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Abstract

We study the existence of the exponential stable manifold for some

linear system and we give some proprieties. We apply the results to the

mean field systems similar to the Winfree model in the synchronized

state. More precisely, we study it linearized system. This method can

be applied to more generalized mean field models.
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1 Introduction and Main results

In 1967 Winfree [9] proposed a mean field model describing the synchroniza-
tion of a population of organisms or oscillators that interact simultaneously
[1, 2, 3, 4, 5, 7].

The main result consists of two parts: The linear part, where we will
study the stability of a class of perturbed linear systems by decomposing the
fundamental matrix. The Application part where we study the exponential
stability for the Winfree model. The results are within the framework of
perturbation theory. In this article, we consider the usual scalar product
and the sup-norm as follow: For every vectors u = (ui)

m
i=1 and v = (vi)

m
i=1

we denote the usual scalar product by

〈u, v〉 =

m
∑

i=1

uivi, (1)

1
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Let t ∈ R 7→ Q(t) := {qi,j(t)} 1≤i≤m
1≤j≤m′

be a m×m′ matrix-valued function, we

denote the sup-norm of Q as

‖Q‖ = sup
t∈R

max
1≤i≤m
1≤j≤m′

|qij(t)|.

In this article the integer n ∈ N
∗ is fixed. We denote by In the square

identity matrix of order n and 1 := (1, . . . , 1) ∈ R
n.

1.1 Main results

We study in this article the following perturbed linear system:

ẏ(t) = [b(t)In +A(t) + ζ(t)]y(t), t ≥ t′ ∈ R, (2)

where the perturbation term t 7→ ζ(t) is a square matrix-valued function of
order n. The function t ∈ R 7→ b(t) is a continuous real valued function
and t ∈ R 7→ A(t) is a continuous square matrix-valued function of order n
satisfying the following stability assumptions

• [H1]: b(t) and A(t) are 1-periodic,

• [H2]: A(t) = {ai,j(t)}1≤i,j≤n is rank one with ai,j(t) = aj(t),
∀i, j = 1, . . . , n,

• [H3]: α := −
∫ 1
0 b(s) ds > 0,

• [H4]:
∫ 1
0 b(s) + 〈1, a(s)〉 ds = 0, where a(s) := (aj(s))

n
j=1, s ∈ [0, 1].

Define the fundamental matrix of a linear system in the following sense

Definition 1. Let t 7→ Q(t) be a continuous square matrix-valued function
of order n. The fundamental matrix of the linear system

ẏ = Q(t)y, t ∈ R,

is the square matrix-valued function (s, t) ∈ R × R 7→ Ψs,t that satisfies

• ∀t ∈ R, Ψt,t = In,

• ∀(t, s) ∈ R × R, d
dt
Ψt,s = Q(t)Ψt,s.

To gain further insights into the behavior of solutions of the linear system
(2), we will introduce a class of matrices ζ referred to as normalizing matrices,
defined as follows
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Definition 2. We say that the matrix-valued function ζ is a normalizing

matrix if the system (2) admits a solution t 7→ v(t) := (vj(t))
n
j=1 such that

inf
t≥t′

‖v(t)‖ > 0, and sup
t≥t′

‖v(t)‖ < +∞.

We call v a normalizing solution of (2) associated to the matrix ζ.

In the following two linear results, we will consider two cases: ζ being a
normalizing matrix or arbitrary.

Main Result 3. [General Case] Consider the system (2) with fundamen-
tal matrix Rs,t. Suppose that b and A satisfy the stability assumptions
[H1 −H4]. For every β ∈ (0, α) there exist k > 0 and c > 0 such that for
any matrix ζ satisfying ‖ζ‖ < c and for any t ∈ R, there exists a linear form
ψt : R

n → R such that

∀y ∈ R
n : ‖Rs,t[y − ψt(y)1‖ < k‖y‖ exp(−β(s − t)), s ≥ t ≥ t′.

Moreover, the fundamental matrix Rs,t admits the following decomposition

∀y ∈ R
n : Rs,ty = ψt(y)R

s,t
1 +Rs,t[y − ψt(y)1], s ≥ t ≥ t′.

In other words, the manifold Wstab := {z ∈ R
n, ψt(z) = 0} of dimension n−1

is exponentially stable. Furthermore, if there exists a solution that does not
exponentially decay to zero, then

∀y ∈ R
n : ψt(y) = ψs(R

s,ty), s ≥ t ≥ t′.

Main Result 4. Under assumptions of the Main result (Il), suppose in
addition that the matrix-valued function ζ is a normalizing matrix. Then
for any y ∈ R

n and for any s ≥ t ≥ t′ the linear form ψt : R
n → R satisfies

the following assertions

• ψs(R
s,tv(t)) = 1,

• |ψt(y)| < k‖y‖,

• ψt(y) = ψs(R
s,ty),

where v(t) is a normalizing solution of (2) associated to the matrix ζ. More-
over, the fundamental matrix Rs,t admits the following decomposition

∀y ∈ R
n : Rs,ty = ψt(y)v(s) +Rs,t[y − ψt(y)v(t)], s ≥ t ≥ t′.

In other words, the manifold Wstab := {z ∈ R
n, ψt(z) = 0} of dimension

n− 1 is exponentially stable.
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2 Proof of Linear Results (3) and (4): Stability of

Perturbed Linear Systems

Consider the system (2). For simplification, we denote

cb = max
t∈[0,1]

|b(t)|, ca = max
t∈[0,1]

n
∑

j=1

|aj(t)|.

Let’s denote

a(s) := (aj(s))
n
j=1 and ζi(s) := (ζi,j(s))

n
j=1, i = 1, . . . , n, (3)

and

et,s := exp
(

∫ t

s

b(ν)dν
)

, pt,s = et,s exp
(

∫ t

s

〈1, a(ν)〉 dν
)

, ∀t, s ∈ R.

Recall that we denoted 1 = (1, . . . , 1) ∈ R
n.

2.1 Proof Tools

To prove the linear results (3) and (4), we consider in this section only
the stability assumptions [H1 − H4]. On the other hand, this allows us
to deduce the Main result (3). Let be y ∈ R

n and consider the following
non-homogeneous system defined for all t ≥ t′ as:







ż∗(t) = b(t)z∗(t) + ζ(t)[zn+1(t)1 + z∗(t) + et,t
′

y],
żn+1(t) = [b(t) + 〈a(t),1〉]zn+1(t)

+〈a(t), z∗(t) + et,t
′

y〉,

(4)

where z∗(t) := (zj(t))
n
j=1 and where the function t 7→ a(t) is defined by

equation (3). The goal of introducing the above system is that the part
Et′,t = Rt,t′ [y − ψt′(y)1] given in the Main results (3) satisfies the following
decomposition:

Et′,ty = zn+1(t)1 + z∗(t) + et,t
′

y,

where z(t) := (z∗(t), zn+1(t)) with zn+1(t) and z∗(t) = (zj(t))
n
j=1 is a solu-

tion of the coupled non-homogeneous system (4). The idea is to show that
‖z(t)‖ < k exp(−β(t− t′)) with β ∈ (0, α). Here, it is worth noting that the
initial condition of z(t) satisfies zn+1(t

′)1+ z∗(t′) = −ψt′(y)1. The problem
to solve is to find this suitable initial condition. To do this, we impose that
z∗(t′) = ψt′(y)(1, 0). First, we will see in this section under what assump-
tions we will have exponential decay of z(t) to zero. This will allow us to find
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a specific initial condition ψt′(y)(1, 0), which in turn will lead to the linear
form ψt′ in Section 2.2. We will need three lemmas, with the third Lemma
7 being the main one. The following Lemma enables us to prove Lemma 6,
which in turn allows us to prove the main Lemma 7.

Lemma 5. Let f : R → R be a periodic function such that

θ := −

∫ 1

0
f(s)ds > 0.

Let β ∈ (0, θ), ω > 0, and γ > 0. Consider the following equation:

d

dt
δ(t) = [f(t) + β]δ(t) + ωγ,

then there exists γ∗ > 0 such that for all γ < γ∗, the above equation has a

solution δ(t) that is 1-periodic and strictly positive, with maxt∈[0,1] δ(t) < 1.
The solution δ(t) is given by

δ(t) =
ωγ

1− exp(β − θ)

∫ t+1

t

exp(

∫ t+1

s

f(ν) + βdν)ds.

Lemma 6. Let be y ∈ R
n and consider the system (4) with b(t) and A

satisfying the stability assumptions [H1 − H4]. Let β ∈ (0, α), then there

exist ω > 0 and c > 0 such that for any continous matrix-valued function ζ
satisfying ‖ζ‖ < c and for any solution z(t) = (z∗(t), zn+1(t)) of system (4)
with an initial condition z(t′) = z ∈ R

n, we have:

∀s > t′ : zn+1(s) = 0

=⇒ ‖z(t)‖ < ω exp(−β(t− t′))[‖z‖ + ‖y‖], ∀t ∈ [t′, s].

Proof. Let z(t) = (z∗(t), zn+1(t)), where z∗(t) := (zj(t))
n
j=1) is a solution to

the linear system (4) with the initial condition z(t′) = z ∈ R
n. Suppose that

zn+1(T ) = 0. By integrating (4), we obtain

zn+1(t
′) = −

∫ T

t′
〈a(s), z∗(s) + es,t

′

y〉pt
′,sds. (5)

Let β < α. Let cz,y = ‖z‖+ ‖y‖, so for all c̃ > 1, we have ‖z‖ < c̃cz,y, and
there exists ǫ > 0 such that ‖z∗(t)‖ < c̃cz,y exp(−β(t− t′)). Define

T∗ = sup{t′ ≤ s ≤ T∗ : ‖z∗(s)‖ < c̃cz,y exp(−β(s− t′))},

‖z∗(t)‖ < c̃cz,y exp(−β(t− t′)) ∀t ∈ [t′, T∗[. (6)
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The strategy is to find a particular constant M such that T∗ ≥ T . By
contradiction, assume that T∗ < T . By integrating (4) and using (5), we
obtain for all t ∈ [t′, T∗[

|zn+1(t)| =
∣

∣

∣
pt,t

′

[

zn+1(t
′) +

∫ t

t′
〈a(s), z∗(s) + es,t

′

y〉, pt
′,sds

]
∣

∣

∣

= pt,t
′

∣

∣

∣

∫ T

t

〈a(s), z∗(s) + es,t
′

y〉pt
′,sds

∣

∣

∣

< cz,yca exp(cb + ca)

∫ T

t

exp(−(βs − t′))ds

+ cacz,y exp(cb + ca)

∫ T

t

exp(−α(s − t′) + cb)ds

<
2cac̃cz,y

β
exp(2cb + ca) exp(−β(t− t′)). (7)

Let ζ be a continuous matrix with ‖ζ‖ < c, then from equation (4), we have
the following two inequalities for zi(t) and −zi(t)

|
d

dt
zi(t)− b(t)zi(t)| < cc̃cz,y[

2ca
β

exp(2cb + ca) + 1] exp(−β(t− t′))

+ cc̃cz,y exp(cb)) exp(−β(t− t′)). (8)

Let zi(t) = δi(t) exp(−β(t − t′))c̃cz,y, t ∈ [t′, T∗[. We have |δi(t)| ≤ 1 on
[t′, T∗[. Substituting into the last equation, we have

|
d

dt
δi(t)− [b(t) + β]δi(t)| < c[

2ca
β

exp(2cb + ca) + 1 + exp(cb))].

By definition of T∗ there exists i ∈ {1, . . . , n} such that |δi(T∗)| = 1. We will
use Lemma 5 to obtain a contradiction.
Lemma 5 implies that there exists c∗ > 0 such that for every c ∈ (0, c∗) there
exists a strictly positive 1-periodic function solution of the equation

d

dt
δ(t) = [b(t) + β]δ(t) + c[

2ca
β

exp(2cb + ca) + 1 + exp(cb))],

such that maxt∈[0,1] δ(t) < 1. Let c̃ > 1 be such that 1
c̃
< δ(t′); thus,

δi(t
′) ≤ ‖z‖

c̃cz,y
≤ 1

c̃
< δ(t′). There exists ǫ′ > t′ such that |δi(t)| < δ(t) on

[t′, ǫ′[; let T0 = sup{t′ ≤ s ≤ T0 : |δi(s)| < δ(s)}. If T0 ∈ (t′, T∗), then
|δi(T0)| = δ(T0). Without loss of generality, assume that δi(T0) = δ(T0),
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then we obtain

d

dt
|δi(T0)| < [b(t) + β]|δi(T0)|+ c[

2ca
β

exp(2cb + ca) + 1 + exp(cb))]

= [b(t) + β]δ(T0) + c[
2ca
β

exp(2cb + ca) + 1 + exp(cb))]

=
d

dt
δ(T0).

Contradiction. Thus, T0 > T∗, which implies δi(T∗) < 1, contradicting the
definition of T∗. Therefore, for all t ∈ [t′, T ], we have

‖z∗(t)‖ < ω exp(−β(t− t′))[‖z(t′)‖+ ‖y‖]

for some constant ω = c̃max(1, 2 exp(2cb + ca)ca).

The previous Lemma does not provide exponential decay of a solution
over [t′,+∞[. To achieve this, the strategy in the following Lemma is to con-
sider intervals [0, T ] from the previous Lemma, gradually increasing in size.
We will approximate a solution zy(t) with an initial condition zy(t

′) using
solutions that satisfy the previous lemma. This allows us to demonstrate the
existence of a solution zy(t) that exponentially decays to zero over [t′,+∞[.
We will also localize the initial condition zy(t

′). In order to simplify the
notation, denote

W := (1, 0) ∈ R
n+1.

Lemma 7. Let be y ∈ R
n and consider the system (4) with b(t) and A

satisfying the stability assumptions [H1−H4]. Let β ∈ (0, α). Suppose that

there exists a sequence solutions
(

zm(t) = (z∗m(t), zn+1,m(t))
)

m∈N

of (4)

with initial condition zm(t′) = zt′,mW for some zt′,m ∈ R such that

zn+1,m(tm) = 0, ∀m ∈ N,

where (tm)m∈N is a real sequence that tends to infinity. Then there exist

k > 0 and c > 0 such that for any continuous matrix-valued function ζ
satisfying ‖ζ‖ < c there exists a solution zy(t) = (z∗y(t), zn+1,y(t)) of system

(4) with initial condition zy(t
′) = zy ∈ R

n such that

‖zy(t)‖ < k exp(−β(t− t′))‖y‖, ∀t ≥ t′.

Moreover, there exists a subsequence (zmk
(t′))k of (zm(t′))m such that

zy(t
′) = lim

k→+∞
zmk

(t′).



8 W. Oukil

Proof. Let zm(t) and (tm)m satisfy the assumptions of this Lemma. The
Lemma 6 implies that

∃ω > 0 : ‖zm(t)‖ < ω exp(−β(t− t′))[‖y‖ + ‖zm(t′)‖], ∀t ∈ [t′, tm].

The idea is to show that there exists c̃ > 0 such that ‖zm(t′)‖ < c̃‖y‖
and then extract a convergent subsequence of zm(t). Let be c > 0 that we
determine later. Let ζ be a continuous matrix-valued function such that
‖ζ‖ < c. Recall that the function s 7→ ζi(s) is define in the Equation (3).
By integrating (4) for all t ∈ [t′, tm] and all i = 1, . . . , n, we have

zi,m(t) = et,t
′

zi,m(t′) + gi,m(t),

where the function gm := (gi,m)ni=1 satisfies the flowing equation

|gi,m(t)| = |et,t
′

∫ t

t′
〈ζi(s), zn+1,m(s)1 + z∗m(s) + es,t

′

y〉et
′,sds|

< c(2ω + exp(cb))[‖y‖ + ‖zm(t′)‖]et,t
′

∫ t

t′
exp((α − β)(s− t′))ds

< c(2ω + exp(cb)) exp(cb)[‖y‖ + ‖zm(t′)‖]
exp(−β(t− t′))

α− β
.

Since zn+1,m(tm) = 0, and by integrating (4), we deduce that zn+1,m(tm) = 0
if and only if

∫ tm

t′
〈a(s), es,t

′

y〉pt
′,sds = −

∫ tm

t′
pt

′,s〈a(s), gm(s)〉ds

− zi,m(t′)

∫ tm

t′
〈a(s),1〉 exp(−

∫ s

t′
〈a(ν),1〉dν)ds.

We deduce that

|zi,m(t′)|
∣

∣

∣
1− exp(−

∫ tm

t′
〈a(x),1〉dx)

∣

∣

∣

< cca(2ω + exp(cb)) exp(cb)
‖y‖+ ‖zt′,m‖

α− β

∫ tm

t′
exp(−β(s − t′))pt

′,sds

+ |

∫ tm

t′
〈a(s), es,t

′

y〉pt
′,sds|.

For c ≈ 0 and m→ +∞, we will have

|zi,m(t′)| <

[

c ca(2ω+exp(cb))
β(α−β) + ca

α

]

exp(2cb + ca)

1− cca(2ω + cb) exp(2cb + ca)
1

β(α−β)

‖y‖,
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which implies that (‖zm(t)‖)m is uniformly bounded on each interval [t′, tm].
Furthermore,

‖zm(t)‖ < ω exp(−β(t− t′))[‖y‖ + ‖zm(t′)‖] < k exp(−β(t− t′))‖y‖,

where

k := ω
[

1 +
exp(2cb + ca)

[

c ca(2ω+exp(cb))
β(α−β) + ca

α

]

1− cca(2ω + cb) exp(2cb + ca)
1

β(α−β)

]

.

Therefore, we can extract a convergent subsequence that converges to a
solution zy(t) of (4) and satisfies

‖zm(t)‖ < k exp(−β(t− t′))‖y‖.

2.2 Ingredients for the linear form ψt′

In this section, we will show the existence of a family of solutions to the
system (4) that satisfies the assumptions of Lemma 7. To do this, we only
need to determine the initial conditions zm(t′) = zt′,mW . Note that it is
sufficient to determine the sequence of real numbers (zt′,m)m. In this section,
we consider b(t) and A satisfying only the stability assumptions [H1 −H4]
without distinction in the matrix ζ. This allows us, in particular, to deduce
the linear Main result (4). To obtain more information about the solutions
zm(t) of Lemma 7, we will express them in terms of the fundamental matrix.

Let St,t′ = {st,t
′

i,j }1≤i≤n+1
1≤j≤n

be the fundamental matrix of the homogeneous

linear system associated to the system (4) as follows:

{

ẋ∗(t) = b(t)x∗(t) + ζ(t)[xn+1(t)1 + x∗(t)], x∗(t) = (xj(t))
n
j=1,

ẋn+1(t) = [b(t) + 〈a(t),1〉]xn+1(t) + 〈a, x∗(t)〉,
(9)

where a(s) is given by Equation (3). The solution z(t) = (z∗(t), zn+1(t)) of
(4) with initial condition z(t′) ∈ R

n can be written in terms of the funda-
mental matrix as follows:

z∗(t) = St,t′

∗ z(t′) +Dt,t′

n y, (10)

zn+1(t) = pt,t
′

zn+1(t
′) + pt,t

′

∫ t

t′
〈a(s), Ss,t′

∗ z(t′)〉pt
′,sds

+ pt,t
′

∫ t

t′
〈a(s),Ds,t′

n y + es,t
′

y〉pt
′,sds, (11)
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where St,t′

∗ = {st,t
′

i,j }1≤i,j≤n and Dt,t′

n is the square diagonal matrix-valued

function of diagonal the vector-valued function (st,t
′

n+1,j)
n
j=1. As mentioned

earlier, we aim to show the existence of solutions to the system (4) that
satisfy the assumptions of Lemma 7. In Lemma 7, we have zm(t′) = zt′,mW ,
so for a sequence (Tm)m tending to infinity such that zm,n+1(Tm) = 0 and
using the notation from the previous equation (11), the sequence of real
numbers (zt′,m)m must be defined as

zt′,m = −

∫ Tm

t′
〈a(s),Ds,t′

n y + es,t
′

y〉pt
′,sds

∫ Tm

t′
〈a(s), Ss,t′

∗ W 〉pt′,sds
.

In Lemma 8, we will show that this sequence (zt′,m)m is well-defined, i.e.,
the denominator of the quotient on the right-hand side of the equation is
nonzero.

Lemma 8. Let St,t′ = {st,t
′

i,j }1≤i≤n+1
1≤j≤n

be the fundamental matrix of

the homogeneous linear system (9) associated to the system (4). Let

St,t′

∗ = {st,t
′

i,j }1≤i,j≤n. Suppose that b(t) and A satisfy the stability assump-

tions [H1−H4]. Define

Ht,t′ :=

∫ t

t′
〈a(s), Ss,t′

∗ W 〉pt
′,sds, W := (1, 0), t ≥ t′. (12)

Then, for any β ∈ (0, α), there exists c > 0 such that for any continuous

matrix-valued function ζ with norm ‖ζ‖ < c, there exists Tβ > 0 such that

for all t ≥ Tβ , we have Ht,t′ 6= 0.

Proof. From equation (11), we deduce that z(t) = (St,t′

∗ W−zn+1(t), zn+1(t))
is a solution of the linear homogeneous system (9) with the initial condition
W , where zn+1(t) satisfies

zn+1(t) = pt,t
′

Ht,t′ , t ≥ t′.

So, z(t) = (St,t′

∗ W − zn+1(t), zn+1(t)) is, in particular, a solution of the
nonhomogeneous linear equation (4) with y = 0 and satisfies the assumptions
of Lemma 7. Since y = 0, we have ‖z(t)‖ ≡ 0, which contradicts the initial
condition z(t′) =W .

Therefore, in the following proposition, we show that the system (4)
admits a sequence of solutions that satisfy the assumptions of Lemma 7.
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Proposition 9. Let be y ∈ R
n and consider the system (4) with b(t) and A

satisfying the stability assumptions [H1 − H4]. Let β ∈ (0, α). Then there

exist c > 0 and k > 0, such that for any continuous matrix ζ with ‖ζ‖ < c
there exists a solution zy(t) = (z∗y(t), zn+1,y(t)) of (4) such that

‖zy(t)‖ < k exp(−β(t− t′))‖y‖, ∀t ≥ t′,

and such that zy(t
′) = ψt′(y)W , where

ψt′(y) = lim
tm→+∞

−1

Htm,t′

∫ tm

t′
〈a(s),Ds,t′

n y + es,t
′

y〉pt
′,sds,

and where (tm)m is a real sequence that tends to infinity, and Htm,t′ is given

by Lemma 8.

Proof. According to Lemma 8, for any sequence (tm)m such that tm > Tβ,
we have Htm,t′ 6= 0. From (11), the solution zm(t) = (z∗m(t), zn+1,m(t)) of
(4) with the initial condition zm,t′W such that

zm,t′ = −
1

Htm,t′

∫ tm

t′
〈a(s),Ds,t′

n y + es,t
′

y〉pt
′,sds,

satisfies:

zn+1,m(tm) = 0 = pt
′,tzm,t′H

tm,t′

+ = pt
′,t

∫ tm

t′
〈a(s),Ds,t′

n y + es,t
′

y〉pt
′,sds.

According to Lemma 7, there exists a solution zy(t) such that
‖zy(t)‖ < k exp(−β(t− t′))‖y‖ for all t ≥ t′, with zy(t

′) = ψt′(y)W , where

ψt′(y) = − lim
tmk

→∞

1

Htmk
,t′

∫ tmk

t′
〈a(s),Ds,t′

n y + es,t
′

y〉pt
′,sds.

2.3 Fundamental matrix decomposition

Finally, we will prove Main results (3) and (4) in the context of linear sys-
tems. To ensure consistency in the proof, we will first demonstrate the
general case, which is the second linear Main result (3) that does not require
the matrix ζ(t) to be normalizing.
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Proof of the second linear Main result (3): General Case.

• Let’s show that ‖Rt,t′ [y + ψt′(y)1]‖ decreases exponentially:

For any β > 0 and ‖ζ‖ < c, where c is defined by Lemma 7, let ψt′(y)
given by the previous Proposition 9. WE have

Rt,t′y = −ψt′(y)R
t,t′

1 +Rt,t′ [y + ψt′(y)1]. (13)

Let Rt,t′ [y + ψt′(y)1] = zn+1(t)1 + z∗(t) + et,t
′

y with zn+1(t) being a
solution with the initial condition zn+1(t

′) = 0 of the equation

żn+1(t) = [b(t) + 〈a(t),1〉]zn+1(t)

+ 〈a(t), Rt,t′ [y + ψt′(y)1]− zn+1(t)1〉.

Thus, z(t) = (z∗(t), zn+1(t)) is a solution of the nonhomogeneous linear
equation (4). From equation (13), we deduce that it has the initial
condition z(t′) =Wψt′(y). Proposition 9 implies that

‖z(t)‖ < k exp(−β(t− t′))‖y‖, ∀t ≥ t′.

Hence, ‖Rt,t′ [y + ψt′(y)1]‖ < [k + exp(cb)] exp(−β(t − t′))‖y‖ for all
t ≥ t′.

• Let’s show that when the system has a solution that does not decay to
zero exponentially, then ψt(y) = ψs(R

s,ty):

Suppose that the system (2) has a solution that does not exponentially
decay to zero. Let v(t) be this solution. We have:

Rt,sRs,t′y = ψt′(y)v(t)−Rt,t′ [y − ψt′(y)v(t
′)]

= ψs(R
s,t′y)v(t)

−Rt,s[Rs,t′y − ψs(R
s,t′y)v(s)].

Implies

[ψt′(y)− ψs(R
s,t′y)]v(t)

= Rt,s[Rs,t′ψt′(y)v(t
′) + ψs(R

s,t′y)v(s)].

Since the right-hand side of the last equation satisfies

‖Rt,s[Rs,t′ψt′(y)v(t
′) + ψs(R

s,t′y)v(s)]‖

< k[exp(−β(t− t′)) + exp(−β(t− s))]‖y‖.
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While the left-hand side is a linear form multiplied by the function
v(t), which does not decay exponentially to zero, we must have

ψt′(y)− ψs(R
s,t′y) = 0, ∀t′ ∈ R,∀s ≥ t′.

Now, we will prove the first linear result (4). We consider the particular
case where ζ(t) is a normalizing matrix. By Definition 2, the system (2) has
a solution v(t) := (vj(t))

n
j=1 such that

inf
t≥t′

‖v(t)‖ > 0, and sup
t≥t′

‖v(t)‖ < +∞.

We denote in the following

α− = inf
t≥t′

‖v(t)‖ > 0, and α+ = sup
t≥t′

‖v(t)‖ < +∞.

We define in the proof below the linear form ψt′ as

ψ̃t′(y) =
ψt′(y)

ψt′(v(t′))
,

where ψt′ is defined by the previous Proposition 9. We note that by unique-
ness, ψ̃t′ is defined as

ψ̃t′(y) = lim
t→∞

∫ t

t′
〈a(s),Dn(s)y + es,t

′

y〉pt
′,sds

∫ t

t′
〈a(s),Dn(s)v(t′) + es,t′v(t′)〉pt′,sds

.

Proof of Main result (4).
Without loss of generality, we denote ψt′ := ψ̃t′ .

• Let’s prove ψt(R
t,t′v(t′)) = 1:

By the definition of ψt′ , we have ψt(v(t)) = 1 for all t ∈ R. Therefore,

ψt(R
t,t′v(t′)) = 1 = ψt′(v(t

′)), ∀t′ ∈ R ∀t ≥ t′. (14)

• Construction of the linear form ψt:
We have

Rt,t′v(t′) = v(t) = −ψt′(v(t
′))Rt,t′

1 +Rt,t′ [v(t′) + ψt′(v(t
′))1].
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According to Proposition 9, we have ‖ψt′(v(t
′))‖ < K‖v(t′)‖ < kα+

for every fixed t′ ∈ R. Furthermore,

|ψt′(v(t
′))|‖Rt,t′

1‖ = ‖v(t) −Rt,t′ [v(t′) + ψt′(v(t
′))1]‖

> ‖v(t)‖ − ‖Rt,t′ [v(t′) + ψt′(v(t
′))1]‖

> α− − k exp(−β(t− t′))‖v(t′)‖

> α− − α+k exp(−β(t− t′)), ∀t′ ∈ R, .

We integrate over a compact of length ω fixed such that 1 << ω < +∞;
let t = t′ + ω, we have from (2): ‖Rt,t′

1‖ < exp((cb + ca +D∗)ω)

|ψt′(v(t
′))| >

α− − α+k exp(−βω)

exp((2α + cb + ca +D)ω)
> 0, ∀t′ ∈ R, ∀t ≥ t′. (15)

Let’s define

ψt′(y) =
ψt′(y)

ψt′(v(t′))
.

• From (15) and according to Proposition 9, there exists k1 > 0 such
that |ψt′(y)| < k1‖y‖.

• Exponential decay:
According to equation (14) for all y ∈ R

φt(y) = ψt′(y)v(t)−Rt,t′ [y − ψt′(y)v(t
′)]

= ψt′(y)v(t)

+Rt,t′
[

y − ψt′(y)1 − (ψt′(y)v(t
′)−

ψt′(y)

ψt′(v(t′))
ψt′(v(t

′))1)
]

= ψt′(y)v(t)

+Rt,t′
[

y − ψt′(y)1 − (ψt′(y)v(t
′)− ψt′(ψt′(y)v(t

′))1)
]

.

According to the previously demonstrated linear Main result (3), there
exists k∗ > 0 such that we have

‖Rt,t′ [y − ψt′(y)1]‖ < k∗ exp(−β(t− t′))‖y‖, ∀t ≥ t′

‖Rt,t′ [ψt′(y)v(t
′)− ψt′(ψt′(y)v(t

′))1] < k∗ exp(−β(t− t′))‖y‖,

• Finally, let’s show that ψt′(y) = ψs(R
s,t′y): We have

Rt,sRs,t′y = ψt′(y)v(t)−Rt,t′ [y − ψt′(y)v(t
′)]

= ψs(R
s,t′y)v(t)

−Rt,s[Rs,t′y − ψs(R
s,t′y)v(s)].
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Therefore,

[ψt′(y)− ψs(R
s,t′y)]v(t)

= Rt,s[Rs,t′ψt′(y)v(t
′) + ψs(R

s,t′y)v(s)].

Since mint≥t′ ‖v(t)‖ = α− > 0 and as the right-hand side of the last
equation verifies

‖Rt,s[Rs,t′ψt′(y)v(t
′) + ψs(R

s,t′y)v(s)]‖

< k[exp(−β(t− t′)) + exp(−β(t− s))]‖y‖.

Thus,

ψt′(y)− ψs(R
s,t′y) = 0, ∀t′ ∈ R,∀s ≥ t′.

We have studied a class of linear systems perturbed by a matrix-valued
function ζ. We have shown that the space R

n decomposes into a direct sum of
subspaces R1⊕W where W is a manifold of dimension n−1 and exponentially
stable. In the next section, we will use these results to demonstrate the
stability for the Winfree model.

3 Non-linear result: Exponential stability for the

Winfree model

The Winfree model is given by the following differential equation











ẋi = ωi − κσ(x)R(xi), t ≥ 0, x = (xi)
n
i=1,

σ(x) := 1
n

∑n
j=1 P (xj), ∀x = (xi)

n
i=1 ∈ R

n,

supx∈RP (x)R(x) > 0, P,R ∈ C2(R) are 2π-periodic,

(16)

where n ≥ 1 is the number of oscillators, σ(x) is the mean field interaction,
xi(t) is the phase of the i-th oscillator, and x(t) = (xi(t))

n
i=1 is the global

state of the system. We assume that the natural frequencies are chosen
indifferently in some interval about ω = 1,

ωi ∈ (1− γ, 1 + γ), where γ ∈ (0, 1). (17)
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The coupling strength κ is taken in the interval (0, 1). We first define the
notions of invariance and stability. Let n ∈ N

∗ and F : R
n → R

n be a C1

vector field. Denote DF its Jacobian and assume

max{ sup
z∈Rn

‖F (z)‖, sup
z∈Rn

‖DF (z)‖} <∞.

where ‖.‖ is the usual matrix norm. Let φt : R
n → R

n be the flow of the
autonomous system

ẋ = F (x), t ≥ 0. (18)

Definition 10 (Invariance). Let C ⊂ R
n be an open set. We say that C is

φt-positively invariant for the system (18), if φt(C) ⊂ C for all t ≥ 0.

Definition 11 (Stability). Let C ⊂ R
n be an open set. We say that the

system(18) is φt-positively stable on C, if C is φt-positively invariant and

∃λ > 0, ∀x ∈ C, ∃δ > 0, ∀y ∈ C :

‖x− y‖ < δ =⇒ ‖φt(x)− φt(y)‖ ≤ λ‖x− y‖, ∀t ≥ 0.

Definition 12 (Exponential Stability). Let C ⊂ R
n be an open set. We

say that the system (18) is φt-positively exponential stable on C, if it is φt-
positively stable on C and there exist β > 0 such that for every x ∈ C there
exists a subset Cx ⊂ C such that

∀y ∈ Cx, ∃kx,y > 0 :

‖φt(x)− φt(y)‖ < kx,y exp(−β(t− t0)), ∀t ≥ 0.

Let Φt be the flow of the Winfree model (16). The existence of a synchro-
nization state in the Winfree model is proved in [8] for every number n of
oscillators and every choice of natural frequencies. Using the positive in-
variant cone, the stability, as defined in the Definition 11, is proved in [8]
independently of the number of oscillators and the distribution of the natural
frequencies. We recall the main synchronization hypothesis used in [8] ,

∫ 2π

0

P (s)R′(s)

1− κP (s)R(s)
ds > 0, ∀κ ∈ (0, κ∗), (H)

where κ∗ is the locking bifurcation critical parameter defined by

κ∗ :=
(

sup
x∈R

P (x)R(x)
)−1

. (19)
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We proved in [7] there exists D∗ > 0 such that for every D ∈ (0,D∗) there
exists an open set

UD ⊂ U :=
{

(γ, κ) ∈ (0, 1) × (0, κ∗) : 1− γ −
κ

κ∗
> 0

}

containing in its closure {0}× [0, κ∗], such that for every n ≥ 1 and every pa-
rameter (γ, κ) ∈ UD there exists a C2 2π-periodic function ∆γ,κ : R → (0,D)
and a Φt-positively invariant open set Cn

γ,κ,D independent of choice of the
natural frequencies (ωi)

n
i=1,

Cn
γ,κ,D :=

{

x = (xi)
n
i=1 ∈ R

n : max
i,j

|xj − xi| < ∆γ,κ

( 1

n

n
∑

i=1

xi

)}

. (20)

We proved in [8] for every D ∈ (0,D∗) , for every parameter (γ, κ) ∈ UD,
for every n ≥ 1 and every choice of natural frequencies (ωi)

n
i=1 as in (17),

the Winfree model (16) is Φt-positively stable on Cn
γ,κ,D. We prove in the

following Theorem

Theorem 13. Consider the Winfree model (16) and assume that hypothesis

(H) is satisfied. Then there exists D > 0 such that for every parameter

(γ, κ) ∈ UD, for every n ≥ 1 and every choice of natural frequencies (ωi)
n
i=1

as in (17), the Winfree model (16) is Φt-positively exponential stable on

Cn
γ,κ,D.

We consider the Winfree model (16) and its associated flow Φt. We recall
that the Winfree model satisfies the hypothesis (H). The linearized Winfree

model is given by























dy

dt
= DW(Φt(x))y, t ≥ 0, y = (yi)

n
i=1,

Wi(x) := ωi − κσ(x)R(xi), x = (xi)
n
i=1 ∈ R

n,
∂Wi

∂xj
= −κ

[

σ(x)R′(xi)δi,j +
R(xi)P

′(xj)

n

]

.

(21)

We fix (γ, κ) ∈ U and an initial condition x∗ ∈ Cn
γ,κ,D defined in (20).

We denote by Rt,0
x∗

the fundamental matrix of (21). Let x(t) = Φt(x∗) be the
solution of (16) starting at x∗, and

µ(t) :=
1

n

n
∑

i=1

xi(t), ∀t ≥ 0.
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The main idea of the proof is to rewrite the linearized Winfree model by
making a change of time t ↔ s and a linear change of the tangent vectors
y ↔ z. In Lemme 3.1 of [7] we proved that the velocity of µ is strictly
positive,

dµ

dt
≥ 1− κ/κ∗ − γ − κMD > 0, (22)

and for every x ∈∈ Cn
γ,κ,D we have

inf
t≥0

‖
d

dt
Φt(x)‖ > 0. (23)

Let be s∗ := µ(0). The map

t ∈ [0,+∞) 7→ µ(t) ∈ [s∗,+∞)

is a smooth diffeomorphism admitting as inverse map

s ∈ [s∗,+∞) 7→ τ(s) ∈ [0,+∞).

Define for t = τ(s) ⇔ s = µ(t),

v(s) :=
dµ

dt
(t),

hx,i(t) :=
κσ(x(t))R′(xi(t))

v(s)
−

κP (s)R′(s)

1− κP (s)R(s)
,

hx,i,j(s) := −
κR(xi(t))P

′(xj(t))

v(s)
+

κP ′(s)R(s)

1− κP (s)R(s)
.

Using the change of variable zi(s) = yi ◦ τ(s), equation (21) becomes,

dzi
ds

(s) =
κP (s)R′(s)

1− κP (s)R(s)
zi + h̃x,i(t)zi

−
1

n

n
∑

j=1

( κP ′(s)R(s)

1− κP (s)R(s)
− hx,i,j(s)

)

zj, ∀s ≥ s∗, ∀i := 1, . . . , n,

In other words,

d

ds
z(s) = [b(s)IN +A(s) + ζx(s)]z(s), (24)

z(t) := (zi(t)
n
i=1, z(0) = z, t ≥ 0,



Exponential stability for the mean field system 19

where A(s) = {ai,j(s) = aj(s)}1≤i,j≤N is a rank-1 matrix, and b(s) is a
function defined as follows:

aj(s) = −
1

n

κP ′(s)R(s)

1− κP (s)R(s)
, j = 1, . . . , n, and b(s) =

κP (s)R′(s)

1− κP (s)R(s)
,

satisfying

∫ 1

0
b(s) +

n
∑

j=1

aj(s)ds = ln
(1− κP (1)R(1)

1− κP (0)R(0)

)

= 0,

and by the hypothesis (H) we have

∫ 1

0
b(s)ds < 0,

meaning the stability assumptions [H1−H4] are satisfied. The system (21)
can be written in the form of the linear systems (2). The fact, Cn

γ,κ,D is

Φt-positively invariant, then

max
1≤i≤n

sup
t≥0

|xi(t)− µ(t)| < sup
t≥0

∆γ,κ(µ(t)) < D,

The there exists c∗ > 0 such that

∀x ∈ Cn
γ,κ,D : ‖ζx‖ < c∗D. (25)

In order to simplify the notation, denote

∀x ∈∈ Cn
γ,κ,D : wx(t) :=

d

dt
Φt(x), ∀t ≥ 0.

Remark that for every x ∈∈ Cn
γ,κ,D the function t 7→ wx(t) is a solution of

the system (21). Respectively to a change of variables mentioned above, the
vector-valued function vx(s) = wx ◦τ(s) is solution of the system (24). Since
the filed of the Winfree model is uniformly bounded and by the Equation (23)
we deduce that for every x ∈∈ Cn

γ,κ,D the solution s 7→ vx(s) is a normalizing
solution of (24) associated to the matrix ζx as defined in the Definition 2.
In other words, the matrix-valued function ζx is a normalizing matrix.

Proof of Theorem (13). According to the Equation (25) an the Main result
(4), we deduce for every β ∈ (0, α) there exist k > 0 and and D > 0 such
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that for every n ≥ 1 and every parameter (γ, κ) ∈ UD and every x ∈ Cn
γ,κ,D

there exists a linear form ψx,s : R
n → R such that

∀y ∈ R
n : ‖Rs,s∗

x [y − ψx,s∗(y)vx(s∗)]‖ < k‖y‖ exp(−β(s− s∗)), ∀s ≥ s∗,
(26)

where (s, s′) ∈ R × R 7→ Rs,s′

x is the fundamental matrix of the system (24).
Furthermore, the solution z(s) with initial condition z(s∗) = z ∈ R

n can be
written as follows:

z(s) = Rs,s∗
x z = ψx,s∗(z)vx(s)

+Rs,s∗[z − ψx,s∗(z)vx(s∗)], ∀s ≥ s∗.

Without loss of generality, denote ψx,µ(0) := ψx and R
µ(t)
x := R

µ(t),µ(0)
x .

Respectively to the considered change of variables, we get

y(t) = dΦt(x)y = Rµ(t)
x y = ψx(y)wx(t) (27)

+Rµ(t)
x [y − ψx(y)wx(0)], y(0) = y, ∀t ≥ 0.

where we recall that wx(t) = d
dt
Φt(x). Without loss of generality, let

x ∈ Cn
γ,κ,D fixed. The idea is to find trajectories of the form s ∈ [0, 1) 7→ z(s)

connecting z(0) := x and z(1) := y ∈ Cn
γ,κ,D such that for all s ∈ [0, 1], the

quantity dz(s)
ds

lies in the kernel of the linear form ψz(s). This allows us to
use equation (27) and cancel the term that does not exponentially decay to
zero as follows:

Φt(y)− Φt(x) =

∫ 1

0
dΦt(z(s))

dz(s)

ds
ds

=

∫ 1

0
ψz(s)

(dz(s)

ds

) d

dt
Φt(z(s))ds

+

∫ 1

0
R

µ(t)
z(s)

[dz(s)

ds
− ψz(s)

(dz(s)

ds

) d

dt
Φ0(z(s))

]

ds

By the Main result (4), we have

ψz(ξ,s)

( d

dt
Φ0(z(ξ, s)))

)

= 1,

For that the trajectory dz(s)
ds

lies in the kernel of the linear form ψz(s), it is
sufficient that for a given ξ ∈ R

n the trajectory z(s) := z(ξ, s) satisfies the
following differential equation:

d

ds
z(ξ, s) = ξ − ψz(ξ,s)(ξ)

d

dt
Φ0(z(ξ, s))), z(ξ, 0) = x, s ∈ [0, 1]. (28)
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By the Main result (4), we have

∀y ∈ Cn
γ,κ,D, ∀ξ ∈ R

n : |ψy(ξ)| < k‖ξ‖, (29)

and by definition of the field of the Winfree model, we have

k̃ := sup
y∈Rn

|
d

dt
Φ0(y)| < +∞,

then

‖
d

ds
z(ξ, s)‖ < (1 + kk̃)‖ξ‖, ∀s ∈ (0, 1), ∀ξRn.

Since z(ξ, 0) = x ∈ Cn
γ,κ,D. Then there exists ǫx > 0

∀ξ ∈ R
n, ‖ξ‖ < ǫx : z(ξ, 1) ∈ Cn

γ,κ,D.

Define
Bǫx := {ξ ∈ R

n : ‖ξ‖ < ǫx}.

By definition of the field of the Winfree model, the term d
dt
Φ0(z(ξ, s))) in the

Equation (28), implies that there exists an open non-empty subset B̃ǫx ⊂ Bǫx

such that
∀ξ ∈ B̃ǫx : z(ξ, 1) 6= x.

Define the subset Cx ⊂ Cn
γ,κ,D as

Cx :=
{

z(ξ, 1) : ξ ∈ B̃ǫx

}

.

The equations (29) and (27) implies that the Winfree model (16) is Φt-
positively strong stable on Cn

γ,κ,D. For all y ∈ Cx:

‖Φt(y)− Φt(x)‖ < kkx,y exp(−βµ(t)), ∀t ≥ 0,

where kx,y := maxs∈[0,1] supξ∈Bǫx
‖dz(s,ξ)

ds
‖. We recall that by Equation (22)

we have

β̃ := inf
t≥0

dµ

dt
> 0,

which implies µ(t) > β̃t for all t ≥ 0.

In conclusion, this section has highlighted the relationship between the
synchronization hypothesis and the stability hypothesis. The Winfree Model
satisfying the synchronization hypothesis can be linearized around synchro-
nized orbits and satisfy the stability hypothesis, which allows us to deduce
the exponential stability.
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