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We report local time-resolved thermometry in a silicon nanowire quantum dot device designed
to host a linear array of spin qubits. Using two alternative measurement schemes based on rf
reflectometry, we are able to probe either local electron or bosonic bath temperatures with µs-scale
time resolution and a noise equivalent temperature of 3 mK/

√
Hz. Following the application of

short microwave pulses, causing local periodic heating, time-dependent thermometry can track the
dynamics of thermal excitation and relaxation, revealing clearly different characteristic time scales.
This work opens important prospects to investigate the out-of-equilibrium thermal properties of
semiconductor quantum electronic devices operating at very low temperature. In particular, it
may provide a powerful handle to understand heating effects recently observed in semiconductor
spin-qubit systems.

INTRODUCTION

Quantum electronics embraces a large variety of de-
vices whose functionality relies on quantum mechanical
properties such as size quantization, phase coherence,
entanglement, etc. Cryogenic operation is generally re-
quired for the emergence of such properties and, at low
temperature, the time scales for energy exchange and
thermalization processes tend to increase dramatically,
leading to metastable regimes and to the co-existence of
thermal (and non-thermal) baths strongly out of equi-
librium. The understanding and control of these ther-
modynamical aspects is not only mandatory for the de-
velopment and operation of bolometers, cryogenic ther-
mometers or coolers; it can also be particularly crucial for
improving the performance and scalability of solid-state
devices for quantum sensing and quantum computing. To
this aim, access to thermometers capable of measuring lo-
cal temperatures faster than the characteristic time scales
of heat exchange dynamics is of primary importance[1].

In this work, we address this point in the context of
semiconductor quantum-dot (QD) devices, largely mo-
tivated by their prospects for scalable spin-based quan-
tum computing. The operation of semiconductor spin
qubits requires applying high-frequency signals that un-
avoidably dissipate energy into the qubit environment
due to the Joule effect and dielectric losses. This raises
severe practical issues regarding spin qubits addressabil-
ity, since a significant temperature dependence of their
Larmor frequencies has recently been reported [2]. Fast
temperature changes due to unintentional heating can
lead to spin decay and dephasing [3, 4], thereby reducing
gate and readout fidelities [5]. This problem worsens for
increasing numbers of qubits and corresponding control
gates, leading to a clear bottleneck for large-scale integra-
tion. A higher operation temperature can mitigate the
impact of local heating [2] but at the price of a reduced
spin coherence time [6, 7]. Therefore, understanding the

modality and dynamics of heating from microwave exci-
tation is a necessary step to devise more efficient mea-
sures to preserve qubit performance. To this end, access
to fast time-domain thermometry compatible with mK
temperature and hundreds of mT fields can be a clear
asset.

The most advanced local thermometry techniques in
quantum circuits rely on metal-superconductor junctions
[8–10]. These thermometers are incompatible with spin-
based quantum processors, due to integration constrains
and to their susceptibility to magnetic fields. Semicon-
ductor QD thermometers[10–14], on the other hand, do
not suffer from these limitations. Moreover, they can
measure the temperature of an electronic reservoir with-
out requiring galvanic coupling [14–16].

Here we apply this approach to silicon QD devices.
By adjusting the tunnel coupling between the QD ther-
mometer and a probed electronic reservoir, we are able
to preserve its sensitivity down to the base tempera-
ture (55 mK) of a dilution refrigerator. In addition, by
adopting an isolated double-dot configuration of the QD
thermometer, we extend our thermometry capabilities to
probe the local bosonic temperature. We simultaneously
show that this thermometer can perform time-domain
measurements at the microsecond scale.

DEVICE AND OPERATION MODES

The QD devices consist of silicon-on-insulator metal-
oxide-semiconductor (MOS) nanowires with a rectangu-
lar cross-section of 80 ×16 nm2. The nanowires are cov-
ered by a set of eight parallel gates with a pitch of 80
nm, see example in Fig. 1(a). Thanks to p-doped leads,
holes are accumulated under negatively-biased gates as
schematically shown in Fig. 1(b).

We investigate two different device settings. In the first
setting (I), we define a single QD tunnel-coupled to the
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FIG. 1. Device and charge configuration for two
thermometry techniques. (a) False-color tunneling elec-
tron micrograph of a representative MOS device with a silicon
nanowire channel (blue), highly doped conductive leads (yel-
low) and eight parallel gates (red). Note that the gates can
be considered metallic, however the contacts on the leads and
gates are made of tungsten vias, that is superconducting at
base temperature. Three different samples were measured in
this work (see Supp. Mat. for details)[23]. (b) Schematic
of a 8-gate device illustrating the two thermometry methods.
Source and drain (yellow) are highly p-doped to form metallic
leads acting as hole reservoirs. Quantum dots (QDs) can be
defined along the undoped silicon channel by means of gates
G1 to G8. In the first type of thermometer (setting I), G1
defines a single QD tunnel-coupled to the source reservoir as
illustrated by the hole-energy diagram just below. The hole
reservoir is modelled by a Fermi distribution with electronic
temperature Te, while the dot is modelled by a single level
whose linewidth is determined by the tunnel rate Γ. The de-
tuning, ε, is defined here as the difference between the QD
electrochemical potential and the Fermi level in the reservoir.
In the second thermometer (setting II), a double QD isolated
from the reservoirs is defined under G6 and G7. Both QDs
are modelled by single levels with a tunnel coupling t and
detuning ε. The corresponding energy diagram is shown just
below, with |L⟩ (|R⟩) representing the state localized in the
left (right) QD at large detuning, and |+⟩ (|−⟩) the hybridized
bonding (antibonding) state at zero detuning. The coupling
to the leads is completely suppressed by means of the two side
gates G5 and G8.

hole reservoir in one the two degenerately-doped contact
leads, as shown on the left hand side of Fig. 1(b). The
impedance of a lumped element LC circuit connected to
the same lead is sensitive to charge tunneling between
the QD and the lead. Both dissipative and capacitive
changes can be detected through reflectometry measure-
ments [17–19].

The second setting (II) requires biasing four consec-

utive gates, as shown on the right hand side of Fig.
1(b). The two inner gates (G6, G7) define a double QD,
whereas the outer ones (G5, G8) allow fully isolating this
double QD from the remaining part of the channel and
from the leads[20, 21]. Read-out is now performed by re-
flectometry on an inner gate electrode (G7), with interdot
tunneling resulting in a quantum capacitance contribu-
tion [17, 18, 22].

The tank circuits used for RF-reflectometry are formed
by classical surface-mount inductors and parasitic ca-
pacitances. While different values of inductance have
been used, all resonances are around 400 MHz, with
few-to-several MHz bandwidth (see Supp. Mat. for
details)[23]. The reflectometry measurements are per-
formed in a weak coupling, dispersive regime, in which
the phase shift of the reflected signal is directly propor-
tional to the frequency shift, and thus to the quantum
capacitance [17, 22, 28, 29].

QUANTUM-DOT THERMOMETRY: BASIC
PRINCIPLES AND EXPERIMENTAL

IMPLEMENTATION

In both experimental configurations, the quantum ca-
pacitance contribution is expected to depend on tempera-
ture. In setting I, where a single level is tunnel-coupled to
a Fermi sea, the quantum capacitance reads [11, 14, 16]:
(see Supp. Mat. for details)[23]

Cq(ε) = α2e2
∫ +∞

−∞

(
1

4kBTe
cosh

(
eαε− E

2kBTe

)−2
)

×
(

ℏΓ
ℏ2Γ2 + E2

)
dE. (1)

Here e is the electron charge, kB the Boltzmann con-
stant, ℏ the reduced Planck constant, α the gate lever-
arm parameter, ε the detuning (in gate voltage), and Γ
the dot-lead tunnel rate. The relevant temperature is
the electronic temperature of the lead, Te. The quantum
capacitance is therefore a convolution of two peaks: the
derivative of the Fermi distribution, broadened by kBTe,
and the dot density of states, modeled by a Lorentzian
of width ℏΓ. Thermal broadening dominates for ℏΓ <
kBTe.

In setting II, hybridization of the orbitals in the left
and right QDs results in a two-level system in the canon-
ical ensemble. The corresponding energy diagram as a
function of the gate-dependent level detuning, ε, is char-
acterized by an avoided level crossing due to the inter-dot
tunnel coupling t. The quantum capacitances associated
to the bonding and anti-bonding states have opposite
signs since they are directly related to the curvatures of
the corresponding energy-vs-detuning relations [29]. The
total capacitance is given by the sum of the two quantum
capacitances weighted by the population of the bonding
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and anti-bonding states P|+⟩, P|−⟩ (see Supp. Mat. for
details)[23], i.e.: [11, 29, 30]

Cq(ε) = α2e2
2t2

((αeε)2 + 4t2)
3/2

tanh

((
(αeε)2 + 4t2

)1/2

2kBTB

)
.

(2)
Where TB stands for the Boltzmann temperature of the
double dot, given by the relative population in both
states kBTB = 2t/ ln (P|+⟩/P|−⟩). At thermal equilib-
rium with the thermal bath, i.e. in the absence of ex-
ternal charge drive, the Boltzmann temperature equals
the bath temperature. We notice that Cq(ε) is peaked
at ε = 0 with a linewidth solely determined by the tun-
nel coupling t, and an amplitude that becomes strongly
temperature dependent in the limit t ≲ kBTB .

Both settings are experimentally tested by thermally
anchoring the device to the mixing chamber of a dilution
refrigerator with a base temperature of 55 mK, and the
results are shown in Fig 2. We initially verify that the
impedance of the LC-resonator itself is temperature in-
dependent in the range of interest. Fig. 2(a) presents the
temperature dependence of the reflected signal measured
in the case of setting I (left-hand side of Fig. 1(b)). The
data are obtained after selecting the dot-lead transition
with the narrowest Coulomb peak resonance (see Supp.
Mat. for details)[23]. The phase of the reflected sig-
nal displays a peak proportional to the expected peak
in Cq(ε) whose amplitude decreases with the mixing-
chamber temperature, TMC , while its width increases.
This is in very good agreement with Eq. (1), which we
use to fit the experimental peaks (see Supp. Mat. for
details)[23]. We find a tunnel coupling Γ/2π = 383± 38
MHz, an order of magnitude lower than kBTe/h at base
temperature, thereby fulfilling the condition for proper
temperature sensitivity.

For the case of setting II (right-hand side of Fig. 1(b)),
we first load a few holes under G6 and G7 by applying
negative voltages to G6, G7 and G8. Bringing G8 back to
zero voltage results in the trapping a few charges confined
to a double QD controlled by G6 and G7. Provided the
interdot tunnel coupling is greater than the LC resonator
frequency, charge transitions from one dot to the other
can be detected by RF reflectometry. In this isolated
regime, dot-lead transitions are inhibited and the inter-
dot transitions are the only visible spectroscopic features,
extending over the entire stability diagram [20, 21](see
Supp. Mat. for details)[23]. As we follow the inter-
dot transition towards more negative voltages, we create
deeper electrostatic quantum wells, effectively increasing
the barrier height and hence lowering t. We can thus
achieve a regime where the thermal population of the
double-QD two-level system becomes highly sensitive to
the bath temperature TB . Similarly to the first configu-
ration, we measure the interdot transitions as a function
of TMC , the results being shown in Fig. 2(b). Fitting
to Eq. 2 yields a tunnel rate t/h = 2.03 ± 0.04 GHz.
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FIG. 2. Experimental demonstration of the two ther-
mometry techniques (a) Setting I: Phase of the reflectom-
etry signal from the tank circuit as a function of detuning, for
a dot-lead transition at different mixing chamber (MC) tem-
peratures. The peak amplitude is decreasing with tempera-
ture while the peak width increases. (b) Setting II: Phase of
the reflectometry signal for an interdot transition as a func-
tion of MC temperature. The peak amplitude is decreasing,
while the width remains unchanged. (c) TMC dependence
of the electronic temperature, Te, in the source reservoir as
obtained from fitting to the Eq. (1). Inset: Closeup of the
low-temperature saturation. (d) TMC dependence of TB , as
obtained from fitting the the Eq. (2).

Even though the gap due to level repulsion is four times
larger than the thermal energy at base temperature, we
still have a 2% thermal occupation of the excited state.
This ensures a measurable temperature dependence of
the quantum capacitance all over the explored tempera-
ture range. Yet extending this measurement technique to
even lower temperatures would require reducing the tun-
nel coupling accordingly, as discussed later. Nonetheless,
we note that the relatively low tunnel coupling achieved
here enables us to operate this non-galvanic thermome-
ter at temperatures an order of magnitude lower than
previously reported [16].

The measured temperatures extracted from the fits are
shown in Fig. 2(c) and (d) as a function of TMC in set-
ting I and II, respectively. At relatively high tempera-
ture, both Te and TB follow closely the mixing chamber
temperature, except for significant deviations above 500
mK that can be attributed to the population of higher-
energy QD levels, which is not taken into account in our
models.

Below about 100 mK, however, the two experimen-
tal settings exhibit different behavior. In setting I, the
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measured electronic temperature saturates. This trend,
commonly observed in cryogenic experiments, is due to
the residual electromagnetic noise coming from the cir-
cuitry at higher temperature, combined with the van-
ishing thermal coupling of electrons to their environ-
ment [31, 32]. The inset in Fig. 2(c) shows a closeup
of these data points, with a fit to a saturation func-
tion Te = (Tn

MC + Tn
0 )

1/n, yielding here n = 3.4 and
a saturation temperature T0 = 84 mK. In the case of
an electron-phonon dominated thermalization [10], one
would expect n = 5 in degenerately doped silicon[31].
However, the structure of the lead in our experiment
involves also other materials in close vicinity, includ-
ing metallic/superconducting vias, hindering an accurate
thermal modelling.

Interestingly, no such saturation is observed in the case
of setting II. Indeed, here the isolated double-QD is not
coupled to any Fermi sea and its temperature is deter-
mined by the interaction with the local bosonic baths,
i.e. lattice phonons and photons in the electromagnetic
environment.

THERMOMETER CALIBRATION AND
OPTIMIZATION

We now investigate the possibility of performing local
thermometry in the time domain. We focus on setting II.
The peak amplitude of the phase shift at zero detuning
strongly depends on the bath temperature and it can be
measured on a microsecond time scale. This opens the
possibility to monitor the time evolution of TB , provided
thermal equilibration between the QD two-level system
and the surrounding bath occurs on a shorter time scale.

To precisely calibrate this thermometer, we measure
the reflected signal phase at zero detuning, φ0, and vary
the mixing-chamber temperature. The resulting calibra-
tion curve is shown in Fig. 3(a). From Eq. (2), by taking
ε = 0 and, based on Fig. 2(d), TB = TMC , we obtain

φ0 = κ× 1

2t
tanh

(
t

kBTMC

)
, (3)

where κ is a proportionality coefficient that does not de-
pend on temperature.

The data are in good agreement with this model (red
solid line in Fig. 3(a)), where t and κ are the free parame-
ters. We note that, in principle, the anti-crossing gap (2t)
in such a configuration could be independently measured
through Landau-Zener-Stückelberg interference [33, 34].
Such an additional measurement would make this type
of thermometer a primary one, removing the need of a
calibration process.

Notably, the model used for the fit in Fig. 3(a) pre-
dicts a saturation of the peak amplitude at low tempera-
ture, i.e. when the population of the anti-bonding state
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FIG. 3. Thermometer calibration and optimal oper-
ation regime for setting II. (a) Peak amplitude, φ0, as
a function of TMC in the case of setting II. The experimen-
tal data (open circles) are fitted to the Eq. (3) (red solid
line), giving a tunnel rate t/h = 1.72 ± 0.04 GHz. The grey
dashed line is a linear fit to the data in the 55 − 100 range
of highest sensitivity (|∂φ0/∂T | = 1.28 mrad/mK). (b) Cal-
culated noise equivalent temperature, NET , versus (TMC ,t).
Iso-NET curves are drawn in blue and yellow colors. The
white dashed line highlights the t-dependence of the NET
minimum (i.e., the TMC where ∂NET/∂TMC = 0).

becomes negligibly small (≲ 0.5%). In our experimen-
tal conditions, this saturation is not observed because it
occurs slightly below the mixing-chamber base tempera-
ture. Fig. 3(a) also shows that the thermometer sensitiv-
ity (proportional to |∂φ0/∂TMC |) gets maximal close to
the fridge base temperature, i.e. just above the expected
low-temperature saturation. The dashed grey line in Fig.
3(a) is a linear fit around the point of maximal sensitivity
(55-100 mK).

To further characterize the thermometer performance
and deepen our understanding of its optimal operating
conditions, we now turn to the evaluation of the noise
equivalent temperature (NET ) and its dependence on
t and TMC . Since NET =

Sφφ

|∂φ0/∂TMC | , where Sφφ is
the phase noise amplitude, we begin by recording the
phase signal at various sampling rates covering a large
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frequency domain. The measured spectrum reveals a
white noise floor at Sφφ = 3.9± 0.2 mrad/

√
Hz, which is

consistent with the expected noise from the first amplifi-
cation stage at 4 K. This givesNET = 3.0±0.2 mK/

√
Hz

in the maximal sensitivity, low-temperature region of Fig.
3(a). This value is expected to change by varying the
interdot tunnel coupling and the temperature range of
operation. To fully capture this dependence, implicitly
coming from the |∂φ0/∂TMC | term, we make use of Eq.
(3) with the additional hypothesis of a dispersive cou-
pling between the LC resonator and the isolated double
QD, which implies[28]:

κ = A0

(
1

2t+ fr
+

1

2t− fr

)
(4)

where fr is the resonant frequency of the tank circuit and
A0 is a constant depending only on circuit parameters ,
whose value can be deduced from the fit of Fig. 3(a).
The resulting NET (TMC , t) map, extrapolated from the
data in Fig. 3(a), is shown in Fig. 3(b).

For a given tunnel coupling, the thermometer is ex-
pected to have an optimal temperature where NET
is minimized. The white dashed line highlights the t-
dependence of this optimal operation temperature. In-
terestingly, reducing the tunnel coupling at fixed tem-
perature always results in a lower NET no matter what
the temperature is. Therefore, operating at weak tun-
nel coupling is generically beneficial. However, this only
holds as long as the dynamics of the LC resonator is slow
with respect to interdot tunneling (adiabatic limit), i.e.
away from the divergence in Eq. (4) for t ∼ 2fr. For this
reason, the calculation in Fig. 3(b) is limited to t ≥ 1
GHz. (Below this cutoff, other physical mechanisms such
as charge noise would also limit the thermometer sensi-
tivity.) For t = 1 GHz, the thermometer NET could
be as low as 1 mK/

√
Hz at 30 mK. Moreover, a better

impedance matching between the device and the LC res-
onator would result in a larger A0 and hence an even
lower NET, thereby approaching and possibly exceeding
the performance of state-of-the-art metal-superconductor
thermometers [8].

PROOF-OF-CONCEPT: REAL-TIME
THERMOMETRY

Finally, we address the use of our device for real-time
thermometry. The measured NET is in principle too
large to allow stochastic temperature fluctuations to be
resolved at a microsecond time scale. However, the de-
veloped thermometry could still be applied to probe the
dynamics of local thermal exchange caused by determin-
istic and periodic heating events, such as those associ-
ated with the sequences of microwave bursts typically
employed in the operation of spin qubit devices. Under
these conditions, the signal to noise ratio can be increased

0 10 20

200

205

210

215
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µ

0 10 20 30
µ

FIG. 4. Real-time thermometry with setting II. Mi-
crowave bursts are periodically applied to gate G5 adjacent
to the double-dot thermometer. The microwave of frequency
15 GHz and power -40 dBm is modulated by a square signal
of frequency 20 kHz, resulting in 50 µs-long bursts, with 50
µs waiting time between each burst. The phase signal is ac-
quired with a synchronized lock-in at a sampling rate of 1.7
MHz with a 400-ns integration time. It is averaged over 2.106

cycles and is plotted as a function of time (open circles). Left
panel (heating) : At each cycle, the microwave burst is turned
on at T ime = 0, and the phase φ0 decreases from φc ∼ 220
to φon ∼ 200 mrad. Right panel (cooling): the microwave
excitation is switched off at T ime = 0 and the phase raises
back to φon with a two stage relaxation, see plain text for
details.

by averaging over multiple cycles. As a result, the ther-
mometry bandwidth is no longer limited by the NET
but by the response time of the system itself.

We identify two fundamentally limiting bandwidths.
The first is the response time of the measurement ap-
paratus. It would be defined here by the bandwidth of
the resonator, allowing for a time resolution of approxi-
mately 20 ns (7.8 MHz). The second limiting factor is the
charge relaxation time T1 towards a thermal state, since
the measurement of the Boltzmann temperature is only
meaningful at thermal equilibrium. This happens in this
system in about 15 ns (see Supp. Mat. for details)[23],
whereas maximal relaxation time of about 100 ns have
been reported in similar devices[35]. DQD thermometry
is therefore robust up to a few MHz.

For a proof-of-concept demonstration of time-resolved
thermometry, we periodically induce local heating by
means of microwave bursts applied to a nearby gate,
other than the gates defining the double-dot thermome-
ter. Data acquisition is synchronized with the applied
bursts to monitor the locally induced temperature mod-
ulation [8].

We plot the resulting phase signals versus time in Fig.4.
We observe the system switching between two phase lev-
els φon if the microwave is on and φc when it is off . This
values would translate to 75 mK and 55 mK respectively
with the previous calibration. However when the drive
is on, non-adiabatic (Landau-Zener) processes can occur
and populate the excited state of the double dot. This
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would decrease the phase measured. The bath temper-
ature of the "warm" stage can then hardly be precisely
known. After the drive is turned off , the phase increases
back to thermal equilibrium.

The transient regimes exhibit however different char-
acteristic time scales for cooling and heating.

We model the time evolution after the microwave is
turned on by an exponential decay:

φ0(τ) = φon + (φc − φon) exp (−τ/τm) . (5)

Which we plot as a red solid lines in Fig.4. We find
a characteristic time τm = 0.93 ± 0.35 µs close to our
experimental time resolution, which is set by the lock-in
measurement bandwidth.

The cooling dynamic reveals two relaxation processes,
as evidenced in right panel of Fig.4. The first relax-
ation corresponds to the rapid thermalization of the the
QD thermometer. This occurs on the characteristic time
scale for charge relaxation, T1, which we estimate to be
about 15 ns (see Supp. Mat. for details)[23]. Since
T1 ≪ τm, this charge-relaxation dynamics cannot be
resolved and the phase decay is again limited by the
measurement bandwidth. A single relaxation on time
scale τm, however, cannot capture the whole dynamics,
as evidenced by the comparison to the grey line in Fig.4.
A second, slower relaxation, with a characteristic decay
time of τb = 6.0± 1.5 µs, is in fact observed. We ascribe
this to the relaxation of the heat bath, which can be re-
vealed once the QD thermometer has thermalized with
the surrounding bath. We then propose a more complete
model, including a relaxation of the thermometer toward
equilibrium with the bath at time τm,

φ0(τ) = φbath(τ) + (φon − φbath(τ)) exp (−τ/τm) , (6)

while the bath relaxes at time τb

φbath(τ) = φc + (φh − φc) exp (−τ/τb) . (7)

Injecting (7) in (6) leads to the red model in the right
panel of Fig.4 while φbath is plotted with a green dashed
line. We can extrapolate the relaxation of the bath at
Time = 0 to estimate the bath temperature ∼ 62 mK in
the presence of heating, effectively smaller than 75.

A deeper investigation (e.g. exploring the effect of
varying the microwave excitation cycles and the way they
are applied) could provide important missing information
about the dissipation mechanisms and the nature of the
thermal bath in the QD environment.

Previous works on different types of Si-based spin-
qubit devices have indirectly inferred thermal relaxation
times from time-resolved Larmor frequency shifts at-
tributed to local overheating [2, 4, 36] . As compared to
this recent literature, the relaxation times reported here
are either comparable [4] or significantly shorter [2, 36].
The discrepancy could be ascribed to the different device

structures and to the different experimental conditions
(e.g. power and duration of the microwave excitation
pulses).

CONCLUSIONS

In summary we have implemented and characterised
non-invasive, non-galvanic thermometers sensing either
the electronic temperature of a Fermi reservoir, or the
local bosonic temperature in a semiconductor quantum-
dot device. For the DQD thermometer we could ob-
tain a state-of-the-art noise equivalent temperature of 3
mK/

√
Hz and identify a path to even lower noise levels,

well below 1 mK/
√
Hz. By synchronizing temperature

acquisition to a periodic sequence of microwave bursts,
we could increase the signal-to-noise ratio and probe tem-
perature variations on a micro-second time scale. While
this time-resolved QD thermometry is demonstrated in a
silicon MOS device, it could be readily reproduced in any
other semiconductor platform, such as SiGe-based het-
erostructures. Hence the present work opens new exper-
imental prospects to understand heating effects in semi-
conductor quantum processors and to tackle the widely
unexplored field of experimental quantum thermodynam-
ics in nanoelectronic systems [37].
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I. Resonator
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FIG. S1. Resonator response and its temperature dependence.(a)Frequency dependence of the reflectometry amplitude
for the lowest (52 mK) and highest temperatures (358 mK) in this work (open triangles and circles, respectively). The two
data sets are fitted to Eq. (S1) (solid lines) . The resonance frequency shift is much smaller than the resonator linewidth. (b)
Temperature-induced relative deviation of the resonance frequency, quality factor and bandwith of the resonator.

For each measurement temperature, the resonator spectral response is measured to verify that variations measured
on the Coulomb peak are not due to some changes in the resonator itself. The spectrum remains essentially unchanged
as shown in Fig. S1(a). To extract the resonator characteristics and quantify their temperature-induced deviation,
the reflectometry amplitude is fitted to the following equation:

S21,dB = 20 log



∣∣∣∣∣∣
1 +

Qie
iϕ

Qc

(
1 + 2iQi

(
f−fr
fr

))

∣∣∣∣∣∣


+ S0 (S1)

where S21,dB is the amplitude expressed in dB, Qi is the internal quality factor, Qc is the external quality factor, fr
is the resonance frequency, and S0 is the background. The total quality factor Q is given by :

Q =

(
1

Qi
+

1

Qc

)−1

(S2)

At 52 mK, we find Qi = 385, Qc = 62.0 and Q = 53.4. Its temperature-dependent deviation, δQ, is defined as :

δQ =
Q(T )−Q(52 mK)

Q(52 mK)
(S3)
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and analogous definitions hold for the deviations in resonance frequency and linewidth. All deviations are found to
be smaller than 1% , confirming that the temperature dependence of the measured reflectometry signals cannot be
due to undesirable variations in the resonator characteristics.

Note that the time-resolution limit imposed by the resonator is :

τ =
Q

2πf0
(S4)

II. Dot - Lead subsystem
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FIG. S2. Dot-lead transitions. Upper graph: Reflected phase as a function of gate voltage. Coulomb peaks are measured,
corresponding to charging events of the dot. Peaks are detected with a basic threshold detection, and are then fitted to a
lorentzian. Lower graph: FWHM of each peak extracted from the fits.

As described in the main text, we chose the dot-lead transition with lowest tunnel coupling. To do that, we sweep
the gate voltage of the dot in the few-hole regime from −500 to −1000 mV, we measure all Coulomb peaks with
high gate resolution (Fig. S2(a)) and fit them to a Lorentzian function to extract their full width at half maximum
(FWHM), plotted in Fig. S2(b). For the operation of the QD thermometer, we then sweep the gate voltage around
the narrowest peak (corresponding to the grey dashed lines in Fig. S2(b)) which is 70 µV wide here.

High RF read-out power can widen the measure dot-lead peaks. Power is then decreased until the width of the
narrowest peak becomes as small as possible and power-independent. Integration time is increased accordingly to
ensure a sufficiently large signal-to-noise ratio.

Once the QD thermometer is tuned to the narrowest peak, its operation is tested by varying the mixing-chamber
temperature through a resistive heater. For each temperature, the peak lineshape is measured by averaging the signals
from ten identical gate-voltage scans across the peak itself.

To extract the electronic temperature, Te, we use the model given by Eq. 1 in the main text, which is the same as
in Ref1. From this model we numerically derive a fitting function (for a peak centered around ε = 0):

φ(ε, Te,Γ, A, α) = A× α2e2
∫ +∞

−∞

(
1

4kBTe
cosh

(
eαε− E

2kBTe

)−2
)(

ℏΓ
ℏ2Γ2 + E2

)
dE (S5)

To numerically calculate the integral, we consider an integration window equal to 10×max (2kBTe, hΓ), relying on
the peak shape of both functions that vanish out of this window. All peaks are fitted to this formula while imposing
a same value of Γ, α and A. The lever arm α is pre-determined by fitting the high temperature peaks (TMC > 100
mK) where we assume that Te = TMC and

φ(ε, Te,Γ, α) = A× 1

4kBTe
cosh

(
eαε

2kBTe

)−2

(S6)
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III. Isolated double-dot subsystem
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FIG. S3. Isolated double dot charge stability diagram. (a) Charge stability diagram showing ’infinite’ interdot transitions.
(b) Peak amplitude and width as a function of the gate voltage, showing a way to reduce the tunnel coupling.

As described in the main text, we first load a few holes in a double QD by applying a negative voltage to G5, G6 and
G7, and the bringing back G7 to zero voltage, therefore separating a few charges from the drain reservoir. Provided
the inter-dot tunnel coupling is greater that the resonator frequency, inter-dot tunneling transitions can be observed
in the reflectometry signal2,3. Since the charges in the double QD are isolated from the leads, the interdot transitions
are in fact the only visible features and they extend all over the stability diagram (see Fig. S3(a)). Following the
interdot lines towards more negative gate voltages corresponds to making deeper and deeper confinement quantum
wells, and simultaneously increasing the height of the inter-dot tunnel barrier, therefore lowering the tunnel coupling t.
This trend is experimentally confirmed by recording the interdot transition for different gate voltages. The interdot is
simply fitted to a Lorentzian to extract its amplitude and FWHM. Results are shown in Fig. S3(b). When the voltage
of G5 is varied from −650 to −900 mV, the amplitude increases from 100 to 200 mrad and the width simultaneously
decreases from 300 to less than 100 µV, indicating that the tunnel coupling is reduced. No quantitative statement can
be done since other parameters may slightly change with the electrostatic configuration, such as the gate lever-arm
or the charge-photon coupling.

To express the cross-section of the interdot, we model the double-dot by a charge two-level system, described by
the Hamiltonian:

H =

(
ε/2 t
t −ε/2

)
(S7)

Diagonalising this Hamiltonian leads to two eigenstates of energy :

E|±⟩ = ∓
√(ε

2

)2
+ t2 (S8)

As represented in Fig.1(e), we have then two available anticrossing states with an energy gap ∆E =
√
ε2 + (2t)2 in

contact with a local environment at temperature Tph. Each state is thermally populated according to a Boltzmann
distribution :

P|±⟩ =
e

±∆E
2kBT

Z
(S9)

Z = e
∆E

2kBT + e
−∆E
2kBT (S10)

(S11)

Each state results in a quantum-capacitance contribution4–7 :

C |±⟩
q =

∂2E|±⟩
∂V 2

(S12)
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Where V = ε/αe. We can then express the total quantum capacitance as:

Cq = C |+⟩
q P|+⟩ + C |−⟩

q P|−⟩ = α2e2
2t2

(ε2 + 4t2)3/2
tanh

((
ε2 + 4t2

)1/2

2kBT

)
(S13)

From this equation we define the fitting function :

φ(V, T, t, A, α) = A× 2t2

((αeV )2 + 4t2)3/2
tanh

((
(αeV )2 + 4t2

)1/2

2kBT

)
(S14)

The temperature of the fridge is varied by means of resistive heater mounted on the mixing chamber. For each
temperature, the selected peak is measured ten times for statistics. As explained in the main text, the peak amplitude
is highly temperature dependent containing all the needed information. As a result, we fix the t and A parameters
and leave the peak amplitude as the only temperature-dependent fitting parameter. With theses values, the peaks
are then individually fitted, leaving only T and α as free parameter. These parameters are independent, and can be
fitted without ambiguity as the temperature impacts the amplitude of the peak while the lever arm affects the width.
For each bath temperature, we average the temperatures obtained from the fits, and take the standard deviation .
The results are reported in Fig. 2(d).

The dispersive shift of the resonator at resonance can be expressed as8

χ = g20

(
1

2t+ fr
+

1

2t− fr

)
(S15)

where g0 is the bare charge photon coupling and fr is the resonance frequency of the resonator, which we use to
compute the scaling of the parameter κ in Eq. (3).

IV. Noise equivalent temperature
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FIG. S4. Noise spectrum. a) Power spectrum computed using Welchs’method9, showing a white noise spectrum with
a noise floor SP = 1.03 ± 0.09 × 10−11V2. b) Phase spectral density, showing a white noise spectrum with a noise floor

Sφφ = 3.9± 0.2 mrad/
√
Hz

The two quadratures of the demodulator I and Q are measured for different sampling frequencies to access noise
spectrum in a wide frequency range. From the noise floor we can access to the noise temperature NT :

NT =
SP

10
GdB
10 B × 4kBR

(S16)

Where SP is the noise floor, GdB is the gain in dB of the room temperature amplifier, B is the bandwidth of the
demodulator and R is the 50Ω-impedance of the transmission line. We find a NT = 1.9±0.3 K, where as the cryogenic
amplifier (LNF-LNC 0.2-3 A s/n 1410Z) used in this experiment has a noise temperature of around 2 K
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FIG. S5. Time-resolved thermometry and charge relaxation time. a. Data of Fig.4 in the plain text, plotted as a
relative temperature change in log scale versus time. Two different relaxation time scales are evidenced by two linear fits to
the data, red and green. b. Charge relaxation time T1 using the method of chopped microwaves. The red curve shows a fit
giving T1 = 14 ns

V. Evidence of different relaxation time scales

The data for the cooling dynamics are rescaled and plotted in a logarithmic axis to highlight two distinct relaxations
mechanisms (Fig. S5a). The first one, highlighted by the red line, corresponds to a fast relaxation, i.e. the exponential
decay of Fig.4. The second one, highlighted by the green dashed line, points to a second, slower relaxation mechanism,
corresponding to the green-line exponential decay in Fig. 4. As the thermometer used in this experiment is equivalent
to a charge qubit, we can only consider the system being in equilibrium with the thermal bath at times longer than T1.
We evaluate this relaxation time with the ’chopped microwaves’ method described in10. A microwave of frequency 2t,
resonant with the charge qubit, drives the system to an incoherent mixture of ground and excited state. We modulate
the microwave by a square envelope with a 50% duty-cycle. If the period is smaller than the relaxation time, the
system stays in average in the mixed state. But if the period is longer than T1, then the system has time to relax. In
average, the system will be 50% of the time in the mixed state, and 50% of the time in the ground state. By recording
the averaged phase as a function of the cycle period, we can fit the value of T1 with the model

δφ0/δψ0 =
φ(τ)− φ(τ = 0)

φ(τ = +∞)− φ(τ = 0)
= 1− 2T1

τ

(
1− exp

(
− τ

2T1

))
(S17)

We extract T1 ∼ 15 ns. The first relaxation measured corresponds then to the bandwidth of the measurement. The
second relaxation must be of thermal origin.

VI. Measured devices

Three different devices with the same geometry have been measured, i.e. a nanowire cross section of 80 ×16 nm2

and a gate pitch of 80 nm. Results are reproducible from one device to another.

Sample Figure
1 Fig. 2.(a) and (c)
2 Fig. 2.(b) and (d)
1 Fig. 3.
3 Fig. 4.

TABLE I. Device associated to each dataset presented in the plain text
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VII. DC filters

LFCN 1450+ LFCN 5000+56-725-003 LFCN 800+
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deviceDAC TiNbTiNb TiNbCuNi

1 K 400 mK 50 mK4 K300 K

FIG. S6. Schematic of a DC-line with its corresponding filters. Filters cut-off frequencies are respectively from left to right : 3
MHz, 80 MHz, 1.5 GHz, 5 GHz, 50 kHz, 50 kHz, 2 kHz.

Fig S7. shows the DC-filtering in this experiment, as high-frequency filtering is of primary importance to decrease
the electronic temperature. Wires are thermalized at each temperature stage by copper stripes. At the mixing-chamber
stage, the loom is sunk in conductive epoxy to imitate a copper powder filter.

Achieving a lower electronic temperature can be challenging. Recent works11 used a He4 immersion cell to decrease
their electronic temperature up to 6.7 mK. They also noticed that mechanical vibrations can have a detrimental
impact on the electronic temperature.

VIII. Schematic of the device

Cold Finger 
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PCB 
Ground plane 

Al bond wire
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Silicon oxydeRouting to DC lines

FIG. S7. Schematic of the device.
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