to more fundamental
principles that are already known, or even discovering new fundamental
principles as in the case of Newton’s laws for celestial mechanics, can only
happen afterwards, via the construction of explanatory models.

http://neuralnetworksanddeeplearning.com/chap4.html
https://en.wikipedia.org/wiki/Convolutional_neural_network


Decentralized science

Under the label of “decentralized science”, several communities are exploring
the use of blockchains and related cryptographic technology for structuring
scientific research. One focus is on funding, using ideas from crypto-currencies.
Another focus is publication with better provenance tracking.

While I am optimistic about the long-time potential of these efforts, I don’t
expect any real progress to be made as long as these communities remain
attached to blockchains and their crypto-currencies. A big practical issue
with blockchains is that they are, by design, largely decoupled from the
real world. The interface between people, institutions, and blockchains are
anonymous accounts, of which each actor can create an arbitrary number.
Anonymity and cheap accounts means that nothing prevents people from
reviewing their own publications, using a second account, or voting multiple
times on some issue. Anonymity also means that actions on the blockchain
are unrelated to a person’s scientific reputation.

Further reading:

• A Guide to DeSci, the Latest Web3Movement, by Sarah Hamburg

32

https://future.com/what-is-decentralized-science-aka-desci


Digital Garden

A digital garden is a small ecosystem of interrelated documents that its
curator tends to with regular updates and revisions. It differs from a blog,
which is a stream of finished-then-published documents. A digital garden can
be considered a special case of a Wiki that is curated by a single person or a
small team, in contrast to open-to-all collaborative works such as Wikipedia.

Recommended reading on digital gardens: - The Garden and the Stream: A
Technopastoral by Mike Caulfield - A Brief History & Ethos of the Digital
Garden by Maggie Appleton

33

https://hapgood.us/2015/10/17/the-garden-and-the-stream-a-technopastoral/amp/
https://hapgood.us/2015/10/17/the-garden-and-the-stream-a-technopastoral/amp/
https://maggieappleton.com/garden-history
https://maggieappleton.com/garden-history


Digital infrastructure

Hardware, software, and services that allow scientists to do computer-aided
research focusing on the science rather than on computing technology.

Today’s digital infrastructure for science is 1. insufficient, in leaving many
needs unsatisfied 2. mostly borrowed from domains of activity whose needs
are very different from research (such as enterprise software) 3. not under
control of the research community

Recommended reading:

• Decentralized Infrastructure for (Neuro)science, by Jonny Saunders

34

https://jon-e.net/infrastructure/


Digital scientific notation

A scientific notation is a convention for encoding scientific information using
symbols. The best known example is mathematical notation. The goal of a
scientific notation is to represent scientific knowledge in a way that humans
can easily comprehend and manipulate. While in principle a mathematical
equation could be replaced by an equivalent statement in plain language,
the more concise equation is faster to read (assuming a trained reader) and
allows manipulation by formal rules (such as “add the same term to both
sides”).

A digital scientific notation is a scientific notation that can be processed by
both humans and computers. A machine readable notation is necessarily a
formal language and thus has a well-defined unambiguous syntax in addition
to some useful level of well-defined semantics.

There are many formal languages designed for representing scientific infor-
mation. An example is the Systems Biology Markup Language (SBML).
Most of them do not qualify as digital scientific notations, because they are
designed to be used by software but not for communication between humans.

There are also formal languages that are designed to be read and written
by humans, in addition to computers. Programming languages are the most
prominent examples. In scientific computing, programming languages are
routinely used to represent scientific knowledge as program code. In particu-
lar, computational notebooks embed code written in high-level programming
languages such as Python or R into a narrative, much like mathematical
notation is used in traditional scientific publications. However, programming
languages fill the role of scientific notations rather poorly, in particular
because they cannot express anything other than executable algorithms.

Digital scientific notations are not computational tools, but parts of the
communication interfaces between scientists and their computational tools.

35

https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/SBML


DIGITAL SCIENTIFIC NOTATION 36

In particular, they permit scientists engaged in computer-aided research to
discuss computational models and methods in a way that ensures conformity
between the human narratives and the computations.

Further reading: - Scientific notations for the digital era (on arXiv) and a
comment on it by Mark Buchanan in Nature Physics - Scientific communica-
tion in the digital age (in Physics Today) - Leibniz in four minutes, a short
video demo of Leibniz that illustrates the role of digital scientific notations.

http://www.nature.com/doifinder/10.1038/nphys3815
http://dx.doi.org/10.1063/PT.3.3181
http://dx.doi.org/10.1063/PT.3.3181
https://diode.zone/w/1RUVjM5xj54gZjHXobSNUe


Discourse graph

See the Discourse Graph Starter Kit

37

https://discoursegraph.com/


Donald Knuth

This page is empty

38



Elastic network model

This page is empty

39



Emacs

This page is empty

40



Empirical model

The first type of scientific model that people construct when figuring out a
new phenomenon is the empirical or descriptive model. Its role is to capture
observed regularities, and to separate them from noise, the latter being
small deviations from the regular behavior that are, at least provisionally,
attributed to imprecisions in the observations, or to perturbations to be
left for later study. Whenever you fit a straight line to a set of points, for
example, you are constructing an empirical model that captures the linear
relation between two observables. Empirical models almost always have
parameters that must be fitted to observations. Once the parameters have
been fitted, the model can be used to predict future observations, which is a
great way to test its generality. Usually, empirical models are constructed
from generic building blocks: polynomials and sine waves for constructing
mathematical functions, circles, spheres, and triangles for geometric figures,
etc.

The use of empirical models goes back a few thousand years. As I have
described in in a blog post, the astronomers of antiquity who constructed
a model for the observed motion of the Sun and the planets used the same
principles that we still use today. Their generic building blocks were circles,
combined in the form of epicycles. The very latest variant of empirical
models is machine learning models, popular in data science, where the generic
building blocks are, for example, artificial neurons. Impressive success stories
of these models have led some enthusiasts to proclaim the end of theory, but
empirical models of any kind and size are really the beginning, not the end,
of constructing scientific theories around explanatory models

The main problem with empirical models is that they are not that powerful.
They can predict future observations from past observations, but that’s all.
In particular, they cannot answer what-if questions, i.e. make predictions
for systems that have never been observed in the past. The epicycles of

41

https://blog.khinsen.net/posts/2017/12/19/data-science-in-ancient-greece/
https://www.wired.com/2008/06/pb-theory/


EMPIRICAL MODEL 42

Ptolemy’s model describing the motion celestial bodies cannot answer the
question how the orbit of Mars would be changed by the impact of a huge
asteroid, for example.

Today’s machine learning models are no different. A major recent success
story is AlphaFold predicting protein structures from their sequences. This
is indeed a huge step forward, as it opens the door to completely new ways
of studying the folding mechanisms of proteins. It has also already become a
powerful tool in structural biology. But it is not, as DeepMind’s blog post
claims, “a solution to a 50-year-old grand challenge in biology”. We still do
not know what the fundamental mechanisms of protein folding are, nor how
they play together for each specific protein structure. And that means that
we cannot answer what-if questions such as “How do changes in a protein’s
environment influence its fold?”, because the only variation in its inputs that
AlphaFold has been trained on is the protein’s amino acid sequence.

https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology


Empty page

There are many empty pages in this collection, and you may wonder why.

One reason is that this digital garden is work in progress. When I work on a
page, I often insert links to pages that I intend to write, but haven’t written
yet. So you see an empty page. If you come back later, you may find some
real content there. So. . . come back often.

The second reason is that empty pages are useful link targets, due to the
backlink feature in my digital garden. At the end of each page, you see a
list of other pages that link to the current one. Empty pages thus fulfill the
role of a subject index in a traditional book: they help you find where some
topic is discussed.

43



Epistemic diversity

Epistemic diversity refers to the coexistence of multiple perspectives, research
methodologies, theories, and models in a scientific discipline. Ideally, these
different points of view participate in all debates, enriching and critiquing
each other. From an evolutionary perspective, epistemic diversity is im-
portant to prevent scientific inquiry from getting stuck, with one point of
view dominating a discipline and criticism of this point of view becoming
impossible to get heard. History has shown that even the most successful
scientific theories lose their status of “best known description” one day. New-
tonian mechanics was considered an absolute Truth for two centuries, before
relativity and then quantum mechanics revealed its limitations and degraded
it to a practically very useful, but no longer universal reasoning framework
about our universe.

Up to here, I expect that most scientifically educated readers would nod in
agreement. And yet, epistemic diversity is threatened by two foundational
ideas of the industrial age: automation and standardization. Both are
important for scaling up production processes, increasing productivity and
lowering costs. Since the 1950s, science has increasingly be considered a
support for economic and thus industrial development, in addition to its
traditional role of improving our understanding of the world. Perhaps the
most visible symptom is the now common practice of evaluating scientists by
productivity criteria. One way to be more productive is to adopt standard
practices, and to apply one’s acquired competences mechanically to as many
specific situations as possible.

This quest for productivity has left its marks in the Open Science movement,
in particular in the FAIR principles. Whereas Findability and Accessibility
are uncritical, Interoperability and Reuse are about standardization and pro-
ductivity. Making data interoperable with existing software and conventions
often requires cutting it down, removing information that doesn’t fit the

44



EPISTEMIC DIVERSITY 45

imposed storage formats or protocols. Reusing data implies accepting the
values and motivations behind their collection.

For software, reuse implies adopting a potentially large set of explicit and
tacit hypotheses made by its developers, and living with its mostly unknown
but inevitable bugs. Bugs and the difficulty of fixing them is usually cited
as a reason for reusing software as much as possible, mutualizing the effort
of maintenance among a larger community. That is fine if the goal is to
eliminate as many bugs as possible. But in science, what really matters
is to reduce the impact of bugs on results, and from that point of view,
it’s bugs going unnoticed that are the most serious problem. With diverse
software and thus diverse bugs, the chance of them going unnoticed is smaller.
Provided, of course, that the results from diversely buggy software packages
are confronted, and the causes of any differences explored, which is not
commonly done today. Computational replicability matters.

In a world of finite resources, there is no obvious solution to the tension
between doing the best possible job on one project or tool on one hand, and
exploring multiple directions in the interest of epistemic diversity on the
other hand. But we should at least remain aware of the tension.

Further reading: - Open Science and Epistemic Diversity: Friends or Foes?
by Sabina Leonelli

http://doi.org/10.1017/psa.2022.45
https://sociology.exeter.ac.uk/staff/leonelli/


Epistemic opacity

Epistemic opacity is philosophers’ jargon for describing processes and mecha-
nisms that are much easier to use than to understand. If you do use such a
process, you don’t really know what you are doing.

Consider a somewhat complex computation, but one which is still doable
by hand. Computing the correlation of two 100-point discrete signals, for
example. Now consider the following ways of getting to the result:

1. You do the computation by hand, yourself.
2. You ask one of your students to do the computation for you (assuming

you are an academic, of course!)
3. You write a computer program do to the computation, then run it.
4. You run a computer program written by someone else.

From top to bottom, epistemic opacity increases, making a huge jump
between number 3 and 4. If you do everything yourself, by hand, you will
likely insert checks to catch mistake, because you know that everybody makes
mistakes in lengthy computations. Probably you also make a drawing of the
result as you go on computing points. And since you have some intuitive
notion (assuming you are familiar with correlation functions of course) of
what the result will look like. The computation is under control.

Delegating the job to a student makes it less transparent, but you can still
ask the student questions, and look at the student’s worksheet. And since
the student learned the methods from you, the worksheet has a chance of
making sense to you.

Writing a program for the job is similar. You write, proof-read, and most of
all test the program, performing checks similar in spirit (though different in
details) from the checks in the manual computation. But it’s much easier to
be superficial about testing: you will get a result even if you don’t.

46



EPISTEMIC OPACITY 47

Running someone else’s program is a very different story. You can do that
even if you don’t know what a correlation function is! The program is an
opaque machine into which you stuff data and then take new data out at
the other end. If you do understand the program’s task, you will still spot
significant mistakes in the result. But in the manual computation, you
would also spot mistakes in the intermediate results, which in the automatic
computation never become visible.

This is an important and not sufficiently discussed problem with reusable
scientific software. It’s of course efficient, in the sense of productivity, to
re-use someone else’s software to get a job done. But it severely limits
your understanding of the result, and your capacity to verify that the result
corresponds to the scientific method you wish to implement.



Experimental reproducibility

This page is empty

48



Explanatory model

In contrast to empirical models, explanatory models describe the underly-
ing mechanisms that determine the values of observed quantities, rather
than extrapolating the quantities themselves. They describe the systems
being studied at a more fundamental level, allowing for a wide range of
generalizations.

A simple explanatory model is given by the Lotka-Volterra equations, also
called predator-prey equations. This is a model for the time evolution of the
populations of two species in a preditor-prey relation. An example is shown in
this plot (Lamiot, CC BY-SA 4.0 https://creativecommons.org/licenses/by-
sa/4.0, via Wikimedia Commons):

An empirical model would capture the oscillations of the two curves and their
correlations, for example by describing the populations as superpositions of
sine waves. The Lotka-Volterra equations instead describe the interactions
between the population numbers: predators and prey are born and die,
but in addition predators eat prey, which reduces the number of prey in
proportion to the number of predators, and contributes to a future increase
in the number of predators because they can better feed their young. With
that type of description, one can ask what-if questions: What if hunters
shoot lots of predators? What if prey are hit by a famine, i.e. a decrease
in their own source of food? In fact, the significant deviations from regular
periodic change in the above plot suggests that such influences from the
environment (everything not explicitly represented in the model) are quite
important in practice.

One of the biggest success stories in the history of science is the shift from
the empirical models for celestial mechanics (Ptolemy’s geocentric epicycles,
Kepler’s heliocentric ellipses) to Issac Newton’s explanatory differential
equations. Newton’s laws of motion and gravitation fully explained Kepler’s

49

https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0


EXPLANATORY MODEL 50

elliptical orbits and improved on them. More importantly, they showed
that the fundamental laws of physics are the same on Earth and in space,
a fact that may seem obvious to us today but wasn’t in the 17th century.
Finally, Newton’s laws have permitted the elaboration of a rich theory, today
called “classical mechanics”, that provides several alternative forms of the
basic equations (in particular Lagrangian and Hamiltonian mechanics), plus
derived principles such as the conservation of energy. As for what-if questions,
Newton’s laws have made it possible to send artefacts to the moon and to
the other planets of the solar system, something which would have been
unimaginable on the basis of Ptolemy’s epicycles.

In the past, almost all explanatory models took the form of mathematical
equations, and in particular differential equations. This is likely to change
in the digital era. Agent-based models are an example of “digital native”
explanatory models. There is, however, a formal characteristic that is shared
by all explanatory models that I am aware of, and that distinguishes them
from empirical models: they take the form of specifications.

https://en.wikipedia.org/wiki/Lagrangian_mechanics
https://en.wikipedia.org/wiki/Hamiltonian_mechanics
https://en.wikipedia.org/wiki/Agent-based_model


FAIR

Findability, Accessibility, Interoperability, and Reuse of digital assets

See the FAIR principles home page

51

https://www.go-fair.org/fair-principles/


Floating-point arithmetic

This page is empty

52



Force field

See Wikipedia

53

https://en.wikipedia.org/wiki/Force_field_(chemistry)


Formal language

This page is empty

54



Formal system

Wikipedia defines a formal system as:

A formal system is an abstract structure used for inferring theo-
rems from axioms according to a set of rules.

This is a rather narrow definition in the context of mathematics. I use the
term in a wider sense as any abstract structure used for deducing outputs
from given inputs using precise rules. For example, I consider Newton’s laws
of motion a formal system for computing the trajectories of point masses
from their initial positions and a description of their interactions. In this
wider sense, formal systems are the symbolic equivalent of machines, and
computers have turned this metaphor into a physical reality. Indeed, every
computer program implements the rules of some formal system.

Formal systems are usually constructed with a specific intended meaning
for its rules, inputs, and outputs. However, the meaning comes from the
embedding context, e.g. the scientific model in which the formal system is
used. A formal system by itself is just symbols and rules for manipulating
them. It is up to the user of the formal system to verify that the rules conform
to their intended meanings. Stated in the jargon of computer programming:
it is up to the user to verify that a program does what it is expected to do.

This sets a limit to the usefulness of large formal systems in scientific models:
a formal system (and in particular a computer program or a trained neural
network) that is so complex that examining and verifying it becomes infeasible
has a rather limited utility in science. While it can be used to make testable
predictions, it remains at the level of an empirical model. To become the
foundation of more powerful explanatory models, formal systems must be
verifiable to the point that we can be reasonably certain to know their limits
of validity. Unfortunately, today’s software technology makes it easier to
build large and complex formal systems (programs) than small and simple

55

https://en.wikipedia.org/wiki/Formal_system
https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion


FORMAL SYSTEM 56

ones that scientists can explore in detail and thus understand.



Formal vs. informal

What characterizes formal systems (as well as formal languages, methods,
etc.) is the existence of a closed symbolic universe in which precise rules
apply. Formal systems require no reference to a context for interpreting their
rules or making judgments of any kind. The symbols that are processed by
a formal systems are of course interpreted in some application context, but
this happens outside of the formal universe.

Informal methods, in contrast, use less precise references and rules, whose
exact interpretation is context-dependent. The words of a (human) language
are a good example. They usually take different meanings in different
contexts, but those meanings are nevertheless somehow related.

A computation, as defined e.g. by a Turing machine, is a perfectly closed
formal system. The input symbols fully determine the output symbols. An
algorithm, and its implementation as a computer program, are somewhat
open in having an interface to the outside world, from which they accept
input data. However, the format and computational semantics of the input
data is defined by the formal system, not the outside world. The more input
the program takes from the outside world, the more its output is shaped by
the outside world, making the computation less formal. An extreme case
is a machine learning system, whose output is determined much more by
the input data used in the training phase than by its formalized aspects
(such as artificial neurons), which are intentionally chosen to constrain the
output only weakly. This is why machine learning has been so successful in
describing many aspects of the world, but it is also the reason why it creates
very little explanatory power.

Scientific models are inherently context-dependent and therefore informal.
Formal systems are tools for reasoning that are always embedded into a
larger informal model that links the formal system’s symbols to concepts

57



FORMAL VS. INFORMAL 58

about the physical world. However, only the formalized part of the model
can make it explanatory.



Formalization

Formalization is a process in which concepts and their relations are made
more precise by the introduction of formal systems. It can be seen a specific
technique of conceptual engineering.

Formalization is widely applied in the construction of scientific models, but
its importance varies widely between scientific disciplines. The most heavily
formalized discipline is physics, to the point that one could almost define
physics as the study of nature using formalized models. Other disciplines
are less attached to formalization, but more formalized models are generally
considered superior to less formalized models, and in particular the special
case of quantification is almost universally seen as desirable in science today.

The prestige associated with formalized models creates the risk of premature
formalization, i.e. the introduction of formal systems that do not faithfully
implement the original informal model and/or the available observations,
but leave a superficial impression of precision.

Even though formal systems are often presented as the central part of a
scientific model, in particular in physics textbooks, the model is always more
than its formal system(s). At the very least, each model has an informal part
that describes how the formal expressions relate to observations. Newton’s
laws of motion, for example, require a definition of concepts such as time and
force in terms of observable properties to make a complete scientific model.

In the past, formalization was limited to simple formal systems that could
be constructed and verified by humans without machine support. This was
a laborious task that typically involved entire communities for many years.
Formal systems in scientific models thus tended to be few, simple, and well
examined. In the digital era, formalization happens, often without much
thought, whenever a scientist writes a program to predict or process observa-
tions. Since computer programs are notoriously difficult to understand, if

59

https://en.wikipedia.org/wiki/Conceptual_engineering
https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion


FORMALIZATION 60

only due to the complexity of today’s software stacks, we see the opposite
phenomenon of numerous complex formal systems that are only superficially
examined and verified.

Can we have both the level of verification and transparency of the good old
days and today’s ease of constructing new formal systems using computers?
I believe we can. The two key ingredients that I see are:

1. Notations for formal systems that are much more lightweight than
software source code, and integrate well with the narratives that define
the informal aspects of scientific models. I call them Digital scientific
notations.

2. Support tools for managing the formalization process, both at the level
of individual scientists focusing on a single aspect, and at the level of
research communities working towards consensual models. My ideas
for this part remain vague, but I suspect that computational media for
science will be an important ingredient. And maybe also static type
systems.



Git

This page is empty

61



Glamorous Toolkit

A toolkit for making software systems explainable. Watch that talk, and
then see the Glamorous Toolkit Web site for further information, and for
downloading a copy for your own exploration.

62

https://gtoolkit.com/


Guix

See the Guix Web site

63

http://guix.gnu.org/


Human-computer interaction

This page is empty

64



Implementation details

This digital garden is a TiddlyWiki extended with the Markdown and Krystal
plugins.

The pages are written as Markdown files (plus optional metadata), which
I write and edit using GNU Emacs. They are stored in a repository on
GitHub, which also contains a Python script and a bash script that generate
the TiddlyWiki by adding the pages to a template file (which is also in the
repository).

65

https://tiddlywiki.com/
https://github.com/Jermolene/TiddlyWiki5/tree/master/plugins/tiddlywiki/markdown
https://github.com/crazko/krystal
https://www.gnu.org/software/emacs/
https://github.com/khinsen/science-in-the-digital-era
https://github.com/khinsen/science-in-the-digital-era


Julia

https://julialang.org/

66



Legally open vs. effectively
open

Open Science is very much in fashion today, but it remains a rather fuzzy
concept. In addition to divergent opinions about what exactly should be
made open, there are multiple degrees of openness. Most of the discussion
around Open Science is about what I call “legally open”: allowing everyone
to access the outputs of research legally and at reasonable cost (which in
the digital era means at no cost). Open access is all about being legally
open, for example. The Open Source movement in software started similarly,
concentrating on licenses. What I will argue for in the following is that
Open Science should be about making research outputs effectively open, by
which I mean that research outputs are made easily accessible for as large
an audience as reasonably possible.

To make the difference between the two concepts clearer, here is a useful
analogy. Legally open means I am telling people: “All the results of my
project are in the papers on my desk. Go have a look, the door is not locked.”
Effectively open is “Here is a summary of my project, with links to all the
details you may need and references to textbooks you may have to read if
you come from a different domain.”

Effectively open corresponds to the tradition in scientific publishing. We
don’t submit photocopies of our lab notebooks to journals for reviewing and
publication. We write articles explaining our work to readers, starting by
describing the context and motivation for the work. And if an article is not
sufficiently well written to be understandable, good journals will reject it, no
matter how good or novel the underlying research work could possibly be.

There is a good reason for this tradition. Science is about increasing our
knowledge of the world collectively. A contribution that nobody but the

67



LEGALLY OPEN VS. EFFECTIVELY OPEN 68

author can understand is not really a contribution. Moreover, science is built
around an error correction protocol. To err is human, as is having biases
that influence our reasoning. Such errors and biases are eliminated in the
long run because individual contributions are critically examined by other
scientists. They make errors and have biases as well, but, most probably,
different ones. A particular strategy of critical examination, peer review of
submissions to journals, has become the gold standard for quality control
in science, even though there this is more of a historical accident than a
conscious methodological choice.

If we want code and data to become research outputs of equal value to papers,
we need to subject them to critical examination as well. It isn’t obvious how
best to do this, and I expect that experimentation with different techniques
will be required. But it seems obvious to me that we have to introduce a
requirement equivalent to the “well written” criterion for articles. It has
to become the authors’ responsibility to convince their colleagues of the
quality of their code, their data, and the computational environments that
they have chosen to base their work on. That means that code, data, and
computational environments have to become effectively open. They must
be amenable to critical examination, with reasonable effort, by independent
experts, i.e. experts that were not involved in their creation.

The main obstacle to making code and computational environments effectively
open is the complexity of today’s software stacks. Even an apparently
perfectly documented data analysis presented as a computational notebook
is only superficially well documented. The code in the notebook typically
makes use of many libraries, which in turn rely on an even larger number
of lower-level libraries, with the total dependency graph easily containing
hundreds of software packages. No reviewer can reasonably be expected
to critically examine the whole software stack. On the other hand, most
of the code in those hundreds of software packages is not relevant for the
top-level data analysis. It may thus be possible to make the data analysis
effectively open by organizing and packaging the code differently, or by
providing inspection tools that guide its examination. This should become a
research question in scientific software engineering.

A completely different approach is to refactor scientific software with the
goal of moving as much as possible into a small number of very widely usable
packages. The generality of such packages would then justify significant
efforts invested into developing and independently examining them. A
typical researcher could then trust these packages on the basis of expert



LEGALLY OPEN VS. EFFECTIVELY OPEN 69

stamps of approval, rather than on personal examination. This approach is
analogous to how we develop trust in industrial products, such as drugs or
refrigerators, via technical norms, regulatory oversight, quality labels, and
other sources of trust by delegation. The “industrial” core software would
then be complemented by domain-specific and project-specific artefacts,
which might be higher-level software layers or scientific models written in
digital scientific notations.



Leibniz

A research project aiming at developing a digital scientific notation for
computational physics and chemistry. Such a notation should be suitable as
well for other domains using predominantly mathematical models, but my
focus is on the domains that I know best.

Leibniz is named after Gottfried Wilhelm Leibniz, who made important
contributions to science, mathematics, formal logic, and computation, topics
that are all relevant to this project. He invented a widely used notation for
calculus, laid the foundation of equational logic by his definition of equality,
and anticipated formal logic with his “calculus ratiocinator”.

An embeddable specification language
A first iteration of Leibniz focused on developing a formal language for
embedding specifications and algorithms into a narrative written principally
for human readers. It is the subject of a publication and of a (recorded)
presentation at RacketCon 2020. The latter is the best introduction to
Leibniz at this time. You can then move on to studying a pedagogical
example and other, more technical examples.

The focus on a formal language embeddable into a narrative motivated
the choice of the Racket ecosystem and in particular its documentation
language Scribble. Leibniz is implemented as an extension to Scribble. It
is an algebraic specification language, based on equational logic and term
rewriting. Its design is strongly inspired by Maude and its predecessors
from the OBJ family. The first iteration of Leibniz is in fact equivalent
to a subset of Maude (providing only Maude’s functional modules), but
with a very different syntax in view of its intended use. A nice feature of
algebraic specifications is that they consist of small elements whose order

70

https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz
https://en.wikipedia.org/wiki/Leibniz%27s_notation
https://en.wikipedia.org/wiki/Leibniz%27s_notation
https://en.wikipedia.org/wiki/Equality_(mathematics)
https://en.wikipedia.org/wiki/Calculus_ratiocinator
https://github.com/khinsen/leibniz
https://doi.org/10.7717/peerj-cs.158
https://youtu.be/YbznItQpALo?t=2104
https://con.racket-lang.org/2020/
https://khinsen.net/leibniz-examples/examples/leibniz-by-example.html
https://khinsen.net/leibniz-examples/examples/leibniz-by-example.html
https://khinsen.net/leibniz-examples/
https://racket-lang.org/
https://docs.racket-lang.org/scribble/
https://en.wikipedia.org/wiki/Specification_language
https://en.wikipedia.org/wiki/Equational_logic
https://en.wikipedia.org/wiki/Rewriting#Term_rewriting_systems
https://en.wikipedia.org/wiki/Rewriting#Term_rewriting_systems
https://maude.cs.illinois.edu/w/index.php/The_Maude_System
https://cseweb.ucsd.edu/~goguen/sys/obj.html


LEIBNIZ 71

rarely matters. This makes it easier to insert these elements into the flow of
a narrative, much like mathematical notation.

The goal I have set myself for a usable version of Leibniz is the possibility
to write a readable specification for a molecular mechanics force field such
as the AMBER family. The first iteration is clearly not good enough for
that. Most of all, it lacks built-in support for collections, such as “all atoms
in a molecule”. You can define collections such as lists explicitly, of course,
as it is done in Maude. Another mathematical concept that is not easy to
represent in Maude or Leibniz 1 is the function. Maude is an intentionally
minimalistic language, which I think a digital scientific notation should not
be. This sets the agenda for the next iteration: improving expressiveness.

An interactive authoring system
At this stage of the project, the edit-compile-run/view cycle of Racket and
Scribble became more and more cumbersome. Modifying and debugging
both the implementation of a new language and test code written in this
language at the same time led to feedback loop of unacceptable duration,
due to the two nested edit-compile-run cycles of Racket and Leibniz itself.
I had just discovered, through fortuitous circumstances, the Pharo live
programming system, which is a descendant of Smalltalk. Implementing
the second iteration of Leibniz in Pharo looked like a good opportunity to
evaluate live programming in general, and Pharo in particular, for a project
that could benefit a lot from this improved interactivity.

Shortly after starting the second iteration, Glamorous Toolkit, a new user
interface and development environment for Pharo focusing on moldable
development was made available for adventurous explorers (it has since
advanced to beta status). I rapidly adopted it for my work on Leibniz (and
other projects), because moldable development turned out to be a very good
fit for my work. Another major step was the introduction of Lepiter, a
computational notebook on steroids integrated into Glamorous Toolkit. It
turned the implementation of an interactive authoring system for Leibniz
from a over-ambitious idea into something that looked doable. My current
prototype (shown in this short demo and in this longer demo) has a lot
of rough edges, but it is good enough for me to experiment with language
features.

Another promising discovery that became an experimental feature of Leibniz
is e-graphs and their use in equality saturation, inspired by the Metatheory

https://ambermd.org/AmberModels.php
https://github.com/khinsen/leibniz-pharo
https://lepiter.io/feenk/introducing-lepiter--knowledge-management--e2p6apqsz5npq7m4xte0kkywn/
https://diode.zone/w/1RUVjM5xj54gZjHXobSNUe
https://www.youtube.com/watch?v=f10NpsMmbis
https://en.wikipedia.org/wiki/E-graph
https://blog.sigplan.org/2021/04/06/equality-saturation-with-egg/
https://docs.juliahub.com/Metatheory/Hi8Kc/0.3.2/egraphs/


LEIBNIZ 72

package for Julia. For Leibniz, a modification will be required to make it
useful since Leibniz has both symmetric equality axioms and asymmetric
rewrite rules, whereas e-graphs handle only symmetric equivalence relations.

Expressiveness has significantly improved in the second iteration. Sorts
can now be composite terms, which allows for sorts such as “an array of 5
non-negative integers”. Array terms are a language features, though only
one-dimensional arrays are fully implemented for now.



Links to the future

Link rot is a well-known problem on the Web. We have all been frustrated
when clicking on links that just don’t work any more. Most often, the server
that the link points to has disappeared, or its contents have been reorganized.

This site contains links that show the opposite behavior: they may not work
now, but they will work in the future. These “links to the future” are the
links labelled “archive copy” at the end of each page.

How does this work? The two main ingredients to the answer are content-
addressable storage and the Software Heritage archive.

All the pages on this site are backed by a Git repository hosted on GitHub.
The “permanent links” at the bottom of each page point to this repository.
It keeps a complete history for each page, which ensures that the permanent
links indeed point to the same version of the page that you are looking at,
forever.

That’s for some reasonable definition of “forever”, of course, given that
nothing is eternal in our universe. The more precise promise made for these
links, by GitHub, is that they will either point to the correct version of the
page, or fail to resolve. If I delete my repository, for example, the links
will fail to resolve from then on. Also if GitHub closes down, or removes
my repository for whatever reason, for example because it decides that its
contents are in violation of its rules. Note that the promise is made by
GitHub the company. If GitHub gets hacked, or bought by some evil entity,
it is conceivable that my permanent links will work but resolve to something
else in some unlikely but not impossible future.

The Software Heritage archive adds another layer of promises of longevity.
Again these are promises made by Software Heritage the organization, which
may well disappear one day, or get hacked. But assuming its continued

73

https://en.wikipedia.org/wiki/Link_rot
https://www.softwareheritage.org/
https://github.com/


LINKS TO THE FUTURE 74

existence and well-being, Software Heritage promises that links into its
archive, based on their permanent identifiers, will forever resolve to the exact
same file contents. This is possible because the identifiers are derived from
the contents of the file, by computing a cryptographic hash. Unless two files
have the same hash (this is known as a hash collision, and it’s not impossible
but highly improbable by accident and very costly to provoke intentionally),
the link cannot point to anything else than the original file.

Software Heritage archives all of the public repositories on GitHub, scanning
the site from time to time to add new versions and new repositories. This
means I don’t have to do anything to get my site archived. But it’s not
instantaneous, so whenever I publish a new version, the archival links won’t
work for a while, because Software Heritage hasn’t incorporated the new
version yet.

This leaves one final question: how can I know the link to the Software
Heritage archive before it actually works? Well, that’s the nice part of
content-addressable storage: since the identifier is computed from the file, I
can compute it myself, from my own copy of the file, knowing that Software
Heritage will obtain the same hash when it does its computation later. That
computation is most easily delegated to Git, the magic incantation being git
hash-object <file>. And that means that links to the future are actually
very easy to implement.

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html


Linux

This page is empty

75



Literate programming

An approach to program design and documentation that embeds software
source code into an explanatory narrative, structuring the code to follow the
narrative for convenience of a human reader.

76



Machine learning

This page is empty

77



Making Systems Explainable

A recorded talk by Oscar Niestrasz at the VISSOFT 2022 conference, demoing
Glamorous Toolkit used for explaining software systems.

The talk is about software systems from the perspective of software developers.
But computer-aided research has very much the same problems, for the same
reasons, and could benefit from the same solutions. The talk starts with a
demonstration of how a simple board game can be implemented in a way
that makes it inspectable from a multitude of perspectives. It doesn’t take
much imagination to replace that board game by a computational scientific
model.

Consider the debate around CovidSim, the epidemiological model for COVID-
19 used in the United Kingdom to inform public policies in 2020. It was
heavily criticized, first for the code not being publicly available for inspection,
and then for bad software engineering practices casting doubts on its reliability.
Both of these criticisms are very valid. But if CovidSim had been developed
openly and following best practices of software engineering for C++ code,
would this have made it trustworthy in the eyes of (1) fellow epidemiologists,
(2) public health officials and (3) the general public? I suspect the answer is
no. While the model would be straightforward to run, understanding how the
various modeling choices made impact the result remains very difficult because
it requires modifying the code, And that requires an in-depth understanding
of how the code works. But even a perfect C++ simulation code takes an
immense effort to understand for anyone but its authors.

Now imagine the models of CovidSim implemented in Glamorous Toolkit,
with lots of views into the model, examples for how to run it with various
parameters, and explanatory narratives linking right to these examples and
views. Like the Ludo game in this talk. Quite a different scenario.

Open Science requires more than papers, data, and code being publicly

78

https://www.youtube.com/watch?v=jJhfTUSDlR0
https://en.wikipedia.org/wiki/Oscar_Nierstrasz
https://vissoft.info/2022/
https://en.wikipedia.org/wiki/CovidSim


MAKING SYSTEMS EXPLAINABLE 79

available. They must be made accessible for inspection and modification, at
a reasonable level of effort and technical competence. We require scientific
papers to be well-written. Researchers cannot just publish copies of their
hand-written notes. Why should we accept them publishing software that
nobody else can understand?



Model

This term has many different but similar meanings in various domains of
science and engineering. In the digital era, it is not uncommon to work at the
intersection of multiple disciplines that use the term somewhat differently.

The most relevant uses of “model” in this context are:

• Scientific models
• Models in formal logic
• Model-driven engineering in software development

80

https://en.m.wikibooks.org/wiki/Formal_Logic/Predicate_Logic/Models
https://en.wikipedia.org/wiki/Model-driven_engineering


Modeling scientific discourse

On November 12/13, I participated in the Workshop on knowledge synthesis
infrastructure at CSCW 2022, and more specifically in a working group
on discourse modeling. This is my synthesis of the two sessions, which is
obviously colored by my prior work, my limited knowledge of the field, and
my expectations. I hope that other participants will summarize their points
of view as well.

The overall idea of discourse modeling is to make scientific discourse (i.e. the
publicly visible part of communication between scientists, which today con-
sists mainly of publications and conference contributions) semi-formal and
thus more accessible to machine processing (searching, summarizing, etc.).
The central concept is the discourse graph, which identifies common elements
of discourse (questions, hypotheses, evidence, etc.) and their relations. A
discourse graph does not replace the actual discourse (which is more complete
and more nuanced), but complements it with a machine-readable summary.
Discourse graphs can also be seen as a first step towards integration of new
knowledge into knowledge graphs, which model the state of accumulated
scientific knowledge in a field, rather than the individual contributions.

While some people have been creating discourse graphs as part of their
reading of the literature for a while, these graphs remain personal for now.
They are rarely published, and not processed collaboratively. The questions
addressed by the working group at the workshop focused on making discourse
graphs more accessible, both from the authors’ and from the consumers’
points of view. Ideally, we wanted to be able to create discourse graphs
collaboratively, using well-known tools (we chose Semantic Media Wiki for
our experiments, because we had an instance available for the workshop),
and make them available for others in some form of database that could
store multiple discourse graphs. As was to be expected, we did not reach
this goal in two sessions, but we learned a lot in the process.

81

https://synthesis-infrastructures.wiki/Main_Page
https://synthesis-infrastructures.wiki/Main_Page
https://cscw.acm.org/2022/
https://www.semantic-mediawiki.org/
(https://synthesis-infrastructures.wiki/Main_Page)


MODELING SCIENTIFIC DISCOURSE 82

The object of our experiment was a transcript of our own oral discussion on
the topic, which happened in a Zoom breakout room. That’s a bit different
from scientific discourse, of course, but the overall principles should still
apply.

One of the first problems we encountered is the ubiquitous tension in formal-
ization efforts between top-down and bottom-up construction of the formal
system to be used. In the case of discourse modeling, the formal system
consists of the definitions of the nodes and edges in the discourse graphs.
The nodes are the elements of discourse that can be identified (questions,
evidence, sources, etc.) and the identifiers used for them. The edges are
the relations between elements, such as “evidence X supports claim A”. In
a top-down approach, the formal system is defined at the start and then
guides the formalization process. In a bottom-up approach, the concepts in
the formal system are identified during the formalization process, requiring
regular revisions of the annotations. A top-down approach is usually more
efficient, and produces a predictable result. On the other hand, it fails to
capture aspects of the discourse that were not considered in the design of
the formal system. Considering that discourse graphs are a rather recent
idea, and that none of us had much experience with them, a bottom-up
approach seemed more appropriate. We used the node types “question” and
“claim” quite frequently, plus “source” which, for our oral discussion, referred
simply to a speaker. There wasn’t much “evidence”, because we weren’t
doing science. I ended up putting “proposal” on a few items as well. In real
scientific discourse, additional domain-specific node types (e.g. “algorithm”
in computer science) would be required. As for edges, we didn’t make it to
that stage, realizing that we would first have to put unique identifiers on our
nodes, a task for which there was no obvious simple solution in Semantic
Media Wiki.

An issue that we discussed a lot and kept in mind during our practice was
the possibility of the collaborative use of discourse graphs. This includes
collaboratively constructing such a graph, but also the use of existing graphs
in a collaborative setting, be it close collaboration in a team, or loose collabo-
ration in a scientific discipline. In a bottom-up approach to building a formal
system, there is a regular need to establish consensus on some definitions, or
establish and document the absence of consensus, in the case that there are
good reasons for different people having different definitions. We discussed
in particular the possibility of using federations, as implemented in various
forms in various tools in the knowledge processing universe. Examples we
looked at (much too briefly!) are Federated Wiki, Agora, and everything2.

http://fed.wiki.org/view/federated-wiki
https://anagora.org/agora
https://everything2.com/


MODELING SCIENTIFIC DISCOURSE 83

Another issue we discussed was the importance of the user experience in
working with discourse graphs, and the different roles that users can take.
Much of the discussion in the Semantic Web space focuses on the technology,
with much less emphasis on the needs of users. Personally, I found Semantic
Media Wiki to be a rather bad user interface for the semantic annotation of
discourse. The “ground truth” of a Wiki page is marked-up plain text, which
in the presence of a lot of markup (formatting plus semantic annotations)
becomes hard to read. The rendered version, however, de-emphasizes the
semantic annotation too much. Finally, the transition from one to the other
is too cumbersome and slow. Of course, I am spoiled by spending much of
my workday in fast-feedback live systems: Emacs and Glamorous Toolkit.

The two main user roles around discourse graphs are “author” and “analyst”,
with “author” subdivided into “author of a narrative accompanied by a
discourse graph” and “author of a discourse graph for a pre-existing narrative”.
Authors need authoring tools, in which they can build the discourse graph,
possibly creating or extending as they go the formal system that frames
it. Analysts need tools for searching and browsing databases of discourse
graphs, plus good visualization tools. We probably don’t have good tools for
either role, but it seems to me that they can be built by combining existing
and well-known ingredients. The main risk I see for the future of discourse
graphs is a wealth of tools for analysts (which is the role most people in the
Semantic Web universe care about), but few or no good authoring tools, and
thus no data for analysts to analyze.

Finally, a few words on how this topic relates to my own recent work on
Leibniz, my digital scientific notation. The common aspect is the goal
of supporting the formalization of scientific discourse, though at different
levels: discourse graphs are about formalizing the narratives, whereas digital
scientific notations are about embedding complete formal systems, as parts
of scientific models, inside a narrative. A formal system defined by a Leibniz
context would be referred to by a node in a discourse graph.



Moldable development

Quoting the Moldable Development Web site:

Moldable development is a way of programming through which
you construct custom tools for each problem.

This implies erasing the boundary between development tools and code under
development. Instead of writing a piece of software to perform some task, you
extend a software environment by tools for working in some problem domain.
The added tools do not just perform tasks, but also provide feedback and
insight concerning the problem domain to the user of the software system.

In computational science, this is a big step towards shifting the focus from
tools and tasks to problems, models, and methods, something I have been
advocating since 2015.

Today’s reference environment in supporting moldable development is the
Glamorous Toolkit, which is based on Pharo but also supports other languages
to varying degrees.

84

https://moldabledevelopment.com/
https://doi.org/10.12688/f1000research.3978.2


Molecular mechanics

A technique of molecular simulation, based on the idea of treating atoms as
classical point masses.

See Wikipedia for more information.

85

https://en.wikipedia.org/wiki/Molecular_mechanics


Molecular simulation

This page is empty

86



Nix

See the Nix Web site.

87

http://nixos.org/


Observation

This page is empty

88



Open Science

As the ongoing public debates about global challenges such as climate change
or the Covid pandemic have shown, people are losing trust in science. In
part this is due to societal changes that extend far beyond scientific practices:
there is a general loss of trust in institutions, and in particular governments.
Taking one more step back, there is a loss of trust in the hierarchical decision
structures of Western societies, with its authorities that rely on the opinions
of experts.

But there are also changes inside the scientific community that have con-
tributed to this loss of trust, which is shared by many researchers themselves.
The pressure towards bibliometric productivity and the information technol-
ogy revolution have encouraged and enabled scientists to do more research
but this comes sometimes at the price of a lower level of rigor. Moreover,
increasing specialization makes it more difficult for scientists to judge the
reliability of the work of their colleagues that they build on. The repro-
ducibility crisis is a good illustration: a large number of studies that were
widely expected to be reproducible turned out not to be.

The Open Science movement is a reaction to this development, aiming for
more trustworthy processes at all levels with a focus on increasing trans-
parency. This push towards transparency is in conflict with notions of
intellectual property that have been put in place to ensure a competitive
advantage, both to scientists and to the institutions funding their research.
Reducing competition is thus a key to successfully implementing Open Sci-
ence, but it is limited by the fact than in a context of scarce resources (mainly
jobs and project funding), some level of competition is inevitable.

So far, Open Science consists of three levels of changes. The first level is
Open Access: anyone should be able to consult the original publications
of scientific findings, rather than having to rely on summaries provided by

89



OPEN SCIENCE 90

expert committees or journalists. Of course, few people can actually read
and understand those publications. But the circle of people who can extract
information reliably from these articles is still much larger than the circle of
people who could afford to consult the original literature before Open Access,
in particular in the less prosperous countries of our planet.

The second level is the publication of the datasets and software that underly
most of today’s scientific research. In the era of ubiquitous computer-aided
research, a published summary of a study and its outcome is simply no
longer sufficient. Many details of the applied methods are documented only
in the code (this story about a seven-year battle between two teams that
didn’t share their code is a nice illustration), and access to the data and
code permits other scientists to study the same phenomena from different
perspectives. Publication of data and code thus makes science more verifiable,
and by enabling complementary work, it supports the construction of the
web of interrelated findings that permits consensus formation and ultimately
trust.

The third level of Open Science is about laying open the decision procedures
in scientific research. Which topics get explored, and by whom? Who decides
which results get published? How does quality control actually work? Which
biases affect any of these decisions? How do political and economic interests
intervene? The ultimate goal is ensuring that scientific research, in particular
when it is funded from public money, benefits society as a whole.

At this time, only the first level, Open Access, has made significant progress.
Its necessity is accepted by all stakeholders, but the details of implementation
remain a subject of debate. The main problem is the enormous power held
by the traditional scientific publishers. In the digital era, the value they
contribute to the publication process has become negligible, but they still
control the names of the well-respected traditional journals. These journal
names are a key element in defining scientific reputation, a tendency that
has become much stronger with the introduction of bibliometry into the
evaluation processes of scientific institutions. The publishers are doing their
best to monetize this control, by extracting hefty publication fees from
authors of Open Access publications. There are clear signs that scientific
institutions are willing to move away from bibliometry-based evaluation (see
e.g. the San Francisco Declaration on Research Assessment), though for now
it is not clear by what it is going to be replaced.

The implementation of the second level is still in its early days. Non-
publication of data and code is still the norm, and even when these crucial

https://physicstoday.scitation.org/do/10.1063/pt.6.1.20180822a/full/
https://sfdora.org/


OPEN SCIENCE 91

elements are made public, they are not included in the critical examination
that a paper undergoes during peer review. For data, the FAIR principles have
established criteria that are increasingly accepted, though not yet massively
applied. For code, only a handful of journals perform elementary tests upon
submission of a paper, such as checking for computational reproducibility.

There is still a long way to go towards trustworthy software. So far, no effort
at all is made to check if the computations conform to the scientific methods
as described in the paper. There is not even any requirement for authors
to provide readable code - we are still accepting legally open code rather
than insisting on effectively open code. Lack of incentives is one reason but
probably not even the major one: the state of the art in scientific software
makes it nearly impossible to write code that a human reader other than
the authors can understand in sufficient detail. And if a reviewer cannot be
expected to understand the code, there is no hope for the peer review process
to inspect the code for correctness. My work on digital scientific notations
aims at addressing this issue, but many other changes need to happen, in
particular to avoid falling into the trap of cheap complexity all the time.

Another open problem is the reviewing process itself. Today, individual
reviewers are expected to comment on all aspects of a submitted study. This
is unrealistic when dealing with publications that have a dozen authors from
several disciplines and deploy millions of lines of code to analyze gigabytes of
input data. Such submissions must be reviewed by teams combining different
specializations, one of which needs to be in scientific software engineering.
Moreover, such complex reviews should happen in parallel to the research
itself, rather than as a single huge task at the end.

The third level is just beginning to be explored. The most concrete experimen-
tation is open peer review, of which many varieties have been implemented by
journals (e.g. F1000Research, which was one of the pioneers) and independent
reviewing networks (of which PubPeer is perhaps the best known). The
main difficulty faced by open peer review is being the only decision process
being opened so far. This puts reviewers at the risk of retaliation by the
colleagues they criticize in their reviews, e.g. in hiring or funding decisions.
In contrast, open peer review works very well in less competitive contexts,
such as journals that define the role of peer review as helping authors to
improve their work, rather than decide on acceptance or rejection. Examples
are the Journal of Open Source Software and ReScience. This attitude can
be seen as a step towards separating dissemination and quality control in
scientific research from the decision processes about resource allocation (jobs,

https://www.go-fair.org/fair-principles/
https://f1000research.com/
https://pubpeer.com/
https://joss.theoj.org/
https://rescience.github.io/


OPEN SCIENCE 92

funding, . . . ), which is very much in the spirit of Open Science.

Another aspect of level three is the keywords “diversity” and “inclusion”
appearing on the lists of criteria for composing committees, in an attempt
to make these committees more representative of society at large. For now,
diversity and inclusion efforts only address the most egregious and outwardly
visible misrepresentations, such as gender disparities. More subtle though
numerically very important discriminations, such as the de facto exclusion
from science of everyone who doesn’t speak English, are not even discussed
yet as possible objectives.

The most important decision processes in science are those concerning re-
source allocation: hiring and funding. They ultimately determine which
research topics are being explored, and by whom. The only initiatives that
I am aware of for profoundly reforming these processes happen in the so
far marginal “decentralized science” communities. In my opinion, we need
more ideas to improve resource allocation, and we must actually test them
in practice, rather than limit ourselves to debating their expected benefits
and downsides.



Open Source

This page is empty

93



Pace layers in science and
technology

The concept of pace layers has been introduced by Stewart Brand in 1999.
If you haven’t read his article Pace Layering: How Complex Systems Learn
and Keep Learning, do so right now (it’s not very long) and then come back
here.

The pace layers of human civilization that Stewart Brand identifies are,
from fast to slow: - Fashion/art - Commerce - Infrastructure - Governance -
Culture - Nature

Brand puts science into the infrastructure layer. Quote:

Education is intellectual infrastructure. So is science.
They have very high yield, but delayed payback.
Hasty societies that can't span those delays will
lose out over time to societies that can. On the
other hand, cultures too hidebound to allow education
to advance at infrastructural pace also lose out.

From the bird’s-eye perspective of human civilization, infrastructure is clearly
the appropriate layer for science. But we can also zoom in on science and
technology, the two being closely intertwined, and identify pace layers in the
advancement of this particular aspect of human civilization.

The fastest layer is observation (science) and tinkering (technology). Being
curious about one’s environment, without any long-term plans in mind.
Playing with ideas, watching what happens. Moving fast and breaking
things.

Next comes empirical research, which consists of formulating hypotheses

94

https://doi.org/10.21428/7f2e5f08
https://doi.org/10.21428/7f2e5f08
https://en.wikipedia.org/wiki/Move_fast_and_break_things
https://en.wikipedia.org/wiki/Move_fast_and_break_things


PACE LAYERS IN SCIENCE AND TECHNOLOGY 95

based on observations, and then testing them on new observations obtained
from experiments, which are designed specifically for testing a hypothesis.
On the technological side, we have the design and fabrication of artifacts for
a specific purpose.

The design and refinement of models occupies the next layer in science. Models
are more general than hypotheses, requiring a wider range of observational
input and a wider range of experiments for testing. In technology, the
corresponding layer is about techniques for designing and fabricating artifacts.

The fourth pace layer of science contains theories and paradigms. Paradigms
define the phenomena that a discipline considers relevant, and the methods
used to study them. Theories are the consolidated foundation of research
based on a paradigm. Examples are quantum mechanics in physics, and
evolution in biology. The technology analogue is, unfortunately, called
technology as well. Examples from the discipline of electrical engineering are
electric generators and integrated circuits.

The slowest pace layer contains disciplines in both science and engineering.
In the bigger picture of human civilization, they are part of the governance
layer. Disciplines are about the values of a community. What is good science?
What is relevant science? Different disciplines have different answers. These
values matter more than the original domain of study of a discipline. Consider
physics, which has evolved to include social phenomena into its domain of
interest, as for example in econophysics. On the other hand, many molecular
phenomena are chemistry, and thus outside of physics, because they are
described in terms of patterns rather than numbers. What really defines
physics is the focus on mathematical models and quantified observations.

In the digital era, the technology dominating much of scientific progress is
computing. Computing technology has the same pace layers as other tech-
nologies, but they all move faster than for the older branches of engineering.
This makes it challenging to use computing technology in the slower pace
layers of science. For example, techniques for implementing scientific models
should be stable at the time scale of evolution of scientific models, which
is several decades. While there is computing technology that is sufficiently
stable (Fortran, Unix, HTML, . . . ), it is not particularly well suited for
representing scientific models.

https://en.wikipedia.org/wiki/Econophysics


Pharo

An Open Source dialect of the Smalltalk programming system. See the Pharo
Web site for more information.

96

https://pharo.org/
https://pharo.org/


Premature formalization

Formalization comes with an aura of mathematical precision, which is not
limited to the sciences. As a consequence, there has always been a tendency
to use formal systems prematurely, i.e. without having verified that the formal
system satisfies all the requirements of its role (scientific model, prediction
machine, control system, etc.). Before computers, this was not much of a
problem because developing and applying formal systems was very laborious.
Today, writing a few lines of code is sufficient to create a formal system
and use it in practice, without the critical examination that should have
happened before.

One example, the use of bibliometry to measure the impact of scientific
publication, is described in the article on quantification. Premature quantifi-
cation is a frequent special case of premature formalization, as is premature
automation via computers. Another example I discuss elsewhere is the use of
static type systems in a not yet fully understood application domain. Human-
computer interaction is a rich source of examples of premature formalization:
rigid entry forms, unforgiving (and often incomprehensible) error handling,
overly constraining computational media for text and graphics, and many
more. See the talk “Programmable ink”, which calls this the “tyranny of
formalisms”.

Premature formalization becomes dangerous when formal systems are used
in a normative (“this is how the world ought to be”) rather than descriptive
(“this is how we think the world works”) way. Most people living in the
Western world have at some time encountered administrative forms (paper
or Web) that they had to fill in but that were lacking some option or entry
field that mattered for their case. Those are forms based on prematurely
constructed formal systems, i.e. formal system that are insufficient to deal
with the complexity of real life and yet are imposed on its users.

97



PREMATURE FORMALIZATION 98

Today’s Web3 movement is particularly prone to premature formalization.
The type of formal system that it focuses on is the blockchain, in particular
its fancier varieties that permit smart contracts and Digital Autonomous
Organizations (DAOs). As its name suggests, a smart contract is intended
to be a formalization of the legal concept of a contract, adapted for use by
computers. However, legal contracts work very differently from a computer
program. They are used in contexts where the possibility of non-respect, for
various reasons, is always present and dealt with by various social institutions
(courts etc.). Smart contracts, in contrast, are computer programs that are
run under clear predefined conditions and change the state of the blockchain
in a fully automated fashion. This can of course be a useful way to proceed,
but it is in no way a faithful formalization of a legal contract. Some people
in the Web3 movement are aware of this and think about the wise use of
smart contracts as a new kind of tool. Others, however, see smart contracts
as strictly superior replacements of traditional law, because of its perceived
objectivity and reliability. The aura of mathematical precision strikes again.

Recommended reading: - Formality Considered Harmful: Experiences,
Emerging Themes, and Directions on the Use of Formal Representations in
Interactive Systems (by FM Shipman and CC Marshall)

https://doi.org/10.1023/A:1008716330212
https://doi.org/10.1023/A:1008716330212
https://doi.org/10.1023/A:1008716330212


Programmable ink

A talk/demo at StrangeLoop 2022 by Szymon Kaliski of Ink&Switch that
explores two aspects of human-computer interaction: visual vs. symbolic,
and formal/rigid vs. informal/fuzzy.

Visual interaction is one of the main missing pieces in today’s scientific
computing systems. We have tools for turning symbolic data into visual data
(e.g. simple plotting or more elaborate data visualization tools), and also
a few tools that permit interaction with the visual form, but nothing that
goes in the other direction: from visual to symbolic. The talk shows two
examples that illustrate this point very well: the derivative plot generated
on the fly from a hand-sketched curve, and the computation of a correlation
between two hand-sketched curves. Such tools are essential in constructing
a computational medium for science. And also completely absent from my
own explorations (see Leibniz), mostly because of my lack of competence in
this space, but also because days are still limited to 24 hours.

Visual representations are also great for working at a less formal level, as all
the demos illustrate very nicely. For symbolic representations, the equivalent
is the extraction of formal relations from plain language, a task that is
addressed by some work on language models. But so far, there is little
work on supporting the transition from informal to formal. Most work on
computing technology either stays exclusively in formal universes (logic,
programming languages, . . . ) or emphasizes informal processing (machine
learning, . . . ). Even little formalization aids would be of great benefit to
scientists. I’d love to have a tool where I can sketch a plot and have the axes
straightened (and then more cleanup. . . ), as shown in one of the demos!

Finally, I love the expression “tyranny of formalisms” used a few times in
this talk, referring to the fact to most of today’s computational tools are
examples of premature formalization, in particular in their user interfaces. I

99

https://www.youtube.com/watch?v=ifYuvgXZ108
https://szymonkaliski.com/
https://www.inkandswitch.com/
https://en.wikipedia.org/wiki/Language_model


PROGRAMMABLE INK 100

suspect this is because computers, being dynamical formal systems, attract
people who love formalisms, and aren’t aware of the fact that most people
work differently.



Programming language

This page is empty

101



Programming system

This page is empty

102



Python

This page is empty

103



Quantification

Quantification is a specific kind of formalization, and probably the kind
most prominent in science. Quantification in scientific models goes hand
in hand with measurement in observations. Together, quantification and
measurement are often presented as the hallmark of science, as the turning
point at which the exploration of a phenomenon becomes scientific (see
e.g. the Wikipedia page).

Being a special kind of formalization, quantification can also happen pre-
maturely, and in fact it often does. An example that academics are well
familiar with is bibliometry. The informal concept of impact, applied to a
study or to the publication(s) resulting from it, is easy to grasp and apply
in evident situations. I doubt anyone would question my claim that Albert
Einstein’s 1905 paper introducing special relativity had more impact on our
collective scientific knowledge than my 1998 paper on elastic network models
for proteins (which is probably the highest-impact publication I have so
far). Formalizing this concept to the point of making impact a measurable
magnitude is, however, a highly non-trivial matter. Such a magnitude allows
to compare any paper to any other paper, impact-wise, which is not an
obvious operation. Was Einstein’s paper on relativity more or less impactful
than his contemporary paper on Brownian motion? That’s not a question
I’d be willing to answer. I have read and understood both papers and am
quite familiar with the theories that were later developed on the basis of
these two works. Both papers had a very high impact, but in very different
respects and in different sub-fields of physics. How could I compare them?

The mismatch here is that, in mathematical terms, the concept of impact has
only partial order (you can rank some works relative to each other, but not
all), whereas numbers have total order (for any pair of non-equal numbers,
one is larger than the other). Numbers also have other properties that are
not obviously valid for scientific impact. For example, the average of a set

104

https://en.wikipedia.org/wiki/Quantification_(science)
https://doi.org/10.1002%2Fandp.19053221004
https://doi.org/10.1002%2Fandp.19053221004
https://doi.org/10.1002/(SICI)1097-0134(19981115)33:3%3C417::AID-PROT10%3E3.0.CO;2-8
https://doi.org/10.1002/(SICI)1097-0134(19981115)33:3%3C417::AID-PROT10%3E3.0.CO;2-8
https://doi.org/10.1002%2Fandp.19053220806


QUANTIFICATION 105

of numbers is well-defined, but the same cannot be said about the average
impact of Albert Einstein’s publications.

Bibliometry took the approach of “any number is better than no number”,
putting the label “impact” on an easily measurable quantity for which some
relation to impact can be justified: the number of citations to a paper in
the later scientific literature. This principle of “better any number than no
number” is perhaps the most frequent cause of premature quantification.
It allows moving on with building superficially precise models and theories
that however fail to describe the phenomenon that they were supposed to
describe.



Reliable knowledge

“Reliable knowledge” is the first part of the title of a book by John Ziman,
a physicist whose interest later shifted to the philosophy of science. It’s an
excellent book, whose full title is “Reliable Knowledge: An Exploration of
the Grounds for Belief in Science”. I am less enthusiastic about the term
“belief in science”, which I prefer to replace by “trust in science”, but that’s
minor quibble.

I see “reliable knowledge” as the best term to summarize the goal of scientific
research, which is why it got a page of its own in my digital garden. It also
describes the two directions in which scientific knowledge advances: more
knowledge, and increased reliability for existing knowledge. The reproducibil-
ity crisis has shown the importance of the second direction, which we have
collectively neglected during several decades of emphasizing novelty as the
main criterion for judging scientific publications.

106

https://en.wikipedia.org/wiki/John_Ziman
https://www.cambridge.org/us/academic/subjects/general-science/popular-science/reliable-knowledge-exploration-grounds-belief-science?format=PB
https://www.cambridge.org/us/academic/subjects/general-science/popular-science/reliable-knowledge-exploration-grounds-belief-science?format=PB


Reproducibility crisis

Starting around 2010, more and more cases were reported of scientific findings
published in peer-reviewed articles that other scientists were unable to re-
produce. Sometimes they reached different results or conclusions, sometimes
they had to give up because of missing information. This sudden increase
in results known to be irreproducible is often called the reproducibility or
replication crisis.

The sudden explosion of the number of these cases is probably just a domino
effect: the more people discuss the issue, the more others are inclined to
check for reproducibility, and thus discover failure. But the reproducibility
failures are real and cast a shadow of doubt on the reliability of today’s
scientific research.

Much has been written about this crisis, and in particular many hypotheses
for its causes have been proposed. The Wikipedia article provides a good
entry point. In the following, I will limit myself to the computational aspects
that I haven’t seen discussed elsewhere so far.

First of all, there are different forms of (ir)reproducibility that’s worth
distinguishing. The three main categories are:

1. Experimental reproducibility: repeating an experiment as described
in the literature, and checking if the observations are similar enough,
according to the state of the art.

2. Statistical reproducibility: re-doing a statistical inference based on
fresh input data, usually obtained from a different sample, and checking
for similarity of the inferred results.

3. Computational reproducibility: re-running a computer program, using
the same code and input data, and checking for identical results.

I haven’t seen a single case of experimental irreproducibility cited in the

107

https://en.wikipedia.org/wiki/Replication_crisis


REPRODUCIBILITY CRISIS 108

context of the crisis. In fact, I can remember only a single widely discussed
case of experimental irreproducibility in my whole scientific career: the 1989
cold fusion study by Fleischmann and Pons (see Wikipedia for details). And
yet, in theoretical discussions about the importance of reproducibility in
science, people talk almost exclusively about experimental reproducibility,
probably because it is the historically earliest aspect of reproducibility.

Both statistical and computational reproducibility, which together cover all
the cases I have seen cited in the context of the crisis, are phenomena of
the digital age. This is rather obvious for computational reproducibility.
Statistics has been around for much longer, and even today’s most commonly
used statistical techniques are about 100 years old. But before computers,
doing statistics was extremely laborious. It was done sparingly, for important
questions only, and usually by people with solid training in the techniques.
Nowadays, it takes little training to load a dataset into a statistical software
package and click a few menu items to perform an analysis.

It is in particular not required to understand the domain of applicability
of the methods, nor the correct interpretation of the results. It should be
obvious that this is a recipe for frequent mistakes. In theory such mistakes
should be caught in peer review, but this requires authors to publish all
their data and reviewers to take the time to carefully re-do and check the
computations. That is starting to happen, but remains exceptional.

A more subtle problem is that, even if you understand the statistical tech-
niques behind a study very well, you cannot be sure that the software used by
the authors implements them correctly. Most such software is designed to be
a black-box tool. Even if the source code is available (Open source software),
and can thus be studied in principle, it is usually not written with readability
and verifiability in mind, but for efficient execution by the computer. This
is true of course of nearly all of today’s scientific software, which is why I
am interested in re-editable software and why I work on digital scientific
notations.

In philosophy of science jargon, these issues illustrate the epistemic opacity of
computations. In more down-to-earth terms, when scientists use computers
to apply scientific models and methods, they don’t really know what they are
doing. If you don’t know what you are doing, you cannot document it either.
And insufficiently documented work is a major cause of irreproducibility.

While I have focused on software so far, the data that are being analyzed
can contribute to statistical irreproducibility as well. When the people

https://en.wikipedia.org/wiki/Cold_fusion


REPRODUCIBILITY CRISIS 109

analyzing the data were not closely involved with the data production (by
whatever means), there is a good chance that they are unaware of some
critical details that they should be aware of in order to analyze the data
correctly. The current rush to data publication, in the context of the Open
Science movement, happily ignores this issue. Therefore I expect more rather
than fewer cases of reproducibility issues related to data in the near future,
until the scientific community realizes that data are safely reusable only if
they are carefully documented.

Computational irreproducibility is just another case of epistemic opacity. It
is caused by the complexity of today’s software stacks. Scientists not only
ignore what exactly their software does, they do not even know in detail
which software they are running, and therefore they cannot reproduce the
computation on a different machine, or later in time.

Ending the reproducibility crisis will require, among many other changes in
research practices, an increasing awareness of the pitfalls of delegating work
to a machine, and of relying on software and data produced by others whose
tacit knowledge may be crucial for their proper (re)use.



Reusable vs. re-editable
components

Nearly all nontrivial information systems are assemblies of components, often
produced independently by different people. Components meant to be used
in different contexts are either designed to be reusable or re-editable.

Software libraries and datasets are the most common examples of reusable
components. They are designed to be integrated into an assembly without
any modification or adaptation.

Project templates (e.g. for use with Cookiecutter) and configuration templates
are examples of re-editable components. The integrator must study them
and then adapt them to the particularities of the system being assembled.

The term “re-editable” was coined by Donald Knuth in an interview in 2008.
He expresses a clear preference for re-editable over reusable software:

I also must confess to a strong bias against the fashion for reusable
code. To me, “re-editable code” is much, much better than an
untouchable black box or toolkit. I could go on and on about
this. If you’re totally convinced that reusable code is wonderful,
I probably won’t be able to sway you anyway, but you’ll never
convince me that reusable code isn’t mostly a menace.

The mainstream view in software engineering, and also in scientific computing,
is the opposite. The accepted ideal is a software library with thorough
documentation and an equally thorough test suite, maintained by a stable
team of competent professionals. Developers needing the functionality of
such a library use it as-is and design their own client code around it. In the
maintenance phase, they update libraries as quickly as possible. In case of
breaking changes to the interfaces, they adapt their own code.

110

https://github.com/cookiecutter/cookiecutter
https://www.informit.com/articles/article.aspx?p=1193856


REUSABLE VS. RE-EDITABLE COMPONENTS 111

Both approaches have their good and bad sides. The arguments in favor of
reusable components are mainstream and easy to find. But which are the
advantages of re-editable components? I can’t speak for Donald Knuth, who
doesn’t go into details in the interview, but I can offer my own thoughts.

A particularity of software in computer-aided research is its double role as a
tool and as an expression of scientific models and methods. Reusable software
is designed to be used as a black box, without a deep understanding of its
implementation, even when this implementation is accessible (Open Source).
It is also designed to be useful in a wide range of applications. Re-editable
software, on the other hand, is designed to be read and understood by its
users, and also more focused on the application its designer had in mind.
This makes re-editable software more valuable as a readable expression of
scientific models and methods. Moreover, it encourages or even forces its
users to read the code and understand what it does, reducing the risk of
inappropriate use of the science it embodies. Such inappropriate use is in my
opinion an important but little discussed cause of the reproducibility crisis
in science.

Comparing software to material artifacts, reusable software is analogous to
industrial products, whereas re-editable software corresponds to bespoke
artifacts made by a craftsperson. The mere fact that craftspeople still exist
after two centuries of industrialization, even though their products are usually
much more expensive, indicates that there is a value in non-standard artifacts
based on simpler designs. They are obviously better adapted to their specific
context, but they are also more repairable, and adaptable in case of evolving
needs. Re-editable software shares those advantages.

Further reading: - Reusable vs. re-editable code (preprint)

https://doi.org/10.1109/MCSE.2018.03202636
https://hal.archives-ouvertes.fr/hal-01966146


Science in the digital era

The broad topic of this collection of essays is the changes that scientific
research is undergoing as a consequence of, or in parallel to, the information
technology revolution that started in the 1960s.

One important aspect, and my main focus, is the change in how formal
systems are used in scientific models. Before computers, obtaining inferences
from formal systems was laborious, and limited the size and complexity
that formal systems could have. With automated computation, large and
complex formal systems (typically called software) are easy to create and
apply. However, it is impossible to evaluate all, or even all relevant, infer-
ences one can draw from such systems, meaning that today’s computational
models are far less understood than their ancestors, and only superficially
tested by confrontation with observations. Moreover, the current state of
software technology makes it easier to build large and complex formal systems
than small and simple ones. This is the ultimate cause of computational
irreproducibility, a major ingredient of the reproducibility crisis.

Another aspect of the information technology revolution is the new forms of
organization and communication it enables for scientific research. In partic-
ular, they permit a level of transparency that was immediately recognized
as desirable, leading to the Open Science movement that is rapidly gaining
momentum.

Of course, social changes are at least as important as communication technol-
ogy in the emergence of Open Science. Many topics of research, e.g. health
or climate, are of increasing social and political relevance. The preceding
paradigm of science, which saw research as an industrial activity producing
knowledge, is no longer appropriate. In the name of productivity optimiza-
tion, it restricted participation in the process of doing science to a small
number of experts, who alone decided which topics were worthy of study,

112



SCIENCE IN THE DIGITAL ERA 113

and who alone could judge which practical consequences should be drawn
from their findings. With trust in experts waning in parallel with trust in the
governments that employ them, this leads to phenomena such as widespread
climate change denial. Public policies can be science-based only of a much
larger part of the population can participate in the collective learning process
that we call science.

The two aspects I have outlined above create a new tension. Science cannot
become more transparent and more accessible if it uses complex software as
the main (or only) expression of its models. It is not enough for those models
to be Open Source, they also have to be understandable and explorable.
One of my personal research topics is how to encourage a return to simple
and understandable formal systems, by using specifications written in a
digital scientific notation rather than software in the construction of scientific
models.



Sciences of the artificial

A term introduced by Herbert Simon for disciplines such as mathematics
and computer science, which study neither nature nor human societies, but
abstract structures created by humans.

Further reading: - The sciences of the artificial by Herbert Simon

114

https://mitpress.mit.edu/books/sciences-artificial


Scientific computing

This page is empty

115



Scientific model

The construction, evaluation, and incremental improvement of models for
observable phenomena is one of the main objectives of scientific research.
From a birds’ eye view, the constantly evolving output of science is a network
of models plus metadata about these models: where they come from, which
observations they explain, which observations they don’t explain, etc.

Scientific models can be described or classified according to several criteria.
An important one is the distinction between empirical or descriptive models
on one hand and explanatory models on the other hand. An empirical
model summarizes observations and permits predictions, via interpolation or
extrapolation, along a few well-defined parametric dimensions. For example,
a mathematical function fitted to a time series permits predictions at different
time points. An explanatory model describes observations as the outcome of
a more fundamental process or mechanism. It is much more powerful than
an empirical model, because it can be transferred (extrapolated) to a much
wider set of systems, beyond varying well-defined parameters.

In the digital era, both empirical and explanatory models have acquired
specific computational variants that would have been impractical before
commodity computing. The new empirical models are those obtained by
machine learning techniques, and the new explanatory models are the models
underlying simulations. Some simulations are based on older models of the
pre-digital era which have been scaled up to larger or more complex systems.
This is the case for molecular simulation, or for weather forecasting. Other
simulations are based on new kinds of models that would lose interest if
simplified to the point of being manageable without a computer. Examples
are cellular automata or agent-based models.

Another criterion is the distinction between informal and formal models. An
informal model, which could for example be formulated in plain English,

116



SCIENTIFIC MODEL 117

refers to concepts whose precise meaning depends on the context, and which
are therefore malleable. A formal model, in contrast, refers to very precise
and narrowly-defined concepts, often from mathematics and formal logic.
These aren’t distinct categories, however, and not even the extremes of a
scale, as the commonly used term “semi-formal” might suggest. Most non-
trivial scientific models are partly formalized, with the formalized aspects
embedded into a wider informal description.

Computation, as defined e.g. by Turing machines, is the pinnacle of the
development of formal reasoning so far. Its roots are an intellectual current
that started in 18th century Europe with the work of Leibniz and others
and became mainstream in the late 19th and early 20th century. At that
time, the idea that all of mathematics and then science should be formalized
was very popular (see e.g. Hilbert’s problems), but became more nuanced
after Gödel, Turing, and other showed that formal reasoning has inherent
limitations.

Nevertheless, automated formal reasoning in the form of computation became
an important technique in scientific research, and highly formalized models
are still considered the most advanced ones, particularly in physics. However,
formal models in science very frequently contain informal elements as well,
even though they are often seen as weaknesses. The most frequent informal
element is an undetermined parameter that must be fitted to observations,
thus adapting the formal model to the specific context of a specific system.

In recent years, there has been a strong counter-current advocating informal
models as superior to formal ones, though I have never seen this point of view
stated in these terms. The counter-current I am referring to is data science,
and the superiority claim is best exemplified by a 2008 article in “Wired”
entitled “The End of Theory: The Data Deluge Makes the Scientific Method
Obsolete”. And yet, the short history of data science also illustrates the
opposite move towards more formalization, for example with neural networks
that are more structured, e.g. multi-layer networks or convolutional networks.

https://en.wikipedia.org/wiki/Hilbert%27s_problems
https://www.wired.com/2008/06/pb-theory/


Scientific notations for the
digital era

Introduces the concept of a digital scientific notation and outlines desirable
characteristics for such notations.

Available (open access) at: - CoScience - arXiv

118

https://www.sjscience.org/article?id=527
https://arxiv.org/abs/1605.02960


Semantic Web

This page is empty

119



Semantics

This page is empty

120



Simulation

This page is empty

121



Situated software

Software designed in and for a particular social situation or context.

See also: re-editable software. Not exactly the same concept, but a similar
tension between simplicity and generality.

Recommended reading:

• Situated software, by Clay Shirky

122

https://www.gwern.net/docs/technology/2004-03-30-shirky-situatedsoftware.html
https://web.archive.org/web/20151226162819/http://www.shirky.com/


Smalltalk

See Wikipedia

123

https://en.wikipedia.org/wiki/Smalltalk


Software engineering

This page is empty

124



Software stack

This page is empty

125



Source code

This page is empty

126



Specification

This page is empty

127



Staged computation

“Staged computation” is a technical term that I suspect most readers of these
pages have never seen before. And yet, it refers to a very common technique,
one that all of us are using every day. More importantly, understanding this
technique matters for understanding computational reproducibility.

A staged computation is defined as a computation that proceeds as a sequence
of multiple stages, each stage producing the code (not the input data!) of the
following stage. The last stage produced the final output. In the academic
literature, staged computation is mostly discussed in the context of code
generators or compilers. However, it’s most frequent use case is running a
compiled program. Compilation is indeed a computation, and it produces
the code (the executable binary) for the next step, which is the execution of
the compiled program.

Why does this matter for reproducibility? Consider the case of a simple
Fortran program (substitute your favorite language if you wish). You start
from the Fortran source code file, which you first compile, because of the
dual nature of software. That’s the first stage. Then you run the compiled
binary, which is the second stage, and you obtain a result. What you care
about is the reproducibility of the complete two-stage process: you want to
make sure that the same source code file will lead to the same results.

In an ideal world, the source code file would fully define the result, and the
intermediate binary executable would be a mere implementation detail. In
the real world, that is unfortunately not true. First of all, the Fortran lan-
guage does not fully specify the semantics of the Fortran language. Different
compilers can interpret a program differently, and yet all conform to the
language standard. This lack of semantic precision is intentional, because
if offers compiler writers more opportunities for code optimization. Other
languages, such as C or C++, made the same choice in their standards. How-

128



STAGED COMPUTATION 129

ever, even if your language has fully specified semantics, different compilers
can lead to different results as a consequence of mistakes. Compilers are
complex pieces of software, so it’s unreasonable to expect them to be free of
bugs.

Therefore, if you want to make sure that someone else can reproduce your
results, you have to make the complete two-stage sequence reproducible. You
thus have to document the compiler you have used, and also all compilation
options. Your colleague (or your later self) trying to reproduce the result
will then obtain the exact same binary executable, and by running it the
exact same output.

Unfortunately, this isn’t the end of the story. The compiler is a binary
executable that has itself been produced by a prior compilation step. You
really have a three-stage computation. Or. . . more. The compiler used to
compile your Fortran compiler has also been compiled. Also, your program
has been silently complemented with precompiled program libraries (at the
very least the Fortran runtime library). It isn’t even obvious how many stages
your computation really has. The chain of compilers compiling compilers is
of course not infinite, but hard to trace.

This is known as the bootstrap problem and an active topic of research in
the Reproducible Builds community. It is easy to state: Given a computer
that can run binary executables, how you can add a toolchain for building
binary executables from source code without already having one? If you
want a glimpse of the complexity of this problem, have a look at the GNU
Mes project, whose goal is to provide a solution applicable to several Linux
distributions. Its basic idea is to start with simple compilers for small subsets
of real programming languages, and progressively build more complete ones.
At the very start, it is inevitable to have some hand-written binary code, but
this should be kept as small as possible to make the whole system auditable,
i.e. understandable in all detail by a person external to the development
team.

By the way, the Reproducible Builds community is not primarily about
reproducible research, but about reproducible software as a key component
for cybersecurity. If you want to make sure that the software you run is free of
malware, it is not sufficient to use Open Source software and inspect its source
code. You must also be sure that the binary executables you are running
were actually derived from the public source code, using a compiler that has
not been tampered with. This is why understanding staged computation
matters.

https://reproducible-builds.org/
https://www.gnu.org/software/mes/
https://www.gnu.org/software/mes/


STAGED COMPUTATION 130

Further reading: - Reflections on trusting trust. Ken Thompson’s 1984
Turing Award Lecture on trusting compiled software. - Staged computation:
the technique you didn’t know you were using (preprint).

https://doi.org/10.1145/358198.358210
https://dx.doi.org/10.1109/MCSE.2020.2985508
https://dx.doi.org/10.1109/MCSE.2020.2985508
https://hal.archives-ouvertes.fr/hal-02877319


Static type systems

If you follow discussions about programming languages even just a bit, you
have surely witnessed a heated debate about static type systems. I haven’t
made (nor seen) a systematic study of the question, but I’d bet that it’s
either the most popular topic, or number two after questions of syntax. And
I couldn’t stop myself from writing a few paragraphs about it here as well.

Static type systems are formal systems for reasoning about the consistent use
of data types in software source code. The other main option, dynamic type
systems, verifies the consistent use of data types during program execution.
The obvious advantage of static type checking is that it is not necessary to
run the program, which might take a long time before hitting a type error.
The main disadvantage of static type checking is that it constrains what is
allowed in a program. A type checker will only let pass what it can prove
to be correct, meaning that it rejects code that may well be OK but is not
provably OK.

What I find surprising in the frequent heated debates is that the nature of the
type system is rarely even discussed. People talk about static vs. dynamic
types as if there were only one static and one dynamic type system. Academic
computer science research does look into the details of type systems, of course,
but consumers (i.e. software developers) don’t seem to be very interested in
these details. Also, academic research seems to have restricted the search
space to type systems in the vicinity of the ML type system, for whatever
reasons (this is really not my area of expertise).

Is it reasonable to assume that there is a single best (or good enough) type
system for every kind of software? The experts seem to believe it is, but I
don’t agree. I consider type systems to be domain-specific, and I suspect that
the ML type system and its variants are simply a good choice for writing
compilers and related tools, which is what researchers in this field tend to

131

https://en.wikipedia.org/wiki/ML_(programming_language)


STATIC TYPE SYSTEMS 132

do.

A few examples from my own experience with scientific software illustrate
that the ML type system is not very useful there. My first example is
dimensional analysis. It’s a formal system that has been used in physics and
engineering for much longer than we have had computers. It has turned out
to be very effective in catching mistakes. And yet, it cannot be implemented
in the popular static type systems. The F# language implements dimensional
analysis, but as a special case added to its generic ML-like type system.

My second example is linear algebra. If you implement matrix algorithms,
your only data types in a standard programming languages are float array of
float, and integer for array indices. What you really want to catch common
mistakes is something different: you want to check the compatibility of array
dimensions, and the conformity of array indices with array dimensions. Again
that’s not something you can do in an ML-like type system.

As a side note, dependent types can handle both cases, but they are not
mainstream, for good reasons.

The conclusions I draw from the these and other cases I have encountered are:
(1) type systems should be considered domain-specific, (2) they should not
be baked into a programming language, except if it is domain-specific as well,
and (3) it would probably be useful to use multiple type systems in parallel
in the same code. All that would make a type system an add-on module,
rather than a central language feature. This raises the interesting question of
interfacing code that uses different type systems. Which is of course already
an interesting question on today’s world, because large software systems are
rarely written in a single language, but most language designers have so far
ignored it, treating all code written in a different language as external, with
type checking disabled.

The closest technology I am aware of in this space is F# type providers.
They turn types, but not the whole type system, into library modules that
can interface to the outside world. Caveat: I haven’t used them, so I can’t
say how well they work in practice.

Once you consider a type system something malleable rather than rigid and
imposed, the task of constructing a type system for a specific domain is very
similar to the formalization of scientific models. A developer would start
writing dynamically typed code, and once there is a first working prototype,
think about which concepts would make good types and which properties
are most amenable to static verification. This may sound similar to gradual

https://en.wikipedia.org/wiki/Dimensional_analysis
https://fsharp.org/
https://en.wikipedia.org/wiki/Dependent_type
https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers/
https://en.wikipedia.org/wiki/Gradual_typing


STATIC TYPE SYSTEMS 133

typing, but the latter seems to focus on the gradual transition to a single
predefined type system, rather than on an emergent one.

For scientific software, this could in fact be a good approach to formalizing
computational models. It is similar to what scientists have done in the
past. Consider the very mature field of classical mechanics. It started with
Newton’s laws of motion, but grew into a complex Web of interrelated formal
systems. Some of them (e.g. Lagrangian and Hamiltonian mechanics) are
alternatives to Newton’s formulation that serve the same purpose but are
more convenient in specific situations. But others work at the meta-level,
very much like a type system, e.g. the law of conservation of energy. Maybe
software tools such as (malleable) type checkers can help to discover similar
fundamental properties in the scientific models in the digital era.

https://en.wikipedia.org/wiki/Gradual_typing
https://en.wikipedia.org/wiki/Gradual_typing
https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
https://en.wikipedia.org/wiki/Lagrangian_mechanics
https://en.wikipedia.org/wiki/Hamiltonian_mechanics
https://en.wikipedia.org/wiki/Conservation_of_energy


Statistical reproducibility

This page is empty

134



Tacit knowledge

This page is empty

135



Technical debt

Recommended reading:

• [Technical debt in computational science)(https://hal.archives-
ouvertes.fr/hal-02072258), by yours truly

136



Technological sovereignty in
science

The term “technological sovereignty” is usually applied to nation states or
similar political entities (see e.g. the Wikipedia page on this topic). It refers
to the capacity of such entities to control the use of technology and shape
its development in accordance with their values and goals. But it makes
sense to apply this concept to a much wider range of people and institutions,
including the actors in scientific research, from individual scientists to research
institutions. That is what I will try to do in the following, concentrating on
information technology in scientific research.

Sovereignty as dependency management
One way to approach this issue is by looking at dependency relations. Which
resources and services does it take for someone to use a certain technology
productively and sustainably?

At the highest level of sovereignty, it’s only commodity resources and services,
such as off-the-shelf hardware, electricity, and network access. There are
functioning markets for them, which makes the dependency relation uncriti-
cal. One level down, there are dependencies on non-fungible suppliers in a
contractual relation, e.g. for software. Depending on a single supplier is risky,
but the risk is mitigated if the supplier has contractual obligations, and thus
also takes a risk in defaulting on a contract. The lowest level of sovereignty
results from resources and services that are unreliable and/or out of your
control. That could be the weather if you run solar-powered computers, but
the most typical situation is a dependency on a rare competence (the retired
professor who is the only person who understands the software he wrote and
that you depend on) or on an entity that is so much bigger than you that

137

https://en.wikipedia.org/wiki/Technological_sovereignty


TECHNOLOGICAL SOVEREIGNTY IN SCIENCE 138

it doesn’t even have to listen to you (e.g. Google, or the Python developer
community).

These three levels are of course only a rough outline. The reliability track
record of suppliers matters a lot, as does the effort or cost of replacing their
product or service by a different one.

By these criteria, most individual researchers today have a rather low level
of sovereignty, which translates directly into a feeling of computational
disempowerment. Few individuals have sufficient competence and time to
manage their computing systems and to write their own software or modify
existing software to their needs. Whereas systems management is at level
2 for academic researchers (they usually have someone in their lab who is
paid to help them), software for common needs such as data analysis is
usually fully outside of the control of an individual user. It is developed
and maintained by large entities, corporate or Open Source communities,
which may offer some level of support but in general no guarantees, in
particular not for maintaining compatibility in the future. Moreover, much
software is too complicated to master for someone whose focus is on difficult
scientific problems, given the time and resource constraints of today’s research
environments.

For many researchers, the best choice in terms of sovereignty is the use
of proprietary scientific software, such as Mathematica, that comes with
contractual guarantees and reliable customer support. That’s an issue
that Open Source advocates tend to downplay. They rightly point out
the importance of openness, but fail to appreciate the loss of sovereignty
that comes with using software developed by a community that one is not
sufficiently engaged with.

Teams of small to moderate size are only slightly better off than individuals.
With more people collaborating on a project, there’s a higher chance that
someone has just the right competence for a technical task. But sovereignty
really increases only when the size of a team or lab permits hiring specialized
staff, hiring external consultants (which requires not only money, but also
sufficient competence to choose the right consultant), or having sufficient
weight in an Open Source development community. That level of sovereignty
is limited to a small number of Big Science projects.

Large institutions, such as universities or national research labs, are large
enough to develop their technological sovereignty, but their values and goals
are situated at the metascience level. What they could and should support,

https://www.wolfram.com/mathematica/


TECHNOLOGICAL SOVEREIGNTY IN SCIENCE 139

but usually don’t, is the development of better digital infrastructure for
science, which would increase the technological sovereignty of researchers.

The entities that have the highest technological sovereignty in science today
are the communities that develop scientific software. However, even their
sovereignty is often constrained by software dependencies, in particular since
contractual relations with software component suppliers are almost unheard
of in science.

In summary, the technological sovereignty of most researchers and research
projects is rather low, which has a couple of undesirable consequences.
Scientists often cannot do exactly the work they would like to do, for lack
of control over their software. Worse, they often don’t know exactly what
they are doing, for lack of understanding of their software. And they run
into reproducibility issues because they lack control over the evolution of
their software. Perhaps the worst consequence, not yet much discussed, is
the absence of critical examination of software, which remains exempt from
peer review, and for which no alternative evaluation process is in sight.

Becoming more sovereign
What can researchers and research institutions do to increase their techno-
logical sovereignty? Quite a bit, but often it is a matter of finding the right
compromise with respect to other criteria.

The most obvious technique is avoiding dependencies. In particular, write
your own software, maybe together with a few colleagues, but not as part of
such a large project that you couldn’t maintain it on your own any more.
This approach is of course limited by available time and competence. It’s
unrealistic for most research to write all the software they need themselves,
but it may be worthwhile considering this option for the most critical research
software.

Another obvious, but difficult to apply, strategy is to go for simpler software,
both in one’s own products and in the dependencies one relies on. Simpler
software means most of all less code, and more understandable code. This
usually implies less general software, maybe even situated software.

There is a long history to achieving sovereignty by simplicity. In 1981, Dan
Ingalls wrote in Design Principles Behind Smalltalk:

If a system is to serve the creative spirit,

https://www.cs.virginia.edu/~evans/cs655/readings/smalltalk.html


TECHNOLOGICAL SOVEREIGNTY IN SCIENCE 140

it must be entirely comprehensible
to a single individual.

Later Smalltalk systems have abandoned this principle, but there is at least
one, Cuis Smalltalk, that still has simplicity among its priorities. Among
programming languages and systems, Forth stands out by its emphasis on
simplicity of implementation, and it is indeed very feasible for a motivated
amateur to develop and maintain a practically useful Forth system from
scratch. I did this in the 1980s, as a high school student. A recent project
in this space is Minimacy, a functional programming language designed for
simplicity of implementation. None of the systems I have cited has been
designed for scientific research, and I am not suggesting that scientists should
adopt them. But they can serve as inspirations for achieving simplicity by
design.

Yet another strategy is to choose dependencies for which there is a market,
meaning multiple potential suppliers. For software, this is practically possible
only for standardized software. Standardized programming languages such
as C, Fortran, or Java have multiple implementations, as do standardized
libraries, e.g. OpenGL for graphics, or MPI for parallel computing. Stan-
dardization is a slow process, and therefore standardized software can seem
old-fashioned or even obsolete from the point of view of today’s fast-moving
tech world. But if it’s good enough for your research computing needs,
consider what matters more to you: sovereignty or the latest technology.

Research institutions, in particular the bigger ones, can do something very dif-
ferent, and very important, for improving science’s technological sovereignty:
support the development and maintenance of digital infrastructure. This
includes in particular the development and maintenance of Open Source soft-
ware that is safe as a dependency because its future is backed by stakeholders
in science. It differs from today’s community-based development of scientific
software not only by long-term financial backing, but also by institutional
governance that takes into account the needs of users who do not participate
in development. In other words, the needs of those users who today turn to
proprietary software for the stability guarantees and the technical support
that communities cannot provide.

https://cuis.st/
https://en.wikipedia.org/wiki/Forth_(programming_language)
https://minimacy.net/
https://www.opengl.org/
https://en.wikipedia.org/wiki/Message_Passing_Interface


The dual nature of software

One of the keys to understanding the causes of computational irreproducibility
is understanding the dual nature of software. Software has a human-facing
side, which we call source code, and a machine-facing side, which we call
binary code. The latter is not a very adequate name, because everything
in a computer is stored as binary data, including source code. But that’s
the jargon that has established itself. Binary code is what the computer’s
processor can directly execute. It’s a sequence of instructions defined as bit
patterns. It’s not something you want to look at when dealing with software.

In the not-so-distant past, humans wrote binary code for software of moderate
size. I have personally written binary code for the Z80 processor in my
Colour Genie home computer in the 1980s. That was the only option for
programming that computer other than using the built-in BASIC interpreter.
It’s fun to talk to a processor in its native language, but also very cumbersome.
I quickly moved on to the Z80’s assembly language, which is a textual
language, meaning source code, in which each line maps to one processor
instruction. I still wrote code at the level of processor registers and individual
memory locations, but I wrote it as legible text.

When you write source code, something or someone has to translate that
source code to binary code before the software can be run. In order to
write Z80 assembly code, I wrote a translation program, called an assembler.
And since I didn’t have an assembler when I wrote my assembler, I had to
translate it to binary code myself. That can be done, but it’s not fun. I have
never done it again.

The main message is that running software written as source code requires
some other piece of software that translates source code to binary code. Such
software goes by different names: assemblers, compilers, interpreters, etc.,
depending on how it works exactly. If you don’t write software yourself, you

141

https://en.wikipedia.org/wiki/Zilog_Z80
https://en.wikipedia.org/wiki/Colour_Genie
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Assembly_language


THE DUAL NATURE OF SOFTWARE 142

may well be unaware of this translation layer, as it is almost invisible. But
it’s there, and it matters.

One reason why translation software matters is that, like any other software,
it usually has bugs. That’s true even for old and widely used translation
software, such as the GNU compiler collection. Check the paper “Finding
and understanding bugs in C compilers” for some examples. Your source
code can be perfectly correct, and yet produce wrong results because of a
bug in your translation software. That’s certainly much rarer than having a
bug in your own source code, but it happens.

The second reason why translation software matters is that it’s what ulti-
mately defines the meaning (in technical terms, the semantics) of the source
code. A practically important case is floating-point arithmetic. Your pro-
cessor very probably uses an instruction set that implements the IEEE 754
standard for floating-point arithmetic. But none of the popular high-level
languages for scientific computing (C, C++, Fortran, . . . ) lets you program
in terms of IEEE 754 operations, which include details such as rounding
modes that most people don’t want to have to think about. It’s the compiler
that decides how exactly your nice mathematically-looking formulas are
translated into IEEE 754 operations. And different compilers make different
decisions (because language standards don’t bother to deal with such details
either). Most compilers let you influence their decisions via compile-time
options, which however are not part of your source code. This is why floating-
point operations are so often not reproducible. They are in fact perfectly
reproducible if you use the same compiler with the same options, but few
people even record this information along with their numerical results.

The third reason why translation software matters is that it can intentionally
do nasty things, such as adding viruses or spy code to your software. That’s
not much of an issue in scientific computing, but a big source of worry for
software that is widely deployed and/or relevant for someone’s security. Ken
Thompson’s Turing Award speec, Reflections on trusting trust, is the classical
reference on this.

Unfortunately, most software today is distributed as binary code. Even Open
Source software is no exception. Open Source means that you can download
the source code somewhere, but running the translation step is often so
complicated that most people are unable to do it. Instead, they download
binary code prepared by somebody else, usually via package managers such
as Debian’s Advanced Package Tool or the multi-platform Conda. Container
images, such as those you get from Docker Hub, contain binary code as well.

https://gcc.gnu.org/
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://doi.org/10.1145/358198.358210
https://en.wikipedia.org/wiki/APT_(software)
https://en.wikipedia.org/wiki/Conda_(package_manager)
https://hub.docker.com/


THE DUAL NATURE OF SOFTWARE 143

Using someone else’s binary code means that you have to trust that someone
to actually have compiled the source code that they claim to have compiled
(because you cannot check that). And since you don’t know which exact
translation software was used, you cannot check if it has bugs, and you cannot
reproduce the binary code if it ever disappears from the download server.
That’s by far the most frequent cause for computational irreproducibility
today.

The good news is that software distribution can be done better. Guix and
Nix are two package managers that track the complete translation process,
recursively (i.e. they even track how a compiler was compiled itself - see
Staged computation), and allow you to re-run it. You get all the source
code, and the recipes that were applied for translating this source code to
binary code. You can also get ready-made binary code (which is a lot more
efficient), which however you can verify if you want to. Nice, isn’t it?



Trustworthy software

Scientists have to trust their tools in order to do their work. Software is an
increasingly important tool in scientific research. And it seems that scientists
do trust their software. There are no outcries of despair along the lines of
“my research software crashes all the time” or “my simulation software had
five bug fixes this year, I wonder if any of these bugs affected my last paper”.
It thus seems that scientific software is in much better shape than, say, our
word processors or Web browsers. David Soergel disagrees, judging that
“computational results are particularly prone to misplaced trust”. Harold
Thimbleby disagrees as well, comparing today’s use of software in science
to the use of statistics before clear standards for reliable practices were
developed.

The problem with computational results is that, if they look plausible, you are
looking at numbers that are neither obviously wrong nor obviously correct. It
isn’t obvious either what “correct” actually means. And there is no obvious
strategy to reduce this uncertainty. It is fundamentally due to the complexity
of the computations that are performed. There are of course various checks
we can do. Run the software on simple problems for which we know the
correct results, for example. But correctness doesn’t generalize from simple
to complex problems, in particular not for computation, which is chaotic:
any change to the code or to the input data can change the result of a
computation without any predictable bound.

Perhaps the best check we can do is solve the same problem with different
software packages and compare the results. It is unlikely that different
developers make the same mistake, so if we get the same output from
multiple sources, it is much more trustworthy. Unfortunately, this approach
is costly, and therefore rarely applied.

The way we deal with this fundamental uncertainty is unconditional optimism:

144

https://doi.org/10.12688/f1000research.5930.2
https://doi.org/10.1093/comjnl/bxad067
https://doi.org/10.1093/comjnl/bxad067
https://hal.science/hal-02071770/


TRUSTWORTHY SOFTWARE 145

we trust results as long as they are not obviously wrong. Probably there are
also scientists who go for unconditional pessimism, and stop using computers.
I met a few researchers with this attitude in the 1990s, but I doubt that
anyone with this point of view could survive in today’s research environments.

This problem isn’t as specific to software as it may seem from my description
so far. Scientists have published mistaken results well before they had
computers. One technique to detect and then eliminate them is independent
critical examination: ask another expert on the topic, who was not involved
in the original work, to go through the paper and check everything checkable.
That was the original idea of peer review, introduced in the 1950s, when
specialization became so pronounced that journal editors were no longer
competent to judge themselves all the submissions they received. Peer review
no longer works very well today, for various reasons, but that’s a different
story.

For software, we have never attempted independent critical examination,
with rare exceptions that are limited to small pieces of code. This is not only
due to a lack of resources and incentives. Software is much more difficult
to review than papers. The complete software stack behind any published
result is enormous, and just listing all its components is a non-trivial task.
Moreover, software packages change all the time, and since computation is
chaotic, review must be in principle be re-done after every change.

But all software is not equal. Some software is more reviewable than others.
I have identified five dimensions along which scientific software packages can
vary, making them more or less reviewable. These five dimensions are:

1. Wide-spectrum vs. situated software. Wide-spectrum software packages
a lot of functionality, trying to satisfy a large number of applications.
This makes it hard to review, but it also makes reviewing a worthy
investment. Situated software is written for a narrow application
scenario, making it simpler and thus easier to review.

2. Mature vs. experimental software. Mature software is stable, and thus
easier to review than experimental software, which is a moving target.

3. Convivial vs. proprietary software. Convivial software is written with
the goal of appropriation by users. They take the code and adapt it
to their needs, rather than re-using somebody else’s code as a black-
box tool. Code that is easy to appropriate is also easier to review.
Proprietary software, whose source code is not available, is very hard to



TRUSTWORTHY SOFTWARE 146

review. In between, we have Open Source software, whose source code
can be inspected but was not specifically written for inspectability.

4. Transparent vs. opaque software. Transparent software produces results
that are easy to check for correctness because of the simplicity of the
operations. It is therefore much easier to review. Unfortunately, most
scientific software is opaque, making it hard to check its output.

5. Few dependencies vs. many dependencies. All software depends on other
software for its execution. At the minimum, an operating system plus a
compiler or interpreter. Dependencies must be examined as well as part
of a software review, as they can be more or less trustworthy. Obviously,
this becomes a Herculean task for software that has thousands of
dependencies.

For a more detailed discussion, and for suggestions on improving the situation,
see my preprint “Establishing trust in automated reasoning”.

https://osf.io/preprints/metaarxiv/nt96q/


Turing machine

This page is empty

147



Web3

This page is empty

148



Webstrates

see https://webstrates.net/

149



Wiki

Recommended reading:

• Wiki as a pattern language, by Ward Cunningham and Michael W.
Mehaffy

150

https://dl.acm.org/doi/10.5555/2725669.2725707

	Welcome
	License

	About the author
	Agent-based model
	Between Scripts and Applications. Computational Media for the Frontier of Nanoscience
	Binary code
	Blockchain
	Building a Web of Trust for Open Science
	Cellular automaton
	Cheap complexity
	Code over data
	Computational disempowerment
	Computational environment
	Computational media
	Computational notebook
	Computational replicability
	Computational reproducibility
	A case study
	Is there a way out?

	Computational science
	Computer-aided research
	Content-addressable storage
	Data science
	Decentralized science
	Digital Garden
	Digital infrastructure
	Digital scientific notation
	Discourse graph
	Donald Knuth
	Elastic network model
	Emacs
	Empirical model
	Empty page
	Epistemic diversity
	Epistemic opacity
	Experimental reproducibility
	Explanatory model
	FAIR
	Floating-point arithmetic
	Force field
	Formal language
	Formal system
	Formal vs. informal
	Formalization
	Git
	Glamorous Toolkit
	Guix
	Human-computer interaction
	Implementation details
	Julia
	Legally open vs. effectively open
	Leibniz
	An embeddable specification language
	An interactive authoring system

	Links to the future
	Linux
	Literate programming
	Machine learning
	Making Systems Explainable
	Model
	Modeling scientific discourse
	Moldable development
	Molecular mechanics
	Molecular simulation
	Nix
	Observation
	Open Science
	Open Source
	Pace layers in science and technology
	Pharo
	Premature formalization
	Programmable ink
	Programming language
	Programming system
	Python
	Quantification
	Reliable knowledge
	Reproducibility crisis
	Reusable vs. re-editable components
	Science in the digital era
	Sciences of the artificial
	Scientific computing
	Scientific model
	Scientific notations for the digital era
	Semantic Web
	Semantics
	Simulation
	Situated software
	Smalltalk
	Software engineering
	Software stack
	Source code
	Specification
	Staged computation
	Static type systems
	Statistical reproducibility
	Tacit knowledge
	Technical debt
	Technological sovereignty in science
	Sovereignty as dependency management
	Becoming more sovereign

	The dual nature of software
	Trustworthy software
	Turing machine
	Web3
	Webstrates
	Wiki

