Xueqin Yang 
  
Xiuzhi Chen 
  
Jiashun Ren 
  
Wenping Yuan 
  
Liyang Liu 
  
Juxiu Liu 
  
Dexiang Chen 
  
Yihua Xiao 
  
Qinghai Song 
  
Yanjun Du 
  
Shengbiao Wu 
  
Lei Fan 
  
Xiaoai Dai 
  
Yunpeng Wang 
  
Yongxian Su 
  
Trotta, C., Canfora, E G Pastorello 
  
Curtis, P. S D ' Andrea 
  
Da Rocha 
  
De Oliveira 
  
Delpierre, N R C Desai 
  
Di Bella 
  
F Dong 
  
G Dore 
  
G Fischer 
  
Gielen, B., Gioli, B., Gitelson, A., Goded, I., Goeckede, M A H Goldstein 
  
Gough, C. M M L Goulden 
  
Hansen, B. U X Hanson 
  
Kolle, O., Kosugi, Y., Kotani A Kowalski 
  
Y Liddell 
  
Lion, M A J Liska 
  
A Lopez-Blanco 
  
A gridded dataset of a leaf-age-dependent leaf area index seasonality product over tropical and subtropical evergreen broadleaved forests

come    

A gridded dataset of a leaf-age-dependent leaf area index seasonality product over tropical and subtropical evergreen broadleaved forests

Introduction

Tropical and subtropical evergreen broadleaved forests (TEFs) account for approximately 34 % of global terrestrial primary productivity (GPP; [START_REF] Beer | Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate[END_REF] and 40 %-50 % of the world's gross forest carbon sink [START_REF] Pan | A large and persistent carbon sink in the world's forests[END_REF][START_REF] Saatchi | Benchmark map of forest carbon stocks in tropical regions across three continents[END_REF]. Despite a perennial canopy, TEFs shed and rejuvenate their leaves continuously throughout the year, leading to significant seasonality in canopy leaf demography [START_REF] Lopes | Leaf flush drives dry season green-up of the Central Amazon, Remote Sens[END_REF][START_REF] Chen | Va-por pressure deficit and sunlight explain seasonality of leaf phenology and photosynthesis across Amazonian evergreen broadleaved forest[END_REF]. This phenological change in leaf demography is the primary cause of GPP seasonality in TEFs [START_REF] Saleska | Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses[END_REF]Sayer et al., 2011;[START_REF] Leff | Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest[END_REF], and this thus largely regulates their seasonal carbon sinks [START_REF] Beer | Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate[END_REF]Aragao et al., 2014;[START_REF] Saatchi | Benchmark map of forest carbon stocks in tropical regions across three continents[END_REF].

A key plant trait linking canopy phenology with GPP seasonality was shown to be leaf age [START_REF] De Moura | Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations[END_REF]Xu et al., 2017). At the leaf scale, the newly flushed young leaves and maturing leaves show higher maximum carboxylation rates (V c,max ) than the old leaves being replaced (De Weirdt et al., 2012;[START_REF] Chen | Va-por pressure deficit and sunlight explain seasonality of leaf phenology and photosynthesis across Amazonian evergreen broadleaved forest[END_REF]. Such age-dependent variations in V c,max are associated with changes in leaf nutritional contents (nitrogen, phosphorus, potassium, etc.) and stomatal conductance over time (Menezes et al., 2021). Xu et al. (2017) and Menezes et al. (2021) monitored in situ leaf age and leaf demography combined with leaf-level V c,max in Amazonian TEFs and found that V c,max of newly flushed leaves increases rapidly with leaf longevity, peaks at approximately 2 months old, and then declines gradually as leaf grows older (leaf age > 2 months). At canopy scale, it was hypothesized that leaf demography and seasonal differences in leaf age compositions of tree canopies control the GPP seasonality in TEFs [START_REF] Lopes | Leaf flush drives dry season green-up of the Central Amazon, Remote Sens[END_REF][START_REF] Albert | Age-dependent leaf physiology and consequences for crown-scale carbon uptake during the dry season in an Amazon evergreen forest[END_REF]. A similar mechanism was also observed from the ground-based lidar signals which showed an increasing trend in upper canopy leaf area index (LAI) during the dry season, whereas there was a decrease in lower canopy LAI (more old leaves; [START_REF] Smith | Seasonal and drought-related changes in leaf area profiles depend on height and light environment in an Amazon forest[END_REF]. [START_REF] Lopes | Leaf flush drives dry season green-up of the Central Amazon, Remote Sens[END_REF] classified the canopy leaves of Amazonian TEFs into three leaf age cohorts (young at 1-2 months, mature at 3-5 months, and old at ≥ 6 months).

The LAI of young and mature leaves increased during the dry seasons and consequently promoted dry-season canopy photosynthesis. Based on the above age-dependent V c,max at leaf scale (Xu et al., 2017) and the LAI seasonality of different leaf age cohorts at canopy scale [START_REF] Lopes | Leaf flush drives dry season green-up of the Central Amazon, Remote Sens[END_REF], Chen et al. (2020Chen et al. ( , 2021) ) developed a climate-triggered leaf litterfall and flushing model and successfully represented the seasonality of canopy leaf demography and GPP at four Amazonian TEF sites. Overall, leaf-age-dependent LAI seasonality is one of the vital biotic factors in influencing the GPP seasonality in TEFs [START_REF] Lopes | Leaf flush drives dry season green-up of the Central Amazon, Remote Sens[END_REF][START_REF] Chen | Va-por pressure deficit and sunlight explain seasonality of leaf phenology and photosynthesis across Amazonian evergreen broadleaved forest[END_REF].

Although the leaf-age-dependent LAI seasonality can be well documented at site level using phenology cameras [START_REF] Lopes | Leaf flush drives dry season green-up of the Central Amazon, Remote Sens[END_REF], it is still rarely studied and remains unclear at the continental scale. The key causation for this is that the leaf flushing and litterfall of TEFs in different climatic regions experience different seasonal constraints of water and light availability during recurrent dry and wet seasons [START_REF] Brando | Seasonal and interannual variability of climate and vegetation indices across the Amazon[END_REF][START_REF] Chen | Va-por pressure deficit and sunlight explain seasonality of leaf phenology and photosynthesis across Amazonian evergreen broadleaved forest[END_REF]Davidson et al., 2012;[START_REF] Xiao | Satellitebased modeling of gross primary production in a seasonally moist tropical evergreen forest[END_REF]. Thus, the seasonal patterns of LAI in different leaf age cohorts become very complex at the continental scale [START_REF] Chen | Va-por pressure deficit and sunlight explain seasonality of leaf phenology and photosynthesis across Amazonian evergreen broadleaved forest[END_REF]Xu et al., 2015). Satellite-based remote sensing [START_REF] Saatchi | Benchmark map of forest carbon stocks in tropical regions across three continents[END_REF]Guan et al., 2015) and land surface model (LSM) technologies (De Weirdt et al., 2012;[START_REF] Chen | Va-por pressure deficit and sunlight explain seasonality of leaf phenology and photosynthesis across Amazonian evergreen broadleaved forest[END_REF][START_REF] Chen | Va-por pressure deficit and sunlight explain seasonality of leaf phenology and photosynthesis across Amazonian evergreen broadleaved forest[END_REF] are two commonly used approaches for detecting the spatial heterogeneity of plant phenology at a large scale. However, for satellite-based studies, most optical signals are saturated in TEFs due to the dense covered canopies and thus fail to capture the seasonality of total LAI in TEFs and are much less able to decompose the LAI into different leaf age cohorts. These limitations prevent satellite-based studies from accurately representing the agedependent LAI seasonality. Moreover, most Earth system models (ESMs) also show poor performances in simulating the LAI seasonality in different leaf age cohorts (De Weirdt et al., 2012;[START_REF] Chen | Va-por pressure deficit and sunlight explain seasonality of leaf phenology and photosynthesis across Amazonian evergreen broadleaved forest[END_REF]. This is because the underlying mechanisms linking seasonal water and light availability with leaf flushing and litterfall seasonality are currently highly debated and remain elusive at the regional scale [START_REF] Leff | Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest[END_REF][START_REF] Saleska | Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses[END_REF]Sayer et al., 2011). This vague notion imposes a challenge for accurately modeling continental-scale GPP seasonality in most LSMs (Restrepo-Coupe et al., 2017;[START_REF] Chen | Va-por pressure deficit and sunlight explain seasonality of leaf phenology and photosynthesis across Amazonian evergreen broadleaved forest[END_REF].

To fill the research gap, this study aimed to produce a global gridded dataset of leaf-age-dependent LAI seasonality product (Lad-LAI) over the whole TEF biomes from 2001 to 2018. For this purpose, we first simplified the canopy GPP as being composed of three parts that were produced from young, mature, and old leaves, respectively. GPP was then expressed as a function of the sum of the product of each LAI cohort (i.e., young, mature, and old leaves, denoted as LAI young , LAI mature , and LAI old , respectively) and corresponding net CO 2 assimilation rate (An, denoted as An young , An mature , and An old for young, mature, and old leaves, respectively; Eq. 1). Then, we proposed a novel neighbor-based approach to derive the values of three LAI cohorts. It was hypothesized that forests in the adjacent four cells in the gridded map exhibited consistent seasonality in both GPP and LAI cohorts (LAI young , LAI mature , and LAI old ). Based on this assumption, we applied Eq. ( 1) to each pixel and combined the four equations of 2 × 2 neighboring pixels to derive the three LAI cohorts using a linear least squares with the constrained method. The An parameter was calculated using the Farquhar-von Caemmerer-Berry (FvCB) leaf photochemistry model [START_REF] Farquhar | A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species[END_REF], and GPP was linearly derived from an arguably better proxy in the form of the TROPOMI (the TROPOspheric Monitoring Instrument) solar-induced fluorescence (SIF), based on a simple SIF-GPP relationship established by [START_REF] Yang | Leaf age-dependent LAI seasonality product (Lad-LAI) over tropical and subtropical evergreen broadleaved forests, Figshare [data set[END_REF]see Sect. 3 for details). This gridded dataset of three LAI cohorts provides new insights into tropical and subtropical phenology, with more details of subcanopy level of leaf seasonality in different leaf age cohorts, and will be helpful for developing an accurate tropical phenology model in ESMs.

Study area and material

Tropical and subtropical evergreen broadleaved forest biomes

In this study, we focused on the whole tropical and subtropical evergreen broadleaf forests (TEFs). The pixels labeled TEFs, according to the International Geosphere-Biosphere Program (IGBP) classification, were extracted as the study area, based on the 0.05 

Input datasets for calculating GPP and An parameters

The TROPOMI SIF data were used to derive the continentscale GPP (denoted as RTSIF-derived GPP), according to the SIF-GPP relationship established by [START_REF] Yang | Leaf age-dependent LAI seasonality product (Lad-LAI) over tropical and subtropical evergreen broadleaved forests, Figshare [data set[END_REF], which used 15.343 as a transformation coefficient to covert SIF to GPP. The air temperature data from ERA5-Land [START_REF] Zhao | Evaluation of ERA-Interim air temperature data over the Qilian Mountains of China[END_REF], vapor pressure deficit (VPD) data from ERA-Interim [START_REF] Yuan | Increased atmospheric vapor pressure deficit reduces global vegetation growth[END_REF], and downward shortwave solar radiation (SW) from the Breathing Earth System Simulator (BESS; [START_REF] Ryu | MODISderived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5 km res-olution from 2000[END_REF] were used to calculate the Michaelis-Menton constant for carboxylase (K c ), the Michaelis-Menton constant for oxygenase (K o ), the CO 2 compensation point ( * ), dark respiration (R dark ), and V c,max and thus to calculate the An parameter according to the equations in Table S4 (see the Supplement). The calculation processes are illustrated in Fig. 2. All datasets were aggregated at the same spatial (0.125 • ) and temporal resolutions (month; Table S3).

2.3 Datasets for validating leaf-age-dependent LAI seasonality

Ground-based seasonal LAI cohorts and litterfall data

The top-of-canopy imagery observed by ground-based phenology cameras were used to decompose the canopy LAI into LAI young , LAI mature , and LAI old . In total, imagery from eight observation sites across the whole TEF region were used to validate the simulation results (blue pentangles in Fig. 1; Table S1 in the Supplement). Additionally, the seasonal litterfall data from 53 in situ sites (black circles in Fig. 1; Table S6) spanning the TEFs were collected from globally published articles to compare them with the phase of simulated LAI old seasonality (see Sect. 3 for details). The multiyear monthly litterfall data were averaged to the monthly mean to compare them with the seasonality of the simulated LAI old . Four eddy covariance flux tower sites (red triangles in Fig. 1; Table S2) provided in situ seasonal GPP data to evaluate the seasonality of RTSIF-derived GPP.

Satellite-based seasonal EVI data

To evaluate the LAI seasonality of photosynthetically effective leaves (i.e., young and mature leaves), this study used the satellite-based MODIS and enhanced vegetation index (EVI; Huete et al., 2002;[START_REF] Lopes | Leaf flush drives dry season green-up of the Central Amazon, Remote Sens[END_REF]Wu et al., 2018) as the remotely sensed proxied alternatives of effective leaf area changes and new leaf flush (i.e., LAI young+mature ; [START_REF] Lopes | Leaf flush drives dry season green-up of the Central Amazon, Remote Sens[END_REF]Xu et al., 2015). To prove the robustness of the products over a large spatial coverage, the seasonal LAI cohorts of young and mature leaves were evaluated against the EVI product, which was considered to be a proxy for leaf area changes in photosynthetically effective leaves (Xu et al., 2015;[START_REF] Lopes | Leaf flush drives dry season green-up of the Central Amazon, Remote Sens[END_REF][START_REF] De Moura | Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations[END_REF].

Methods

3.1 Decomposing LAI cohorts (young, mature, and old) from SIF-derived GPP Figure 2 illustrates the overall framework used to generate the leaf-age-dependent LAI seasonality product (Lad-LAI). The majority of the tropical and subtropical TEFs retain leaves year-round, and their total LAI shows marginally small spatial and seasonal changes [START_REF] Lopes | Leaf flush drives dry season green-up of the Central Amazon, Remote Sens[END_REF]Figs. S3, S4). Therefore, previous modeling studies have assumed a constant value for the total LAI in tropical and subtropical TEFs [START_REF] Cramer | Global response of terrestrial ecosystem structure and function to CO 2 and climate change: results from six dynamic global vegetation models[END_REF][START_REF] Arora | Fire as an interactive component of dynamic vegetation models[END_REF]De Weirdt et al., 2012). Based on this, we collected observed seasonal LAI dynamics in tropical and subtropical TEFs from previously published literature, which showed a constant value of LAI at around 6.0 (Figs. S3, S4; Table S5). Thus, in this study, we simplified the data to assume that the seasonal LAI was approximately equal to 6.0 in tropical and subtropical TEFs. We grouped the canopy leaves of tropical and subtropical TEFs into three leaf age cohorts (i.e., young, mature and old leaves, respectively). Then, the total GPP was defined as the sum of those produced by the young, mature, and old leaves, respectively. According to the FvCB leaf photochemistry model [START_REF] Farquhar | A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species[END_REF], GPP can be expressed as function of the sum of the products of each LAI cohort (LAI young , LAI mature , and LAI old ) and corresponding net CO 2 assimilation rate (An young , An mature , and An old ; Eq. 1). GPP = LAI young × An young + LAI mature × An mature

+ LAI old × An old , (1) 
where LAI young , LAI mature , and LAI old are the leaf area index of young, mature, and old leaves, respectively. An young , An mature , and An old are the net rate of the CO 2 assimilation, dependent on three leaf age classes. GPP is the canopy total gross primary production. The sum of LAI young , LAI mature , and LAI old was set as a constant in this study, equaling to 6.0. The gridded GPP data over the whole TEFs were derived from SIF (denoted as RTSIF-derived GPP) using a linear SIF-GPP regression model (see Sect. 3.2), which was established based on in situ GPP from 76 eddy covariance (EC) sites [START_REF] Yang | Leaf age-dependent LAI seasonality product (Lad-LAI) over tropical and subtropical evergreen broadleaved forests, Figshare [data set[END_REF]. The An young , An mature , and An old were calculated according to the FvCB biochemical model [START_REF] Farquhar | A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species[END_REF][START_REF] Bernacchi | In vivo temperature response functions of parameters required to model RuBPlimited photosynthesis[END_REF]see Sect. 3.3). As there were three unknown variables (i.e., LAI young , LAI mature , and LAI old ) to be solved in Eq. ( 1), we hypothesized that the adjacent four pixels exhibited homogenous TEFs and consistent leaf demography and canopy photosynthesis. Then, we used the GPP and An data from the adjacent four pixels to estimate their LAI young , LAI mature , and LAI old , based on Eq. ( 1), using linear least squares with the constrained method. The inputs, on gridded datasets (i.e., RTSIF-derived GPP and An derived from T air , VPD, and SW; Table S3; Fig. 2), were sampled at 0.125 • spatial resolution, while the output maps of LAI young , LAI mature , and LAI old were at 0.25 • spatial resolution. Therefore, the output maps of LAI young , LAI mature , and LAI old were at a 0.25 • spatial resolution. Additionally, to test the robustness of the neighbor-based decomposition approach, we increased the number of adjacent pixels from 4 (2 × 2) to 16 (4 × 4) to produce another version of the Lad-LAI product, with a spatial resolution of 0.5 • . All our analyses were conducted using Python (version 3.7; http://www.python.org, last access: 15 June 2023) and MATLAB (version R2019b) software.

Calculating the GPP (RTSIF-derived GPP) from TROPOMI SIF

Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) is a widely used proxy for canopy photosynthesis [START_REF] Yang | Solarinduced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest[END_REF][START_REF] Dechant | Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops[END_REF]. Here, we used a long-term reconstructed TROPOMI SIF dataset (RTSIF; S4 in the Supplement. [START_REF] Yang | Leaf age-dependent LAI seasonality product (Lad-LAI) over tropical and subtropical evergreen broadleaved forests, Figshare [data set[END_REF] to estimate GPP seasonality. Previous analyses showed that RTSIF was strongly linearly correlated to eddy covariance (EC) GPP and used 15.343 as a transformation coefficient to convert RTSIF to GPP (Fig. 8a in [START_REF] Yang | Leaf age-dependent LAI seasonality product (Lad-LAI) over tropical and subtropical evergreen broadleaved forests, Figshare [data set[END_REF]. In this study, we followed previously published literature to set a constant value of LAI around 6.0 for the whole tropical and subtropical TEFs (Figs. S3, S4; Table S5). We collected seasonal GPP data observed at four EC sites from the FLUXNET2015 tier 1 dataset (Table S2; GPP relationship for estimating the GPP seasonality in tropical and subtropical TEFs (R > 0.49). Despite the potential overestimation (Fig. S1b) or underestimation (Fig. S1h) of the magnitudes, the RTSIF-derived GPP mostly captured the seasonality of the EC GPP at all four sites (d phase < 0.26).

Calculating the net rate of CO 2 assimilation (An)

We calculated the net CO 2 assimilation (An) using the FvCB biochemical model [START_REF] Farquhar | A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species[END_REF]. In this model, the parameter An was calculated as the minimum of RuBisCO (W c ), RuBP regeneration (W j ), and TPU (W p ) to minus dark respiration (R dark ; Bernacchi et al., 2013) S4.

Calculation of W c

W c is expressed as a function of the internal CO 2 concentration (c i ), K c , K o , * , and the maximum carboxylation rate (V c,max ; Table S4 part1; Lin et al., 2015;Bernacchi et al., 2013;[START_REF] Ryu | Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales[END_REF][START_REF] Medlyn | Reconciling the optimal and empirical approaches to modelling stomatal conductance[END_REF]June et al., 2004;[START_REF] Farquhar | A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species[END_REF]. The K c , K o , * , and V c,max are temperature-dependent variables. Thus, we used Eq. ( 2) to calculate their values at T k by converting from those at 25 • . Then, we used the [START_REF] Medlyn | Reconciling the optimal and empirical approaches to modelling stomatal conductance[END_REF] stomatal conductance model to estimate internal CO 2 concentration (c i ; Eq. 3), which is expressed as a function of the VPD rather than relative humidity (Lin et al., 2015). The method for calculating the V c,max of each LAI cohort was introduced in Sect. 3.4. The formulae for calculating corresponding intermediate parameters are presented in Table S4.

Para = Para 25 × exp (T k -298.15) × H para R × T k × 298.15 , (2) 
where Para denotes a correction factor arising from the temperature dependence of V c,max , Para 25 are values of the temperature-dependent parameters (K c , K o , * , and V c,max ) at the temperature 25 • , T k denotes temperature in Kelvin, H para is the activation energy for temperature dependence, and R is the universal gas constant.

c i = c a ×   1 - 1 1.6 × 1 + g 1 √ VPD   , (3) 
where c a is atmospheric CO 2 concentration (380 ppm -parts per million). VPD is calculated from the air temperature and dew point temperature of the global ERA-Interim reanalysis dataset [START_REF] Dee | The ERA-Interim reanalysis: configuration and performance of the data assimilation system[END_REF], using the method of [START_REF] Yuan | Increased atmospheric vapor pressure deficit reduces global vegetation growth[END_REF]. The calculation formula of VPD is described in the Supplement. In this study, we used the value of 3.77 for the stomatal slope (g 1 ) in the stomatal conductance model, according to Lin et al. (2015).

Calculation of W p

W p was calculated as the function of V c,max , which was given different values for different LAI cohorts based on multiple in situ observations (Sect. 3.4).

Calculation of W j

W j was calculated from V c,max , c i , and the rate of electrons through the thylakoid membrane (J ; Bernacchi et al., 2013). The parameter J was calculated from the maximum electron transport rate (J max ), and the rate of the whole electron transport provided by light (J e ; Bernacchi et al., 2013). J max was expressed as a temperature-dependent function of the maximum electron transport rate (J max,25 ) at 25 • . Temperature (T air ) and J e were expressed as a function of total photosynthetically active radiation (PAR) absorbed by the canopy (PAR total ) that was the sum of the active radiation in the beam (PAR b,0 ) and the diffused (PAR d,0 ) light [START_REF] Weiss | Partitioning solar radiation into direct and diffuse, visible and near-infrared components[END_REF], which were calculated from downward shortwave radiation (SW; [START_REF] Ryu | MODISderived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5 km res-olution from 2000[END_REF]. The formula for PAR total is given in Eq. ( 4), and the formulae for other intermediate parameters (i.e., PAR b,0 , PAR d,0 , ρ cb , ρ cd , k b , k d , and CI) are listed in Table S4.

PAR total = (1 -ρ cb ) × PAR b,0 × 1 -exp -k b × CI × LAI total + (1 -ρ cd ) × PAR d,0 × 1 -exp -k d × CI × LAI total , (4) 
where PAR total is total PAR absorbed by the canopy, PAR b,0 is the active radiation, PAR d,0 is diffused radiation, and LAI total is a total LAI. Here, we used a constant value of 6.0, according to De Weirdt et al. ( 2012).

Classifying three LAI cohorts with different V c,max

In this study, we compared in situ samples of V 

Decomposing camera-based LAI into three leaf age cohorts

We classified the canopy leaves into young, mature, and old age cohorts based on the green color band from the top-ofcanopy imagery observed by a RGB camera. This is because the brightness of different leaf age leaves differs greatly in the values of the green color band. Raster density slicing is a useful classification method for detecting the attributes of various ground objects [START_REF] Kartikeyan | A segmentation approach to classification of remote sensing imagery[END_REF]. Therefore, we set three brightness thresholds to divide young (blue), mature (green), and old (yellow) leaves and background (gray) for the same canopy extent in each month (Fig. S2). This analysis was conducted in ENVI 5 Service Pack 3 software.

Evaluating the LAI young+mature seasonality and its spatial patterns using satellite-based EVI products

To compare the seasonality of LAI young+mature with those of EVI, we calculate the mean squared deviation (MSD) and their three components, namely d bias , which denotes the differences about absolute value, d var , which denotes the differences in seasonal fluctuations, and d phase , which denotes the differences in peak phase to evaluate this consistency comprehensively (see Sect. 3.8). Additionally, we compared the spatial patterns of the wet-minus dry-season differences ( ) between the observed and simulated variables, following the work of Guan et al. (2015). To determine the wet and dry seasons in each grid cell, we defined a month as being a dry one when its monthly average precipitation was smaller than the potential evapotranspiration (PET) computed using the method of Maes et al. (2019); other months were classified as wet ones. The wet-minus dry-season LAI young+mature (denoted as LAI young+mature ) was calculated for each grid cell as the wet-season average LAI young+mature value minus the dry-season average value of LAI young+mature .

Evaluating the LAI old seasonality using ground-based litterfall data

Litterfall is closely related to the seasonal dynamics of old leaves (i.e., LAI old ; [START_REF] Chen | Va-por pressure deficit and sunlight explain seasonality of leaf phenology and photosynthesis across Amazonian evergreen broadleaved forest[END_REF][START_REF] Yang | A comprehensive framework for seasonal controls of leaf abscission and productivity in evergreen broadleaved tropical and subtropical forests[END_REF]. Previous analyses indicated that, in general, a sharp decrease in LAI old corresponded to a peak in litterfall (Pastorello et al., 2020;[START_REF] Midoko Iponga | The effect of different anthropogenic disturbances on litterfall of a dominant pioneer rain forest tree in Gabon[END_REF]Ndakara, 2011;[START_REF] Barlow | Litter fall and decomposition in primary, secondary and plantation forests in the Brazilian Amazon[END_REF][START_REF] Dantas | Litterfall and litter nutrient content in primary and secondary Amazonian "terra firme" rain forest[END_REF]. Based on this causal relationship between litterfall and LAI old , we compared the time of seasonal litterfall peak with the time of abrupt drops in LAI old to indirectly evaluate the simulated LAI old seasonality. To accurately detect the onset date of old leaves being shed and the day of the litterfall peak, we used a least squares regression analysis method, developed by [START_REF] Piao | Variations in satellite-derived phenology in China's temperate vegetation[END_REF], to smooth the LAI old and litterfall seasonal curves. The sixthdegree polynomial function (n = 6) was applicable to the regression (Eq. 5).

LAI old = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + a 4 x 4 + a 5 x 5 + a 6 x 6 , ( 5 
)
where x is the day of a year. The slope of seasonal LAI (LAI old, ratio ) was calculated in Eq. ( 6). The date of abrupt drops in LAI old was defined as the time with the most negative values of LAI old, ratio . LAI old, ratio(t) = LAI old(t+1) -LAI old(t) / LAI old(t) , (6) where LAI old, ratio is the slope of seasonal LAI old curve. LAI old(t+1) and LAI old(t) are the corresponding monthly LAI at times t + 1 and t, respectively.

Evaluation metrics

Two metrics were chosen to evaluate the seasonality of Lad-LAI against the that of other proxies, namely the [START_REF] Kobayashi | Comparing simulated and measured values using mean squared deviation and its components[END_REF] decomposition of the mean square difference between the model and observation and the Pearson (1896) correlation coefficient for gridded fields.

Mean squared deviation (MSD)

The mean squared deviation (MSD) was given by [START_REF] Kobayashi | Comparing simulated and measured values using mean squared deviation and its components[END_REF]:

MSD = 1 n n i=1 (x i -y i ) 2 (7) SB = (x -y) 2 (8) SD s = 1 n n i=1 (x i -x) 2 (9) SD m = 1 n n i=1 (y i -y) 2 (10) SDSD = (SD s -SD m ) 2 (11) LCS = 2SD s SD m (1 -r) , (12) 
where the mean squared deviation is the square of the root mean squared deviation or RMSD (i.e., MSD = RMSD 2 ),

x i is the simulated data at time t, and y i is the observed one at time t (month). SD s is standard deviation of the simulation, and SD m is the standard deviation of the measurement.

The lower the value of the MSD, the closer the simulation is to the measurement. The MSD can be decomposed into the sum of three components, including the squared bias (d bias ; d bias = SB), the squared difference between standard deviations (variance-related difference; d var ; d var = SDSD), and the lack of correlation weighted by the standard deviations (phase-related difference; d phase ; d phase = LCS). r indicates the correlation coefficient between x and y.

Pearson correlation coefficient (R)

The Pearson correlation coefficient is a measure of the linear correlation between two variables [START_REF] Merkl | Bioinformatik interaktiv[END_REF]. The correlation coefficient between x and y was as follows:

ρ x,y = cov (x, y) σ x σ y = E (x -µ x ) y -µ y σ x σ y . ( 13 
)
3.9 The quality control (QC) for the Lad-LAI product

We provided information on the data quality control (QC) along with the Lad-LAI product (Fig. S5). In the QC system (Table S7), data quality was divided into four levels, where level 1 represents the highest quality, level 2 and level 3 represent good and acceptable quality, respectively, and level 4 should be used with caution. This QC product was generated according to residual sum of squares (RSSs; [START_REF] Melgosa | Performance of recent advanced color-difference formulas using the standardized residual sum of squares index[END_REF] and the root mean square error (RMSE; [START_REF] Chen | Va-por pressure deficit and sunlight explain seasonality of leaf phenology and photosynthesis across Amazonian evergreen broadleaved forest[END_REF], obtained from the constrained least squares method that was used to estimate derive monthly Lad-LAI data. 

Results

Comparison of LAI cohort seasonality with site observations

The simulated leaf-age-dependent LAI seasonality product was validated against the camera-based measurements of LAI young , LAI mature , and LAI old at four sites in South America, one site in Congo, and three sites in China. Overall, the LAI seasonality of mature and old classes from the new Lad-LAI products agrees well at these sites, with very fine-scale collections of monthly LAI of mature (R = 0.77; MSD = 0.69) and old leaves (R = 0.59; MSD = 0.62). However, the seasonality of simulated LAI from young leaves performs poorly (R = 0.36; MSD = 0.45). It is also interesting to note that the canopy leaf phenology of TEFs at these sites differs greatly. In South America, at K67, K34, and EUCFLUX sites, both in situ and simulated LAI young and LAI mature decrease early in the dry season, around February, and convert to an increase early in wet season, around June (Fig. 3a, b, d, e, j, k). At the Barro Colorado site, LAI young increases from the late dry to early wet season, around March, in response to the increasing incoming shortwave radiation, and in contrast, LAI mature starts to increase in the wet season, around June (Fig. 3g,h). However, in subtropical Asia, LAI young and LAI mature increase during the wet season and peak with largest rainfall in June or July at the Din, Gutian, and Banna sites (Fig. 5a, b, d, e, g, h). In Congo, we only found one site (CONGOFLUX) with a 6-month observation period (from May to October). The seasonality of LAI young and LAI mature are similar to those in tropical Asia, while having smaller variations in magnitude due to the moderate seasonality of sunlight in the equatorial region (Fig. 4a,b). Overall, there is a reverse pattern for the LAI old seasonality compared to LAI mature for all eight sites. Additionally, only one ground site (Barro Colorado site in Panama) had observed time series camera-based pheno- logical imagery, which was then used to evaluate the capacity of Lad-LAI in representing the interannual dynamics of three LAI cohorts, with R values being equal to 0.54, 0.64, and 0.49 for LAI young , LAI mature , and LAI old , respectively (Fig. 6). However, more in situ long-term observations are needed to test the robustness of the time series variations. The temporal variations in LAI young , LAI mature , and LAI old across eight sub-regions classified by the K-means clustering analysis are shown in Fig. S6. Results showed that, for example, the LAI mature increased significantly due to 2015 drought in the Amazon basin (e.g., sub-region S2; Fig. S6) and southeast Asia (e.g., sub-region S7; Fig. S6), indicating a good capability for detecting the dynamics of LAI young , LAI mature , and LAI old in response to climate disturbances.

Comparison of patterns of gridded LAI cohort seasonality with climatic and phenological patterns

The in situ measurements of LAI young , LAI mature , and LAI old suggested diverse patterns of Lad-LAI seasonality over the TEFs. Nevertheless, the sparse coverage of these sites created challenges for a comprehensive and direct evaluation of leaf-age-dependent LAI seasonality product. To evaluate the robustness of the gridded Lad-LAI seasonality product at the regional scale, we further conducted spatial clustering analyses of LAI young , LAI mature , and LAI old , using the K-means analysis method. Surprisingly, the spatial patterns of Lad-LAI product clustered from satellite-based vegetative signals (Fig. 7g-i) coincide well with those clustered from in-dependent climatic variables (rainfall, radiation, etc.; Fig. 7a-c). These patterns are also similar to those of the climate-phenology rhythms mapped by [START_REF] Yang | A comprehensive framework for seasonal controls of leaf abscission and productivity in evergreen broadleaved tropical and subtropical forests[END_REF], which suggested different correlations of litterfall seasonality with canopy phenology between different climate-phenology rhythms (Fig. 7d-f). In the central (sub-region S2) and south (sub-region S3) Amazon (Fig. 7g), the seasonality of LAI young , LAI mature , and LAI old (Fig. 8b,c) are similar to those of the BR-Sa1 and BR-Sa3 sites. And in subtropical Asia (sub-region S6; Fig. 7i), the seasonality of the three LAI cohorts (Fig. 8f) are similar to those of the Din, Gutian, and Banna sites. Notably, in the sub-region S8, located geographically between sub-regions S6 and S7, LAI young shows a peak at July, and LAI mature shows a bimodal phenology (Fig. 8h). The remaining four sub-regions (sub-regions S1, S4, S5, and S7) are all located near the Equator. The magnitudes of seasonal changes in LAI cohorts are smaller than those in sub-regions S2, S3, S6, and S8 (away from the Equator). It is worth noting that, for these sub-regions around the Equator, there is a bimodal seasonality pattern for LAI mature , with the first peak around March and the second peak around August (Fig. 8a,d,e,g). This is consistent with the findings of [START_REF] Li | Remote sensing of seasonal climatic constraints on leaf phenology across pantropical evergreen forest biome[END_REF], who found that tropical and subtropical TEFs changed from a unimodal phenology at higher latitudes to a bimodal phenology at lower latitudes.

4.3 Sub-regional evaluations of gridded LAI young+mature seasonality, using satellite-based EVI products

The gridded dataset of monthly LAI young+mature was indirectly evaluated using the satellite-based EVI products (Wang et al., 2017;[START_REF] De Moura | Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations[END_REF][START_REF] Xiao | Satellitebased modeling of gross primary production in a seasonally moist tropical evergreen forest[END_REF]Wu et al., 2018), as EVI was consistent with LAI young+mature in seasonality (Figs. S7-S8), which agreed with previous findings that EVI can be considered to be a proxy for the leaf area change in those leaves with high photosynthetic efficiency [START_REF] Huete | Amazon rainforests green-up with sunlight in dry season[END_REF][START_REF] Lopes | Leaf flush drives dry season green-up of the Central Amazon, Remote Sens[END_REF]Wu et al., 2018). This is because EVIs are very sensitive to changes in the near-infrared (NIR) reflectance [START_REF] Galvão | On intra-annual EVI variability in the dry season of tropical forest: a case study with MODIS and hyperspectral data[END_REF], while young and mature leaves also reflect more NIR signals than the older leaves they replace [START_REF] Toomey | The influence of epiphylls on remote sensing of humid forests, Remote Sens[END_REF]. The linear correlation and MSD decompositions (see Sect. is equal to 0.61 (Fig. 9a-c). The MSD is smaller than 0.1 in 89.69 % of the whole tropical and subtropical TEFs (Fig. ,S9). This happens because the accuracy of Lad-LAI in representing the seasonality of LAI cohorts depends highly on the input SIF data, which have low sensitivity to canopy phenology and show marginally small seasonal changes nearby the Equator, for example, in tropical Asia (Guan et al., 2015(Guan et al., , 2016)).

Additionally, previous studies indicated a large-scale green-up area over the tropical and subtropical region during the dry seasons (i.e., Guan et al., 2015;[START_REF] Tang | Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure[END_REF][START_REF] Myneni | Large seasonal swings in leaf area of Amazon rainforests[END_REF], where the average annual precipitation exceeds 2000 mm yr -1 . Here, we calculated the differences ( ) between wet-and dry-season LAI young+mature (i.e., LAI young + LAI mature ), to test whether the Lad-LAI can capture this green-up spatial pattern. Spatial patterns of LAI young+mature (Fig. 12) are similar than those developed by Guan et al. (2015), with higher LAI young+mature during the dry season (blue area) in large areas north of the Equator.

This indicates an emergence of new leaf flush and an increase in mature leaves, resulting in the canopy green-up phenomenon observed by previous satellite-based signals. It is interesting to note that the total areas (blue regions in Fig. 12) of this dry-season green-up shown by LAI young+mature are smaller than those shown by SIF signals that are almost everywhere north of the Equator. That is because that new and mature leaves often have a higher photosynthetic capacity than old leaves. A slight or moderate green-up in new and mature leaves (i.e., increase in LAI young+mature ) would boost a strong increase in photosynthesis, inducing the significant green-up shown by photosynthesis-related signals (e.g., SIF data). Therefore, photosynthesis proxies likely overestimate the areas with the green-up of new leaves during the dry seasons in the real world. 4.4 Sub-regional evaluations of gridded LAI old seasonality using site-based litterfall observations

The seasonal patterns of LAI old were evaluated indirectly using ground-based seasonal litterfall observations from 53 sites over the tropical and subtropical TEFs (black circles in Figs. 1, S10-S12). Here, we selected nine specific sites (Fig. 13), with different patterns of litterfall seasonality and LAI old seasonality, to illustrate the results of the analyses. Figure 13a-i illustrate the days on which there is an abrupt decrease in monthly LAI old , which are close to the monthly litterfall peak. The days when LAI old decreases the sharpest (Day LAIold ) agree well with the days on which their monthly litterfall peaks (Day litterfall ; Fig. 13j) and are mostly distributed near the diagonal lines (R = 0.82). This validation from seasonal litterfall data indirectly demonstrates the robustness of the LAI old seasonality of the Lad-LAI product.

Testing potential uncertainties in the Lad-LAI products

To prove the robustness of the neighbor-based decomposition approach, we compared the Lad-LAI products generated based on 2 × 2 neighboring pixels with those based on 4×4 neighboring pixels. Results show that the seasonality of LAI young , LAI mature , and LAI old in the 0.5 • Lad-LAI products based on 4 × 4 neighboring pixels are highly consistent with those of the 0.25 • one that is based on 2×2 neighboring pixels across the whole tropical region (Fig. 14), with the correlation coefficients (R) being equal to 0.63, 0.68, and 0.95, respectively (Fig. S13).

To test the uncertainties caused by the GPP estimation, we added two more GPP products, i.e., GOSIF-derived GPP [START_REF] Yuan | Increased atmospheric vapor pressure deficit reduces global vegetation growth[END_REF] and FLUXCOM GPP (Jung et al., 2019), to produce another two versions of the Lad-LAI products.

Earth Syst. Sci. Data, 15, 2601Data, 15, -2622Data, 15, , 2023 https://doi.org/10.5194/essd-15-2601-2023 The GPP seasonality coincides well between these three data sources across all eight sub-regions (Fig. S14). By comparing them with the ground-based LAI cohorts at eight observation sites, the results show that the Lad-LAI generated from RTSIF-derived GPP show the highest correlation and a minimal deviation with the in situ measurements, with R equaling 0.36, 0.77, and 0.59 and MSD equaling 0.45, 0.69, and 0.62 for LAI young , LAI mature , and LAI old , respectively (Figs. 15-16, S15-S17). Additionally, we also compared the seasonal variability in LAI young , LAI mature , and LAI old between three Lad-LAI versions in eight sub-regions classified by the Kmeans clustering analysis (Fig. 17). In general, three versions of Lad-LAI products all performed well in eight sub-regions with a consistent seasonal variability (Fig. 17). For the regional average, sub-regions S4, S5, S6, S7, and S8 show a highly consistent seasonality of LAI young , LAI mature , and LAI old between these three products, whereas the Lad-LAI generated from GOSIF-derived GPP performs a poorly in capturing the seasonality of LAI cohorts in the Amazon (subregions S1, S2, and S3).

Discussion

Leaf-age-dependent LAI performs well in describing the seasonal replacements of canopy leaves in TEFs [START_REF] Lopes | Leaf flush drives dry season green-up of the Central Amazon, Remote Sens[END_REF][START_REF] Chen | Va-por pressure deficit and sunlight explain seasonality of leaf phenology and photosynthesis across Amazonian evergreen broadleaved forest[END_REF], showing it to be a critical plant trait for representing the tropical and subtropical phenology [START_REF] Doughty | Seasonal patterns of tropical forest leaf area index and CO 2 exchange[END_REF][START_REF] Saleska | Amazon forests green-up during 2005 drought[END_REF]. However, to our knowledge, there is currently no continentalscale information of such leaf-age-dependent LAI data over the whole TEFs, as it can be neither mapped from sparse site observations [START_REF] Lopes | Leaf flush drives dry season green-up of the Central Amazon, Remote Sens[END_REF] nor modeled from ESMs, which are triggered by unclear climatic drivers [START_REF] Chen | Va-por pressure deficit and sunlight explain seasonality of leaf phenology and photosynthesis across Amazonian evergreen broadleaved forest[END_REF]. These constraints hinder global researchers from accurately simulating large-scale photosynthesis (GPP) seasonality using remote sensing approaches and ESMs (Chen et al., 2020). The Lad-LAI product developed in this study is the first continental-scale gridded dataset of monthly LAI in different leaf age cohorts. Although still needing more in situ observations for an adequate validation, the seasonality of the three LAI cohorts performs well at the eight sites (four in South America, three in subtropical Asia, and one in Congo) with very fine-scale collections of monthly LAI young , LAI mature , and LAI old . To test the robustness of the gridded Lad-LAI products over the whole TEFs, the seasonality of LAI mature was also validated pixel by pixel using satellite-based EVI products, and the phases of LAI old seasonality were com-pared with those of seasonal litterfall data from 53 site measurements, respectively. Moreover, the LAI young+mature from the new Lad-LAI products can also directly represent the large-scale dry-season green-up of canopy leaves north of the Equator. Overall, direct and indirect evaluations demonstrated the robustness of the developed Lad-LAI products.

It should be noted that, over the regions with a large magnitude of annual precipitation nearby the Equator, there are no obvious dry seasons, and thus tree canopy phenology changes are smaller than higher-latitude ones throughout the year [START_REF] Yang | A comprehensive framework for seasonal controls of leaf abscission and productivity in evergreen broadleaved tropical and subtropical forests[END_REF]. The LAI of young, mature, and old leaf cohorts all show a bimodal phenology with marginally small seasonal changes near the Equator, which is captured by the developed Lad-LAI product. Second, we used a constant coefficient to transfer from SIF data to GPP and also assumed a constant value for the total LAI over the whole TEFs, which might bring additional uncertainties. This can be seen from the MSD evaluations, where the bias-related term dominates the total MSD, especially in regions near the Equator. However, this has less of an impact on the seasonality of Lad-LAI, as the phase-related term of MSD is much smaller.

Additionally, the maximum carboxylation rate (V c,max ) of leaves changes significantly with leaf age (Xu et al., 2017). Currently, most ESMs define V c,max as a function of leaf age, whereas their relationship is still less well understood in TEFs due to sparse in situ measurements [START_REF] Chen | Va-por pressure deficit and sunlight explain seasonality of leaf phenology and photosynthesis across Amazonian evergreen broadleaved forest[END_REF]. This consequentially leads to the poor representation of LAI and GPP seasonality in ESMs (De Weirdt et al., 2012). To overcome this challenge, here we simplified the tree canopy into three big-leaf types (i.e., young, mature, and old) in TEFs, similar to the two big-leaf models developed for temperate and boreal forests (Best et al., 2011;Clark et al., 2011;Harper et al., 2016), which simplified the tree canopy into sun and shade leaves. However, some uncertainty remains on the assumption, as it neglects the spatial and temporal vari- ations in V c,max , which changes with the seasonal climate anomaly and also differs between nearby pixels in high heterogeneous forest ecosystems. This assumption may bring uncertainties for simulating seasonal An and therefore influence the seasonality of Lad-LAI.

In summary, we developed a new method to produce the first global gridded dataset for a leaf-age-dependent LAI product across the whole TEFs at the continental scale. Although some uncertainties might remain, the Lad-LAI products could provide seasonal age-dependent LAI data at the pixel level to develop a common phenology model for the whole tropical and subtropical TEFs in ESMs that are currently run at a coarser resolution. With the development of remote sensing technology, finer temporal and spatial resolutions of SIF products will enable finer temporal-and spatialresolution maps of Lad-LAI products in the future.

Data availability

The 0.25 • leaf-age-dependent LAI seasonality (Lad-LAI) data from 2001-2018 are presented in this paper as the main dataset, and their time series are as a supplementary dataset. The two datasets are available at https://doi.org/10.6084/m9.figshare.21700955.v4 [START_REF] Yang | Leaf age-dependent LAI seasonality product (Lad-LAI) over tropical and subtropical evergreen broadleaved forests, Figshare [data set[END_REF]. Besides, we also provided another two versions of Lad-LAI generated from GOSIF-derived GPP and FLUX-COM GPP, respectively. These datasets are compressed in a GeoTiff format, with a spatial reference of WGS84. Each file in these datasets is named as follows: "LAI_{leaf age}_{spatial resolution}_{month/year-month}.tif".

Conclusions

This study, for the first time, developed a continental-scale gridded dataset of monthly LAI in three leaf age cohorts from 2001-2018 RTSIF data. The LAI seasonality of young, mature, and old leaves was evaluated using in situ measurements of seasonal LAI data, satellite-based EVI, and in situ meahttps://doi.org/10.5194/essd-15-2601-2023

Earth Syst. Sci. Data, 15, 2601Data, 15, -2622Data, 15, , 2023 surements of seasonal litterfall data. The evaluations from these datasets demonstrate the robustness of the seasonality of three leaf age cohorts. The new Lad-LAI products indicate diverse patterns over the whole tropical and subtropical regions. In the central and south Amazon, LAI young and LAI mature decrease early in the dry season, around February, and start to increase early in the wet season, around June.

On the contrary, in subtropical Asia, LAI young and LAI mature increase during the wet season and peak with the largest rainfall volume in June or July. In regions near the Equator, the LAI cohorts show a bimodal phenology but with marginally small changes in the magnitude. The proposed method will enable us to produce finer temporal-and spatial-resolution maps of Lad-LAI products by using precise temporal-and spatial-resolution data as input. The Lad-LAI products will be helpful for diagnosing the adaption of tropical and subtropical forest to climate change and will also help improve the development of phenology models in ESMs.
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Figure 1 .

 1 Figure 1. Study areas over tropical and subtropical evergreen broadleaves forests (TEF). Red triangles show the observed GPP seasonality at four eddy covariance (EC) tower sites. Blue pentangles show the observed LAI cohorts at eight camera-based observation sites. Black circles show the observed litterfall seasonality at 53 observation sites.

Figure 2 .

 2 Figure2. The workflow for mapping Lad-LAI using the Lsqlin method. Lsqlin is the abbreviation of the linear least squares solver with bounds or linear constraints. All the abbreviations are described in TableS4in the Supplement.

  Pastorello et al., 2020) and validated the Chen et al. (2022) simple SIF-GPP relationship (Fig. S1 in the Supplement). Results confirmed the robustness of the Chen et al. (2022) simple SIF-

Figure 3 .

 3 Figure 3. Seasonality of simulated LAI young , LAI mature , and LAI old , in comparison with observed data at four sites in South America. (a, d, g, and j) Simulated LAIs. (b, e, h, and k) Observed LAIs. (c, f, i, and l) Scatterplots between simulated and observed LAIs. Lime green dots are LAI young , green dots are LAI mature , and orange dots are LAI old .

Figure 4 .

 4 Figure 4. Seasonality of simulated LAI young , LAI mature , and LAI old in comparison with observed data at one site in Congo. (a) Simulated LAIs. (b) Observed LAIs. (c) Scatterplots between simulated and observed LAIs. Lime green dots are LAI young , green dots are LAI mature , and orange dots are LAI old .

  3) between simulated and satellite-based EVIs are displayed in Fig. 9. Overall, the seasonal LAI young+mature is well correlated with satellite-based EVI (R > 0.40) in 78.26 % of the TEFs, and the average correlation coefficient https://doi.org/10.5194/essd-15-2601-2023 Earth Syst. Sci. Data, 15, 2601-2622, 2023

Figure 5 .

 5 Figure 5. Seasonality of simulated LAI young , LAI mature , and LAI old in comparison with observed data at three sites in tropical Asia. (a, d, g) Simulated LAIs. (b, e, h) Observed LAIs. (c, f, i) Scatterplots between simulated and observed LAIs. Lime green dots are LAI young , green dots are LAI mature , and orange dots are LAI old .

Figure 6 .

 6 Figure 6. Time series of simulated LAI young , LAI mature , and LAI old , in comparison with observed data at Barro Colorado site in Panama. (a) Simulated LAIs. (b) Observed LAIs. (c) Scatterplots between simulated and observed LAIs.

Figure 7 .

 7 Figs. 10, S9). The MSD components also confirm a better performance of LAI young+mature seasonality in highlatitude areas (sub-region S2 d bias = 0.009, d var = 0.001, and d phase = 0.030; sub-region S3 d bias = 0.009, d var = 0.002, and d phase = 0.030; sub-region S6 d bias = 0.016, d var = 0.005, and d phase = 0.040) than in low-latitude areas near the Equator (sub-region S1 d bias = 0.012, d var = 0.001, and d phase = 0.041; sub-region S4 d bias = 0.020, d var = 0.001, and d phase = 0.031; sub-region S5 d bias = 0.017, d var =

Figure 8 .

 8 Figure 8. Seasonality of simulated LAI young , LAI mature , and LAI old in eight sub-regions classified by the K-means clustering analysis.

Figure 9 .Figure 12 .

 912 Figure 9. Pearson correlation coefficient (R) and mean squared deviation (MSD) between seasonality of the simulated LAI young+mature and MODIS enhanced vegetation index (EVI).

Figure 13 .

 13 Figure 13. Evaluation of simulated LAI old using ground-observed litterfall seasonality. (a-i) Days of an abrupt decrease in LAI old in comparison with days of corresponding litterfall peak at nine specific sites, for example. The orange curves represent simulated LAI old . Dots on the orange curves represent the point with an abrupt decrease in LAI old . The black curves represent the observed seasonal litterfall mass. The dots on the black curves represent the point with litterfall peak. (j) Comparisons of the days when LAI old has an abrupt decrease (Day LAIold ) against the days when monthly litterfall peaks (Day litterfall ).

Figure 14 .

 14 Figure 14. The seasonality of LAI young , LAI mature , and LAI old between 0.25 • and 0.5 • Lad-LAI datasets in the eight clustered regions. Lime green represents LAI young , green represents LAI mature , and orange represents LAI old . Solid lines represent the 0.25 • dataset, and the dashed lines represent the 0.5 • dataset.

Figure 15 .

 15 Figure 15. Seasonality of simulated LAI young , LAI mature , and LAI old from GOSIF-derived GPP in comparison with observed data at eight sites. (a) K67. (b) K34. (c) Barro Colorado. (d) EUCFLUX. (e) Din. (f) Gutian. (g) Banna. (h) CONGOFLUX.

Figure 16 .

 16 Figure 16. Seasonality of simulated LAI young , LAI mature , and LAI old from the FLUXCOM GPP in comparison with observed data at eight sites. (a) K67. (b) K34. (c) Barro Colorado. (d) EUCFLUX. (e) Din. (f) Gutian. (g) Banna. (h) CONGOFLUX.

Figure 17 .

 17 Figure 17. Seasonality of simulated LAI young , LAI mature , and LAI old from three version products in eight sub-regions classified by the K-means clustering analysis. Solid lines represent LAI generated from RTSIF-derived GPP, dashed lines represent LAI generated from GOSIF-derived GPP, and dotted lines represent LAI generated from FLUXCOM GPP. Lime green represents LAI young , green represents LAI mature , and orange represents LAI old .

  

  

  

Earth Syst. Sci.Data, 15, 2601Data, 15, -2622Data, 15, , 2023 https://doi.org/10.5194/essd-15-2601-2023

https://doi.org/10.5194/essd-15-2601-2023 Earth Syst. Sci. Data, 15, 2601-2622, 2023

Figure 10. Statistics of the Pearson correlation coefficient (R) between the seasonality of simulated LAI young+mature and MODIS enhanced vegetation index (EVI) in the eight clustered sub-regions.Figure 11. Statistics of the mean squared deviation (MSD) between seasonality of simulated LAI young+mature and MODIS enhanced vegetation index (EVI) in the eight clustered sub-regions. https://doi.org/10.5194/essd-15-2601-2023 Earth Syst. Sci. Data, 15, 2601-2622, 2023

Acknowledgements. We extend our thanks to Jin Wu from the University of Hong Kong for providing the observation data of LAI cohorts at the K67 and K34 sites in the Amazon. We would also like to thank the editor and reviewers for their valuable time during the review of the paper.

Financial support. This study has been supported by the National Natural Science Foundation of China (grant nos. U21A6001, 31971458, and 41971275), the Guangdong Major Project of Basic and Applied Basic Research (grant no. 2020B0301030004), the Special high-level plan project of Guangdong province (grant no. 2016TQ03Z354), and the Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai; grant no. 311021009).

Review statement. This paper was edited by Dalei Hao and reviewed by three anonymous referees.