
HAL Id: hal-04198672
https://hal.science/hal-04198672v3

Preprint submitted on 8 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exponential stable manifold for the synchronized state
of the abstract mean field system

W Oukil

To cite this version:
W Oukil. Exponential stable manifold for the synchronized state of the abstract mean field system:
Exponential stability for the mean field system. 2024. �hal-04198672v3�

https://hal.science/hal-04198672v3
https://hal.archives-ouvertes.fr


Exponential stable manifold for the synchronized

state of the abstract mean field system

W. Oukil

Faculty of Mathematics.

University of Science and Technology Houari Boumediene.

BP 32 EL ALIA 16111 Bab Ezzouar, Algiers, Algeria.

March 8, 2024

Abstract

We study the exponential stability for the mean field systems in

its synchronized state. More precisely, we study the linearized system

and we obtain a exponential stable invariant manifold.
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1 Introduction and Main result

We study in this article the exponential stability on the mean field systems as
the Winfree mode in [2, 3, 4, 5, 6, 7, 10, 13] in its synchronized state. In 1967
Winfree [13] proposed a mean field model describing the synchronization of
a population of organisms or oscillators that interact simultaneously [1].

Our main result consists of two parts: "The linear part," where we will
study the stability of a class of perturbed linear systems by decomposing the
fundamental matrix. "The non-linear part" where we study the exponential
stability of th coupled mean-field systems. In other words, we shows the
existence of a stable limit cycle. The results are within the framework of
perturbation theory. However, we clarify that the results in the non-linear
case are not straightforward, even in the case of no perturbation.

1



2 W. Oukil

1.1 Main Results: Linear part

Consider the following notation: Let be (n,m) ∈ N
∗ × N

∗ and

A(t) := {ai,j(t) ∈ R, 1 ≤ i ≤ n, 1 ≤ j ≤ m, t ∈ I ⊆ R},

a n×m matrix-valued function, we denote the sup-norm of A(t) as

||A|| = max{sup
t∈I

|aij(t)|, 1 ≤ i ≤ n, 1 ≤ j ≤ m},

and we denote by IN the square identity matrix of order N .

1.1.1 Stability Assumption (Hstab)

Let ζ(t) be a square matrix-valued function of order N that depends on
time t ∈ R satisfying ||ζ|| < +∞. We consider the following perturbed linear
system:

Ẏ (t) = [b(t)IN +A(t) + ζ(t)]Y (t), t ≥ t′, (1)

where t′ ∈ R and A(t) = {ai,j(t)}1≤i,j≤N is a continuous square matrix-
valued function of order N with rank 1, and b : R → R a continuous scalar
function. We consider the following assumption about b(t) and A that we
call the stability assumption

(Hstab)































ai,j(t) = aj(t) for all 1 ≤ i, j ≤ N ,

b : R → R, aj : R → R, j = 1, . . . , N ,
are a continuous 1-periodic functions,

∫ 1
0 b(s) +

∑N
j=1 aj(s)ds = 0, and − α :=

∫ 1
0 b(s)ds < 0.

Define the fundamental matrix of a linear system in the following sense

Definition 1. Let t 7→ A(t) be a continuous square matrix-valued function
of order N . The fundamental matrix of the linear system

ẏ = A(t)y, t ∈ R,

is the matrix-valued function R(s; t) with s, t ∈ R that satisfies

• ∀t0 ∈ R, R(t0; t0) = IN ,

• ∀t ∈ R, d
dt
R(t; t0) = A(t)R(t; t0).



Exponential stability for the mean field system 3

To gain further insights into the behavior of solutions of the linear sys-
tem (1), we will introduce a class of matrices ζ referred to as "normalizing
matrices," defined as follows

Definition 2. We say that the matrix ζ is a normalizing matrix if the system
(1) has a solution V (t) = (v1(t), . . . , vN (t)) such that

inf
t∈R

||V (t)|| > 0, and sup
t∈R

||V (t)|| < +∞.

We call V (t) a normalizing solution of (1) associated with the matrix ζ.

1.1.2 Linear Result

In the following two linear results, we will consider two cases: ζ being a
normalizing matrix or arbitrary.

Main Result (Il). Consider the system (1) with fundamental matrix R(s; t).
Suppose that b and A satisfy the stability assumption (Hstab). Let β ∈ (0, α),
then there exist K > 0 and D∗ > 0 such that for any normalizing ma-
trix ζ satisfying ||ζ|| < D∗ and for any t ∈ R, there exists a linear form
Lt : R

N → R such that for any Y ∈ R
N and for any s ≥ t, we have

• Ls(R(s; t)V (t)) = 1 and Lt(Y ) < K||Y ||,

• Lt(Y ) = Ls(R(s; t)Y ),

• ||R(s; t)[Y − Lt(Y )V (t)]|| < K||Y || exp(−β(s− t)).

where V (t) is a normalizing solution of (1) associated with the matrix ζ.
Moreover, the operator R(s; t) admits the decomposition

R(s; t)Y = Lt(Y )V (s) +R(s; t)[Y − Lt(Y )V (t)],

In other words, the submanifold Wstab := {Z ∈ R
N ,Lt(Z) = 0} of dimension

N − 1 is exponentially stable.

Main Result (IIl). [General Case] Consider the system (1) with funda-
mental matrix R(s; t). Suppose that b and A satisfy the stability assumption
(Hstab). Let β ∈ (0, α), then there exist K > 0 and D∗ > 0 such that for any
matrix ζ satisfying ||ζ|| < D∗ and for any t ∈ R, there exists a linear form
ψt : R

N → R such that for any Y ∈ R
N and for any s ≥ t, we have

• ||R(s; t)[Y − ψt(Y )1|| < K||Y || exp(−β(s − t)).
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where 1 := (1, . . . , 1) ∈ R
N . Moreover, the fundamental matrix R(s; t) ad-

mits the decomposition

R(s; t)Y = ψt(Y )R(s; t)1 +R(s; t)[Y − ψt(Y )1].

In other words, the submanifold Wstab := {Z ∈ R
N , ψt(Z) = 0} of dimension

N−1 is exponentially stable. Furthermore, if there exists a solution that does
not exponentially decay to zero, then

• ψt(Y ) = ψs(R(s; t)Y ).

1.2 Main Results: Non-linear Part

The class of mean-field coupled systems we will study is given by the following
two systems: the non-perturbed periodic system

ẋi = F (X,xi), i = 1, .., N, t ≥ t0, (NP)

and the perturbed system

ẋi = F (X,xi) +Hi(X), i = 1, .., N, t ≥ t0, (P)

where N ≥ 2 and X = (x1, . . . , xN ). F : R
N × R → R and

H = (H1, . . . ,HN ) : R
N → R

N are C1 functions.

1.2.1 Notations and Definitions

For q, p ∈ N
∗, let g := (g1, . . . , gp) : R

q → R
p be a function. Consider the

following semi-norm on the vector space of continuous functions from R
q to

R
p:

||g||B = sup
y∈B

max
1≤i≤p

|gi(y)|,

where B = {y = (y1, . . . , yq) ∈ R
q : max |yi − yj| ≤ 1}. This semi-norm is a

norm on the vector space of continuous functions from B to R
p. We denote

dig, i = 1, 2, . . ., as the ith derivative of g. We define

||dg||B = max
1≤i≤p
1≤j≤q

||∂jgi||B , ||d2g||B = max
1≤i≤p
1≤j,k≤q

||∂k∂jgi||B .

In the following, we will consider functions defined on R
q initially, with

q = N , and then restrict them to the set B.
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Let g : R
N × R → R, y = (y1, . . . , yN ) ∈ R

N , and z ∈ R. We define

∂ig(y, z) =















∂

∂z
g(y, z), i = N + 1

∂

∂yi
g(y, z), i := 1, .., N.

For q, p ∈ N
∗, a function g : R

q → R
p is called 1-periodic according to the

following definition:

Definition 3. [1-periodicity] Let g : R
q → R

p be a function, and denote
1 := (1, . . . , 1) ∈ R

q. The function g is called 1-periodic if

g(y + 1) = g(y), ∀y ∈ R
q.

It is to note that this definition does not imply that the function G is
periodic with respect to each variable individually, which allows us to study
a broader class of mean-field systems.

Denote Φt the flow of the system (P) (including (NP)). We now define
the concept of a positively Φt-invariant set, as follows:

Definition 4. Suppose that the flow Φt of the system (P) exists for all
t ≥ t0. We say that an open set C ⊂ R

N is positively invariant by the flow
Φt, or C is positively Φt-invariant, if Φt(C) ⊂ C for all t ≥ t0.

1.2.2 Synchronization Hypotheses (H) and (H∗)

We will consider the following hypotheses (H) and (H∗) about the field of
the system (P) (including (NP)), which are sufficient for obtaining synchro-
nization and stability.

(H)

{

F is of class C2, and max{||F ||B , ||dF ||B , ||d
2F ||B} < +∞,

F is 1-periodic and mins∈[0,1] F (s1, s) > 0,

(H∗)

∫ 1

0

∂N+1F (s1, s)

F (s1, s)
ds < 0.

The hypothesis (H∗) is referred to as the "synchronization hypothesis"
under the condition that (H) is satisfied. The hypothesis (H) implies that
the function F (s1, s) is uniformly Lipschitz. When X = x01 with x0 ∈ R

is chosen as the initial condition for the solution X(t) = (x1(t), . . . , xN (t))
of the system (NP), then each oscillator xi(t) is a solution to the scalar
differential equation

ẋ = F (x1, x), t ≥ t0.
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By the Cauchy-Lipschitz theorem, there exists a unique solution, so
|xi(t)− xj(t)| = 0 < +∞ for all t ≥ 0 and 1 ≤ i, j ≤ N . Thus, the distance
between the oscillators {xi(t)}i remains bounded for all times t ≥ t0, which
is a property of synchronization. The following result is a generalization of
this property to a neighborhood of x01. The hypothesis (H∗) arises from the
fact that when H ≈ 0 and xi ≈ xj(≈ x), the system (P) satisfies

d

dt
xi ≈ F (x1, x), and

d

dt
(xi − xj) ≈ ∂N+1F (x1, x)(xi − xj).

More precisely, in [9, 11] we have the following Theorems I and II. The
method used to obtain synchronization is based on the principle of com-
parison of differential equations. Assuming that the distance between the
oscillators of a solution remains finite at an arbitrary time provides infor-
mation about the system. Then, the principle of comparison of differential
equations is used, implying that this arbitrary time is actually infinity. The
first theorem demonstrates the existence of a solution and the state of syn-
chronization. The second, shows periodic locking state .

Theorem (I). Consider the system (P). Suppose that F satisfies hypotheses
(H) and (H∗). Then, there exists D∗ > 0 such that for all D ∈ (0,D∗], there
exists r > 0 and an open set Cr of the form

Cr :=
{

X = (xi)
N
i=1 ∈ R

N : ∃ν ∈ R, max
i

|xi − ν| < ∆r(ν)
}

,

where ∆r : R → (0,D] is a C1 and 1-periodic function, such that for any H
of class C1 satisfying ||H||B < r, the following holds:

1. Existence of Solution: The flow Φt of the system (P) exists for all
X ∈ Cr and t ≥ t0.

2. Synchronization: The open set Cr is positively invariant under Φt.
Furthermore, for all X ∈ Cr,

min
1≤i≤N

inf
t≥t0

d

dt
Φt
i(X) > 0 and |Φt

i(X)− Φt
j(X)| < 2D,

for all 1 ≤ i, j ≤ N and t ≥ t0.

Theorem (II). Consider the system (P). Suppose that F satisfies hypotheses
(H) and (H∗). Then, there exists D∗ > 0 such that for all D ∈ (0,D∗], there
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exists r > 0 such that for any function H of class C1 and 1-periodic function
satisfying ||H||B < r, there exists an open set Cr (defined as in Theorem I)
and an initial condition X∗ ∈ Cr such that

Φt
i(X∗) = ρt+Ψi,X∗

(t), ∀i = 1, .., N, ∀t ≥ t0,

where ρ > 0 and Ψ = (Ψ1, . . . ,ΨN ) with Ψi : R → R are C1 and 1
ρ
-periodic

functions.

1.2.3 Main Results

The following result I shows the stability of the system (P).

Main Result (I). Consider the system (P). Suppose that F satisfies
hypotheses (H) and (H∗), then there exists D∗ > 0 such that for all
D ∈ (0,D∗], there exists r > 0, and there exists an open set Cr (as de-
fined in Theorem (I)), such that for any function H of class C1 satisfying
max{||H||B , ||dH||B} < r, we have

∃M > 0, ∀X ∈ Cr,∃δ > 0,∀Y ∈ Cr, ||X − Y || < δ :

||Φt(X)− Φt(Y )|| < M ||X − Y ||, ∀t ≥ t0,

Furthermore, for all X ∈ C, there exists a submanifold WX ⊂ Cr of dimen-
sion N − 1 at X such that

∃β > 0, ∃K > 0, ∀X ∈ Cr, ∀Y ∈ WX :

||Φt(X) − Φt(Y )|| < K exp(−β(t− t0))||X − Y ||, ∀t ≥ t0.

A consequence of the Theorem (II) and the Main result I results is the
following result.

Main Result (II). Consider the system (P). Suppose that F satisfies hy-
potheses (H) and (H∗), then there exists D∗ > 0 such that for all D ∈ (0,D∗],
there exists r > 0, and there exists an open set Cr (as defined in Theo-
rem (I)) such that for any function H of class C1 and 1-periodic satisfying
max{||H||B , ||dH||B} < r, there exists a submanifold Wstab ⊂ Cr of dimen-
sion N − 1 such that

∃β > 0, ∃K > 0, ∀X ∈ Wstab :

||Φt(X)− ρt−Ψ(t)|| < K exp(−β(t− t0)), ∀t ≥ t0,

where ρ > 0 and Ψ = (Ψ1, . . . ,ΨN ) with Ψi : R → R are C1 functions and
1
ρ
-periodic.
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Remark.

1. The last II result shows that the periodic orbit, stated in Theorem II,
is a stable limit cycle.

2. In general case, when the field is an trigonometric polynomial, the
mathematical existence of the limits (frequencies)

lim
t→+∞

xi(t)

t
, i := 1, . . . , n,

is proved in [8]. That addresses the mathematical existence of equation
(4) posed in [12]

3. Theorem I and the Main result I can be generalized for functions
H(t,X) that depend on time t.

2 Proof of Linear Results Il and IIl: Stability of

Perturbed Linear Systems

To study the stability of coupled systems, as given by equation (P) (in par-
ticular (NP)), we will investigate the stability of a class of perturbed linear
systems. More precisely, we will prove the two linear results Il and IIl from
the linear part. This will allow us, in Section 3, to prove the two results I and
II. These perturbed linear systems satisfy an assumption called the "stability
assumption", which is sufficient to decompose the phase space into a central
manifold and another exponentially stable manifold.

For simplification, we define cb = maxt∈[0,1] |b(t)| and

ca = maxt∈[0,1]
∑N

j=1 |aj(t)|. To further simplify, we denote

e(t, s) := exp(
∫ t

s
b(x)dx) and P (t, s) = exp

( ∫ t

s
b(x) +

∑N
j=1 aj(x)dx

)

,

so that maxs,t∈RP (t, s) ≤ exp(cb + ca). In the following, we denote by
< Y,Z > the scalar product of Y and Z ∈ R

N , and by Y T the transpose
of the vector Y ∈ R

N . Recall that we denoted 1 = (1, . . . , 1)T ∈ R
N . Let’s

define

{

A∗(s) = (a1(s), . . . , aN (s)),
ζi(s) = (ζi,1(s), . . . , ζi,N (s)), i = 1, . . . , N.

(2)
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2.1 Proof Tools

To prove the linear results Il and IIl, we consider in this section only the
stability assumption (Hstab). On the other hand, this allows us to deduce
result IIl. Consider the following non-homogeneous system defined for all
t ≥ t′:







Ż∗(t) = b(t)Z∗(t) + ζ(t)[zN+1(t)1 + Z∗(t) + e(t, t′)Y ],
żN+1(t) = [b(t)+ < A∗(t),1 >]zN+1(t)

+ < A∗(t), Z
∗(t) + e(t, t′)Y >,

(3)

where Z∗(t) = (z1(t), . . . , zN (t))T , and A∗ is defined by equa-
tion (2). The goal of introducing the above system is that the part
E(t′, t) = R(t; t′)[Y − ψt′(Y )1] satisfies the following decomposition:

E(t′, t)Y = zN+1(t)1 + Z∗(t) + e(t, t′)Y,

where Z(t) := (Z∗(t)T , zN+1(t))
T with zN+1(t) and

Z∗(t) = (z1(t), . . . , zN (t))T is a solution of the coupled non-homogeneous
system (3). The idea is to show that ||Z(t)|| < K exp(−β(t − t′)) with
α > β > 0. Here, it is worth noting that the initial condition of Z(t) satisfies
zN+1(t

′)1+Z∗(t′) = −ψt′(Y )1. The problem to solve is to find this suitable
initial condition. To do this, we impose that Z∗(t′) = ψt′(Y )(1T , 0)T . First,
we will see in this section under what assumptions we will have exponential
decay of Z(t) to zero. This will allow us to find a specific initial condition
ψt′(Y )(1T , 0)T , which in turn will lead to the linear form Lt′ in Section 2.2.
We will need three lemmas, with the third lemma 7 being the main one.
The following lemma enables us to prove lemma 6, which in turn allows us
to prove the main lemma 7.

Lemma 5. Let b : R → R be a periodic function such that

−α :=

∫ 1

0
b(s)ds < 0.

Let α > β > 0, L > 0, and D > 0. Consider the following equation:

d

dt
∆(t) = [b(t) + β]∆(t) +DL,

then there exists D0 > 0 such that for all D < D0, the above equation has a
solution ∆(t) that is 1-periodic and strictly positive, with maxt∈[0,1]∆(t) < 1.
The solution ∆(t) is given by

∆(t) = DL

∫ t+1
t

exp(
∫ t+1
s

b(x) + βdx)ds

1− exp(β − α)
.
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Lemma 6. Consider the system (3) with b(t) and A satisfying the stability
assumption (Hstab). Let β ∈ (0, α), then there exist L > 0 and D∗ > 0 such
that for any matrix ζ that is continuous and has a norm ||ζ|| < D∗, for any
Y ∈ R

N , and for any solution Z(t) = (Z∗(t)T , zN+1(t))
T of system (3) with

an initial condition Z(t′) = Z ∈ R
N , we have:

∀T > t′ : zN+1(T ) = 0

=⇒ ||Z(t)|| < L exp(−β(t− t′))[||Z|| + ||Y ||], ∀t ∈ [t′, T ].

Proof. Let Z(t) = (Z∗(t)T , zN+1(t))
T , where Z∗(t) = (z1(t), . . . , zN (t))T is

a solution to the linear system (3) with the initial condition Z(t′) = Z ∈ R
N .

Suppose that zN+1(T ) = 0. By integrating (3), we obtain

zN+1(t
′) = −

∫ T

t′
< A∗(s), Z

∗(s) + e(s, t′)Y > P (t′, s)ds. (4)

Let β < α. Let C = ||Z||+ ||Y ||, so for all M > 1, we have ||Z|| < MC,
and there exists ǫ > 0 such that ||Z∗(t)|| < MC exp(−β(t − t′)) for every
t ∈ (t′, t′ + ǫ). Define,

T∗ = sup
{

t > t′ : ||Z∗(s)|| < MC exp(−β(s− t′)), ∀s ∈ (t′, t)
}

,

Then, we have

||Z∗(t)|| < MC exp(−β(t− t′)) ∀t ∈ [t′, T∗[. (5)

The strategy is to find a particular constant M such that T∗ ≥ T . By
contradiction, assume that T∗ < T . By integrating (3) and using (4), we
obtain for all t ∈ [t′, T∗[

|zN+1(t)| =
∣

∣

∣
P (t, t′)

[

zN+1(t
′) +

∫ t

t′
< A∗(s), Z

∗(s) + e(s, t′)Y > P (t′, s)ds
]∣

∣

∣

= P (t, t′)
∣

∣

∣
−

∫ T

t

< A∗(s), Z
∗(s) + e(s, t′)Y > P (t′, s)ds

∣

∣

∣

< exp(cb + ca)caC

∫ T

t

M exp(−(βs− t′)) + exp(−α(s − t′) + cb)ds

< exp(2cb + ca)caC
2M

β
exp(−β(t− t′)). (6)



Exponential stability for the mean field system 11

Let ζ be a continuous matrix with ||ζ|| = D < D∗, then from equation (3),
we have the following two inequalities for zi(t) and −zi(t)

d

dt
zi(t) < b(t)zi(t) +DC[exp(2cb + ca)ca

2M

β

+M + exp(cb))] exp(−β(t− t′))

< b(t)zi(t) +DMC[exp(2cb + ca)
2ca
β

+ 1 + exp(cb))] exp(−β(t− t′)). (7)

d

dt
− zi(t) < b(t)(−zi(t)) +DC[exp(2cb + ca)ca

2M

β

+M + exp(cb))] exp(−β(t− t′))

< b(t)(−zi(t)) +DMC[exp(2cb + ca)
2ca
β

+ 1 + exp(cb))] exp(−β(t− t′)).

Let zi(t) = ∆i(t) exp(−β(t − t′))MC, t ∈ [t′, T∗[. We have |∆i(t)| ≤ 1 on
[t′, T∗[. Substituting into the last equation, we have

d

dt
∆i(t) < [b(t) + β]∆i(t) +D[exp(2cb + ca)

2ca
β

+ 1 + exp(cb))],

d

dt
−∆i(t) < [b(t) + β](−∆i(t)) +D[exp(2cb + ca)

2ca
β

+ 1 + exp(cb))].

By definition of T∗ there exists i ∈ {1, . . . , N} such that |∆i(T∗)| = 1. We
will use Lemma 5 to obtain a contradiction.
Lemma 5 implies that for ||ζ|| = D < D∗ := D0, there exists a strictly
positive 1-periodic function of the equation

d

dt
∆(t) = [b(t) + β]∆(t) +D[exp(2cb + ca)

2ca
β

+ 1 + exp(cb))],

such that maxt∈[0,1]∆(t) < 1. Let M > 1 be such that 1
M

< ∆(t′); thus,

∆i(t
′) ≤ ||Z||

MC
≤ 1

M
< ∆(t′). There exists ǫ′ > t′ such that |∆i(t)| < ∆(t)

on [t′, ǫ′[; let T0 = sup{t′ ≤ s ≤ T0 : |∆i(s)| < ∆(s)}. If t′ < T0 < T∗, then
|∆i(T0)| = ∆(T0). Without loss of generality, assume that ∆i(T0) = ∆(T0),



12 W. Oukil

then we obtain

d

dt
|∆i(T0)| < [b(t) + β]|∆i(T0)|+D[exp(2cb + ca)

2ca
β

+ 1 + exp(cb))]

= [b(t) + β]∆(T0) +D[exp(2cb + ca)
2ca
β

+ 1 + exp(cb))]

=
d

dt
∆(T0).

Contradiction. Thus, T0 > T∗, which implies ∆i(T∗) < 1, contradicting the
definition of T∗. Therefore, for all t ∈ [t′, T ], we have

||Z∗(t)|| < L exp(−β(t− t′))[||Z(t′)||+ ||Y ||]

for some constant L =M max(1, 2 exp(2cb + ca)ca).

The previous lemma does not provide exponential decay of a solution over
[t′,+∞[. To achieve this, the strategy in the following lemma is to consider
intervals [0, T ] from the previous lemma, gradually increasing in size. We will
approximate a solution ZY (t) with an initial condition ZY (t

′) using solutions
that satisfy the previous lemma. This allows us to demonstrate the existence
of a solution ZY (t) that exponentially decays to zero over [t′,+∞[. We will
also localize the initial condition ZY (t

′).

Lemma 7. Consider the system (3) with b(t) and A satisfying the sta-
bility assumption (Hstab). Let β ∈ (0, α), then there exist K > 0 and
D∗ > 0 such that for any D < D∗ and any Y ∈ R

N , if there exists a
sequence of solutions Zm(t) = (Z∗

m(t)T , zN+1,m(t))T of (3) with initial con-
dition Zm(t′) = zt′,mW (zt′,m ∈ R, W = (1T , 0)T ) and a sequence (tm)m
that tends to infinity such that zN+1,m(tm) = 0, then there exists a so-
lution ZY (t) = (Z∗

Y (t)
T , zN+1,Y (t))

T of system (3) with initial condition
ZY (t

′) = ZY ∈ R
N such that

||ZY (t)|| < K exp(−β(t− t′))||Y ||, ∀t ≥ t′.

Moreover, there exists a subsequence (Zmk
(t′))k of (Zm(t′))m such that

ZY (t
′) = limk→+∞Zmk

(t′).

Proof. Let Zm(t) and (tm)m satisfy the assumptions of this lemma. Lemma
6 implies that

||Zm(t)|| < L exp(−β(t− t′))[||Y ||+ ||Zm(t′)||], ∀t ∈ [t′, tm].
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The idea is to show that there exists C > 0 such that ||Zm(t′)|| < C||Y ||
and then extract a convergent subsequence of Zm(t). Let ζ be a continuous
matrix with norm ||ζ|| = D < D∗. By integrating (3) for all t ∈ [t′, tm] and
all i = 1, . . . , N , we have

zi,m(t) = e(t, t′)zi,m(t′) + Fi,m(t),

so,

|Fi,m(t)|

= |e(t, t′)

∫ t

t′
< ζi(s), zN+1,m(s)1 + Z∗

m(s) + e(s, t′)Y > e(t′, s)ds|

< D(2L+ exp(cb))[||Y ||+ ||Zm(t′)||]e(t, t′)

∫ t

t′
exp((α − β)(s − t′))ds

< D(2L+ exp(cb)) exp(cb)
||Y ||+ ||Zm(t′)||

α− β
exp(−β(t− t′)).

Since zN+1,m(tm) = 0, and by integrating (3), we obtain

zN+1,m(tm) = 0

⇐⇒ zi,m(t′)

∫ tm

t′
< A∗(s),1 > exp(−

∫ s

t′
< A∗(x),1 > dx)ds

+

∫ tm

t′

N
∑

i=1

[aj(s)Fi,m(s)]P (t′, s)ds

= −

∫ tm

t′
< A∗(s), e(s, t

′)Y > P (t′, s)ds.

We deduce that

|zi,m(t′)|
∣

∣

∣
1− exp(−

∫ tm

t′
< A∗(x),1 > dx)

∣

∣

∣

− caD(2L+ exp(cb)) exp(cb)
||Y ||+ |zt′,m|

α− β

∫ tm

t′
exp(−β(s − t′))P (t′, s)ds

< |

∫ tm

t′
< A∗(s), e(s, t

′)Y > P (t′, s)ds|.

For D ≈ 0 and m→ +∞, we will have

|zi,m(t′)| <
exp(2cb + ca)

[

D
ca(2L+exp(cb))

β(α−β) + ca
α

]

1− caD(2L+ cb) exp(2cb + ca)
1

β(α−β)

||Y ||,
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which implies that (||Zm(t)||)m is uniformly bounded on each interval [t′, tm].
Furthermore,

||Zm(t)|| < L exp(−β(t− t′))[||Y ||+ ||Zm(t′)||] < K exp(−β(t− t′))||Y ||,

where

K = L
[

1 +
exp(2cb + ca)

[

D
ca(2L+exp(cb))

β(α−β) + ca
α

]

1− caD(2L+ cb) exp(2cb + ca)
1

β(α−β)

]

.

Therefore, we can extract a convergent subsequence that converges to a
solution ZY (t) of (3) and satisfies

||Zm(t)|| < K exp(−β(t− t′))||Y ||.

2.2 Ingredients for the linear form Lt′

In this section, we will show the existence of a family of solutions to the
system (3) that satisfies the assumptions of Lemma 7 in the previous section.
To do this, we only need to determine the initial conditions Zm(t′) = zt′,mW .
Note that it is sufficient to determine the sequence of real numbers (zt′,m)m.

In this section, we consider b(t) and A satisfying only the stability as-
sumption (Hstab) without distinction in the matrix ζ. This allows us, in
particular, to deduce the linear result IIl.

To obtain more information about the solutions Zm(t) of Lemma
7, we will express them in terms of the fundamental matrix. Let
S(t; t′) = {si,j(t; t

′)}1≤i≤N+1
1≤j≤N

be the fundamental matrix of the homogeneous

linear system associated with the system (3) as follows:







Ẋ∗(t) = b(t)X∗(t) + ζ(t)[xN+1(t)1 +X∗(t)],
X∗(t) = (x1(t), . . . , xN (t))T ,

ẊN+1(t) = [b(t)+ < A∗(t),1 >]xN+1(t)+ < A∗,X
∗(t) >,

(8)

where A∗(s) is given by Equation (2). The solution
Z(t) = (Z∗(t)T , zN+1(t))

T of (3) with initial condition Z(t′) ∈ R
N
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can be written in terms of the fundamental matrix as follows:

Z∗(t) = S∗(t; t′)Z(t′) + S1(t; t
′)Y, (9)

zN+1(t) = P (t, t′)zN+1(t
′) (10)

++P (t, t′)

∫ t

t′
< A∗(s), S

∗(s; t′)Z(t′) > P (t′, s)ds

+ P (t, t′)

∫ t

t′
< A∗(s), S1(s; t

′)Y + e(s, t′)Y > P (t′, s)ds,

where S∗(t; t′) = {si,j(t; t
′)}1≤i≤N

1≤j≤N

and S1(t; t
′) is an operator that does not

depend on Z(t′) and Y such that S(t′, t′) = 0.
As mentioned earlier, we aim to show the existence of solutions to the

system (3) that satisfy the assumptions of Lemma 7. In Lemma 7, we have
Zm(t′) = zt′,mW , so for a sequence (Tm)m tending to infinity such that
Zm,N+1(Tm) = 0 and using the notation from the previous equation (10),
the sequence of real numbers (zt′,m)m must be defined as

zt′,m = −

∫ Tm

t′
< A∗(s), S1(s; t

′)Y + e(s, t′)Y > P (t′, s)ds
∫ Tm

t′
< A∗(s), S∗(s; t′)W > P (t′, s)ds

.

In Lemma 8, we will show that this sequence (zt′,m)m is well-defined, i.e.,
the denominator of the quotient on the right-hand side of the equation is
nonzero.

Lemma 8. Let S(t; t′) = {si,j(t; t
′)}1≤i≤N+1

1≤j≤N

be the fundamental matrix

of the homogeneous linear system (8) associated with the system (3). Let
S∗(t; t′) = {si,j(t; t

′)}1≤i≤N
1≤j≤N

. Suppose that b(t) and A satisfy the stability

assumption (Hstab). Define

H(t, t′) :=

∫ t

t′
< A∗(s), S

∗(s; t′)W > P (t′, s)ds, (11)

W := (1T , 0)T , t ≥ t′.

Then, for any β ∈ (0, α), there exists D∗ > 0 such that for any continuous
matrix ζ with norm ||ζ|| < D∗, there exists TW > 0 such that for all t ≥ TW ,
we have H(t, t′) 6= 0.

Proof. From equation (10), we deduce that
Z(t) = (S∗(t; t′)W − zN+1(t), zN+1(t)) is a solution of the linear ho-
mogeneous system (8) with the initial condition W , where zN+1(t)



16 W. Oukil

satisfies
zN+1(t) = P (t, t′)H(t, t′), t ≥ t′.

So, Z(t) = (S∗(t; t′)W − zN+1(t), zN+1(t)) is, in particular, a solution of the
nonhomogeneous linear equation (3) with Y = 0 and satisfies the assump-
tions of Lemma 7. Since Y = 0, we have ||Z(t)|| ≡ 0, which contradicts the
initial condition Z(t′) =W .

Therefore, in the following proposition, we show that the system (3)
admits a sequence of solutions that satisfy the assumptions of Lemma 7.

Proposition 9. Consider the system (3) with b(t) and A satisfying the sta-
bility hypothesis (Hstab). Let β ∈ (0, α). Then there exist D∗ > 0 and K > 0,
such that for any continuous matrix ζ with ||ζ|| < D∗ and any Y ∈ R

N , there
exists a solution ZY (t) = (Z∗

Y (t)
T , zN+1,Y (t))

T of (3) such that

||ZY (t)|| < K exp(−β(t− t′))||Y ||, ∀t ≥ t′,

and ZY (t
′) = ψt′(Y )W , where

ψt′(Y ) = lim
tm→+∞

−1

H(tm, t′)

∫ tm

t′
< A∗(s), S1(s; t

′)Y + e(s, t′)Y > P (t′, s)ds,

and where (tm)m is a sequence of real numbers that tends to infinity, and
H(tm, t

′) is given by Lemma 8.

Proof. According to Lemma 8, for any sequence (tm)m such that
tm > TW , we have H(tm, t

′) 6= 0. From (10), the solution
Zm(t) = (Z∗

m(t)T , zN+1,m(t))T of (3) with the initial condition zm,t′W such
that

zm,t′ = −
1

H(tm, t′)

∫ tm

t′
< A∗(s), S1(s; t

′)Y + e(s, t′)Y > P (t′, s)ds,

satisfies:

zN+1,m(tm) = 0 = P (t′, t)zm,t′H(tm, t
′)

+ = P (t′, t)

∫ tm

t′
< A∗(s), S1(s; t

′)Y + e(s, t′)Y > P (t′, s)ds.

According to Lemma 7, there exists a solution ZY (t) such that
||ZY (t)|| < L exp(−β(t − t′))||Y || for all t ≥ t′, with ZY (t

′) = ψt′(Y )W ,
where

ψt′(Y ) = − lim
tmk

→∞

∫ tmk

t′ < A∗(s), S1(s; t
′)Y + e(s, t′)Y > P (t′, s)ds

H(tmk
, t′)

.
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2.3 Decomposition of the fundamental matrix

Finally, we will prove results Il and IIl in the context of linear systems. To
ensure consistency in the proof, we will first demonstrate the general case,
which is the second linear result IIl that does not require the matrix ζ(t) to
be normalizing.

Proof of the second linear result IIl: General Case.

• Let’s show that ||R(t; t′)[Y + ψt′(Y )1]|| decreases exponentially:

For any β > 0 and ||ζ|| = D < D∗, where D∗ is defined by Lemma 7,
let ψt′(Y ) be given by the previous proposition 9. Take Y ∈ R

N , we
add and subtract the same term in φt(Y ) as follows:

φt(Y ) = −ψt′(Y )R(t; t′)1 +R(t; t′)[Y + ψt′(Y )1]. (12)

Let R(t; t′)[Y + ψt′(Y )1] = zN+1(t)1 + Z∗(t) + e(t; t′)Y with zN+1(t)
being a solution with the initial condition zN+1(t

′) = 0 of the equation

żN+1(t) = [b(t)+ < A∗(t),1 >]zN+1(t)

+ < A∗(t), R(t; t
′)[Y + ψt′(Y )1]− zN+1(t)1 > .

Thus, Z(t) = (Z∗(t), zN+1(t)) is a solution of the nonhomogeneous
linear equation (3). From equation (12), we deduce that it has the
initial condition Z(t′) =Wψt′(Y ). Proposition 9 implies that

||Z(t)|| < K exp(−β(t− t′))||Y ||, ∀t ≥ t′.

Hence, ||R(t; t′)[Y +ψt′(Y )1]|| < [K +exp(cb)] exp(−β(t− t′))||Y || for
all t ≥ t′.

• Let’s show that when the system has a solution that does not decay to
zero exponentially, then ψt(Y ) = ψs(R(s; t)Y ):

Suppose that the system (1) has a solution that does not exponentially
decay to zero. Let V (t) be this solution. We have:

R(t; s)R(s; t′)Y = Lt′(Y )V (t)−R(t; t′)[Y − Lt′(Y )V (t′)]

= Ls(R(s; t
′)Y )V (t)

−R(t; s)[R(s; t′)Y − Ls(R(s; t
′)Y )V (s)].
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Implies

[Lt′(Y )− Ls(R(s; t
′)Y )]V (t)

= R(t; s)[R(s; t′)Lt′(Y )V (t′) + Ls(R(s; t
′)Y )V (s)].

Since the right-hand side of the last equation satisfies

||R(t; s)[R(s; t′)Lt′(Y )V (t′) + Ls(R(s; t
′)Y )V (s)]||

< K[exp(−β(t− t′)) + exp(−β(t− s))]||Y ||.

While the left-hand side is a linear form multiplied by the function
V (t), which does not decay exponentially to zero, we must have

Lt′(Y )− Ls(R(s; t
′)Y ) = 0, ∀t′ ≥ 0,∀s ≥ t′.

Now, we will prove the first linear result Il. We consider the particular
case where ζ(t) is a normalizing matrix. By Definition 2, the system (1) has
a solution V (t) = (v1(t), . . . , vN (t))T such that

inf
t∈R

||V (t)|| > 0, and sup
t∈R

||V (t)|| < +∞.

We denote in the following

α− = inf
t∈R

||V (t)|| > 0, and α+ = sup
t∈R

||V (t)|| < +∞.

We define in the proof below the linear form Lt′ as

Lt′(Y ) =
ψt′(Y )

ψt′(V (t′))
,

where ψt′ is defined by the previous proposition 9. We note that by unique-
ness, Lt′ is defined as

Lt′(Y ) = lim
t→∞

∫ t

t′
< A∗(s), S1(s)Y + e(s, t′)Y > P (t′, s)ds

∫ t

t′
< A∗(s), S1(s)V (t′) + e(s, t′)V (t′) > P (t′, s)ds

.

Proof of linear result Il.
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• Let’s prove Lt(R(t; t
′)V (t′)) = 1:

By the definition of Lt′ , we have Lt(V (t)) = 1 for all t ∈ R. Therefore,

Lt(R(t; t
′)V (t′)) = 1 = Lt′(V (t′)), ∀t′ ∈ R ∀t ≥ t′. (13)

• Construction of the linear form t:
We add and subtract the same term in V (t), so we have

R(t; t′)V (t′) = V (t) = −ψt′(V (t′))R(t; t′)1+R(t; t′)[V (t′)+ψt′(V (t′))1].
(14)

According to proposition 9, we have ||ψt′(V (t′))|| < K||V (t′)|| < Kα+

for all t′ ≥ 0. Furthermore,

|ψt′(V (t′))|||R(t; t′)1|| = ||V (t)−R(t; t′)[V (t′) + ψt′(V (t′))1]||

> ||V (t)|| − ||R(t; t′)[V (t′) + ψt′(V (t′))1]||

> α− −K exp(−β(t− t′))||V (t′)||

> α− − α+K exp(−β(t− t′)), ∀t′ ∈ R, .

We integrate over a compact of length δ fixed such that 1 << δ < +∞;
let t = t′ + δ, we have from (1): ||R(t; t′)1|| < exp((cb + ca +D∗)δ)

|ψt′(V (t′))| >
α− − α+K exp(−βδ)

exp((2α + cb + ca +D)δ)
> 0, ∀t′ ∈ R, ∀t ≥ t′. (15)

Let’s define

Lt′(Y ) =
ψt′(Y )

ψt′(V (t′))
.

• From (15) and according to proposition 9, there exists K1 > 0 such
that Lt′(Y ) < K1||Y ||.

• Exponential decay:
According to equation (13) for all Y ∈ R

φt(Y ) = Lt′(Y )V (t)−R(t; t′)[Y − Lt′(Y )V (t′)]

= Lt′(Y )V (t)

+R(t; t′)[Y − ψt′(Y )1 − (Lt′(Y )V (t′)−
ψt′(Y )

ψt′(V (t′))
ψt′(V (t′))1)]

= Lt′(Y )V (t)

+R(t; t′)[Y − ψt′(Y )1 − (Lt′(Y )V (t′)− ψt′(Lt′(Y )V (t′))1)].
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According to the previously demonstrated linear result IIl, there exists
K∗ > 0 such that we have

||R(t; t′)[Y − ψt′(Y )1]|| < K∗ exp(−β(t− t′))||Y ||, ∀t ≥ t′

||R(t; t′)[Lt′(Y )V (t′)− ψt′(Lt′(Y )V (t′))1] < K∗ exp(−β(t− t′))||Y ||,

• Finally, let’s show that Lt′(Y ) = Ls(R(s; t
′)Y ): We have

R(t; s)R(s; t′)Y = Lt′(Y )V (t)−R(t; t′)[Y − Lt′(Y )V (t′)]

= Ls(R(s; t
′)Y )V (t)

−R(t; s)[R(s; t′)Y −Ls(R(s; t
′)Y )V (s)].

Therefore,

[Lt′(Y )− Ls(R(s; t
′)Y )]V (t)

= R(t; s)[R(s; t′)Lt′(Y )V (t′) + Ls(R(s; t
′)Y )V (s)].

Since mint∈R ||V (t)|| = α− > 0 and as the right-hand side of the last
equation verifies

||R(t; s)[R(s; t′)Lt′(Y )V (t′) +Ls(R(s; t
′)Y )V (s)]||

< K[exp(−β(t− t′)) + exp(−β(t− s))]||Y ||.

Thus,

Lt′(Y )− Ls(R(s; t
′)Y ) = 0, ∀t′ ≥ 0,∀s ≥ t′.

We have studied a class of linear systems perturbed by a time-dependent
matrix ζ. We have shown that the space R

N decomposes into a direct sum
of subspaces R1 ⊕ W where W is a manifold of dimension N − 1 and ex-
ponentially stable. The vector subspace R1 can itself be an exponentially
stable manifold. In the case where the perturbing matrix ζ is normalizing,
we obtained information regarding the norm of the linear form. In the next
section, we will use these results to demonstrate the stability of the nonlinear
mean-field systems studied.
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3 Proof of results I and II: Stability of mean-field

systems

In this section, we prove the two results I and II. We will study the stability of
coupled systems given by equations (P) (in particular (NP)) and exhibiting
a synchronized state. We linearize the system around a synchronized orbit
and then apply the stability results obtained in Section 2. Recall that the
two systems (P) and (NP) are given by the following two equations:

ẋi = F (X,xi), 1 ≤ i ≤ N, t ≥ t0, (NP)

ẋi = F (X,xi) +Hi(X,xi), 1 ≤ i ≤ N, t ≥ t0, (P)

where N ≥ 2 and t0 ∈ R is the initial time. F : R
N × R → R and

Hi : R
N → R are C1 functions, and we denote H = (H1, . . . ,HN ). Recall

that we denoted Φt the flow of the system (P) (including (NP)).

We have seen [9, 11] that when the norm ||H||B is sufficiently small
and under the assumptions (H) and (H∗), the global phase dispersion of
a solution of the system (P) (and (NP)) with an initial condition in the
synchronization region remains uniformly bounded by some constant D > 0.

3.1 Linearization of System (P)

In order to simplify the notation, define the function Fi : R
N × R → R as

Fi(Y, z) := F (Y, z) +Hi(Y, z), ∀Y ∈ R
N , ∀z ∈ R, ∀1 ≤ 1 ≤ N,

and denote the differential of the vector function (F1, . . . , FN ) as dF(t).

Without loss of generality, for Z ∈ R
N , we’ll write Z := Φt(Z), so the

elements of the matrix dF (Φt(Z)) := {gi,j}i,j are given by

{

gii(t) = ∂N+1Fi(Z, zi) + ∂iFi(Z, zi), 1 ≤ i ≤ N,

gij(t) = ∂jFi(Z, zi), 1 ≤ i 6= j ≤ N.
(16)

The strategy in the following is to apply the linear stability results ob-
tained in Section 2. To do this, we’ll choose an appropriate linearization of
the system (P). More specifically, for any Z ∈ R

N , we consider the following
linear system:

d

dt
Y (t) = dF(Φt(Z))Y (t), t ≥ t0, Y (t) = (y1(t), . . . , yN (t))T . (17)
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Also, recall that for Z ∈ R
N , we denote µZ := µZ(t) as the solution

of the system (SNP) associated with Φt(Z) and with the initial condition
µZ(t0) ∈ R (see Definition 10).

In the following lemma, we’ll see that the system (17) can be written in
the form of the linear systems (1). We denote IN as the identity matrix of
order N .

Definition 10. For X ∈ R
N , we define the System (SNP) associated with

Φt(X) as the unperturbed system given by

µ̇X = F (Φt(X), µX ), t ∈ IX , (SNP)

where IX = [t0, TX) is the maximal interval of the solution X(t) := Φt(X)
of the system (P) with initial condition φt0(X) = X fore some t0 ∈ IX . We
refer to µX(t) as the solution of the system (SNP) associated with Φt(X)
with initial condition µX(t0) ∈ R.

Lemma 11. Consider the coupled nonlinear system (P). Suppose that F
satisfies hypotheses (H) and (H∗). Then, there exists ǫ∗ > 0 such that for
all ǫ ∈ (0, ǫ∗], there exists r > 0 such that for any function H satisfying
max{||H||B , ||dH||B} < r, there exists an open set Cr that is positively Φt-
invariant, and for all Z ∈ Cr, there exists a diffeomorphism t → µ = µZ(t)
such that the linearized system (17) is equivalent to the following linear sys-
tem:

d

dµ
Y ∗(µ) = [b(µ)IN +A(µ) + ζZ(µ)]Y

∗(µ), (18)

µ ≥ µZ(t0), Y ∗(µ) = Y (τZ(µ)),

where τZ : R → R is the inverse function of µ(t), ζZ(µ) is a normalizing
matrix satisfying ||ζZ || < ǫ, A(µ) = {ai,j(µ) = aj(µ)}1≤i,j≤N is a rank-1
matrix, and b(µ) is a function defined as follows:

aj(µ) =
∂jF (µ1, µ)

F (µ1, µ)
, 1 ≤ j ≤ N and b(µ) =

∂N+1F (µ1, µ)

F (µ1, µ)
,

satisfying

∫ 1

0
b(s) +

N
∑

j=1

aj(s)ds = 0, and

∫ 1

0
b(s)ds < 0,

meaning that the stability hypothesis (Hstab) is satisfied.
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Proof. We consider the system (P). Suppose that F satisfies hypotheses (H)
and (H∗). Let D ≈ 0, then according to the Theorem (I), there exists r > 0
such that for a C1 matrix H satisfying ||H||B < r, there exists an open set
Cr that is positively Φt-invariant, such that for all t ≥ t0 and all Z ∈ Cr, we
have

max
j

|Φt
j(Z)− µZ(t)| < D and max

i,j
|Φt

i(Z)− Φt
j(Z)| < 2D;

where µZ(t) is a solution of the system (SNP) associated with Φt(Z) and
with the initial condition µZ(t0) ∈ R. As long as Z ∈ Cr, note that the flow
Φt(Z) and the solution µZ(t) are defined for all t ≥ t0.

Consider the linearized system (17) at the point Φt(Z). For any
1 ≤ i, j ≤ N , define UZ(t) = {uZi,j(t)}1≤i,j≤N as the matrix of order N
given by















uZii(t) =
[

∂N+1Hi(Z, zi) + [∂N+1F (Z, zi)− ∂N+1F (µZ(t)1, µZ(t))]
]

+ ∂iHi(Z, zi) + [∂iF (Z, zi)− ∂iF (µZ(t)1, µZ(t))]

uZi,j(t) = ∂jHi(Z, zi) + [∂jF (Z, zi)− ∂jF (µZ(t)1, µZ(t))],

so that
Ẏ (t) = [dF(µZ(t)1) + UZ(t)]Y (t).

Or equivalently,

ẏi(t) = ∂N+1F (µZ(t)1, µZ(t))yi(t) (19)

+
N
∑

j=1

[∂jF (µZ(t)1, µZ(t)) + uZij(t)]yj(t).

Let L > 0 and α > 0 be defined as follows:

L :=
∑

0≤i≤2

||diF ||B , and α := min
s∈[0,1]

F (s1, s). (20)

Assume that max{||H||B , ||dH||B} < r, then for all 1 ≤ i, j ≤ N , we have

||uZi,i|| < 2[r + LD], and ||uZi,j|| < r + LD. (21)

For D ≈ 0, we have µ̇Z > α − LD > 0. In particular, µZ(t) is a diffeomor-
phism, and there exists L > 0 such that

F (µZ1, µZ)

µ̇Z
= 1 + θ(t),

|θ(t)| =
∣

∣

F (µZ1, µZ)− F (Φt(Z), µZ)

µ̇Z

∣

∣

∣
<

LD

α− LD
.
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Let µ → µ = µZ(t) be the change of variable and define
Y ∗(µ) = Y (τZ(µ)), where τZ(µ) := µ−1

Z (µ) is the inverse function of µ(t).
We can use the following equation in (19):

d

dt
Y (t) =

d

ds
Y ∗(s)

d

dt
µZ(t) =

d

ds
Y ∗(s)

F (µZ(t)1, µZ(t))

1 + θ(t)
.

Taking into account equations (21) and (19), there exists a matrix
ζZ(µ) = {ζZij (µ)}1≤i,j≤N that depends on µ ∈ R, defined as

ζZij (µ) = dF(Φt(Z))
θ(t)

F (µ1, µ)
+ uZi,j(t)

1

F (µ1, µ)
,

and satisfying

||ζZ || < (L+ r)
||θ||

α
+ (r + LD)

1

α
< ǫ := (L+ r)

LD

α− LD
+ (r + LD)

1

α
,

such that the system (17) is equivalent to

d

dµ
y∗i (µ) =

∂N+1F (µ1, µ)

F (µ1, µ)
y∗i (µ) +

N
∑

j=1

[
∂jF (µ1, µ)

F (µ1, µ)
+ ζZij(µ)]y

∗
j (µ),

with µ ≥ µZ = µZ(t0). It can be observed that

V ∗
Z (µ) :=

(

F1(Φ
µ−1
Z

(µ)(Z)), . . . , FN (Φµ−1
Z

(µ)(Z))
)

=
d

dt
Φµ−1

Z
(µ)(Z),

is a solution of (18) and satisfies

min
µ≥µZ

V ∗
Z (µ) ≥ α− LD − r > 0 and ||V ∗

Z || ≤ max
µ∈[0,1]

F (µ1, µ) + LD + r.

Therefore, the matrix ζZ is a normalizing matrix. Furthermore, the two
hypotheses (H) and (H∗) imply that

∫ 1

0

∂N+1F (µ1, µ)

F (µ1, µ)
dµ < 0 and

∫ 1

0

∂N+1F (µ1, µ)

F (µ1, µ)
+
∂jF (µ1, µ)

F (µ1, µ)
dµ = 0.

This implies that the stability hypothesis (Hstab) is satisfied.
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3.2 Proof of Main Result (I) and (II): Stability

The proof of Main Result I and II relies on a perturbative method as follows:

Proof. Consider the coupled non-linear system (P), and suppose that F sat-
isfies hypotheses (H) and (H∗). According to Lemma 11, there exists ǫ∗ > 0
such that for all ǫ ∈ (0, ǫ∗], there exists r > 0 such that for any function H

satisfying max{||H||B , ||dH||B} < r for Z ∈ Cr, the system (17) is equiva-
lent to the system (18) with b(t) and A satisfying the stability hypothesis
(Hstab), and ζ being a normalizing matrix satisfying ||ζZ || < ǫ.

So, let Z ∈ Cr, and let RZ(µ;µZ) be the fundamental matrix of the
system (18), where µ is the change of variable t→ µZ(t) with µZ(t) being a
solution of the system (SNP) associated with Φt(Z) and with initial condition
µZ := µZ(t0) ∈ R as defined in definition 10. According to the linear result
Il, we deduce that there exist β > 0 and K > 0, and there exists r∗ > 0
such that for a function H satisfying max{||H||B , ||dH||B} < r∗ and for all
Z ∈ Cr∗ , there exists a linear form LµZ

: R
N → R such that for all Y ∈ R

N

and for all µ ≥ µZ , we have

• LµZ
(RZ(µ;µZ)V

∗
Z (µZ)) = 1 and LµZ

(Y ) < K||Y ||,

• LµZ
(Y ) = LµZ

(RZ(µ;µZ)Y ),

• ||RZ(µ;µZ)[Y − LµZ
(Y )V ∗

Z (µZ)]|| < K||Y || exp(−β(µ− µZ)).

Furthermore, the solution Y ∗(µ) with initial condition Y ∗(µZ) can be written
as follows:

RZ(µ;µZ)Y
∗(µ) = LµZ

(Y ∗(µZ))V
∗
Z (µ)

+RZ(µ;µZ)[Y
∗(µZ)− LµZ

(Y ∗(µZ))V
∗
Z (µZ)].

Let SZ(t; t0) be the fundamental matrix of the system (17). Since the so-
lution Y (t) of the system (17) with initial condition Y (t′) = Y satisfies
Y (t) = Y (τZ(µ)) = Y ∗(µ), it follows that Y ∗(µZ) = Y where µ → τZ(µ) is
the inverse of t → µZ(t), then by the change of variable µ := µZ(t) → t, we
obtain that Y (t) can be written as follows:

Y (t) = SZ(t; t0)Y = Y ∗(µ) = RZ(µZ(t);µZ(t0))Y

= LµZ
(Y )VZ(t) (22)

+RZ(µZ(t);µZ(t0))[Y −LµZ
(Y )VZ(t)],
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for all t ≥ t0, where VZ(t) = V ∗
Z (µZ(t)) =

d
dt
Φt(Z). On the other hand, the

system (P) can also be written in the form:

d

dt
Φt(Z) = F (Φt(Z)) =⇒

d

dt
dΦt(Z) = dF (Φt(Z))dΦt(Z).

Therefore, dΦt(Z) = SZ(t; t0).
Item 1. Stability :

Let X,Y ∈ Cr∗ such that the segment z(s) = (1 − s)X + sY satisfies
z(s) ∈ Cr∗ for all s ∈ [0, 1]. We have:

Φt(Y )− Φt(X) =

∫ 1

0

dΦt(z(s))

ds
ds =

∫ 1

0
dΦt(z(s))ds(Y −X)

=

∫ 1

0
Sz(s)(t; t0)ds(Y −X).

According to the decomposition (22) and knowing that
||Vz(s)|| < ||F ||B + ||H||B , we obtain:

||Φt(Y )− Φt(X)|| ≤
∣

∣

∣

∣

∣

∣

∫ 1

0
Lµz(s)

(Y −X)Vz(s)(t)ds
∣

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

∣

∫ 1

0
Rz(s)(µz(s)(t);µz(s)(t0))

[

(Y −X)− Lµz(s)
(Y −X)Vz(s)

]

ds
∣

∣

∣

∣

∣

∣

≤ K[||F ||B + ||HB ||]||Y −X||+K exp
(

− β(µz(s)(t)− µz(s)(t0))
)

||Y −X||

≤ K[||F ||B + ||HB ||+ 1]||Y −X||, ∀t ≥ t0.

Item 2. Exponentially Stable Submanifold :

Let X ∈ Cr∗ . In the following, we show that there exists an exponentially
stable submanifold at X. The idea is to find trajectories of the form z(s)
connecting z(0) := X and z(1) := Y ∈ Cr such that for all s ∈ [0, 1], the

quantity dz(s)
ds

lies in the kernel of the linear form Lµz(s)
. This allows us to

use equation (22) and cancel the term that does not exponentially decay to
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zero as follows:

||Φt(Y )− Φt(X)| = ||

∫ 1

0
dΦt(z(s))ds

dz(s)

s
||

≤ ||

∫ 1

0
Lµz(s)

(
dz(s)

s
)Vz(s)(t)ds||

+ ||

∫ 1

0
Rz(s)(µz(s)(t);µz(s))

(

(
dz(s)

s
)− Lµz(s)

(
dz(s)

s
)Vz(s)

)

ds||

=

∫ 1

0
Rz(s)(µz(s)(t);µz(s))

(

(
dz(s)

s
)− Lµz(s)

(
dz(s)

s
)Vz(s)

)

ds

≤ exp(−
β

α− LD
(t− t0)) max

s∈[0,1]
||
dz(s)

ds
||, (23)

where α− LD > 0 since µ̇Z > α− LD as given in the proof of the previous
lemma 11. To ensure that dz(s)

ds
lies in the kernel of the linear form Lµz(s)

, it
is sufficient that z(s) := z(ξ, s) satisfies the following equation:

d

ds
z(ξ, s) = ξ − Lµz(ξ,s)

(ξ)Vz(ξ,s)(t0), (24)

with initial condition Z(ξ, 0) = X where ξ ∈ R
N . For ||ξ|| ≈ 0, the solution

z(ξ, s) exists for all s ∈ [0, 1]. In the rest of this proof, we consider vectors
ξ with norms close to zero such that z(ξ, s) ∈ Cr∗ for all s ∈ [0, 1]. As
LµZ

(Vz(ξ,s)(t0)) = 1, we eventually obtain Lµz(ξ,s)
(ξ)( d

ds
z(ξ, s)) = 0, which

implies equation (23) and concludes the proof. We consider vectors ξ ∈ R
N−1

in the hyperplane defined by LµX
(ξ) = 0. We now show that the map

ξ → d
dξ
z(ξ, 1) ≈ Id with Id : R

N−1 → R
N is the identity matrix, i.e., a

C1-diffeomorphism, which defines the exponentially stable submanifold. We
have:

d

ξ

d

s
z(ξ, s) = IdN (25)

−
d

dξ

[

Lµz(ξ,s)
(ξ)

]

Vz(ξ,s)(t0)− Lµz(ξ,s)
(ξ)

d

dξ

[

Vz(ξ,s)(t0)
]

.

The differentiability of the flow with respect to each variable implies that the
linear form LµZ

is differentiable with respect to Z. Since LµZ
is linear with

respect to ξ, by Taylor’s theorem, there exists a matrix Π of size N − 1×N

and s′ ∈ [0, s] such that:

Lµz(ξ,s)
(ξ) = LµX

(ξ) + Πξ(z(ξ, s) −X)

= Πξ(z(ξ, s) − Z(ξ, 0)) = Πξ
d

ds
z(ξ, s′)s.
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Therefore, Lµz(ξ,s)
(ξ) is of second order with respect to ξ and has the form:

Lz(ξ,s)(ξ) ≈ ξ2.

For ξ ≈ 0, there existsM > 0 such that || d
dξ
Lz(ξ,s)(ξ)|| < M ||ξ||. Considering

that:
d

dξ

[

Vz(ξ,s)(t0)
]

=
d

ξ
F (z(ξ, s)) = dF (Φt(z(ξ, s)))

d

ξ
z(ξ, s),

and as ||dF (Φt(z(ξ, s)))|| < L (as given in equation (20)), we can obtain
||d
ξ
z(ξ, s)|| < M ′. Finally, there exists a constant M ′′ > 0 such that equation

(25) satisfies:

||
d

ξ

d

s
z(ξ, s)− IdN || < M ′′ξ,

for ξ ≈ 0. For such ξ, the function:

z(ξ, 1) = X +

∫ 1

0

d

ξ

d

s
z(ξ, s)ds,

is a C1-diffeomorphism, which defines an exponentially stable submanifold
Wstab of dimension N−1 such that the points in Wstab satisfy equation (23),
i.e., for all Y ∈ Wstab:

||Φt(Y )− Φt(X)|| < K exp(−
β

α− LD
(t− t0)),

for all t ≥ t0, with K > 0 being an upper bound of
K(ξ) := maxs∈[0,1] ||

dz(s,ξ)
ds

|| for ξ ≈ 0, and Y = z(ξ, 1).

In conclusion, this section has highlighted the relationship between the
synchronization hypothesis and the stability hypothesis. The coupled sys-
tem (P) (or (NP)) satisfying the synchronization hypothesis can be linearized
around synchronized orbits and satisfy the stability hypothesis, which allows
us to deduce stability and exponential stability of the coupled system. In
the case of the system (NP) and when the perturbation of the system (P) is
1-periodic, we deduce that the periodic orbit mentioned in result II is expo-
nentially stable. In other words, we have ultimately deduced the existence
of a stable limit cycle.
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