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Zero-dispersion limit for the Benjamin-Ono equation on the
torus with single well initial data.

Louise Gassot

Abstract

We consider the zero-dispersion limit for the Benjamin-Ono equation on the torus. We prove that
when the initial data is a single well, the zero-dispersion limit exists in the weak sense and is uniform
on every compact time interval. Moreover, the limit is equal to the signed sum of branches for the
multivalued solution of the inviscid Burgers equation obtained by the method of characteristics. This
result is similar to the one obtained by Miller and Xu for the Benjamin-Ono equation on the real line
for decaying and positive initial data. We also establish some precise asymptotics of the spectral data
with initial data u0(x) = −β cos(x), β > 0, justifying our approximation method, which is analogous
to the work of Miller and Wetzel concerning a family of rational potentials for the Benjamin-Ono
equation on the real line.
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1 Introduction
We consider the zero-dispersion limit ε→ 0 for the Benjamin-Ono equation

∂tu = ∂x(ε|∂x|u− u2). (BO-ε)
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The Benjamin-Ono equation [1,29] describes a certain regime of long internal waves in a two-layer
fluid of great depth. The parameter ε describes the balance between the dispersive term and the
nonlinear term. For ε = 0, this equation becomes the inviscid Burgers equation, which causes the
formation of shocks in finite time. When ε > 0, the dispersive term prevents the formation of a
dispersive shock, replacing it by a train of waves (see for instance [25] for numerical simulations on
the real line). It is expected that right after the breaking time, the amplitude of shock waves does not
decrease with ε, while the wavelength is proportional to ε. As a consequence, the limit can exist in
the weak sense in the shock region.

1.1 Zero-dispersion limit
In this paper, we describe the weak zero-dispersion limit for the Benjamin-Ono equation at all times
given a single well initial data u0 ∈ C3(T).

Definition 1.1 (Single well potential). We say that u0 ∈ C3(T) is a single well potential if the following
holds:

1. u0 is real valued with zero mean;

2. u0(0) = minx∈T u(x);

3. there exists xmax ∈ (0, 2π) such that u′0 > 0 on (0, xmax) and u′0 < 0 on (xmax, 2π);

4. there are exactly two inflection points ξ− ∈ (0, xmax) and ξ+ ∈ (xmax, 2π) such that u′′0(ξ±) = 0,
and the inflection points are simple u′′′0 (ξ±) 6= 0.

The latter condition only aims at simplifying the study of the Burgers equation with initial data
u0 in the proof of Theorem 3.13, and could be removed.

In this case, for every η ∈ (minu0,maxu0), η has exactly two antecedents by u0. We denote

x−(η) = inf{x ∈ [0, 2π] | u0(x) = η},

x+(η) = sup{x ∈ [0, 2π] | u(
0x) = η}.

According to the work of Miller and Xu on the real line [25], the relevant zero-dispersion limit
for the Benjamin-Ono equation is the multivalued solution to the Burgers equation obtained by the
method of characteristics. More precisely, every point uB is an image of this multivalued solution at
time t with abscissa x as soon as it solves the implicit equation

uB = u0(x− 2uBt).

Given t and x, there may be several solutions uB that are denoted uB0 (t, x) < · · · < uB2P (t,x)(t, x), see
Figure 1. We define the signed sum of branches as

uBalt(t, x) :=

2P (t,x)∑
n=0

(−1)nuBn (t, x). (1)

Our main result is as follows.

Theorem 1.2 (Zero-dispersion limit for the Benjamin-Ono equation). Let u0 ∈ C3(T) be a single
well initial data. Let uBalt be the signed sum of branches for the multivalued solution to the inviscid
Burgers equation with initial data u0. Then there exists a family (uε0)ε>0 ⊂ L2(T) of initial data such
that uε0 → u0 in L2(T) and the following holds. Uniformly on finite time intervals, the solution uε to
the Benjamin-Ono equation (BO-ε) with parameter ε and initial data uε0 converges weakly to uBalt in
L2
r,0(T) as ε→ 0:

uε⇀uBalt.

If u0(x) = −β cos(x) for some β > 0, one can choose uε0 = u0 for every ε > 0.
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Figure 1: Multivalued solution of the Burgers equation obtained by the method of characteristics, with
initial data u0(x) = −β cos(x)

Remark 1.3 (Strong (resp. weak) convergence before (reps. after) the shock time). As long as uB is
a well-defined function, one knows thanks to the conservation of the L2 norm that the convergence in
Theorem 1.2 is strong.

However, for instance when u0(x) = −β cos(x), the convergence cannot be strong right after the
breaking time T for the Burgers equation. Indeed, for (t − T ) positive and small enough, there holds
(see Lemma 3.17)

‖uε(t)‖L2(T) = ‖u0‖L2(T) > ‖uBalt‖L2(T).

Remark 1.4 (Convergence for small times). For C∞ initial data, a WKB approximation of the form

uε(t, x) =
+∞∑
j=0

aj(t, x)εj

would enable us to get an asymptotic expansion for the zero dispersion limit up to the shock time, by
transforming the problem into the Burgers equation for a0 and transport equations for the higher order
terms. However, this approach would not give access to information on the solution after the shock
formation.

Zero-dispersion limit for the Benjamin-Ono equation on the torus To the best of our
knowledge, not much seems to be known concerning the zero-dispersion limit for the Benjamin-Ono
equation on the torus. A first approach using Whitham modulation approximation can be found in
the work of Matsuno [22]. More recently, Moll [28] gives a convergence result of the Lax eigenvalues
in the zero-dispersion limit. However, the type of convergence is not sufficient to establish that the
corresponding approximate solution is a good approximation in the classical space L2(T). In this
direction, one can also mention a similar approach in [27] for the quantum periodic Benjamin-Ono
equation.

Our strategy relies on the recent work of Gérard, Kappeler and Topalov who constructed Birkhoff
coordinates for the Benjamin-Ono equation in [13], which adapt to equation (BO-ε) through a rescaling.
A further study of this transformation appears in [14–17] (see also [12] for a survey on the topic).

Zero-dispersion limit for the Benjamin-Ono equation on the real line Theorem 1.2
is similar to Benjamin-Ono equation the real line studied by Miller and Xu [25], where the authors
prove the following result. Let u0 be an initial data satisfying some admissibility conditions, let
uB0 (t, x) < · · · < uB2P (t,x)(t, x) be the branches of the multivalued solution to the inviscid Burgers
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equation obtained by the method of characteristics, and let uBalt be the signed sum of branches as
in (1). Then there exists a sequence of initial data uε0 such that uniformly on compact time intervals,
the solution uε is weakly convergent in L2(R) to uBalt. This result also implies strong convergence for
all 0 ≤ t < T , where T is the breaking time for the Burgers equation. However, the approach for the
zero-dispersion limit for the Benjamin-Ono on the line needs to be restricted to positive initial data
with prescribed tail behavior

|x|q+1∂xu0
x→±∞−→ C±

for some q > 1, and a generalization to more general potentials as in Theorem 1.2 seems still unknown.
Finally, Miller and Xu establish a similar zero-dispersion convergence result for the Benjamin-Ono
hierarchy in [26], and it would be interesting to compare their result to the Benjamin-Ono hierarchy
on the torus, see Remark 3.16.

The approach of Miller and Xu is based on inverse scattering transform techniques, first formally
derived by Fokas and Ablowitz [10], and then rigorously written by Coifman and Wickerhauser [5] for
small and decaying data, see also [19]. The strategy is as follows. The initial data is first approximated
by a rational potential of Klaus-Shaw type uε0, that is, a rational potential with only one bump. The
authors first guess the right approximate eigenvalues λn(ε) and phase constants of uε(0) in order for
the scattering problem to approximate well the solution. Then they prove that for every time t (in
particular for t = 0), there holds weak convergence of uε(t) to uBalt(t) as ε → 0. This approximation
is necessary in order to have an explicit inversion formula for the scattering data. A possible progress
might come from the recent work on the direct scattering problem for the Benjamin-Ono equation [34,
35], and from the construction of a Birkhoff map started in the paper of Sun [30].

In [23], Miller and Wetzel establish exact formulae for positive rational initial conditions with
simple poles. Using these formulae, the authors are able to derive a precise asymptotic expansion for
the scattering data in the zero dispersion limit [24]. In this special case, the asymptotics enable to
choose the initial data u0 itself instead of an ε-dependent initial data uε(0) in the zero-dispersion limit
problem. As we will see in part 2.2, however, this approach seems uncertain for rational potentials on
the torus. On the torus, we are still able to provide a precise asymptotic expansion for the eigenvalues
when u0(x) = −β cos(x) is not a finite gap potential in Theorem 1.6 below, and we hope to extend
this asymptotic expansion to more general initial data in a subsequent work.

Zero-dispersion limit for the KdV equation The zero-dispersion limit problem was first
investigated for the Korteveg-de Vries equation on the real line by Lax and Levermore [20]

∂tu− 3∂x(u2) + ε2∂xxxu = 0,

when the initial data is negative or zero and decays sufficiently fast at infinity. The authors construct
approximate scattering data, or approximate initial data uε0, such that the solutions uε(t) are conver-
gent to some limit in the weak sense when ε → 0, uniformly on compact time intervals. The limit
is different from the Benjamin-Ono equation, and can only be expressed implicitly as the solution of
some variational problem. This approach was adapted to positive initial data in [31]. The authors
use WKB methods in order to approximate the scattering data associated to the KdV equation, and
their analysis is based on the inverse scattering transform. Venakides then describes the nature of
oscillations that appear after the dispersive shock time in [33]. The theory was developed in [6] using
the steepest-descent method in order to get strong convergence results. A further refinement of these
asymptotics can be found in the work of Claeys and Grava [2–4], who exhibit in particular a universal
wave profile starting from ε-independent initial data.

On the torus, Venakides [32] computes the weak zero dispersion limit for periodic initial data.
The author proves that a shock appears for small dispersion parameter at the breaking time of the
Burgers equation, causing the emergence of rapid oscillations with wavenumbers and frequencies of
order O(1/ε). In this purpose, he establishes asymptotics on the exact solution instead of relying on
an approximation. More recently, an asymptotic expansion of the spectral parameters has then been
established in [7] with the cosine initial data in order to justify the Zabusky-Kruskal experiment [36].
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1.2 Distribution of the Lax eigenvalues
Our strategy of proof relies on the complete integrability of the Benjamin-Ono equation in the sense
that it admits Birkhoff coordinates, constructed in in [13]. This transformation enables us to consider
general initial data in L2

r,0(T), that is, in L2(T), real-valued and with mean zero. The construction
of Birkhoff coordinates relies on the eigenvalues λn(u0; ε) of the Lax operator Lu0(ε), and some phase
constants θn(u0; ε) depending on the eigenfunction of Lu0(ε) (see part 2.1 for more details). A careful
study of the spectral parameters λn(u0; ε) and θn(u0; ε) for n ≥ 1 leads us to introduce the following
asymptotic approximation for the Lax eigenvalues and phase constants.

Let us denote for η ∈ R

F (η) :=
1

2π
Leb(x ∈ [0, 2π] | u0(x) ≥ η).

The eigenvalues are expected to follow some quantization rule depending on the distribution function
F as follows (see also Figure 2).

Definition 1.5 (Admissible approximate initial data). Let u0 be a single well initial data. We say
that the family of approximate initial data (uε0)ε>0 is admissible if ‖uε0‖L2(T) → ‖u0‖L2(T) as ε → 0
and the following holds. For every δ > 0, there exist C(δ),K(δ) > 0 such that for every ε > 0, the
eigenvalues λn = λn(uε0; ε) and phase constants θn = θn(uε0; ε) satisfy the following properties.

1. (Small eigenvalues) If λn+ε, λp+ε ∈ Λ−(δ) = [−max(u0)+δ,−min(u0)−δ], then for ε ≤ ε0(δ)
small enough, ∣∣∣∣∣

∫ −λn
−λp

F (η) dη − (p− n)ε

∣∣∣∣∣ ≤ C(δ)ε
√
ε.

2. (Large eigenvalues) We denote Λ+(δ) = [−min(u0) + δ,∞). If λn + ε, λp + ε ∈ Λ+(δ) =
[−min(u0) + δ,K(δ)], then

|λp − λn − (p− n)ε| ≤ C(δ)ε
√
ε,

whereas if λn + ε, λp + ε ∈ [K(δ),∞), then

|λp − λn − (p− n)ε| ≤ δ.

3. (Other eigenvalues) There are at least δ
Cε and at most Cδ

ε eigenvalues λn satisfying λn + ε ∈
[−min(u0) − δ,−min(u0) + δ], and at least 1

C(δ)ε and at most Cδ
ε eigenvalues in the region

λn + ε ∈ [−max(u0),−max(u0) + δ].

4. (Phase constants) ∣∣∣∣θn+1 − θn −
(
π − x+(−λn) + x−(−λn)

2

)∣∣∣∣ ≤ C(δ)ε
√
ε. (2)

By applying the inverse Birkhoff transformation (Φε)−1, the choice of a family of eigenvalues and
phase factors defines an approximate initial data uε0. The set of admissible initial data is never empty,
see Lemma 3.15.

This distribution of the spectral parameters is completely justified in the case of the cosine initial
data thanks to the following Theorem, which is our second main result.

Theorem 1.6 (Distribution of the Lax eigenvalues for cosine initial data). Assume that u0(x) =
−β cos(x) for some β > 0. Then the family (u0)ε>0 of ε-independent initial data is admissible.

Remark 1.7 (Other eigenvalues). Note that we need to remove two small regions λ+ε ∈ [−β,−β+δ),
λ + ε ∈ (β − δ, β + δ) and one large region λ + ε ∈ (K(δ),∞) in our analysis, for which a uniform
asymptotic expansions of the eigenvalues is not known. The reason is that we need uniform bounds in
the method of stationary phase and in the Laplace method, but the stationary point goes to the limits
of integration at −β, β and ∞.
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Figure 2: Definition of Λ±(δ) (on the left) and distribution of the eigenvalues in the zero-dispersion limit
(on the right), with initial data u0(x) = −β cos(x)

To prove Theorem 1.6, we will see that the eigenfunctions fn(u0; ε) ∈ L2
+(T) of the Lax operator

must have a holomorphic extension to the open unit disk in the complex plane. Therefore, the pole at
0 has to satisfy some constraints in order to meet the holomorphy property, leading to an asymptotic
expansion of the eigenvalues λn(u0; ε) as ε→ 0.

As a consequence, we will see that the initial data u0(x) = −β cos(x) is well-approximated by a
solution for which γn(u0; ε) = |ζn(u0; ε)|2 = 0 when n ≥ β+O(1)

ε , which is actually to a Nε-soliton
with Nε ≈ β

ε . This insight leads us to define approximate Lax eigenvalues for more general single well
initial data from the distribution function F in Definition 1.5. In order to derive the entire Birkhoff
coordinates which completely characterize the approximate initial data uε0, we needed to choose the
phase constants θn(uε0; ε) for n ≥ 1, but we dot not have a justification for our choice yet. When
u0(x) = −β cos(x), we take advantage of the fact that all the phase constants vanish.

1.3 Strategy of proof
Let uε be the solution to (BO-ε) with initial data uε0 satisfying the admissibility conditions from
Definition 1.5. In this part, we explain how to obtain weak convergence of uε to uBalt when ε→ 0.

We first make a link between the matrix M(u0; ε) = (Mn,p(u0; ε))n,p≥0 of the shift operator S :
h ∈ L2

+(T) 7→ eixh ∈ L2
+(T) (defined later in (7)) as a function of the spectral parameters, and the

Fourier coefficients of u0 ∈ L2
r,0(T) (see Proposition 3.1)

û0(k) = εTr(M(u0; ε)k).

Then, it is quite direct that for a single well potential there also holds (see Proposition 3.3)

û0(k) =
−i
2kπ

∫ maxu0

minu0

(e−ikx+(η) − e−ikx−(η)) dη,

where x±(λ) are the antecedents of λ by u0 defined below Definition 1.1. One can make a parallel
between those two formulas and [25], where Miller and Xu make a link between the k-th moment
Tr(M(u0; ε)k) and some integral depending on (x+ 2λt− x±(λ))k+1 (see their Proposition 4.1).

Using the asymptotics of the eigenvalues, we justify an approximation of εTr(M(uε0; ε)k) under the
form

εTr(M(uε0; ε)k) ≈ −i
2kπ

∫ maxu0

minu0

(e−ikx+(η) − e−ikx−(η)) dη, (3)
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where the right-hand side does not depend on ε but only on u0. In this approximation, we neglect the
termsMn,p(u

ε
0; ε) which are off-diagonal |n−p| ≥ ε−r for some ε > 0, and the terms where the index n

corresponds to an eigenvalue outside the small-eigenvalue region λn + ε ∈ Λ−(δ). Our approximation
method then enables us to deduce an approximation of εTr(M(uε(t); ε)k):

εTr(M(uε(t); ε)k) ≈ −i
2kπ

∫ maxu0

minu0

(e−ik(x+(η)+2ηt) − e−ik(x−(η)+2ηt)) dη.

For small times, we recognize the right hand side as the k-th Fourier coefficient for the time evolution
of u0 under the Burgers equation. Indeed, for the Burgers solution uB, one would have xB±(η, t) =
x±(η) + 2ηt, so that we have actually proven

ûε(t)(k) ≈ ûB(t)(k).

After the breaking time for the Burgers equation, the right hand side becomes the alternate sum of
Fourier coefficients for the branches of the multivalued solution of the Burgers equation obtained with
the method of characteristics, denoted uBalt.

1.4 Plan of the paper
In section 2, we introduce the Birkhoff coordinates and spectral parameters associated to (BO-ε). In
section 3, we use the approximate spectral data in order to approximate the k-th Fourier coefficient of
the solution at time t by the k-th Fourier coefficient of the relevant solution to the Burgers equation. In
section 4, we establish an asymptotic expansion of the Lax eigenvalues associated to equation (BO-ε)
for the cosine initial data.

Acknowledgments The author is grateful to Patrick Gérard for relevant advice on this problem,
in particular, for providing notes on Proposition 4.1 about the cosine function. This material is based
upon work supported by the National Science Foundation under Grant No. DMS-1439786 while the
author was in residence at the Institute for Computational and Experimental Research in Mathematics
in Providence, RI, during the “Hamiltonian Methods in Dispersive and Wave Evolution Equations”
program.

2 Birkhoff coordinates in the zero dispersion limit
In all that follows, the constants C may change from line to line, and are denoted by C(δ) if they
depend on a parameter δ which is not fixed. Some parameters 0 < c < r < 1 are also fixed all
throughout this paper.

2.1 Lax eigenvalues for the Benjamin-Ono equation
Our main tool is the description of complete integrability for the Benjamin-Ono equation on the torus
from [13], in which Birkhoff coordinates are constructed in the case ε = 1. Let us adapt the setting to
equation (BO-ε) with arbitrary parameter ε.

For u ∈ L2
r,0(T), we denote Lu(ε) the Lax operator for the Benjamin-Ono equation with parameter ε

Lu(ε) = εD − Tu.

We have written D = −i∂x, moreover, Tu : h ∈ L2
+(T) 7→ Π(uh) ∈ L2

+(T) is a Toeplitz operator,
where Π is the Szegő projector onto the subspace L2

+(T) of L2(T) of functions with positive Fourier
frequencies.

Let (λn(u; ε))n≥0 be the eigenvalues of Lu(ε) in increasing order. Let (fn(u; ε))n≥0 be the corre-
sponding eigenfunctions defined through the additional conditions 〈1|f0〉 > 0 and 〈fn|eixfn−1〉 > 0,
n ≥ 1.
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Then according to [13], the gaps lengths

γn(u; ε) = λn(u; ε)− λn−1(u; ε)− ε

are nonnegative, and for any n ≥ 1, there holds

λn(u; ε) = nε+ λ0(u; ε) +
n∑
k=1

γk(u; ε) = nε−
+∞∑

k=n+1

γk(u; ε).

Finally, defining h1/2 = {(ζn)n≥1 ∈ CN |
∑

n≥1 n|ζn|2 <∞}, the Birkhoff transform is written

Φε : u ∈ L2
r,0(T) 7→ (ζn(u; ε))n≥1 ∈ h1/2.

In the construction of this transformation, one can see that |ζn(u; ε)|2 = γn(u; ε). Moreover, the phase
constants are defined by θn(u; ε) = arg(ζn(u; ε)) for ζn(u; ε) 6= 0.

The following Parseval formula holds true

‖u‖2L2(T) = 2ε
∑
n≥1

nγn(u; ε). (4)

In order to check this identity for general parameter ε, it might be useful to note that Lu(ε) = εLu/ε(1),
so that fn(u; ε) = fn(u/ε; 1), then ζn(u; ε) =

√
εζn(u/ε; 1), and finally γk(u; ε) = εγk(u/ε; 1). As a

consequence, we can use the Parseval formula with parameter ε = 1 from [13].
Finally, the eigenvalue λn(u; ε) satisfies the min-max formula

λn(u; ε) = max
dimF=n

min{〈Lu(ε)h|h〉 | h ∈ H1
+ ∩ F⊥, ‖h‖L2 = 1}.

Therefore, the smallest eigenvalue

λ0(u; ε) = min{〈Lu(ε)h|h〉 | h ∈ H1
+, ‖h‖L2 = 1}

is bounded below by

λ0(u; 0) = −max{〈u||h|2〉 | h ∈ H1
+, ‖h‖L2 = 1} ≥ −max

x∈T
u(x). (5)

2.2 Inversion formula
Given u ∈ L2

r,0(T), one has the inversion formula [13]

Πu(z) =
〈
(Id−zM(u; ε))−1X(u; ε)|Y (u; ε)

〉
(6)

with
X(u; ε) = (−λp(u; ε)〈1|fp(u; ε)〉)p≥0, Y (u; ε) = (〈1|fn(u; ε)〉)n≥0,

and M(u; ε) is the matrix of the shift operator S : u ∈ L2
+ 7→ eixu ∈ L2

+ with coefficients

Mn,p(u; ε) = 〈fp(u; ε)|Sfn(u; ε)〉,

Mn,p(u; ε) =


√
µn+1(u; ε)

√
κp(u;ε)√
κn+1(u;ε)

ζp(u; ε)ζn+1(u; ε) 1
λp(u;ε)−λn(u;ε)−ε if p 6= n+ 1√

µn+1(u; ε) if p = n+ 1.
(7)

In this definition, µn and κn are functions of the eigenvalues (λn(u; ε))n defined in (10) and in (11).
In order to get an asymptotic expansion of the eigenvalues, the strategy used in Miller, Wetzel [23,

24] is restricted to N -gap solutions. On the torus, when u satisfies ζn(u; ε) = 0 for every n ≥ N (u is
a N -gap for the parameter ε), the inversion formula becomes

Πu(z) = −2εz∂z log det (Id−zMN−1(u; ε)) .

8



Recall that a function in the Hardy space f ∈ L2
+(T) admits an holomorphic expansion to the open

unit disk D in C as follows. Expand f in Fourier modes f(x) =
∑

n≥0 cne
inx, then the holomorphic

expansion of f is written f(z) =
∑

n≥0 cnz
n. Conversely, let z ∈ D ⊂ C and Q(z) =

∏N
j=1(1 − qjz)

with qj ∈ C and 0 < |qj | < 1, then

Πu(z) = ε
N∑
j=1

qjz

1− qjz

defines a N -gap for the parameter ε and Q(z) = det(Id−zMN−1(u; ε)). Such a N -gap u has a
meromorphic extension on C

u(z) = ε

N∑
j=1

qjz

1− qjz
+ ε

N∑
j=1

qj
z − qj

,

with poles qj inside the unit disk and 1/qj outside of the unit disk. One difficulty of this approach on
the torus is the following observation. If we replace ε by ε/2, then

Πu(z) = −ε
2

2N−1∑
j=0

qjz

1− qjz

with qj+N = qj , and u becomes a 2N -gap for the parameter ε/2. As a consequence, we expect that
a N -gap for the parameter ε becomes a N/ε-gap for the parameter ε. The number of poles and
zeroes of the meromorphic extension of u being increasing with ε, we do not expect to get a uniform
approximation of the eigenvalues when using the steepest descent method as ε→ 0.

Instead of using this approach, we rather consider the trigonometric polynomial −β cos, which
meromorphic extension to the complex plane z+z−1

2 has a pole at the origin z = 0 but nowhere else.
This pole could have a higher order if one considers more general trigonometric polynomials, but this
order does not depend on ε, which makes us hope to be able to extend our result to trigonometric
polynomials in the future.

2.3 Approximate Birkhoff coordinates
In this part, we justify that if Theorem 1.6 is true for u0(x) = −β cos(x), then (u0)ε>0 defines an
admissible family of initial data in the sense of Definition 1.5. Then we state some consequences of
Definition 1.5.

Concerning the cosine function, it is enough to establish that all phase constants are equal to 0.

Proposition 2.1 (Phase constants for the cosine function). Fix a parameter β > 0 and consider the
initial data u(x) = −β cos(x). For every n ≥ 1, there holds ζn(u; ε) > 0, hence θn(u; ε) = 0.

Proof. It is enough to tackle the case ε = 1. From [13], equation (2.7), one has for every n ≥ 0

LuSfn = SLufn + Sfn − 〈uSfn|1〉1.

For the potential u(x) = −β cos(x), since Sfn ∈ L2
+(T), there holds

〈u|Sfn〉 = −β
2
〈eix|Sfn〉 = −β

2
〈1|fn〉,

so that
LuSfn = (λn + 1)Sfn +

β

2
〈fn|1〉1.

Note that γn = κn|〈1|fn〉|2, where κn is nonzero and defined in (10). If γn = 0 for some n ≥ 1, then
LuSfn = (λn + 1)Sfn, which implies that fn+1 = Sfn, λn+1 = λn + 1 and γn+1 = 0. Conversely, if
γn+1 = 0, then Lemma 2.5 from [13] implies that LuSfn = λn+1Sfn = (λn + 1)Sfn, consequently,
〈1|fn〉 = 0 and γn = 0. We conclude that either all the Birkhoff coordinates of u are zero, which is
impossible, either all the Birkhoff coordinates of u are nonzero.
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Finally, from [13], Lemma 2.6, one has for every n, p ≥ 0

(λp − λn − 1)〈fp|Sfn〉 = −〈fp|1〉〈u|Sfn〉.

When p = n+ 1, we get

γn+1〈fn+1|Sfn〉 =
β

2
〈fn+1|1〉〈1|fn〉.

Since γn+1 > 0 and 〈fn+1|Sfn〉 > 0 by definition of the eigenfunctions fn, we deduce that for every
n ≥ 0, there holds

ζn+1ζn > 0.

Using that ζ0 = 1, we conclude that the Birkhoff coordinates of u are all real and positive.

The following result summarizes the properties of the approximate Birkhoff coordinates both in
the case u0(x) = −β cos(x) and in the case of a general single well potential.

Corollary 2.2 (Consequences of Definition 1.5). Let u0 be a single well initial data. We choose an
admissible family (uε0)ε>0 as in Definition 1.5. We consider the approximate Lax eigenvalues λn =
λn(uε0; ε). Let δ > 0, then for ε ≤ ε0(δ) small enough the following holds.

1. For every n ≥ 0, we have ∣∣∣∣∣
∫ max(u0)

−λn
F (η) dη − nε

∣∣∣∣∣ ≤ Cδ + C(δ)ε
√
ε. (8)

2. (Large eigenvalues) If −λn − ε ∈ Λ−(δ) = [−max(u0) + δ,−min(u0)− δ], then there holds

∞∑
k=n+1

γk ≤ Cδ + C(δ)ε
√
ε.

3. (Two-region eigenvalues) If −λn − ε ∈ Λ−(δ) and −λp − ε ∈ Λ+(δ) = [−min(u0) + δ,∞), then
|p− n| ≥ δ

Cε .

We also state the bounds that we will use on the distribution function.

Lemma 2.3 (Lipschitz properties of the distribution function). Fix a general single well initial data.
Let δ > 0. There exists C(δ) > 0 such that F , x+ and x− are C(δ)-Lipschitz on [min(u0)+δ,max(u0)−
δ]. Moreover, F (η) ≥ 1/C(δ) for η ≤ max(u0)− δ.

3 Asymptotic expansion of the Fourier coefficients for sin-
gle well initial data
In this section, we establish Theorem 1.2 by proving the convergence of every Fourier coefficient of
uε(t) to the Fourier coefficient of uBalt(t).

3.1 Fourier coefficients as a trace
Proposition 3.1 (Fourier coefficients and trace of the shift matrix). For any u ∈ L2

r,0(T) and k ≥ 1,
there holds

û(k) = εTr(M(u; ε)k).

Proof. Let H1(u) = 1
2π

∫ 2π
0 u2(x) dx be the mass of the solution. We use the differentiation formula

dH1(u). cos(kx)− i dH1(u). sin(kx) = 2〈u| cos(kx)〉 − 2i〈u| sin(kx)〉 = 2û(k).
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Since the Parseval formula gives
H1(u) = 2ε

∑
n≥1

nγn(u; ε),

taking the differential leads to

dH1(u).h = 2ε
∑
n≥1

n dγn(u; ε).h.

Given that γn(u; ε) = εγn(u/ε; 1) and fn(u; ε) = fn(u/ε; 1), one has

dγn(u; ε).h = −〈|fn(u; ε)|2 − |fn−1(u; ε)|2|h〉.

We get that
dH1(u).h = −2ε

∑
n≥1

n〈|fn(u; ε)|2 − |fn−1(u; ε)|2|h〉.

This leads to the telescopic sum

dH1(u).h = 2ε
∑
n≥1

〈|fn(u; ε)|2|h〉.

But we note that

Tr(M(u; ε)k) =
∑
n

〈fn(u; ε)|Skfn(u; ε)〉

=
∑
n

〈fn(u; ε)| cos(kx)fn(u; ε)〉 − i
∑
n

〈fn(u; ε)| sin(kx)fn(u; ε)〉,

which leads to the identity with h = cos(kx) and h = sin(kx).

Remark 3.2. When ε is fixed, it is possible to prove that the following expanded formula for the trace

û(k) = εTr(Mk) = ε
∑

n1,...,nk+1≥1
n1=nk+1

k∏
i=1

Mni,ni+1 .

is absolutely convergent, but we will see in Proposition 3.8 that one can bound the sum of absolute
values of the terms by some constant C(δ) independent of ε.

In [25] Proposition 4.1, Miller and Xu make a link between the k-th moment Tr(M(u; ε)k) and some
integral depending on (x + 2λt − x±(λ))k+1. In our setting, we can guess what is the corresponding
formula on the torus by expressing the k-th Fourier coefficient of u in a different manner.

Proposition 3.3. For any single well potential u ∈ C1
r,0(T) (see Definition 1.1), we have

û(k) =
−i
2kπ

∫ maxu

minu
(e−ikx+(η) − e−ikx−(η)) dη.

Proof. We integrate by parts

2πû(k) =

[
u(x)e−ikx

−ik

]2π

0

− i

k

∫ 2π

0
∂xu(x)e−ikx dx,

where the crochet vanishes by periodicity. Let xmax ∈ [0, 2π] the unique point for which u(xmax) =
maxT u. We split the integral between the zones [0, xmax] on which u is increasing, and [xmax, 2π] on
which u is decreasing. This leads to

2πû(k) = − i
k

∫ xmax

0
∂xu(x)e−ikx dx− i

k

∫ 2π

xmax

∂xu(x)e−ikx dx.

Then we make the change of variable η = u(x) (or x−(η) = x) in the first term of the right hand side,
and η = u(x) (or x+(η) = u(x)) in the second term of the right hand side. Since in both cases there
holds dη = ∂xu(x) dx, we get

2πû(k) = − i
k

∫ max(u)

min(u)
e−ikx+(η) dη − i

k

∫ min(u)

max(u)
e−ikx−(η) dη.
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3.2 Upper bounds for the Fourier coefficients
We now fix some k ∈ Z and estimate the k-th Fourier coefficient ûε0(k) of the approximate initial data
uε0, where the rate of convergence may depend on k.

In this part, we first establish some upper bounds on the matrix coefficients Mn,p(u
ε
0; ε). As a

consequence, we justify that in the formula for εTr(M(uε0; ε)k), we can neglect the terms when the
indexes n, p are too off-diagonal |p− n| ≥ ε−r for some 0 < r < 1, and when the Lax eigenvalue λn is
not in the region λn + ε ∈ Λ−(δ).

Up to replacing uε0 by some very close initial data vε0 in the proof, one can assume that for every
n, there holds γn(uε0; ε) 6= 0. Indeed, let T, δ0 > 0. By continuity of the flow map for (BO-ε), there
exists c1(ε) such that if ‖uε0 − vε0‖L2 ≤ c1(ε), then we have

sup
t∈[0,T ]

‖uε(t)− vε(t)‖L2 ≤ δ0. (9)

By continuity of the inverse Birkhoff map Φ(ε)−1, there exists c2(ε) > 0 such that if∑
k

εk|ζk(uε0; ε)− ζk(vε0; ε)|2 < c2(ε),

then ‖uε0 − vε0‖L2 ≤ c1(ε). We choose vε0 under the form ζk(v
ε
0; ε) = εk(ε) > 0 as soon as ζk(uε0; ε) = 0,

ζk(v
ε
0; ε) = ζk(u

ε
0; ε) otherwise, with εk(ε) small enough so as to satisfy the above inequality. Then

inequality (9) holds. As a consequence, for every t ∈ [0, T ], there holds

sup
t∈[0,T ]

|ûε(t)(k)− v̂ε(t)(k)| ≤ δ0,

and since δ0 is arbitrary, the convergence of the Fourier coefficients for vε are enough to conclude the
proof of Theorem 1.2 for the family (uε0)ε.

In what follows, we fix ε > 0 and drop the ε in the notation, for instance λn stands for λn(uε0; ε).
Recall that when γn+1 6= 0, then [13]

Mn,p(u
ε
0; ε) =

√
anγn+1γp

1

λp − λn − ε
ei(θn+1−θp)

where
an = µn+1

κp
κn+1

> 0,

κn =
1

λn − λ0

∞∏
p=1
p 6=n

(
1− γp

λp − λn

)
, (10)

µn+1 =

(
1− γn+1

λn+1 − λ0

) ∞∏
p=1

p6=n+1

(
1− γp

λp−λn+1

)
(

1− γp
λp−λn−ε

) . (11)

Lemma 3.4 (Formula for an). The following formula holds for every n ≥ 1

an
γnγn+1

ε2
=

(
1 +

ε

λn − λ0

) ∞∏
p=1
p 6=n

(
1− ε2

(λp − λn)2

)
.

Proof. We simplify the product an = µn+1
κn
κn+1

as

an =
λn − λ0 + ε

λn − λ0

 ∞∏
p=1

p6=n,n+1

(
1− γp

λp−λn

)
(

1− γp
λp−λn−ε

)
 1− γn+1

λn+1−λn
1− γn

λn−λn+1

·
1− γn

λn−λn+1

1− γn
−ε

=
λn − λ0 + ε

λn − λ0

 ∞∏
p=1

p6=n,n+1

λp−1 − λn + ε

λp − λn
λp − λn − ε
λp−1 − λn

 ε2

(ε+ γn+1)(ε+ γn)
.
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Then one can re-index the product to get

an =
λn − λ0 + ε

λn − λ0

 ∞∏
p=1
p 6=n

(
1 +

ε

λp − λn

)(
1− ε

λp − λn

)
(
λn−1 − λn + ε

λn−1 − λn

)−1(λn+1 − λn − ε
λn+1 − λn

)−1 ε2

(ε+ γn+1)(ε+ γn)

so that

an =
λn − λ0 + ε

λn − λ0

 ∞∏
p=1
p6=n

(
1 +

ε

λp − λn

)(
1− ε

λp − λn

) ε2

γn+1γn
.

Lemma 3.5 (Bounds for an). There exist C > 0 such that for every ε > 0 and δ > 0, the following
holds. For every n ≥ 1,

an
γnγn+1

ε2
+ an + an

γn+1

ε
+ an

γn
ε
≤ C.

Proof. These inequalities are a direct consequence of the formula for an. Indeed, we have

0 ≤ an
γnγn+1

ε2
≤ 1 +

ε

λn − λ0
≤ 2.

Similarly, since γn
ε+γn

= 1 + ε
λn−1−λn and γn+1

ε+γn+1
= 1− ε

λn+1−λn , we get

0 ≤ an ≤
(

1 +
ε

λn − λ0

)(
1 +

ε

λn+1 − λn

)(
1− ε

λn−1 − λn

)
ε2

(ε+ γn+1)(ε+ γn)
≤ 8,

0 ≤ an
γn
ε
≤
(

1 +
ε

λn − λ0

)(
1− ε

λn−1 − λn

)
ε

ε+ γn
≤ 4,

0 ≤ an
γn+1

ε
≤
(

1 +
ε

λn − λ0

)(
1 +

ε

λn+1 − λn

)
ε

ε+ γn+1
≤ 4.

Now, we remove the coefficients which are too far from the diagonal in the sense that |n−p| ≥ ε−r
for some fixed parameter 0 < r < 1. We also justify that we can neglect the coefficients outside the
region λn + ε ∈ Λ−(δ).

Remark 3.6 (Absolute convergence). In order to establish error bounds, we first prove absolute con-
vergence of the summand. Thanks to Miller and Xu [25], Lemma 4.7, we know the convergence of the
series

∑
m1,...,mk∈Z
m1+···+mk=0

k∏
i=1

1

|mi|
=

1

2π

∫ 2π

0
g(θ)k dθ,

where g(θ) := − log(2(1− cos(θ)) for 0 < θ < 2π satisfies g ∈ L2
r,0(T) and ĝ(k) = 1/|k| for k 6= 0.

Lemma 3.7 (Bounds for λn − λp). For every n, p ≥ 0 such that n 6= p, there holds

ε2

(λp − λn)2
≤ 1

|p− n|2
.

Moreover, when p 6= n+ 1 one has

ε

|λp − λn − ε|
≤ 2

|p− n|
,

whereas when p = n+ 1, one has
1

λn+1 − λn − ε
=

1

γn+1
.
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Proof. The first claim comes from the formula for p ≥ n
p∑

k=n+1

γk + (p− n)ε = λp − λn ≥ (p− n)ε.

To establish the second claim, we remark that when p > n,

λp − λn − ε = (p− n− 1)ε+

p∑
k=n+1

γk ≥ (p− n− 1)ε ≥ 0,

and when p < n,

λp − λn − ε = (p− n− 1)ε−
n∑

k=p+1

γk ≤ (p− n− 1)ε ≤ 0.

As a consequence, when p 6= n, we have proven that |λp − λn − ε| ≥ |p− n− 1|ε ≥ |p−n|2 ε.

Proposition 3.8 (Restriction to small eigenvalues close to the diagonal). Let 0 < r < 1. There exists
C(δ) > 0 such that for every ε > 0,

ε
∑

n1,...,nk+1≥1
n1=nk+1

k∏
i=1

√
aniγni+1γni+1

1

|λni+1 − λni − ε|
≤ C(δ).

Moreover, there holds∣∣∣∣∣∣∣∣∣û
ε
0(k)− ε

∑
n1,...,nk+1≥1, n1=nk+1,

|ni−ni+1|≤ε−r, λni+ε∈Λ−(δ)

k∏
i=1

√
aniγni+1γni+1

1

λni+1 − λni − ε
ei(θni+1−θni+1 )

∣∣∣∣∣∣∣∣∣ ≤ C(δ)εr + Cδ.

Proof. Let us in the proof denote the sum of absolute values

S := ε
∑

n1,...,nk+1≥1
n1=nk+1

k∏
i=1

√
aniγni+1γni+1

1

|λni+1 − λni − ε|
.

We deduce from Lemma 3.7 that

S ≤ Cε
∑

n1,...,nk+1≥1
n1=nk+1

∏
ni≥1

√
ani


 ∏

ni≥1
ni+1 6=ni+1

√
γni+1γni+1

ε


(

k∏
i=1

2

|ni+1 − ni|

)
. (12)

Using Lemma 3.5 on the bounds of an, one can note that every term of the form √ani
√
γniγni+1

ε ,
√
ani

√
γni+1√
ε

, √ani
√
γni√
ε

and √ani is bounded by C.
We split the upper bound in several regions |p− n| ≥ ε−r, λn + ε 6∈ Λ(δ), and λn + ε ∈ Λ+(δ), for

which we expect the sum to be small, and one region λn + ε ∈ Λ−(δ), for which we expect the sum to
be bounded.

Other eigenvalues We first assume that λn1 + ε 6∈ Λ(δ), and denote

SΛc := ε
∑

n1,...,nk+1≥1
n1=nk+1

λn1+ε6∈Λ(δ)

k∏
i=1

√
aniγni+1γni+1

1

|λni+1 − λni − ε|
.
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As for inequality (12), Lemma 3.7 gives

SΛc ≤ Cε
∑

n1,...,nk+1≥1
n1=nk+1

λn1+ε6∈Λ(δ)

∏
ni≥1

√
ani

∏
ni≥1

ni+1 6=ni+1

√
γni+1γni+1

ε

k∏
i=1

2

|ni+1 − ni|
.

We make the change of variable n = n1, mi = ni+1 − ni for 1 ≤ i ≤ k. Then thanks to Lemma 3.5
bounding the terms involving an, there holds

SΛc ≤ Cε
∑
n≥1

λn+ε 6∈Λ(δ)

∑
m1,...,mk∈Z
m1+···+mk=0

k∏
i=1

1

|mi|
.

Using the bound from Remark 3.6, we deduce that

SΛc ≤ Cε
∑
n≥1

λn+ε6∈Λ(δ)

1.

Finally, we note that there are at most Cδ/ε possible indexes n such that λn + ε 6∈ Λ(δ), so that

SΛc ≤ Cδ.

The same applies if n1 is replaced by some other index ni in the sum. In the following cases, we can
therefore assume that λni + ε ∈ Λ(δ) for every i.

Off-diagonal terms We now consider the terms such that |n2 − n1| ≥ ε−r. Then assuming that
ε is small, we get from Lemma 3.7 that

|λn2 − λn1 − ε| ≥
1

2
ε1−r.

Let us denote

Soff := ε
∑

n1,...,nk+1≥1
n1=nk+1

|n2−n1|>ε−r
∀j,λnj+ε∈Λ(δ)

k∏
i=1

√
aniγni+1γni+1

1∣∣λni+1 − λni − ε
∣∣ .

Using Lemma 3.7 as in inequality (12) and the bound on an from Lemma 3.5 we get the upper bound

Soff ≤ Cεr
∑

n1,...,nk+1≥1
n1=nk+1

∀j,λnj+ε∈Λ(δ)

k∏
i=1

√
γni+1γni+11ni+1 6=ni+1.

We first remove the sum over ni+1 when the condition ni+1 = ni + 1 is met. More precisely, we define
m1 as the smallest index ni such that ni−1 + 1 6= ni (this is always possible because n1 = nk+1), with
the convention n0 := nk. Then let 0 ≤ d1 ≤ k be such that for 0 ≤ i ≤ d1, we have ni = n1 + i and
n1+d1 6= n1 + d1, we define m2 := n1+d1 and so on by induction. The upper bound becomes

Soff ≤ Cεr
k∑
l=1

∑
0≤d1,...,dl+1≤k

∑
m1,...,ml+1≥1

m1=ml+1, mj+1 6=mj+1
∀j,λmj+ε∈Λ(δ)

l∏
i=1

√
γmi+1γmi+di .

Since λ0 = −
∑

k≥1 γk ≥ −max(u0) thanks to (5), we have∑
mi

√
γmiγmi+di ≤ C.
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As a consequence,
Soff ≤ Cεr.

The same applies if the condition |n2 − n1| ≥ ε−r is replaced by the condition |ni+1 − ni| ≥ ε−r

for some i. In the following cases, we therefore assume that for every i, there holds |ni+1 − ni| ≤ ε−r.
In this case, if ε < ε0(δ), then when λn1 + ε ∈ Λ+(δ) (resp. Λ−(δ)), there holds λni + ε ∈

Λ+(δ/2) (resp. Λ−(δ/2)) for every i. Indeed, Definition 1.5 with the parameter δ/2 implies that
there are at least 1

C(δ)ε ≥ ε
−r eigenvalues in [−max(u0) + δ/2,−max(u0) + δ], and the same holds in

[−min(u0) + δ/2,−min(u0) + δ].
As a consequence, in the remaining cases, we can assume all the eigenvalues to be large (in Λ+(δ))

at the same time, or all the eigenvalues to be small (in Λ−(δ)) at the same time.

Large eigenvalues Let

S+ := ε
∑

n1,...,nk+1≥1, n1=nk+1

|ni+1−ni|≤ε−r, λni+ε∈Λ+(δ)

k∏
i=1

√
aniγni+1γni+1

1∣∣λni+1 − λni − ε
∣∣ .

Using Lemma 3.7 as in inequality (12), we know that

S+ ≤ Cε
∑

n1,...,nk+1≥1, n1=nk+1

|ni+1−ni|≤ε−r, λni+ε∈Λ+(δ)

∏
ni≥1

√
ani

∏
ni≥1

ni+1 6=ni+1

√
γni+1γni+1

ε

k∏
i=1

2

|ni+1 − ni|
.

Since nk+1 = n1, there exists an index ni such that ni+1 6= ni + 1. Up to multiplying the upper
bound by some reordering constant C, one can assume that this index is n1 so that the term √γn2γn1

appears in the upper bound. If ni+1 = ni + 1 for every 2 ≤ i ≤ k, then n1 = nk+1 = n2 + k − 1.
Otherwise, let i0 be the first index 2 ≤ i ≤ k such that ni+1 6= ni + 1, we know that the term
√
γni0+1γni0+1 also appears in the upper bound, where ni0+1 = n2 + i0−1. As a consequence, we have

proven that there exists 1 ≤ j0 = j0(n1, . . . , nk) ≤ k such that both √γn2 and √γn2+j0 appear in the
upper bound.

Then the bounds on an from Lemma 3.5 imply

S+ ≤ Cε
∑

n1,...,nk+1≥1, n1=nk+1

|ni+1−ni|≤ε−r, λni+ε∈Λ+(δ)
n2 6=n1+1

√
γn2γn2+j0

ε

k∏
i=1

2

|ni+1 − ni|
.

The bound from Remark 3.6, coupled with the change of variable n = n2, mi = ni+1 − ni for
2 ≤ i ≤ k + 1 (with the convention nk+2 := n2), leads to

S+ ≤ C
k∑

j0=1

∑
n≥1

λn+ε∈Λ+(δ)

√
γnγn+j0 .

Finally, using Corollary 2.2, there holds∑
n≥1

λn∈Λ+(δ)

γn ≤ C(δ)ε
√
ε+ Cδ.

and we deduce
S+ ≤ C(δ)ε

√
ε+ Cδ.

16



Small eigenvalues In the last scenario, let

S− := ε
∑

n1,...,nk+1≥1, n1=nk+1

|ni+1−ni|≤ε−r, λni+ε∈Λ−(δ)

k∏
i=1

√
aniγni+1γni+1

1∣∣λni+1 − λni − ε
∣∣ .

We apply the argument from the former paragraph to get

S− ≤ C
k∑

j0=1

∑
n≥1

λn+ε∈Λ−(δ)

√
γnγn+j0 .

This is bounded by C thanks to the lower bound (5) on λ0.
Summing the upper bounds for every one of the cases, we get the Proposition.

3.3 Approximation of the Fourier coefficients
In this part, we express all the terms from the approximation of ûε0(k) in Proposition 3.8 as a function
of F (−λn) uniquely.

Theorem 3.9 (Fourier coefficients as a Riemann sum). Let 0 < c < r < 1. For every δ > 0, there
exist C(δ) > 0, ε0(δ) > 0, and a function R of ε uniquely, tending to zero as ε→ 0, such that for every
0 < ε < ε0(δ),∣∣∣∣∣∣∣∣û

ε
0(k)− ε

∑
n≥1

λn+ε∈Λ−(δ)

sinc(kπF (−λn))e−ik
x+(−λn)+x−(−λn)

2

∣∣∣∣∣∣∣∣ ≤ C(δ)(εr−c + ε1−2r) +R(ε) + Cδ. (13)

The proof of Theorem 3.9 decomposes in several steps. We first approximate λp − λn and an
by functions of F (−λn) only. Then we simplify the sum obtained by replacing the terms by their
approximation.

Lemma 3.10 (Eigenvalues and distribution function). Let λn + ε, λp + ε ∈ Λ−(δ) such that |p− n| ≤
ε−r, then we have ∣∣∣∣F (−λn)2

(p− n)2
− ε2

(λp − λn)2

∣∣∣∣ ≤ C(δ)
√
ε

|p− n|1+1/2r

and ∣∣∣∣ F (−λn)

p− n− F (−λn)
− ε

λp − λn − ε

∣∣∣∣ ≤ C(δ)

√
ε+ ε1−2r

(p− n)2
.

Proof. We use Corollary 2.2 in the small eigenvalue case and deduce that there exists ξn,p ∈ [−λp,−λn]
such that

|(λp − λn)F (ξn,p)− (p− n)ε| ≤ C(δ)ε
√
ε. (14)

As a consequence, we have from Lemma 3.7 that∣∣∣∣F (ξn,p)

p− n
− ε

λp − λn

∣∣∣∣ ≤ C(δ)ε
√
ε

(p− n)(λp − λn)
≤ C(δ)

√
ε

(p− n)2
.

Using Lemma 3.7 again, we know that | ε
λp−λn | ≤

1
|p−n| , whereas |

F (ξn,p)
p−n | ≤

1
|p−n| , and therefore∣∣∣∣F (ξn,p)

2

(p− n)2
− ε2

(λp − λn)2

∣∣∣∣ ≤ C(δ)
√
ε

|p− n|3
.

Then, we know from the Lipschitz properties of F (see Corollary 2.2) that

|F (ξn,p)− F (−λn)| ≤ C(δ)|ξn,p + λn| ≤ C(δ)|λp − λn|.
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However, thanks to (14), we have

|λp − λn| ≤
C(δ)ε

√
ε+ |p− n|ε

F (ξn,p)
≤ C ′(δ)|p− n|ε, (15)

so that
|F (ξn,p)− F (−λn)| ≤ C(δ)|p− n|ε. (16)

As a consequence, one can replace F (ξn,p) by F (−λn) up to a small error:∣∣∣∣F (−λn)2

(p− n)2
− ε2

(λp − λn)2

∣∣∣∣ ≤ C(δ)
√
ε

|p− n|3
+
C(δ)ε

|p− n|
.

Since |p− n| ≤ ε−r with r < 1, we get that ε ≤ 1
|p−n|1/r and we conclude that∣∣∣∣F (−λn)2

(p− n)2
− ε2

(λp − λn)2

∣∣∣∣ ≤ C(δ)
√
ε

|p− n|3
+

C(δ)
√
ε

|p− n|1+1/2r
.

Similarly, using inequalities (14) and (16), we have

|(λp − λn − ε)F (−λn)− (p− n− F (−λn))ε| = |(λp − λn)F (−λn)− (p− n)ε|
≤ C(δ)ε

√
ε+ (λp − λn)C(δ)|p− n|ε.

Since inequality (15) implies |λp − λn| ≤ C(δ)|p− n|ε ≤ C(δ)ε1−r, we finally get

|(λp − λn − ε)F (−λn)− (p− n− F (−λn))ε| ≤ C(δ)(ε
√
ε+ ε2−2r),

so that ∣∣∣∣ F (−λn)

(p− n− F (−λn))
− ε

λp − λn − ε

∣∣∣∣ ≤ C(δ)(ε
√
ε+ ε2−2r)

(p− n− F (−λn))(λp − λn − ε)
.

Since λn + ε ∈ Λ−(δ), we know that F (−λn) ≤ 1 − 1
C(δ) . Moreover, we make use of Lemma 3.7 and

see that actually ∣∣∣∣ F (−λn)

(p− n− F (−λn))
− ε

λp − λn − ε

∣∣∣∣ ≤ C(δ)
(
√
ε+ ε1−2r)

(p− n)2
.

Then, we establish an approximation of 1
ε

√
anγnγn+1.

Lemma 3.11 (Approximation of an in terms of the distribution function). Let 0 < c < r < 1. Then
there exist C(δ) > 0, ε0(δ) > 0 such that for every δ > 0 and 0 < ε < ε0(δ), the following holds. For
every n ≥ 1 satisfying λn + ε ∈ Λ−(δ),∣∣∣anγnγn+1

ε2
− sinc(πF (−λn))2

∣∣∣ ≤ C(δ)(εr−c + ε1−r).

Proof. We consider the logarithm of an

log
(
an
γnγn+1

ε2

)
= log

(
1 +

ε

λn − λ0

) ∞∑
p=1
p 6=n

log

(
1− ε2

(λp − λn)2

)
.

When |p− n| ≥ ε−r, we make use of Lemma 3.7:

ε2

(λp − λn)2
≤ 1

|n− p|2
≤ εr−c

|n− p|1+c/r
.

When |p− n| ≤ ε−r, since λn + ε ∈ Λ−(δ), then λp + ε ∈ Λ−(δ/2) and using Lemma 3.10 there holds∣∣∣∣F (−λn)2

(p− n)2
− ε2

(λp − λn)2

∣∣∣∣ ≤ C(δ)ε1/2

(p− n)1+1/2r
.
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Hence, we get by summation that∣∣∣∣∣∣∣∣log
(
an
γnγn+1

ε2

)
−

∞∑
p=1

|p−n|≤ε−r

log

(
1− F (−λn)2

(p− n)2

)∣∣∣∣∣∣∣∣ ≤ C(δ)(ε1/2 + εr−c).

Note that F (−λn) ≤ 1− 1/C(δ), as a consequence,∣∣∣log
(
an
γnγn+1

ε2

)∣∣∣ ≤ C(δ).

Also note that since λn + ε ∈ Λ−(δ), we have n ≥ δ
Cε , therefore the indexes p ≥ 1 such that

|n−p| ≤ ε−r is the same as the indexes p ∈ Z such that |n−p| ≤ ε−r when ε < ε0(δ). Moreover, since
F (−λn) ≤ 1− 1/C(δ), the change of variable k = p− n for p > n and k = n− p for n > p leads to

∞∑
p=−∞
|p−n|>ε−r

∣∣∣∣log

(
1− F (−λn)2

(p− n)2

)∣∣∣∣ ≤ 2
∞∑

k=ε−r+1

∣∣∣∣log

(
1− F (−λn)2

k2

)∣∣∣∣ ≤ C(δ)ε1−r.

Therefore, we have proven that∣∣∣∣∣log
(
an
γnγn+1

ε2

)
− 2

∞∑
k=1

log

(
1− F (−λn)2

(p− n)2

)∣∣∣∣∣ ≤ C(δ)(ε1/2 + εr−c + ε1−r).

Taking the exponential, since
∣∣log

(
an

γnγn+1

ε2

)∣∣ stays bounded by C(δ) for ε < ε0(δ), we deduce∣∣∣∣∣anγnγn+1

ε2
−
∞∏
k=1

(
1− F (−λn)2

k2

)2
∣∣∣∣∣ ≤ C(δ)(ε1/2 + εr−c + ε1−r).

Finally, we use the Weierstrass sine product formula for z ∈ (0, 1)

sinc(πz) =
sin(πz)

πz
=
∏
k≥1

(
1− z2

k2

)
to deduce that ∣∣∣anγnγn+1

ε2
− sinc(πF (−λn))2

∣∣∣ ≤ C(δ)(ε1/2 + εr−c + ε1−r),

where min(r − c, 1− 2r) < 1/2.

In what follows, the above approximations will lead us to study the series

∑
m1,...,mk∈Z
m1+···+mk=0

k∏
i=1

1

mi − F (−λn)
.

We first prove the convergence and find a formula for this sum.

Lemma 3.12 (Toeplitz identity). Let c ∈ (0, 1). Then

∑
m1,...,mk∈Z
m1+···+mk=0

k∏
i=1

1

|mi − c|
<∞

and there holds ∑
m1,...,mk∈Z
m1+···+mk=0

k∏
i=1

1

mi − c
= (−1)k

πk−1 sin(kπc)

kc sin(πc)k
.
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Proof. To establish absolute convergence, we use the inequality |mi − c| ≥ |mi|min(c, 1 − c) to get
that ∑

m1,...,mk∈Z
m1+···+mk=0
∃i,|mi|>ε−r

k∏
i=1

1

|mi − c|
≤ 1

min(c, 1− c)k
∑

m1,...,mk∈Z
m1+···+mk=0
∃i,|mi|>ε−r

k∏
i=1

1

|mi|
,

where the upper bound is the remainder term of an absolutely convergent series thanks to Lemma 4.7
in Miller and Xu [25], see Remark 3.6.

We now define

f(x) :=
∑
m∈Z

eimx

m− c
.

This Fourier series is convergent in L2(T), and one can check by direct calculation of the Fourier
coefficients f̂(n) = 1

2π

∫ 2π
0 f(x)e−inx dx that it is equal to

f(x) = −πe
ic(x−π)

sin(πc)
.

Indeed, for n ∈ Z, the above expression leads to

f̂(n) = − πe
−icπ

sin(πc)

1

2π

∫ 2π

0
ei(c−n)x dx = − e−icπ

2 sin(πc)

[
ei(c−n)x

i(c− n)

]2π

0

= − 1

c− n
.

Since f belongs to L2 and fk also belongs to L2 for every positive integer k, the convolution theorem
implies ∑

m1,...,mk∈Z
m1+···+mk=0

f̂(m1) . . . f̂(mk) = f̂k(0) =
1

2π

∫ 2π

0
f(x)k dx.

As a consequence, we conclude that∑
m1,...,mk∈Z
m1+···+mk=0

1

(m1 − c) . . . (mk − c)
= (−1)k

πk−1e−ikπc

2 sin(πc)k

[
eikcx

ikc

]2π

0

= (−1)k
πk−1 sin(kπc)

kc sin(πc)k
.

Proof of Theorem 3.9. We first remove the off-diagonal coefficients and the eigenvalues which are not
in Λ−(δ) thanks to Proposition 3.8 up to adding a remainder term of the form C(δ)εr + Cδ: we get∣∣∣∣∣∣∣∣∣û

ε
0(k)− ε

∑
n1,...,nk+1≥1, n1=nk+1,

|ni−ni+1|≤ε−r, λni+ε∈Λ−(δ)

k∏
i=1

√
aniγni+1γni+1

1

λni+1 − λni − ε
ei(θni+1−θni+1 )

∣∣∣∣∣∣∣∣∣ ≤ C(δ)εr + Cδ.

A re-indexation implies∣∣∣∣∣∣∣∣∣û
ε
0(k)− ε

∑
n1,...,nk+1≥1, n1=nk+1,

|ni−ni+1|≤ε−r, λni+ε∈Λ−(δ)

k∏
i=1

√
aniγniγni+1

1

λni+1 − λni − ε
ei(θni+1−θni )

∣∣∣∣∣∣∣∣∣ ≤ C(δ)εr + Cδ.

We then use the second inequality from Lemma 3.10∣∣∣∣ F (−λn)

p− n− F (−λn)
− ε

λp − λn − ε

∣∣∣∣ ≤ C(δ)

√
ε+ ε1−2r

(p− n)2
.

When λn + ε, λp + ε ∈ Λ−(δ) and |n− p| ≤ ε−r, we know thanks to the Lipschitz properties of F and
inequality (15) that

|F (−λn)− F (−λp)| ≤ C(δ)|λp − λn| ≤ C ′(δ)|p− n|ε ≤ C ′(δ)ε1−r.
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As a consequence, we have that if |n− n1|, |p− n1| ≤ ε−r, then∣∣∣∣ F (−λn1)

p− n− F (−λn1)
− ε

λp − λn − ε

∣∣∣∣ ≤ C(δ)

√
ε+ ε1−2r

(p− n)2
+ C(δ)

ε1−r

|p− n|
≤ C ′(δ)

√
ε+ ε1−2r

|p− n|
.

Using the bound on anγnγn+1/ε from Lemma 3.5, we get∣∣∣∣∣∣∣∣∣û
ε
0(k)− ε

∑
n1,...,nk+1≥1, n1=nk+1

|ni−ni+1|≤ε−r, λni+ε∈Λ−(δ)

k∏
i=1

√
aniγniγni+1

ε

F (−λn1)

ni+1 − ni − F (−λn1)
ei(θni+1−θni )

∣∣∣∣∣∣∣∣∣
≤ C(δ)εr + Cδ + C(δ)ε(

√
ε+ ε1−2r)

∑
n1,...,nk+1≥1, n1=nk+1

|ni−ni+1|≤ε−r, λni+ε∈Λ−(δ)

k∏
i=1

1

|ni+1 − ni|
.

Since there are not more than C
ε indexes n such that λn + ε ∈ Λ−(δ), this leads to∣∣∣∣∣∣∣∣∣û

ε
0(k)− ε

∑
n1,...,nk+1≥1, n1=nk+1

|ni−ni+1|≤ε−r, λni+ε∈Λ−(δ)

k∏
i=1

√
aniγniγni+1

ε

F (−λn1)

ni+1 − ni − F (−λn1)
ei(θni+1−θni )

∣∣∣∣∣∣∣∣∣
≤ C(δ)(εr +

√
ε+ ε1−2r) + Cδ.

Next, for every n such that λn + ε ∈ Λ−(δ), we use the approximation of an from Lemma 3.11∣∣∣anγnγn+1

ε2
− sinc(πF (−λn))2

∣∣∣ ≤ C(δ)(εr + ε1−2r).

We also note that x 7→ sinc(x) = sin(x)
x is Lipschitz on R and F is C(δ)-Lipschitz on [−max(u0) +

δ,−min(u0)− δ]. Therefore, for every n, p satisfying |n− p| ≤ ε−r and λn + ε, λp + ε ∈ Λ−(δ), the use
of inequality (15) leads to

| sinc(πF (−λn))− sinc(πF (−λp))| ≤ C(δ)|λp − λn| ≤ C ′(δ)|n− p|ε ≤ C ′(δ)ε1−r.

We have proven that for |n− p| ≤ ε−r satisfying λn + ε, λp + ε ∈ Λ−(δ), we have∣∣∣ap γpγp+1

ε2
− sinc(πF (−λn))2

∣∣∣ ≤ C(δ)(εr + ε1−2r).

Using the Lipschitz properties of x+ and x− in Corollary 2.2 and the formula (2) for the phase
constants, we even have∣∣∣apγpγp+1

ε2
ei(θp+1−θp) − sinc(πF (−λn))2ei(θn+1−θn)

∣∣∣ ≤ C(δ)(εr + ε1−2r).

Since sinc is nonnegative on [0, π], we get by summation that∣∣∣∣∣∣∣∣∣û
ε
0(k)− ε

∑
n1,...,nk+1≥1, n1=nk+1

|ni−ni+1|≤ε−r, λni+ε∈Λ−(δ)

sinc(πF (−λn1))keik(θn1+1−θn1 )
k∏
i=1

F (−λn1)

ni+1 − ni − F (−λn1)

∣∣∣∣∣∣∣∣∣
≤ Cδ + C(δ)ε(εr−c + ε1−2r)

∑
n1,...,nk+1≥1, n1=nk+1

|ni−ni+1|≤ε−r, λni+ε∈Λ−(δ)

k∏
i=1

F (−λn1)

|ni+1 − ni − F (−λn1)|
.
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We use the absolute convergence from the Toeplitz sum in Lemma 3.12 to treat the sum over indexes
n2, . . . , nk+1. Moreover, we know that there are no more than C/ε terms in the sum over n1, so that∣∣∣∣∣∣∣∣∣û

ε
0(k)− ε

∑
n1,...,nk+1≥1, n1=nk+1

|ni−ni+1|≤ε−r, λni+ε∈Λ−(δ)

sinc(πF (−λn1))keik(θn1+1−θn1 )
k∏
i=1

F (−λn1)

ni+1 − ni − F (−λn1)

∣∣∣∣∣∣∣∣∣
≤ C(δ)(εr−c + ε1−2r) + Cδ. (17)

Finally, we make the change of variable n = n1 and mi = ni+1 − ni for 1 ≤ i ≤ k. It only remains to
use the Toeplitz identity from Lemma 3.12 to conclude that∣∣∣∣∣∣∣∣û

ε
0(k)− ε

∑
n≥1

λn+ε∈Λ−(δ)

(
sin(πF (−λn))

π

)k
eik(θn+1−θn) (−1)kπk−1 sin(kπF (−λn))

kF (−λn) sin(πF (−λn))k

∣∣∣∣∣∣∣∣
≤ C(δ)(εr−c + ε1−2r) +R(ε) + Cδ,

where R(ε) is bounded by the remainder term in the Toeplitz identity from Lemma 3.12

R(ε) = Cε
∑
n≥1

λn+ε∈Λ−(δ)

∑
m1,...,mk+1≥1
∃i,|mi|>ε−r

k∏
i=1

1

|mi − F (λn1)|

(
sin(πF (−λn))

π

)k πk−1| sin(kπF (−λn))|
kF (−λn) sin(πF (−λn))k

≤ C ′
∑

m1,...,mk+1≥1
∃i,|mi|>ε−r

k∏
i=1

1

|mi − F (λn1)|
.

We conclude by using that (−1)keik(θn+1−θn) = e−ik
x+(−λn)+x−(−λn)

2 .

3.4 Link with Burgers equation and time evolution
In this part, we deduce an approximation of the k-th Fourier coefficient of the solution uε(t) at time
t which is coherent with Proposition 3.3.

Theorem 3.13 (Fourier coefficients and Burgers equation). Let k ∈ Z. Let uε be the solution to (BO-ε)
with initial data uε0. For every T > 0, there exists ε0(δ, T ) such that for every ε < ε0(δ, T ) and t ∈ [0, T ],
there holds ∣∣∣∣∣ûε(t)(k) +

i

2kπ

∫ max(u0)

min(u0)
e−ik(x+(η)+2ηt) − e−ik(x−(η)+2ηt) dη

∣∣∣∣∣ ≤ Cδ.
Proof. Fix 0 < c < r < 1. We first consider the function uε0 without any time evolution. We justify
that we can pass to the limit in the Riemann sum∣∣∣∣∣∣∣∣û

ε
0(k)− ε

∑
n≥1

λn+ε∈Λ−(δ)

e−ik
x+(−λn)+x−(−λn)

2 sinc(kπF (−λn))

∣∣∣∣∣∣∣∣ ≤ C(δ)(εr−c + ε1−2r) +R(ε) + Cδ.

The function η 7→ sinc(kπF (η)) is C1 on [−β + δ, β − δ]. Moreover, in the region η + ε ∈ Λ−(δ), there
holds F (η) ≥ 1/C(δ). Since λn + ε ∈ Λ−(δ), Corollary 2.2 implies that |λn+1 − λn| ≤ C(δ)ε, so that
the mesh is tending to zero as ε→ 0. More precisely, there holds thanks to (14), (15) and (16) that

|(λn+1 − λn)F (−λn)− ε| ≤ C(δ)ε
√
ε,
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so that F (−λ) is the distribution function of the η = −λ’s. There are at most C
ε indexes n such that

λn + ε ∈ Λ−(δ), therefore we get by summation∣∣∣∣∣∣∣∣û
ε
0(k)−

∑
n≥1

λn+ε∈Λ−(δ)

e−ik
x+(−λn)+x−(−λn)

2 sinc(kπF (−λn))F (−λn)(λn+1 − λn)

∣∣∣∣∣∣∣∣
≤ C(δ)(εr−c + ε1−2r) +R(ε) + Cδ.

Passing to the limit ε→ 0, this leads to∣∣∣∣∣ûε0(k) +
1

kπ

∫ max(u0)−δ

min(u0)+δ
e−ik

x+(η)+x−(η)

2 sin(kπF (η)) dη

∣∣∣∣∣ ≤ Cδ.
Finally, we use the definition 2πF (η) = x+(η)− x−(η) and simplify∣∣∣∣∣ûε0(k) +

1

2ikπ

∫ max(u0)−δ

min(u0)+δ
e−ikx−(η) − e−ikx+(η) dη

∣∣∣∣∣ ≤ Cδ.
Given that the integrand is bounded by 2, one can remove the δ in the integration bounds up to
increasing C, and hence we get the result.

Time evolution Let us now add the time into account. Let uε be the solution to (BO-ε) with
initial data uε(t = 0) = uε0. We check that Mn,p(u

ε(t); ε) becomes

Mn,p(u
ε(t); ε) = Mn,p(u

ε
0; ε)i(ωn+1(uε0;ε)−ωp(uε0;ε))t.

To find the formula for ωn(uε0; ε), one can observe that

v(t, x) :=
1

ε
uε
(
t

ε
, x

)
is the solution to (BO-ε) with parameter ε = 1 and initial data uε0/ε. But fn(v(t); 1) = fn(uε(t/ε); ε)
so that since γn(uε0; ε) = εγn(vε0; 1) and ζn(uε(t); ε) =

√
εζn(v(εt); 1), then Proposition 8.1 from [13]

implies
ζn(uε(t); ε) =

√
εζn(vε0; 1)eiωn(vε0;1)εt.

Therefore,

ωn(uε0; ε) = εωn(vε0; 1)

= ε

(
n2 − 2

∞∑
k=n+1

min(k, n)γk(v
ε
0; 1)

)

= εn2 − 2

∞∑
k=n+1

min(k, n)γk(u
ε
0; ε).

As a consequence, we get the approximate solution at time t by replacing every phase constant
θn by θn + ωnt, with ωn = ωn(uε0; ε). Let us establish the Lipschitz properties of these new phase
constants. We have

ωn+1 − ωn = ε(2n+ 1)− 2

∞∑
k=n+1

γk = 2λn + ε.

But when λn + ε, λp + ε ∈ Λ−(δ) and |p− n| ≤ ε−r, we have

(ωp+1 − ωp)− (ωn+1 − ωn) = 2(λp − λn).
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Using inequality (15), one deduces that

|(ωp+1 − ωp)− 2λn| ≤ C(δ)ε1−r.

As a consequence, one has

| exp(i(ωp+1 − ωp)t)− exp(2iλnt)| ≤ C(δ)ε1−rt.

We use our above approximation approach by replacing the phase factors ei(θni+1−θni ) by their time
evolution ei(θni+1−θni+(ωni+1−ωni )t) in the series. Passing to the limit in the Riemann sum, for every
T > 0, there exists ε0(δ, T ) such that for every ε < ε0(δ, T ) and t ∈ [0, T ], there holds∣∣∣∣∣ûε(t)(k)− i

2kπ

∫ max(u0)−δ

min(u0)+δ
e−ik(x−(η)+2ηt) − e−ik(x+(η)+2ηt) dη

∣∣∣∣∣ ≤ Cδ.
Given that the integrand is bounded, one can remove the δ in the integration bounds up to increasing
C, and hence we get the result.

We now make the link between Theorem 3.13 and the Fourier coefficients of the signed sum of
branches uBalt for the multivalued solution uB to the Burgers equation obtained with the method of
characteristics, see Figure 3. Every point uB is an image of the solution at time t with abscissa x as
soon as it solves the implicit equation

uB = u0(x− 2uBt).

On the real line (see a more detailed description in [25]), new sheets are formed at the breaking points
(tξ, xξ) such that ξ is an inflection point u′0(ξ) 6= 0, u′′0(ξ) = 0, and

(tξ, xξ) =

(
−1

2u′0(ξ)
, ξ − u0(ξ)

u′0(ξ)

)
.

In the case of a single well potential, there are two such inflection points ξ±, for which u′′0(ξ±) = 0
and u′′′0 (ξ±) 6= 0. We assume that u′0(ξ+) < 0 < u′0(ξ−). Right after the positive breaking time
tξ+ = −1

2u′0(ξ+)
, two new branches emerge, so that there are three branches in total. Because of the

periodicity, this can lead to more branches as t increases, see Figure 1, that we denote uB0 (t, x) < · · · <
uB2P (t,x)(t, x). We have defined the signed sum of branches in (1) as

uBalt(t, x) =

2P (t,x)∑
n=0

(−1)nuBn (t, x).

These branches are described by two (actual) functions vB0 and vB1 defined on subintervals [X−(t) −
2π,X+(t)] and [X−(t), X+(t)] of the real line, see Figure 3.

More precisely, we consider one period of the initial data u0, for which we follow the method of
characteristics on R. Then the solution to the corresponding multivalued Burgers equation on R has
between 0 and 3 branches

u(y + 2u0(y)t) = u0(y)

u(x±(η) + 2ηt) = η.

Let us denote X−(t) = x−(η−(t)) + 2η−(t)t ≤ X+(t) = x+(η+(t)) + 2η+(t)t ∈ R the branching points
at time t such that η−(t) ≤ 0 and η+(t) ≥ 0. Then one can express these branches in terms of two
branches. The first branch vB0 is well-defined on [a(vB1 ), b(vB1 )] = [X−(t)− 2π,X+(t)], the second one
vB1 is well-defined on [a(vB0 ), b(vB0 )] = [X−(t), X+(t)] as in Figure 3.

In the periodic case, this leads to more branches. But as they appear two by two, the odd branches
always correspond to the branch vB1 and the even ones to the branch vB0 . As a consequence, the
graphs of uB0 , uB2 , . . . , uB2P combined are the graph of vB0 taken modulo 2π in space. The increasing
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Figure 3: Sketch of the multivalued solution of the Burgers equation obtained by the method of charac-
teristics, with initial data u0(x) = −β cos(x)

part corresponds to abscissa x = x−(η) for some η whereas the decreasing part corresponds to abscissa
x = x+(η) for some η. The graphs of uB1 , uB3 , . . . , uB2P−1 combined are the graph of vB1 , modulo 2π, they
are increasing and correspond to abscissa x = x+(η) for some η. For every η ∈ (min(u0),max(u0)),
there are exactly two antecedents η = uBn (t, x−(t, η)) = vBnmod 2(t, x−(t, η)) and η = uBm(t, x+(t, η)) =
vBmmod 2(t, x+(t, η)).

Proposition 3.14 (Fourier coefficients of the multivalued solution to the Burgers equation). Let u0

be a single well potential. Then there holds

ûBalt(t)(k) = − i

2kπ

∫ max(u)

min(u)
e−ik(x+(η)+2ηt) − e−ik(x−(η)+2ηt) dη.

Proof. The union of graphs and the periodicity lead to

ûBalt(t)(k) =

2P (t,x)∑
n=0

(−1)nûBn (t, x)

=

2P (t,x)∑
n=0

(−1)n
∫ b(uBn )

a(uBn )
uBn (x)e−ikx dx

=

∫ b(vB0 )

a(vB0 )
vB0 (x)e−ikx dx−

∫ b(vB1 )

a(vB1 )
vB1 (x)e−ikx dx.

The formula for single well functions in Proposition 3.3 becomes

v̂B0 (k) = i
b(vB0 )− a(vB0 )

k
− i

2kπ

(∫
(x+(t,η),η)∈Gr(vB0 )

e−ikx+(t,η) dη −
∫

(x−(t,η),η)∈Gr(vB0 )
e−ikx−(t,η) dη

)
.

When v = vB1 , there is only the x+ part. Therefore, the formula for increasing functions is written

v̂B1 (k) = i
b(vB1 )− a(vB1 )

k
+

i

2kπ

∫
(x+(t,η),η)∈Gr(vB1 )

e−ikx+(t,η) dη.

Consequently, we have

ûBalt(t)(k) = i
b(vB0 )− a(vB0 )

k
− i

2kπ

(∫
(x+(t,η),η)∈Gr(vB0 )

e−ikx+(t,η) dη −
∫

(x−(t,η),η)∈Gr(vB0 )
e−ikx−(t,η) dη

)

− ib(v
B
1 )− a(vB1 )

k
− i

2kπ

∫
(x+(t,η),η)∈Gr(vB1 )

e−ikx+(t,η) dη.
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Now we use that the union of the graphs of vB0 and vB1 taken modulo 2π give the graph of u0, moreover,
a(vB0 ) = a(vB1 )[mod 2π], b(vB0 ) = b(vB1 )[mod 2π], which leads to the result.

We now justify why there exist admissible families for every single well initial data u0.

Lemma 3.15 (Existence of admissible approximate initial data). For every single well initial data u0,
the set of admissible approximate initial data according to Definition 1.5 is non empty.

Proof. Let us denote

I :=

∫ max(u0)

min(u0)
F (η) dη.

We make the following choice

1. (Small eigenvalues) If 0 ≤ nε ≤ I, then we define λn as the solution to
∫ max(u0)
−λn F (η) dη := nε.

2. (Large eigenvalues) Assume that nε > I, then we define λn := nε.

3. (Phase factors) We then define the approximate phase factors by the formula θ0 = 0 and

θn+1 − θn := π − x+(−λn) + x−(−λn)

2
.

We only need to check that ‖uε0‖L2 → ‖u0‖L2 as ε→ 0. For this we use the Parseval formula (4)

1

2
‖uε0‖2L2 =

∑
n≥1

εnγn(u; ε)

=

bI/εc∑
n=1

εn(λn(u; ε)− λn−1(u; ε)− ε)

=

bI/εc∑
n=1

ελn(u; ε)− ε2 bI/εc(bI/εc+ 1)

2
.

Since we have seen that |(λn+1 − λn)F (−λn) − ε| ≤ C(δ)ε
√
ε, the mesh is tending to zero and the

η = −λn are distributed by F . This leads to

1

2
lim
ε→0
‖uε0‖2L2 =

∫ max(u0)

min(u0)
ηF (η) dη − I2

2
.

However, there also holds

1

2
‖u0‖2L2 =

1

2π

∫ +∞

0
η Leb(x | |u(x)| > η) dη

=

∫ max(u0)

0
ηF (η) dη +

∫ 0

min(u0)
η(1− F (η)) dη

=

∫ max(u0)

min(u0)
ηF (η) dη − (min(u0))2

2
.

Now, we write

I =

∫ max(u0)

0
F (η) dη −

∫ 0

min(u0)
(1− F (η)) dη −min(u0).

Since u0 has mean zero, the first two terms cancel out, leading to I = −min(u0). This implies the
convergence property.
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Proof of Theorem 1.2. Let k ∈ Z and T > 0. Let δ > 0. We have established in Theorem 3.13 and
Proposition 3.14 that

lim sup
ε→0

sup
t∈[0,T ]

∣∣∣ûε(t)(k)− ûBalt(t)(k)
∣∣∣ ≤ Cδ.

We now pass to the limit δ → 0 and deduce that uniformly on [0, T ], there holds ûε(k) → ûBalt(k).
Moreover, by conservation of the L2 norm and the assumption ‖uε0‖L2 → ‖u0‖L2 , all the solutions uε

are bounded in L2. This is enough to conclude to the weak convergence of uε to uBalt in L
2(T).

Remark 3.16. (Third order Benjamin-Ono equation) Let us now consider the third order equation in
the Benjamin-Ono hierarchy

∂tu = ∂x

(
−ε2∂xxu−

3

2
εu|D|u− 3

2
εH(u∂xu) + u3

)
,

where H is the Hilbert transform, i.e. the Fourier multiplier by −i sgn(n). The spectral parameters
are the same as for (BO-ε), and in the time evolution, by considering the rescaled function

v(t) =
1

ε
u

(
t

ε2
, x

)
,

one can see that the frequencies from [11]

ω(3)
n (v; 1) = n3 + n

∑
p≥1

pγp(v; 1)− 3
∑
p≥1

min(p, n)2γp(v; 1) + 3
∑
p,q≥1

min(p, q, n)γp(v; 1)γq(v; 1),

should simply be replaced by

ω(3)
n (u; ε) = ε2ω(3)

n (u/ε; 1)

= ε2n3 + εn
∑
p≥1

pγp(u; ε)− 3ε
∑
p≥1

min(p, n)2γp(u; ε) + 3
∑
p,q≥1

min(p, q, n)γp(u; ε)γq(u; ε).

As a consequence, the formula λn(u; ε) = εn−
∑

p≥n+1 γp and the Parseval formula (4) lead to

ω
(3)
n+1(u; ε)− ω(3)

n (u; ε)

= 3ε2n2 + 3ε2n+ ε2 + ε
∑
p≥1

pγp(u; ε)− 3ε
∑
p≥n+1

(2n+ 1)γp(u; ε) + 3
∑

p,q≥n+1

γp(u; ε)γq(u; ε),

and finally
ω

(3)
n+1(u; ε)− ω(3)

n (u; ε) = 3λ2
n + 3ελn + ε2 + ‖u‖2L2(T)/2.

As ε → 0, an adaptation of the proof of Theorem 3.13 would lead to the convergence of uε to the
solution ũB to the third equation in the inviscid Burgers hierarchy

ũB(x, t) = u0

(
x−

(
3ũB(x, t)2 + ‖u0‖2L2/2

)
t
)
,

which is comparable to the behavior on the line [26].

Lemma 3.17 (Weak convergence after the breaking time). Let u0(x) = − cos(x). For t right after
the breaking time for the Benjamin-Ono equation, there holds

‖u0‖L2(T) > ‖uBalt(t)‖L2(T).

As a consequence, the solution uε to equation (BO-ε) with initial data u0

‖uε(t)‖L2(T) = ‖u0‖L2(T) > ‖uBalt(t)‖L2(T),

and the convergence of uε(t) to uBalt(t) cannot be strong in L2(T).
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Proof. We have x−(η, t) = π − arccos(η) + 2ηt and x+(η, t) = π + arccos(η) + 2ηt. We first study x+

as a function of η. We get

∂ηx+(η, t) = − 1√
1− η2

+ 2t.

When 2t > 1, there is exactly one solution η+ =
√

1− 1/2t in (0, 1] and one solution η− = −η+ in
[−1, 0), and ∂η is negative on [η−, η+]. As a consequence, x+ is increasing on [−1, η−] and [η+, 1], and
decreasing on [η−, η+]. Moreover, one can see that ∂ηx+ is an even function of η and x+(0) = π/2, so
that x+(η)− π/2 is an odd function of η.

Consequently, right after the breaking time, one can describe the branches of one period of uB(t, x)
as follows (the notation is similar to Figure 3 except that we have split vB0 into a left part denoted vB0
and a right part denoted vB2 by restricting first the solution to [0, 2π]). Let us denote X+ = x+(η+)
and X− = x+(η−). There is one upper branch vB0 from (0, uB(t, 0)) to (X+, η+), one middle branch vB1
from (X−, η−) to (X+, η+) and one lower branch vB2 from (X−, η−) to (2π, uB(t, 2π)). Moreover, vB0 is
increasing from (0, uB(t, 0)) to (π/2 + 2t, 1), and decreasing from (π/2 + 2t, 1) to (X+, η+). Similarly,
vB2 is decreasing from (X−, η−) to (2π − 2t,−1) and increasing from (2π − 2t,−1) to (2π, uB(t, 2π)).

We note that X+ = π + arccos(η+) + 2η+t → 3π
2

+ as 2t → 1+, 2π − 1 > 3π
2 and similarly,

X− = π + arccos(η−) + 2η−t → 3π
2

− as 2t → 1+ and π
2 + 1 < 3π

2 , so that when 2t − 1 is small and
positive,

π

2
+ 2t < X− <

3π

2
< X+ < 2π − 2t.

For x ∈ (3π
2 , X+), then vB0 (x) > vB1 (x) > 0 > vB2 (x), and as a consequence,

uBalt(x) = vB2 (x)− vB1 (x) + vB0 (x) > vB0 (x).

Moreover, vB2 and vB0 are decreasing whereas vB1 is increasing, so that

uBalt(x) ≤ vB2
(

3π

2

)
− vB1

(
3π

2

)
+ vB0

(
3π

2

)
= 0.

We conclude that when η ∈ [0, η+],

F (η) >
1

2π
Leb(x ∈ [0, 2π] | uBalt(x) > η).

Similarly,

F (η) >
1

2π
Leb(x ∈ [0, 2π] | uBalt(x) < −η).

Finally, we write

1

2
‖uBalt‖2L2 =

1

2π

∫ ∞
0

λLeb(x ∈ [0, 2π] | |uBalt(x)| > λ) dλ

=
1

2π

∫ ∞
0

η Leb(x ∈ [0, 2π] | uBalt(x) > η) dη +
1

2π

∫ ∞
0

η Leb(x ∈ [0, 2π] | uBalt(x) < −η) dη.

By splitting the integrals between the zones η > η+ and 0 ≤ η ≤ η+, we conclude that

1

2
‖uBalt‖2L2 <

∫ ∞
0

ηF (η) dη =
1

2
‖u0‖2L2 .

4 Lax eigenvalues for initial data u0(x) = −β cos(x)
The aim of this part is to establish the asymptotic expansion on the Lax eigenvalues from Theorem 1.6.
Using the fact that any eigenfunction fn(u0; ε) ∈ L2

+(T) for the Lax operator admits an analytic
expansion on the complex unit disc, we derive an integral identity in part 4.1. Then we apply the
method of stationary phase and the Laplace method to deduce an asymptotic expansion of the Lax
eigenvalues in part 4.2. Conversely, we justify that this method enables us to list all the Lax eigenvalues
in the two regions Λ+(δ) and Λ−(δ) in part 4.3.
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4.1 Eigenvalue equation
In this part, we establish the eigenvalue equation for u(x) = −β cos(x).

Proposition 4.1 (Eigenvalue equation). Let u(x) = −β cos(x). Let λ(u; ε) be an eigenvalue of Lu(ε).
Then∫ π

0
cos

(
β

ε
sinϕ+

(
1 +

λ

ε

)
ϕ

)
dϕ = sin

(
π
λ

ε

)∫ ∞
0

exp

(
−β
ε

sinh(x) +

(
1 +

λ

ε

)
x

)
dx. (18)

A possible further generalization for general trigonometric polynomials, although more technical,
would allow us to use the comonotone approximation theorems of continuous functions by trigonometric
polynomials (see [21] in the case of single well potentials and [8] in more general cases), however, we
were not able to push further this approach.

Proof. A scaling argument implies that for the Lax operator Lu(ε) associated to the Benjamin-Ono
equation with dispersion parameter ε, we have λn(u; ε) = ελn(uε ; 1). It is therefore enough to only
tackle the case ε = 1 and replace later β by β/ε.

Let f be an eigenvector of the Lax operator Lu = D − Tu with eigenvalue λ. Let α = −β/2.
Since u(x+ π) = −u(x), the spectrum is unchanged when β becomes −β and we rather study u(x) =
2α cos(x). We expand f and Πu as holomorphic functions on D, and

Πu(z) = αz−1

as a holomorphic function on C \ {0}. Then the Szegő projector has the expression

Π(Πuf) =
1

2πi

∮
∂D

f(ζ)

ζ − z
αζ−1 dζ.

Applying the residue formula, we get for z ∈ D that

Π(Πuf)(z) = Πuf(z) + αResζ=0

(
f(ζ)

ζ − z
ζ−1

)
= Πuf(z)− αf(0)

z
.

The equation Df −Π(uf) = λf satisfied by f becomes

zf ′(z)−
(
αz + αz−1 + λ

)
f(z) = −αf(0)z−1. (19)

Since f is holomorphic, the right hand side does not go to zero as z → 0. As a consequence, we have
f(0) 6= 0, and we can therefore assume that f(0) = 1.

Let us choose the branch of the logarithm corresponding to arg(z) ∈ (0, 2π) and define

h(z) := z−λ exp
(
−αz + αz−1

)
.

Then h is solution on C \ R+ to

zh′(z) = −
(
αz + αz−1 + λ

)
h(z).

We deduce that equation (19) is equivalent to

(fh)′(z) = −αz−λ−2 exp
(
−αz + αz−1

)
= −αz−2h(z). (20)

By assumption, we have α > 0. For z ∈ C \R+, we choose a path γz joining 0 to z in C \R+ and such
that γz(t) = −t if t ∈ [0, t0] for some t0 > 0. Since f is holomorphic on D, we get

f(z) = −αzλ exp
(
αz − αz−1

) ∫
γz

ζ−λ−2 exp
(
−αζ + αζ−1

)
dζ, (21)
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and the integral is absolutely convergent.
We first prove that this expression defines a holomorphic function on C \ R+ satisfying the eigen-

function equation, and converging to 1 as z → 0. Indeed, a Taylor expansion of f around 0 of the
form Sn(z) = 1 + a1z + · · ·+ anz

n with a0 = 1 and n ≥ 1 transforms equation (20) into

((f − Sn)h)′(z) = −αz−2h(z)− (a1 + · · ·+ nanz
n−1)h(z)

+ (1 + a1z + · · ·+ anz
n)(α+ αz−2 + λz−1)h(z).

We now define the coefficients ak by induction using this formula in order to cancel all the negative
powers of z. We note that the coefficient before z−2h(z) is 0, and the coefficient before z−1h(z) is 0 if
αa1 + λ = 0. Next, the coefficient in front of zjh(z), j ≥ 0, is

aj+1 − αaj + αaj+2 + λaj+1,

one can therefore choose aj+2 in order to cancel this term. As a consequence, at rank n, one can cancel
the terms up to zn−2h(z). We end up with

((f − Sn)h)′(z) = Rn(z)zn−1h(z),

where Rn = (λ− n)an + αan−1 + αanz is a holomorphic remainder term. We conclude that

f(z)− Sn(z) = h(z)−1

∫
γz

Rn(ζ)ζn−1h(ζ) dζ,

with h(ζ) = ζ−λ exp
(
−αζ + αζ−1

)
. Choosing n large with respect to λ, we see that this defines a

holomorphic function on C \ R+, satisfying the differential ODE (20) and converging to 1 as z → 0.
Moreover, for every r > 0, the limits f(r + iy) and f(r − iy) exist as y → 0+, therefore f is an
eigenfunction associated to λ if and only if for every r > 0, we have

lim
y→0+

f(r + iy) = lim
y→0+

f(r − iy). (22)

We now check this property.
We first assume that λ is not an integer. For r > 0, we integrate (20) over the circle centered at 0

of radius r, starting at r + i0 and ending at r − i0 in the counterclockwise direction. This leads to a
second condition

(e−2iπλ − 1)f(r) exp
(
−αr + αr−1

)
= −α

∫ 2π

0
exp

(
−αreiθ + αr−1e−iθ

)
r−1e−i(λ+1)θidθ.

By analytic continuation, we obtain that for every z ∈ C \ {0}, we have

(e−2iπλ − 1)f(z) exp
(
−αz + αz−1

)
= −iαz−1

∫ 2π

0
exp

(
−αzeiθ + αz−1e−iθ

)
e−i(λ+1)θ dθ. (23)

This expression defines a holomorphic function f outside the origin, solving the ODE (19) of order
one. Therefore, f defines an eigenfunction with eigenvalue λ if and only if this expression coincides
with (21) at one non singular point, for instance at the point z = −1:

(e−2iπλ − 1)

∫ 1

0
t−λ−2 exp

(
αt− αt−1

)
dt = iα

∫ 2π

0
exp

(
αeiθ − αe−iθ

)
e−i(λ+1)θ dθ,

or

e−iπλ2 sin(−πλ)

∫ 1

0
t−λ−2 exp

(
αt− αt−1

)
dt = α

∫ 2π

0
exp (i(2α sin(θ)− (λ+ 1)θ)) dθ.

We set the change of variable t = e−x and θ = ϕ+ π, and get that this is equivalent to

sin(πλ)

∫ ∞
0

exp ((λ+ 1)x− 2α sinh(x)) dx =

∫ π

0
cos ((λ+ 1)ϕ+ 2α sin(ϕ)) dϕ.

30



When λ is an integer, the condition (22) is satisfied if and only if the function f given by (21) is
holomorphic:

0 =

∫
C(0,r)

ζ−λ−2 exp
(
−αζ + αζ−1

)
dζ,

where C(0, r) is the circle of radius r centered at 0. Since the integrand is holomorphic outside the
origin, this integral does not depend on r so it is enough to calculate it for r = 1:

0 =

∫ 2π

0
eiθ(−λ−1) exp

(
−αeiθ + αe−iθ

)
dθ,

and this also leads to the result.

4.2 Asymptotic expansion for the Lax eigenvalues
In this part, we apply the stationary phase and Laplace methods into identity (18) and get an asymp-
totic expansion of the Lax eigenvalues λ.

In order to get a uniform bound on the remainder terms, we need do ensure that the stationary
point of the phase remains sufficiently far from the integral boundaries. Therefore, we fix a small
parameter δ > 0, and we only consider the eigenvalues λ such that ν = λ+ ε is inside one of the two
intervals Λ−(δ) = [−β + δ, β − δ] and Λ+(δ) = [β + δ,+∞).

We apply the method of stationary phase for the first term

I1(ε, ν) :=

∫ π

0
exp

(
i

(
β

ε
sinϕ+

ν

ε
ϕ

))
dϕ

and the Laplace method for the second term

I2(ε, ν) :=

∫ ∞
0

exp

(
−β
ε

sinh(x) +
ν

ε
x

)
dx

that appear in the identity (18) Re(I1(ε, ν)) = sin
(
π λε
)
I2(ε, ν), which we write

I(ε, ν) = 0 (24)

with ν = λ+ ε and
I(ε, ν) = Re(I1(ε, ν)) + sin

(
π
ν

ε

)
I2(ε, ν).

To estimate the large eigenvalues, we choose K(δ) > 0 such that 1
K(δ)‖u‖

2
L2 < 2δ, in order to get

thanks to the Parseval formula (4)∑
k≥K(δ)/ε

γk(u; ε) ≤ ε

K(δ)

∑
k≥K(δ)/ε

kγk(u; ε) ≤ 1

2K(δ)
‖u‖2L2 < δ.

As a consequence, since λn(u; ε) = nε−
∑

k≥n+1 γk(u; ε), one can see that for n ≥ K(δ)/ε, there holds
λn + ε ≥ K(δ)− δ.

Method of stationary phase for the first term Let us start with I1(ε, ν) =
∫ π

0 eiS1(x,ν)/ε dx,
where the phase is equal to

S1(x, ν) = β sin(x) + νx = F1(x) + νx,

F1(x) = β sin(x). Since ∂xS1(x, ν) = β cos(x) + ν, we have the following alternative.

1. (Small eigenvalues) If |ν| ≤ β − δ, there is a unique critical point

x1(ν) = arccos(−ν/β).
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Moreover, there exists δ1(δ) > 0 such that

x1(ν) ∈ [arccos(1− δ/β), arccos(−1 + δ/β)] ⊂ [2δ1(δ), π − 2δ1(δ)].

Therefore, there exists δ2(δ) > 0 such that F ′′1 (x) = − sin(x) ≤ −δ2(δ) for x ∈ [δ1(δ), π − δ1(δ)].
We also compute

S1(x1(ν), ν) =
√
β2 − ν2 + νx1(ν) =

√
β2 − ν2 + ν arccos(−ν/β),

∂xxS1(x1(ν), ν) = −F ′′1 (x1(ν)) = −
√
β2 − ν2.

From the stationary phase method (see for instance [18], chapter 7, or adapt directly the proof
of [9]), there exists C(δ) > 0 such that for every |ν| ≤ β − δ, there holds∣∣∣∣∣I1(ε, ν)−

√
2πε√

β2 − ν2
exp

(
i

(
S1(x1(ν), ν)

ε
− π

4

))∣∣∣∣∣ ≤ C(δ)ε,

implying ∣∣∣∣∣Re (I1(ε, ν))−
√

2πε√
β2 − ν2

cos

(
S1(x1(ν), ν)

ε
− π

4

)∣∣∣∣∣ ≤ C(δ)ε. (25)

2. (Large eigenvalues) If K(δ) ≥ ν ≥ β + δ, the phase has no critical point since ∂xS1(0, ν) =
β cos(x) + ν ≥ δ for every x. We know that S1(0, ν) = 0, therefore, there exists C(δ) > 0 such
that for every ν/β ≥ 1 + δ/β,

|I1(ε, ν)| ≤ C(δ)ε. (26)

Method of Laplace for the second term Let us now analyze I2(ε) =
∫ +∞

0 eS2(x,ν)/ε dx, where
the phase is equal to

S2(x, ν) = −β sinh(x) + νx = F2(x) + νx,

F2(x) = −β sinh(x). Since ∂xS2(x, ν) = −β cosh(x) + ν, the following holds.

1. (Small eigenvalues) If |ν| ≤ β− δ, we have ∂xS2(x, ν) ≤ −β+ν ≤ −δ for every x, therefore there
is no critical point. We get from the Laplace method that

|I2(ε, ν)| ≤ C(δ)ε. (27)

2. (Large eigenvalues) If K(δ) ≥ ν ≥ β + δ, then there is a unique critical point

x2(ν) = cosh−1

(
ν

β

)
.

There exists δ1(δ) > 0 such that x2(ν) ≥ 2δ1(δ) for every ν ≥ β + δ, and there exists δ2(δ) > 0
such that F ′′2 (x) = −β sinh(x) ≤ −δ2(δ) for every x ≥ δ1(δ). Moreover, we have

S2(x2(ν), ν) = −
√
ν2 − β2 + νx2(ν),

F ′′2 (x2(ν)) = −
√
ν2 − β2.

One can therefore apply the adapted Laplace method and get∣∣∣∣∣I2(ε, ν)−
√

2πε√
ν2 − β2

eS2(x2(ν),ν)/ε

∣∣∣∣∣ ≤ C(δ)ε. (28)
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Small eigenvalues For every |ν| ≤ β − δ, we conclude that∣∣∣∣∣I(ε, ν)−
√

2πε√
β2 − ν2

cos

(
S1(x1(ν), ν)

ε
− π

4

)∣∣∣∣∣ ≤ C(δ)ε. (29)

Therefore, identity (24) implies that given a small Lax eigenvalue λ, then ν = λ+ ε satisfies∣∣∣∣∣
√

2πε√
β2 − ν2

cos

(
S1(x1(ν), ν)

ε
− π

4

)∣∣∣∣∣ ≤ C(δ)ε.

Taking the limit ε→ 0, we conclude that cos
(
S1(x1(ν),ν)

ε − π
4

)
should be close to 0 as soon as ε < ε0(δ)

is small enough. Therefore there exists an integer N(ε, ν) such that∣∣∣∣S1(x1(ν), ν)

ε
− 3π

4
− πN(ε, ν)

∣∣∣∣ ≤ C(δ)
√
ε.

Let us recall the definition of

F (η) =
1

2π
Leb{x ∈ [0, 2π] | u(x) ≥ η}.

Then one can see that whenever −β < η < β, we have 2πF (η) = 2 arccos
(
η
β

)
. As a consequence,

2π

∫ β

−ν
F (η) dη = 2β

[
x arccos(x)−

√
1− x2

]1

−ν/β

= 2

(
ν arccos

(
−ν
β

)
+
√
β2 − ν2

)
= 2S1(x1(ν), ν).

We have therefore proven that∣∣∣∣∫ β

−ν
F (η) dη − 3ε

4
− εN(ε, ν)

∣∣∣∣ ≤ C(δ)ε
√
ε. (30)

The integral term is bounded below since
∫ β
β−δ F (η) dη ≥ 1

C(δ) . We deduce that when ε < ε0(δ) is
small enough, we have that necessarily N(ε, ν) ≥ 0 (and even N(ε, ν) ≥ 1

C(δ)ε).

Large eigenvalues In the case K(δ) ≥ ν ≥ β + δ, we have proven that∣∣∣∣∣I(ε, ν)− sin
(
π
ν

ε

) √
2πε√

ν2 − β2
eS2(x2(ν),ν)/ε

∣∣∣∣∣ ≤ C(δ)ε. (31)

Then identity (24) implies that given a large Lax eigenvalue λ, then ν = λ+ ε satisfies∣∣∣∣∣sin(πνε)
√

2πε√
ν2 − β2

eS2(x2(ν),ν)/ε

∣∣∣∣∣ ≤ C(δ)ε.

We introduce the function x 7→ ψ(x) := −
√
x2 − 1 + x cosh−1(x) on [1,∞). This function satisfies

ψ(1) = 0 and its derivative on (1,∞) is

ψ′(x) = − x√
x2 − 1

+ cosh−1(x) +
x√

x2 − 1
≥ 0.

This implies that ψ(x) ≥ 0 on [1,∞). Since ν > β, then S2(x2(ν), ν) = βψ(ν/β) ≥ 0. We deduce that∣∣∣sin(πν
ε

)∣∣∣ ≤ ∣∣∣sin(πν
ε

)
eS2(x2(ν),ν)/ε

∣∣∣ ≤ C(δ)
√
ε.

As a consequence, sin(πν/ε) is close to 0 for small ε, and we have the more precise asymptotics

|ν − (1 +N(ε, ν))ε| ≤ C(δ)ε
√
ε. (32)

Since ν ≥ β + δ, we know that necessarily, N(ε, ν) ≥ 0 (and even N(ε, ν) ≥ β
ε for ε < ε0(δ)).
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4.3 Characterization of the eigenvalues
Conversely, we prove in this part that the asymptotic expansions obtained in part 4.2 actually corre-
spond to eigenvalues for the Lax operator, and therefore we conclude the proof of Theorem 1.6.

More precisely, in each of the two regimes ν ∈ Λ−(δ) = [−β+ δ, β− δ] and ν ∈ Λ+(δ) = [β+ δ,∞),
we establish that there is exactly one eigenvalue λ such that ν = λ+ ε satisfies N(ε, ν) = N , as soon
as N is compatible with the conditions |ν| ≤ β − δ or ν ≥ β + δ.

In this purpose, we fix ε small enough and study the variations of the two functions of ν defined
as I1(ε, ν) =

∫ π
0 exp

(
i
(
β
ε sin(x) + ν

εx
))

dx and I2(ε, ν) =
∫∞

0 exp
(
−β
ε sinh(x) + ν

εx
)

dx. We have

∂νI1(ε, ν) =
i

ε

∫ π

0
x exp

(
i

(
β

ε
sin(x) +

ν

ε
x

))
dx

and
∂νI2(ε, ν) =

1

ε

∫ ∞
0

x exp

(
−β
ε

sinh(x) +
ν

ε
x

)
dx.

We also recall that
I(ε, ν) = Re(I1(ε, ν)) + sin

(
π
ν

ε

)
I2(ε, ν).

Small eigenvalues First, we assume that |ν| ≤ β − δ. Then the stationary phase method implies
that ∣∣∣∣∣∂νI1(ε, ν)− ix1(ν)

ε

√
2πε√

β2 − ν2
exp

(
i

(
S1(x1(ν), ν)

ε
− π

4

))∣∣∣∣∣ ≤ C(δ),

so that ∣∣∣∣∣∂ν Re(I1(ε, ν)) +
x1(ν)√

ε

√
2π√

β2 − ν2
sin

(
S1(x1(ν), ν)

ε
− π

4

)∣∣∣∣∣ ≤ C(δ),

whereas
|∂νI2(ε, ν)| ≤ C(δ).

We conclude that ∣∣∣∣∣∂νI(ε, ν) +
x1(ν)√

ε

√
2π√

β2 − ν2
sin

(
S1(x1(ν), ν)

ε
− π

4

)∣∣∣∣∣ ≤ C(δ).

Let c1 > 0 be a small parameter such that if |cos (x)| ≤ c1, then d
(
x, πZ + π

2

)
≤ π

4 . Using (29),
there exist c2(δ) > 0 and ε0(δ) > 0 such that for ε < ε0(δ), then the inequality

|I(ε, ν)| ≤ c2(δ)
√
ε (33)

implies ∣∣∣∣cos

(
S1(x1(ν), ν)

ε
− π

4

)∣∣∣∣ ≤ c1.

Let N ≥ 0 be an integer. Then there exists ν0
N = ν0

N (ε) ≥ −β such that∫ β

−ν0N
F (η) dη − 3ε

4
− εN = 0, (34)

implying

cos

(
S1(x1(ν0

N ), ν0
N )

ε
− π

4

)
= 0.

As a consequence, inequality (29) implies that for ε < ε0(δ), there holds

|I(ε, ν0
N )| ≤ C(δ)ε ≤ c2(δ)

√
ε/2.
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Assume that |ν0
N | ≤ β − 2δ. Let [ν∗, ν

∗] ⊂ [−β + δ, β − δ] be the largest interval containing ν0
N and

on which inequality (33) holds. We prove that the interval [ν∗, ν
∗] encloses exactly one eigenvalue

because of monotonicity of I along the parameter ν, and conversely that this interval is large enough
to enclose all the eigenvalues associated to N .

On [ν∗, ν
∗], we have by construction∣∣∣∣sin(S1(x1(ν), ν)

ε
− π

4

)∣∣∣∣ ≥√1− c2
1.

Given that x1(ν) = arccos(− ν
β ) ≥ 1

C(δ) , we deduce that for ε < ε0(δ),

|∂νI(ε, ν)| ≥
√

1− c2
1

C(δ)
√
ε
− C(δ) ≥ 1

C ′(δ)
√
ε
. (35)

By continuity, the ν-derivative of I(ε, ν) stays of the same sign on [ν∗, ν
∗]. For instance if I(ε, ·) is

increasing and I(ε, ν0
N ) < 0, then there holds for ν∗ ≥ ν ≥ ν0

N that

1

C ′(δ)
√
ε

(ν − ν0
N ) ≤ I(ε, ν)− I(ε, ν0

N ).

Since |I(ε, ν0
N )| ≤ c2(δ)

√
ε/2, then as long as I(ε, ν) < 0, we know that I(ε, ·) is increasing and

inequality (33) stays satisfied. Therefore, there exists νN ∈ [ν∗, ν
∗] such that I(ε, νN ) = 0 and νN is

a Lax eigenvalue. We also know that |νN − ν0
N | ≤ δ for ε < ε0(δ). An adaptation of this argument

applies to the other cases, when I(ε, ·) is decreasing or when I(ε, ν0
N ) ≥ 0.

The integer N is thus uniquely defined in the following inequality, which stays true on the (non
ordered) interval [ν0

N , νN ] by construction

π

ε

∣∣∣∣∫ β

−ν
F (η) dη − 3ε

4
− εN

∣∣∣∣ =

∣∣∣∣S1(x1(ν), ν)

ε
− π

4
− π

2
− πN

∣∣∣∣ ≤ π

4
.

Moreover, this is the same integer N on the whole interval [ν0
N , νN ] by continuity. Given N , then νN

is uniquely defined in [ν∗, ν
∗] because I(ε, ·) is strictly monotone in this interval.

Conversely, the function ν 7→ S1(x1(ν), ν) =
√
β2 − ν2 + ν arccos(−ν/β) is C1(δ)-Lipschitz on the

interval [−β + δ, β − δ]. As a consequence, let C0(δ) be a large constant to be chosen later and let ν
such that

|ν − ν0
N | ≤

c2(δ)ε

C0(δ)C1(δ)
.

For ε < ε0(δ), the upper bound is less than δ so that ν ∈ [−β + δ, β − δ]. Moreover, the Lipschitz
bound implies∣∣∣∣cos

(
S1(x1(ν), ν)

ε
− π

4

)∣∣∣∣ =

∣∣∣∣cos

(
S1(x1(ν), ν)

ε
− π

4

)
− cos

(
S1(x1(ν0

N ), ν0
N )

ε
− π

4

)∣∣∣∣ ≤ c2(δ)

C0(δ)
.

Consequently, inequality (29) implies that for ε < ε0(δ) chosen small enough and C0(δ) chosen large
enough, there holds

|I(ε, ν)| ≤ c2(δ)
√
ε

2
+ C(δ)ε ≤ c2(δ)

√
ε.

Therefore, inequality (33) holds true, and we have proven that when c2(δ)ε
C0(δ)C1(δ) < δ, then[

ν0
N −

c2(δ)ε

C0(δ)C1(δ)
, ν0
N +

c2(δ)ε

C0(δ)C1(δ)

]
⊂ [ν∗, ν

∗].

We deduce that the Lax eigenvalue νN associated to the integer N , which satisfies |ν−ν0
N | ≤ C(δ)ε

√
ε

thanks to inequality (30), must belong to [ν∗, ν
∗] and is therefore uniquely defined on [−β + δ, β − δ].

To conclude, if |ν| ≤ β − δ is a small eigenvalue, then there exists |ν0
N | ≤ β − δ/2 as above.

Conversely, if |ν0
N | ≤ β − δ/2, then one can construct a small eigenvalue |ν| ≤ β − δ/4 such that

N = N(ε, ν), and by restriction to the interval [−β + δ, β − δ], we get all the eigenvalues satisfying
|ν| ≤ β − δ.
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Large eigenvalues We now establish the asymptotics for the eigenvalues satisfying K(δ) ≥ ν ≥
β + δ. Using the Laplace method,∣∣∣∣∣∂νI2(ε, ν)− x2(ν)

ε

√
2πε√

ν2 − β2
eS2(x2(ν),ν)/ε

∣∣∣∣∣ ≤ C(δ),

whereas
|∂νI1(ε, ν)| ≤ C(δ).

We proceed similarly as the small eigenvalue case.
Let N ≥ 0 and ν0

N = ν0
N (ε) such that

ν0
N = (N + 1)ε,

so that sin
(
π
ν0N
ε

)
= 0. We assume that K(δ) + δ ≥ ν0

N ≥ β+ 2δ. Let c1 > 0 such that if | sin(x)| ≤ c1,
then d(x, πZ) ≤ π

4 , and using inequality (31), let c2(δ) > 0 such that if

|I(ε, ν)| ≤ c2(δ)
√
ε, (36)

then for ε < ε0(δ), there holds ∣∣∣sin(πν
ε

)∣∣∣ ≤ c1.

Let [ν∗, ν
∗] ⊂ [β + δ,K(δ) + 2δ] be the largest interval containing ν0

N and on which inequality (36)
holds.

By definition, on this interval, we have∣∣∣cos
(
π
ν

ε

)∣∣∣ ≥√1− c2
1.

Moreover, recall that on [β + δ,K(δ) + 2δ], we have S2(x2(ν), ν) ≥ 0 and x2(ν) = cosh−1( νβ ) ∈
[ 1
C(δ) , C(δ)]. Therefore, when ε < ε0(δ), inequality (28) implies

|I2(ε, ν)| ≥
√
ε

C(δ)
eS2(x2(ν),ν)/ε − C(δ)ε ≥

√
ε

C ′(δ)
eS2(x2(ν),ν)/ε.

As a consequence, we get∣∣∣∂ν (Re(I1(ε, ν))− sin
(
π
ν

ε

)
I2(ε, ν)

)∣∣∣ =
∣∣∣∂ν Re(I1(ε, ν))− sin

(
π
ν

ε

)
∂νI2(ε, ν)− π

ε
cos
(
π
ν

ε

)
I2(ε, ν)

∣∣∣
≥
√

1− c2
1

C(δ)
√
ε
eS2(x2(ν),ν)/ε − c1C(δ)√

ε
− C(δ),

or when we then choose ε < ε0(δ) and c1 such that for instance
√

1− c2
1 ≥ c1/2,

|∂νI(ε, ν)| ≥ 1

C(δ)
√
ε
eS2(x2(ν),ν)/ε ≥ 1

C(δ)
√
ε
.

Therefore, on [ν∗, ν
∗], the derivative stays of the same sign.

On the other hand, since sin(πν0
N/ε) = 0, then inequality (31) implies that |I(ε, ν0

N )| ≤ C(δ)ε ≤
c2(δ)

√
ε/2. We deduce by monotonicity that there exists a unique νN ∈ [ν∗, ν

∗] such that I(ε, ν) = 0.
Moreover, since inequality (36) holds on [ν∗, ν

∗] by definition, we have d(ν, εZ) ≤ ε
4 on this interval,

and by continuity, the same integer N as for ν0
N appears in the inequality

|νN − (N + 1)ε| ≤ 1

4
.

Conversely, let C0(δ) > 0 be a large constant, let ε < ε0(δ), and let ν such that

|ν − ν0
N | ≤

c2(δ)ε

C0(δ)
.
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Since sin is 1-Lipschitz, then∣∣∣sin(πν
ε

)∣∣∣ =

∣∣∣∣sin(πνε)− sin

(
π
ν0
N

ε

)∣∣∣∣ ≤ π c2(δ)

C0(δ)
.

Using inequality (31), we deduce that when ε < ε0(δ), we have

|I(ε, ν)| ≤ c2(δ)
√
ε

2
+ C(δ)ε ≤ c2(δ)

√
ε,

and therefore ν ∈ [ν∗, ν
∗]: we have proven [ν0

N −
c2(δ)ε
C0(δ) , ν

0
N + c2(δ)ε

C0(δ) ] ⊂ [ν∗, ν
∗] when c2(δ)ε

C0(δ) < δ. The
precise asymptotics that a Lax eigenvalue needs to satisfy (32)

|ν − (N(ε, ν) + 1)ε| ≤ C(δ)ε
√
ε

ensure that given N such that K(δ) + δ ≥ ν0
N ≥ β + 2δ, necessarily νN ∈ [ν∗, ν

∗], therefore there is
exactly one Lax eigenvalue.

To conclude, if K(δ) ≥ ν ≥ β + δ is a large eigenvalue, then there exists K(δ) + δ ≥ ν0
N ≥ β + δ/2

as above. Conversely, if K(δ) + δ/2 ≥ ν0
N ≥ β + δ/4, then there exists exactly one large eigenvalue

associated to N such that K(δ) + δ/2 ≥ ν ≥ β+ δ/2, and by restriction we get all the Lax eigenvalues
satisfying K(δ) ≥ ν ≥ β + δ.

Other eigenvalues We now establish an upper bound on the number of eigenvalues which do not
fit into any of the two categories listed above.

First, for every
K(δ) + δ

ε
≥ N + 1 ≥ β + 2δ

ε
,

there holds
K(δ) + δ ≥ ν0

N := (N + 1)ε ≥ β + 2δ

so that we get a Lax eigenvalue νN ∈ [β + δ,K(δ) + 2δ] which satisfies

|νN − (N + 1)ε| ≤ 1

4
.

But we also have the asymptotic expansion as n → ∞ λn − nε → 0, more precisely, by definition of
K(δ), for n ≥ K(δ)/ε, one has

|λn − nε| < δ.

When δ < 1/4, since N is uniquely defined, this implies that the n-th Lax eigenvalue satisfies λn =
νn − ε.

We now establish a lower bound on the number of small Lax eigenvalues λ satisfying λ + ε ∈
[−β + δ, β − δ]. Condition (34) ∫ β

−ν0N
F (η) dη − 3ε

4
− εN = 0

is true for some ν0
N ∈ [−β + 2δ, β − 2δ] as soon as∫ β

β−2δ
F (η) dη ≤ εN +

3ε

4
≤
∫ β

−β+2δ
F (η) dη.

We deduce that there are at least
1

ε

∫ β−2δ

−β+2δ
F (η) dη − 1

suitable integers N . But since
∫ β
−β F (η) dη = β and F (η) ≤ 1 for every η, we have

1

ε

∣∣∣∣∫ β−2δ

−β+2δ
F (η) dη − β

∣∣∣∣ ≤ βδ

ε
.
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As a conclusion, among the integers N which do not lead to large eigenvalues νN ≥ β + δ, that is,
which satisfy

N ≤ β + 2δ

ε
− 1,

there are at least β−Cδε of them which lead to small eigenvalues |νN | ≤ β−δ. The remaining eigenvalues
consist of no more than Cδ

ε indexes.

Proof of Theorem 1.6. When λn + ε, λp + ε ∈ Λ+(δ), we have already seen from the study of the large
eigenvalues that if n ≤ K(δ)/ε, then |λn−nε| ≤ C(δ)ε

√
ε, whereas if n > K(δ)/ε, then |λn−nε| ≤ Cδ.

In the former part, we have seen that there are at most Cδ
ε eigenvalues such that λn + ε 6∈ Λ−(δ)∪

Λ+(δ). Reasoning with δ/2 instead of δ, the indexes counting argument from the former part implies
the index N leads to an eigenvalue νN = λn + ε ∈ [β − δ, β − δ/2] as soon as∫ β

−β+δ/4
F (η) dη ≤ εN +

3ε

4
≤
∫ β

−β+δ/2
F (η) dη.

Since F ≥ 1/C on (−∞, 0], we deduce that that there are at least

1

ε

∫ −β+δ/2

−β+δ/4
F (η) dη ≥ δ

Cε

such indexes, or at least δ
Cε Lax eigenvalues λn + ε ∈ [β − δ, β − δ/2]. Similarly, one knows that there

are at least δ
Cε Lax eigenvalues such that λn + ε ∈ [−β + δ/2,−β + δ].

Finally, in the region λn+ε ∈ Λ−(δ) = [−β+δ, β−δ], the counting of the indexes leads to the same
conclusion, except that only the lower bound F (η) ≥ 1/C(δ) holds on (−∞, β− δ/4], so that there are
between 1

C(δ)ε and Cδ
ε eigenvalues in the region [−β,−β + δ]. Therefore there exists 1

C(δ)ε ≤ N0 ≤ Cδ
ε

such that for every n, if λn + ε = νN ∈ Λ−(δ), then n−N = N0. Inequality (30) becomes∣∣∣∣∫ β

−λ−ε
F (η) dη − 3ε

4
− ε(n−N0)

∣∣∣∣ ≤ C(δ)ε
√
ε

for every λn + ε ∈ Λ−(δ). This implies the small eigenvalues point of the Theorem.
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