
HAL Id: hal-04198637
https://hal.science/hal-04198637v1

Submitted on 7 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Guaranteed Visibility in Scatterplots with Tolerance
Loann Giovannangeli, Frédéric Lalanne, Romain Giot, Romain Bourqui

To cite this version:
Loann Giovannangeli, Frédéric Lalanne, Romain Giot, Romain Bourqui. Guaranteed Visibility in
Scatterplots with Tolerance. IEEE Transactions on Visualization and Computer Graphics, 2023,
pp.1-11. �10.1109/TVCG.2023.3326596�. �hal-04198637�

https://hal.science/hal-04198637v1
https://hal.archives-ouvertes.fr


Guaranteed Visibility in Scatterplots with Tolerance

Loann Giovannangeli, Frederic Lalanne, Romain Giot and Romain Bourqui

Fig. 1: Result of our method, GIST, on a dataset of 10000 points with a resolution of 2000×2000. Our algorithm guarantees that all
nodes are visible in the given resolution and maximizes both the node sizes and the preservation of the initial layout . GIST
convergence is greatly eased by the introduction of a tolerance factor to overlaps . The tolerance is minimized for the given resolution
and is at most 1 pixel large. Even zoomed in, the tolerance remains harmless.

Abstract—In 2D visualizations, visibility of every datum’s representation is crucial to ease the completion of visual tasks. Such a
guarantee is barely respected in complex visualizations, mainly because of overdraws between datum representations that hide parts of
the information (e.g., outliers). The literature proposes various Layout Adjustment algorithms to improve the readability of visualizations
that suffer from this issue. Manipulating the data in high-dimensional, geometric or visual space; they rely on different strategies with
their own strengths and weaknesses. Moreover, most of these algorithms are computationally expensive as they search for an exact
solution in the geometric space and do not scale well to large datasets.
This article proposes GIST, a layout adjustment algorithm that aims at optimizing three criteria: (i) node visibility guarantee (at least 1
pixel), (ii) node size maximization, and (iii) the original layout preservation. This is achieved by combining a search for the maximum
node size that enables to draw all the data points without overlaps, with a limited budget of movements (i.e., limiting the distortions
of the original layout). The method’s basis relies on the idea that it is not necessary for two data representations to be strictly not
overlapping in order to guarantee their visibility in visual space. Our algorithm therefore uses a tolerance in the geometric space to
determine the overlaps between pairs of data. The tolerance is optimized such that the approximation computed in the geometric
space can lead to visualization without noticeable overdraw after the data rendering rasterization. In addition, such an approximation
helps to ease the algorithm’s convergence as it reduces the number of constraints to resolve, enabling it to handle large datasets. We
demonstrate the effectiveness of our approach by comparing its results to those of state-of-the-art methods on several large datasets.

Index Terms—Guaranteed visibility, Layout adjustment, Overlap removal, Scatterplots

1 INTRODUCTION

Multidimensional data is frequently used in industrial scenarios (e.g.,
web analytics, biology, data science). The amount of data and their
number of dimensions becomes larger and larger, especially since the
rise of modern AI techniques that process datasets of thousands or even
millions of data samples. For instance, understanding the predictions
made by AI models systematically implies to study their input data to
understand their semantic. Hence, visualizing and exploring projections
of the models inputs or predictions, looking for clusters and outliers
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(e.g., misclassifications) [18, 19, 28, 37], becomes common. It therefore
becomes mandatory to design efficient visualizations to support their
exploration. One of the most admitted visualization techniques is the
scatterplot which represents data points as shapes in a 2D plan (or 3D
volume). The coordinates of these data points either represent their
values in a 2D sub-space of the original high-dimensional space; or are
computed using a dimensionality reduction technique (e.g., t-SNE [35],
UMAP [25]). However, scatterplots suffer from an occlusion issue that
straightforward methods such as opacity modulation cannot solve as
soon as the amount of data increases. The use of a 3D representation
with the ability to move the camera1 does not solve the issue when
the data is too complex (i.e., many points with high density areas).
In addition, 3D visualizations basically cannot resolve the occlusion
issue on their own as the medium on which they are consulted, i.e.,
monitors, necessarily flatten the rendered image. This hinders the
understanding of the visualization as some portion of the information
is hidden to the user. In particular, perception of local densities or

1https://projector.tensorflow.org/
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outlier identification in dense regions quickly becomes troublesome if
not impossible, whereas cluster and outlier identification are among the
most common tasks on complex data.

Many methods have been proposed in the literature to overcome
the overdrawing issue [6–10, 14–16, 24, 29, 30, 33]. These methods
belong to two categories depending on the space containing the data
they manipulate. In Geometric Space (GS) methods, the manipulated
data consists in a set of positions in the 2D plan associated to their
size, {{x,y,r},x,y,r ∈R}. On the other hand, Visual Space (VS) meth-
ods can also use the screen resolution, data point color or any other
rendering option to enhance the visualization of all data points. This
means that GS is included in VS. As one of the key goals of our work
is to enhance the visibility of each and every data point in an image,
this paper considers methods operating in VS. They do not have any
knowledge about the high-dimensional space that led into a scatterplot,
as opposed to Data space approaches (e.g., sampling [1, 5, 38]). The
GS methods results are projected in a VS by discretizing the space with
a fixed resolution, which can then be interpreted as a rasterized image.

GS methods [7–10, 14, 16, 29, 30, 33] produce exact solutions to
the overlap removal problem. While some of these methods strongly
rely on the scan line algorithm to process the data points sequentially
(e.g., [14, 16, 29, 33]), others model the overlap removal problem as
a stress optimization (e.g., [9, 10, 30]). However, none of them have
sub-quadratic complexity and they hardly scale well to large datasets.
This paper relaxes the strictness of the overlap removal task to focus
on the visibility of all data points. This approximation allows a better
scalability by reducing the computational cost.

In addition to data point positions, VS methods [6, 15, 24] also have
access to rendering parameters such as screen resolution, opacity or
data point screen sizes. In DGrid [15] and HaGrid [6] for instance, a
grid (screen) resolution is used to determine candidate positions such
that data points do not overlap. In ScatterplotUnfold [24], rendered
data point sizes are non-uniformly modified to remove overlaps and
enhance the visibility of outliers in sparse regions of the drawing. These
methods may have different objectives. For instance, DGrid generates
grid-like visualizations particularly compact in dense regions of data
points whereas the primary objective of ScatterplotUnfold is to preserve
the perception of the data points density distribution in the visualization.

Any point set visualization can be processed by these approaches
(e.g., scatterplot, symbol map). However, we focus on data projected
by dimension reduction algorithms because most approaches distort
the original data layout in a way that would be very harmful to non pro-
jected 2D data. This is particularly true when considering data where
dimensions have a semantic meaning (e.g., X-axis encodes chronologi-
cal years), methods that do not fully preserve the data orthogonal order
will produce a misleading visualization as inversions on the X-axis can
lead to severe misinterpretations. Such inversions are less harmful with
multidimensional data projections as the axes may not have a meaning,
the main information being the distance distribution of the elements.

The method presented in this paper, GIST (Guaranteed Visibility
in Scatterplots with Tolerance), belongs to the VS approach. The
algorithm focuses on data points’ visibility in a resolution taken as
input. More precisely, GIST optimizes three criteria: (i) nodes must be
visible with at least 1 pixel in a given resolution R, (ii) nodes must be
as wide as possible, and (iii) the initial layout must be preserved. The
interactive demonstration of GIST, available online in [11], illustrates
on multiple datasets the algorithm’s capability to adjust layouts to
maximize the nodes visibility on screen. As shown in the provided
examples, the overlap tolerance does not hinder the visualization.

The main contributions of the article can be summarized as follows:

• We propose GIST, an approximation of overlap removal algorithm
that produces a layout where data points can overlap up to a
certain tolerance. It therefore acts as a layout adjustment method
that proposes a unique trade-off between data points visibility and
initial layout preservation for a target screen resolution. When
data point visibility cannot be guaranteed at the target resolution,
GIST automatically finds a higher resolution to solve the task.

• We present the results of a quantitative comparison of 6 state-

of-the-art methods on a set of 48 scatterplots whose sizes vary
between 1000 and 150000 data points. These results are com-
pared to GIST results and emphasize the performance of the
proposed method.

The remainder of the article is organized as follows. Section 2
presents related works on GS and VS Overlap Removal methods. Sec-
tion 3 describes how GIST is built, while Section 4 presents its quan-
titative evaluation. Section 5 discusses some visual examples of the
Layout Adjustment methods, as well as some of GIST’s behaviors and
limitations observed during the evaluation. Finally, Section 6 concludes
the paper and proposes future works leads.

Notations: In the next, we use the word node to refer to the data
points as it is commonly admitted in the Layout Adjustment literature.
Let X ∈RN×2 be a layout of N nodes, where Xi is the position of the
node i in 2D. The radius of the circle representing node i is noted ri.
An input layout is denoted X0, while an adjusted solution is referred to
as X ′. The euclidean distance between nodes i and j is noted d(Xi,X j).

2 RELATED WORKS

This section presents state-of-the-art algorithms for both Geometric
Space (GS) and Visual Space (VS) approaches to overdraws removal.
As we define them, the GS is included in the VS. The distinction
between them is VS awareness of the rendering environment.

2.1 Geometric Space Algorithms (Nodes Dispersion)
A GS overdraw removal algorithm takes a set of positions and sizes
in some defined 2D space, and aims at strictly removing all the inter-
sections between the nodes. Such algorithms only take as input the
coordinates and sizes of the nodes. The main strategy to solve the
task is Nodes Dispersion where the initial layout is considered as a
reference distribution in the GS, and in which some constraints (i.e.,
overlaps) must be relaxed. This is achieved by moving the nodes, with
the additional goal to preserve the reference distribution in the GS.

A review of the Nodes Dispersion literature was presented in Chen et
al’s survey [3, 4]. PFS [29], PFS’ [14], FTA [16], RWordle-L [33] are
orthogonal iterative algorithms that rely on scan-line [7] to identify
overlaps in a layout and process them. VPSC [7, 8] and Diamond [26]
are two constraint-based algorithms that explicitly model the overlaps
(or non-overlaps) as a set of constraints to relax and optimize. Finally,
PRISM [9], GTree [30] and FORBID [10] model the distances to
preserve (i.e., between non-overlapped nodes) and those to satisfy (i.e.,
between overlapped nodes) as a stress function to optimize. Stress is
usually denoted σ and defined as:

σ(X) = ∑
i, j∈X

Wi j
(
d
(
Xi,X j

)
−δi j

)2 (1)

where δi j is an ideal distance defined between every pair of nodes
according to some criteria, usually in the high-dimensional space of the
original data (e.g., MultiDimensional Scaling [22], Graph Layout [2,20,
32]). Wi j is a weight factor commonly set to δ

−2
i j such that it is more

important to preserve the shortest distances than the longest ones. The
adaptation to Overlap Removal by Nodes Dispersion is achieved by
defining the ideal distances such that some distance is added between
overlapped nodes, while the distance between non-overlapped nodes
must be respected. It is then the role of a stress-optimization algorithm
to relax the model’s forces.

FORBID [10] is the closest method to GIST as it was used as a
backbone to build our algorithm. The algorithm’s originality is to inter-
lace two main components: a binary search for an optimal scale ratio,
and Nodes Dispersion modeled as stress and optimized by Stochastic
Gradient Descent [40]. The combination of these blocks enable it to
search a compromise between the preservation of the initial layout, and
the overlap-free layout’s compactness.

The main problem of these techniques is their computation’s expen-
siveness. Their complexity is quadratic on the number of nodes and the
requirement to strictly remove overlaps in the GS makes them unable
to efficiently scale to large datasets. Nevertheless, they remain state-of-
the-art in the Overdraw Removal field as, by design, they guarantee to



provide an overlap-free layout. Yet, it is common for such overlap-free
layouts to have dispersed the nodes so much that representing them in a
reasonable resolution makes them less than 1 pixel wide, and therefore
impossible to perceive.

In this article, we propose GIST to alleviate these flaws by lever-
aging one of these efficient Nodes Dispersion algorithms and making
it scale to larger datasets while constraining the produced layout in a
range where the nodes remain visible once projected into a reasonable
resolution for large datasets (e.g., 2000px wide).

2.2 Visual Space Algorithms
We call Visual Space (VS) algorithms the approaches in which data
rendering parameters (e.g., screen resolution, visual encoding such as
color and opacity) are available and even optimizable. In addition, while
GS algorithms aim at strictly satisfying some criteria, we argue that VS
methods can leverage approximations to make sure that the produced
visualization conveys the information encoded within the original data.
These approximations lead to distortions whose amplitude should be
quantified and minimized, but also enable faster processing.

ScatterplotUnfold [24] is an illustration of VS algorithms. Its goal is
to make sure that the produced visualization preserves the distribution
of node densities of the input layout while also trying to highlight
outliers. To achieve its goal, the algorithm moves nodes using a polar
packing algorithm and modifies their diameter to emphasize the node
densities. The produced visualization is made of nodes with various
diameters, some of them not even being 1 pixel wide. Overall, it does
efficiently preserve the distribution of densities of the original layout
while removing overdraws.

We also include grid-based algorithms in the VS category. By design,
such algorithms optimize node placements according to a grid size that
is directly or indirectly related to the produced screen resolution of the
visualization. DGrid [15] and HaGrid [6] are two examples of grid-
based overdraw removal algorithms. DGrid [15] recursively splits the
VS into subspaces in which nodes cannot overlap. In HaGrid [6], the
node coordinates are assigned using a space-filling curve whose recur-
sion depth is set to produce more or less compact layouts. While these
methods have a O(Nlog(N)) time complexity, they produce significant
deformation of the initial layout, in particular in dense regions.

Finally, we can include compact visualization algorithms in this
category as they also try to limit their VS usage (i.e., resolution) by
producing visualizations as compact as possible. By design, they also
remove overdraws by assigning every node to an exclusive position.
These algorithms contrast with the grid-based algorithms mentioned
above as they do try to minimize the grid size in which they produce
the visualization. This is not necessarily the case with grid-based
approaches for whom the target resolution can be modified in some
way. SSM [34] is a compact visualization algorithm that randomly
arranges nodes into a grid and swaps them until the layout satisfies
some dissimilarity metric. VRGrid [13] is another example of compact
arrangement method that computes Voronoi Tesselations to split the
VS and assign a cell and position to every node.

We consider that GIST is an approximate Node Dispersion tech-
nique in VS since it manipulates rendering parameters with the image
resolution, node diameters and tolerance in pixels. Nevertheless, it
also leverages a Node Dispersion technique in the GS to optimize node
movements and produce visualizations where nodes remain visible.

3 GIST ALGORITHM

This section describes GIST (Guaranteed vIsibility in Scatterplots with
Tolerance). The algorithm is built on two interlaced components: node
movements, and the search for the optimal node representation radius.
Its goal is to produce a layout in which (i) nodes are visible with at
least 1 pixel in a given resolution R, (ii) nodes are the largest possible,
and (iii) the initial layout is preserved. Finding a solution that proposes
a compromise between these criteria is what we later refer to as solving
the task. More specifically, GIST solves the task by combining a binary
search and a simulated Stochastic Gradient Descent (SGD). The nodes
are given a size in the visual space at each step in the binary search.
Then, they are moved according to a SGD algorithm optimizing a stress

Algorithm 1 GIST pseudo-code. Blue (resp. green) variables corre-
spond to values in the Geometric (resp. Visual) space.

1: Methods
2: visualToGeometric(vvv, RRR, XXX): returns the value corresponding

to vvv mapped from RRR’s VS to XXX’s GS
3: geometricToVisual(vvv, RRR, XXX): inverse of visualToGeometric
4: tolerance(DDD, RRR, XXX): returns the GS’s tolerance such that it does

not exceed 1 pixel and geometricToVisual(DDD−2∗ttt)> 1 in the VS
5: overlaps(XXX , DDD, ttt): returns the set of overlapped node pairs with

ttt tolerance
6: moveNodes(XXX , O): move overlapped pairs of nodes to optimize

stress by SGD [40]
7: end Methods
8:
9: Input Variables

10: XXX000: Initial layout, position of every node in GS
11: DDD: Nodes’ diameter
12: RRR: Target resolution
13: end Input Variables
14:
15: procedure GIST (XXX000, DDD, RRR)
16: mmmiiinnnDDDiiiaaammm← 111
17: mmmaaaxxxDDDiiiaaammm← geometricToVisual(DDD, RRR, XXX)
18: stopBS← f alse
19: XXX ′′′ ← XXX000

20: while not stopBS do
21: dddiiiaaammm← (mmmiiinnnDDDiiiaaammm + mmmaaaxxxDDDiiiaaammm)/2
22: XXX ← XXX ′′′

23: ttt ← tolerance(dddiiiaaammm, RRR, XXX)
24: O← overlaps(XXX , visualToGeometric(dddiiiaaammm), ttt)
25: XXX ← moveNodes(XXX , O)
26: f ail ← overlaps(XXX , visualToGeometric(dddiiiaaammm), ttt) 6= /0
27: if f ail then
28: mmmaaaxxxDDDiiiaaammm← dddiiiaaammm . reduce next diameter
29: else
30: XXX ′′′ ← XXX . save current solution
31: mmmiiinnnDDDiiiaaammm← dddiiiaaammm . increase next diameter
32: if mmmaaaxxxDDDiiiaaammm - mmmiiinnnDDDiiiaaammm < ε then
33: if XXX ′′′ = XXX000 then . re-start with higher RRR
34: RRR← RRR∗2
35: mmmiiinnnDDDiiiaaammm← 111
36: mmmaaaxxxDDDiiiaaammm← geometricToVisual(DDD, RRR, XXX)
37: else
38: stopBS← true
39: return XXX ′′′

function to remove existing overlaps, with a tolerance of at most 1 pixel
in the VS. If the overlaps are solved, the next step in the binary search
will make the nodes larger to maximize their size. If there remain
overlaps, the nodes are made smaller to ease the overlap constraints.

3.1 Search for Optimal Node Diameters with Tolerance

GIST’s input is a layout where every node has a position and diameter
in the Geometric Space (GS). To produce a layout that guarantees all
nodes remain visible (i.e., with at least 1 pixel) in a given resolution R,
it manages the layout in both the GS (for node movements optimization)
and the Visual Space (VS) (to guarantee nodes’ visibility). R is provided
as a target resolution but can be modified during the optimization if it
cannot lead to a solution. For instance, R is increased when R2 < N as
there would not be enough space to draw all nodes with at least 1 pixel.

As presented in Algorithm 1, the main building block of GIST is a
Binary Search (see line 20) for the optimal node diameters in the VS
defined by R. That is to say, the algorithm tries to produce a layout
where the nodes are as wide as possible in R and where all nodes are
almost equally visible. We say almost equally visible, because the
algorithm tolerates a few overlaps between the nodes as long as (i) this



overlap is not wider than 1 pixel in the VS of resolution R, and (ii)
the node diameters remain above 1 pixel considering that tolerance.
Doing so greatly helps the algorithm to converge, and guarantees that
nodes are visible. The tolerance can be sub-pixel as it remains useful
to the convergence once converted into the GS. Indeed, it would pro-
duce an overdraw-free visualization because of the image rendering
rasterization, while relaxing the strictness of the overlap removal con-
straints in the GS. As defined in lines 24 and 26 of Algorithm 1, the
tolerance is used when identifying overlaps. Two nodes i and j overlap
if d(Xi,X j)< ri + r j− t where t is the tolerance.

At every step P in the Binary Search (i.e., for a given diameter in
the VS of resolution R), the overlapped nodes are moved to optimize
a stress function (see line 25). The details of the node movements
computation is postponed to the next Section 3.2. If there are still
overlaps after the movements in the step P, then P+1 will try to solve
the task with smaller nodes, which simplifies the task (see line 28). If
there are no longer overlaps in step P, we save the current layout (line
30) and P+1 will be given a larger diameter (line 31). The algorithm
therefore searches the largest diameter of the nodes representation that
enables to solve the task.

Finally, if the difference between the bounds of the Binary Search
is smaller than some threshold value ε (typically set to 10−3 in our
experiments) the search is ended. At that point, if the task was not
solved (line 33–36), we consider that it cannot be solved in the current
resolution R and we re-start the algorithm with a higher one (here,
doubled as shown in line 34). Restarting the optimization entirely is
computationally expensive. However, it rarely happens in practice if
the target resolution provided to the algorithm is not irrelevant in regard
of the number of elements to draw. If the task was solved (see line 38),
the search is ended and the adjusted layout is returned.

3.2 Node Movements
As defined in the literature, they combine the constraints of (i) removing
overlaps and (ii) preserving the distances between non-overlapped
nodes by modeling them into a stress function (see Equation 1). Let
O∈N×N be the set of overlaps in a layout X , where (i, j)∈O if nodes
i and j overlap. Such a set of overlaps can be computed efficiently with
the scan-line algorithm [7], where constraints are softened with some
tolerance (see Section 3.1). The ideal distance to converge towards is
then defined between every pair of nodes according to their belonging
to O. As this paper considers circular node representations, the ideal
distance between overlapped nodes is set to the sum of their radiuses,
i.e., the shortest distance such that they do not overlap anymore.

Node movements are computed to optimize this stress by Stochastic
Gradient Descent [40]. This approach achieves state-of-the-art per-
formance in stress optimization and gives the capability to bound the
node movements to a budget by giving the algorithm a fixed number
of iterations to converge. However, the approach does not scale well
as it optimizes O(N2) distances. To alleviate this, we only optimize
distances between overlapped nodes in GIST. The ideal distance and
optimized stress can be formalized as:

δi j = ri + r j,(i, j) ∈ O (2)

σ(X) = ∑
(i, j)∈O

Wi j
(
d
(
Xi,X j

)
−δi j

)2 (3)

where Wi j is set to δ
−2
i j . As defined in [40], the optimization is achieved

by moving the nodes in direction of the stress’ gradient.

4 EVALUATION

This section presents the quantitative evaluation of GIST, as well as its
comparison with state-of-the-art algorithms.

4.1 Evaluation protocol
4.1.1 Metrics
The quality metrics considered in this evaluation are taken or inspired
from Li et al. [24] and Chen et al. [3, 4]. We made adjustments to
some selected metrics to better reflect their purpose. We also designed

two metrics to measure upscaling effects and node visibility in a fixed
resolution as these aspects are of uttermost importance and were not
evaluated in previous works.

Normalized node movements This metric inspired from
Chen et al. [3, 4] quantifies the relative node movements made from
the original layout to the adjusted one. Before computing movement,
a scale and shift operation superimposes the adjusted layout on the
original one and not the opposite as proposed in [3, 4]). It enables
the movement quantity to be unsensitive to offsets and movements in-
duced by upscaling effects. Hence, it makes the comparison of various
adjusted layouts possible as the relative node movements are always
quantified in the original layout’s space. The result is normalized by
the highest movement possible: the length of the layout’s rectangular
bounding box diagonal. The scale operation ensures that both bounding
boxes are of corresponding size (preserving the adjusted layout aspect
ratio), while the shift operation centers both bounding boxes on the
same location. Formally, the metric can be defined as:

NNM(X ′,X0) =

1
N

N
∑

i=1
d(X0

i ,shift(scale(X ′i )))√
BB2

width +BB2
height

(4)

where X ′ is the adjusted layout and BBwidth (resp. BBheight ) is the width
(resp. the height) of the original layout’s bounding box.

Shape preservation Inspired by Li et al. [24], this metric mea-
sures the preservation of the layout’s global shape. We draw several con-
centric circles of increasing radius, centered on the initial layout’s center
of mass, noted µ(X). We uniformly pick 36 points

{
pi,k,1≤ k ≤ 36

}
on each circle ci. For each point pi,k of each circle ci, we choose the
closest node Xi,k in the initial layout except if d(Xi,k,ci)> T where T is
a threshold typically set to 10 as proposed in [24]. In that case, no node
is associated to pi,k and a circle Ci will be ignored if it only gathers 0 or
1 node. For each chosen node Xi,k, we compute the inverse ratio of the
distance between Xi,k and the center of mass li,k = d(Xi,k,µ(X)) and
the analog of that distance in the result layout l′i,k = d(X ′i,k,µ(X

′)). We
then compute Shape preservation as the average of the distance ratio’s
coefficient of variation across all the circles.

SP(X ′,X0) =
1
C

C

∑
i=1

std
({

l′i,k
li,k ,Xi,k ∈Ci

})
µ

({ l′i,k
li,k ,Xi,k ∈Ci

}) (5)

where C is the number of circles initially set to 20, but can be smaller if
some circles are discarded because they do not gather at least 2 nodes.

Ordering similarity Taken from Li et al. [24], it measures the
preservation of relative node ordering from different angles. An axis
with a given angle is drawn on the original layout, and every node’s
position is orthogonally projected on it. By repeating the process with
the same axis on the adjusted layout, we obtain two sequences of nodes
alongside the axis. A similarity score is then given to the axis with a
Kendall correlation coefficient [21]. In our evaluation, we repeated the
process for 30 angles with regular intervals [24], and the score of the
metric is the average of the axes similarity scores.

K-neighborhood preservation Captures the stability of the
neighborhood. It averages, for each node, the portion of the k-nearest
neighbor set of the node which still belongs in the k-nearest neighbor-
hood set in the result layout.

KNP(X ′,X0) =
1
N

N

∑
i=1

|KNN(Xi,k)∩KNN′(X ′i ,k)|
k

(6)

where KNN (resp. KNN′) returns the k-neighborhood of a node in the
original (resp. adjusted) layout. Considering the distance d between
the node of interest and the kth closest neighbor, there may be more
than k nodes at distance less than d. To overcome that issue, we chose
in both layouts the sets with the largest intersection. In this article, k is
set to 10 as proposed in [24].



Density preservation Taken from [24], this metric measures the
preservation of node density in the layout. Each node is associated with
a local density measure using a KNN set. The local density measure is
set as ρi =

1
1
k ∑ j∈KNNi

d(Xi,X j)
. The nodes are sorted by their local density

measure and associated with their quantile qi in that sorted order. The
metric’s score is the average (across the nodes) of the differences
between their quantile in the original and the adjusted layout.

DP(X ′,X0) =
1
N

N

∑
i=1
|qi−q′i| (7)

Scaling This metric measures the preservation of the original
layout’s scale. The global density score of a layout is computed as the
ratio between its nodes’ cumulated area over its bounding box area. The
metric is then defined as the ratio of the density score in the adjusted
layout on that of the initial layout.

Scale(X ′,X0) =

N
∑

i=1
r′ 2
i ∗π

BB′area
/

N
∑

i=1
r2

i ∗π

BBarea
(8)

where ri (resp. r′i) is the radius of node i in the original (resp. adjusted)
layout, and BBarea (resp. BB′area) is the area of the original (resp.
adjusted) layout’s rectangular bounding box.

Nodes’ mininimal number of visible pixels This metric
represents the number of pixels occupied solely by the least visible
node in the adjusted layout when rendered in a resolution R×R (set to
2000×2000 pixels in our evaluation) :

NMV P(X ′,X0) = min
1≤i≤N

|Pi| (9)

where Pi =
{

p j,k,1≤ j,k ≤ R,ni is the only node in pixel p j,k
}

.

4.1.2 Dataset
The dataset of this evaluation is composed of 48 scatterplots from two
sources. First, we borrow the data of the ScatterplotUnfold [24] article.
Because some algorithms did not scale well to very large scatterplots,
they executed them on sub-samples of size N = 3000. However, as we
aim at executing all the algorithms on the same datasets in our evalua-
tion, we only conserve the 38 scatterplots from [24] where N < 150000
such that all the benchmarked algorithms can be evaluated on them.
To counterbalance the samples’ removal, we added 10 datasets with
N ∈ [1024;58509] from the Multidimensional Scaling and Machine
Learning fields [23, 36, 39] projected in 2D using t-SNE [35]. Figure 2
presents the number of overlaps against the number of nodes in the
48 selected samples. In all the scatterplots, the initial node diameters
provided to the Layout Adjustment algorithms is D = 2. The positions
and diameters in these original layouts are considered to be in the
Geometric space as they were not generated for any specific resolution.

4.2 Quantitative Evaluation
Settings. In this quantitative study, GIST is compared with state-of the
art Layout Adjustment algorithms. Namely, the selected algorithms
are: ScatterplotUnfold (SU) [24], DGrid [15], HaGrid [6], PFS’ [14],
GTree [30] and PRISM [9], and were presented in Section 2.

All the algorithms were executed with fixed parameters across the
48 scatterplots presented in Section 4.1.2. The parameters settings for
every algorithm and metric are reported in the Supplementary Materials.
For the evaluation, we used our own implementation of GIST (our algo-
rithm) and PFS’. ScatterplotUnfold implementation is taken from their
own repository1 while DGRID and HaGrid are taken from HaGrid’s
one2. These 5 algorithms were executed on an Intel Core i9-12900KF
CPU. PRISM and GTree implementations are taken from the Microsoft
Automatic Graph Layout (MSAGL) library [31] and were executed on
an Intel Core i7-9700K. We do not include FORBID [10] algorithm in

1www.github.com/diyike/scatterplotUnfold
2www.github.com/saehm/hagrid
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Fig. 2: Number of overlaps against the number of nodes in the 48
scatterplots. Y axis has a log scale. One scatterplot with N = 10000 is
not represented as it does not have any overlap.

this evaluation as it did not complete on scatterplots with N > 50000
(out of memory), and produced overlap-free layouts with too much
nodes dispersion when it did complete.

We conducted an additional evaluation adding a tolerance (i.e., neg-
ative padding) in the GS for the Node Dispersion algorithms PFS’,
PRISM and GTree. Its results, available in the Supplementary Ma-
terials, demonstrated that the benefits are not significant. Hence, the
padding for these algorithms was set to 0 in the next evaluation.

The resulting layouts of these methods are evaluated according to
the metrics defined in Section 4.1.1. The metric scores are reported
in Figure 3 and discussed in the next. The results are studied under 3
criteria: initial layout preservation, nodes visibility and execution time.

Minimizing initial layout’s distortion. To measure how well a
resulting layout has preserved the initial layout, we focus on the 5
first metrics of Figure 3. One can see that GIST outperforms state-
of-the-art algorithms on Node Movements minimization (3a), Shape
preservation (3b) and Ordering similarity preservation (3c). These
metrics capture the global preservation of the initial layout, demonstrat-
ing GIST capability in that criterion. The difference is smaller with
ScatterplotUnfold (SU) on Ordering similarity and Node Movements,
but overall the results are in favor of GIST.

On Density (3e) and K-Neighborhood (3d) preservation, GIST me-
dian performance is at the same level as SU, but has higher variations.
These metrics are more dedicated to quantifying preservation of local
neighborhood in the scatterplots. We explain the high variations of
GIST by the combination of the binary search for the optimal node
diameters and the increase in the resolution if the binary search does
not end with a correct solution (see Section 3). On some scatterplots,
the best solution is found at the end of the binary search, meaning that
many movements have been cumulated to obtain the solution layout.
On the other hand, if a solution is found in the early stages of a binary
search (either the first one, or after increasing the target resolution), the
local neighborhoods are better preserved.

Overall, HaGrid and DGrid underperformed and do not optimize the
preservation of the initial layout criterion well. This behavior could be
expected as both are meant to produce more compact visualizations,
maximizing the nodes’ visibility; as we will see in the Section 5.1.
PFS’, GTree and PRISM results on this criterion are mitigated. None
of them particularly stands out and their ranking does not seem to
follow any trend across the metrics. GIST competes with SU on the
initial layout preservation criterion. It is the best method to preserve the
global shape of the layouts, and among the best to preserve their local
structures. Figure 4 illustrates the relative node movements produced
by GIST. Each line represents a node’s movement from its position in
the original layout to its relative position in the adjusted layout. These
examples demonstrate how the computed node movements preserve
the original’s inner and outer structures.

Maximizing nodes visibility. We evaluate this criterion in regard
of the Scaling (3f) and Nodes’ min. visible pixels (3g) metrics. As

www.github.com/diyike/scatterplotUnfold
www.github.com/saehm/hagrid
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Fig. 3: Metric score distributions across the 48 samples of our dataset. All metrics are oriented lower is better, except (f) and (g). The three last plots
have log scales on the Y axis. The metrics in (a), (b), and (c) capture the preservation of the global shape of the original layout. (d), and (e) focus on
the preservation of local structures of the original layout. Eventually, (f) and (g) enable to apprehend how visible the nodes are in the adjusted layouts.

Fig. 4: Relative node movements in two layouts produced by GIST. The
adjusted layout is superimposed (shifted and rescaled) on the original
layout, and a line is drawn for each node between its position in the
original layout, and its position in the adjusted one.

opposed to the previously studied metrics, they are oriented higher is
better and capture two aspects of the nodes’ visibility maximization.

Scaling measures how the nodes’ visibility in the produced layout
(based on the node areas and the layout bounding box) is representative
of their visibility in the original layout. The scores can be above one if
an adjusted layout is more compact than the original one. As expected,
this is especially observable with DGrid and HaGrid since they gridify
the original layout to produce compact visualizations. GIST’s Scaling
score is close to that of SU and PRISM. All three have Scaling scores
close to one. In other words, they produce adjusted layouts where the
nodes are as visible as in the original layout, demonstrating that they
leverage empty spaces to resolve overlaps.

Nodes’ min. visible pixels score represents the number of pixels
exclusively reserved to the least visible node(s) in a 2000×2000 reso-
lution for each scatterplot. Making sure that the least visible node is
represented with pmin = 1 pixel means that all the nodes are visible,
and maximizing pmin is preferable to improve the layout’s readability
in that resolution. Again, DGrid and HaGrid compact visualizations
have the widest least visible node(s). As expected, most layouts pro-
duced by GIST lead to least visible nodes of at least 1 pixel. The only

exceptions are the scatterplots where GIST was not able to find in a
solution in the metric’s resolution R = 2000. This happened 8 times
for GIST, 14 for SU, 4 for HaGrid, 28 for PFS’ and 10 for GTree. SU
and PFS’ also failed on the 8 problematic cases for GIST, while GTree
succeeded for one of them. DGrid, HaGrid and PRISM successfully
provided an overlapfree layout with pmin > 1, but at the cost of severe
distortions. Despite these problematic cases, GIST’s least visible nodes’
distribution show that pmin > 1 in most cases. SU and GTree results
are slightly under GIST’s ones, and PFS’ produced layouts with the
smallest least visible nodes.

Time costs. Since GIST backbone leverages FORBID [10], its com-
plexity inherits from FORBID’s one in O(s(N2 +N log(N)) where s is
the depth of the binary search. The N2 complexity comes from the opti-
mization of distance between all pairs of nodes. Although GIST allevi-
ates this heavy of the complexity by only optimizing distances between
the overlapped nodes, its worst case complexity remains quadratic as
the number of overlaps is bounded by N2. Hence, GIST complexity is
in O(s(|O|+N log(N)) where |O| is the number of overlaps.

Nevertheless, Figure 3h shows that GIST execution time is better
than other quadratic state-of-the-art algorithms (i.e., PFS’, GTree
and PRISM). However, it loses to SU, DGrid and HaGrid who all
have linearithmic complexity. The problematic cases for GIST are
scatterplots where the nodes’ distribution is very dense in specific
regions while others are almost empty. Figure 5 top row illustrates
the problematic. In this example, GIST’s solution was found with a
resolution of R = 4000. Since GIST tries to minimize the original
layout’s distortion, it is only allowed to move the nodes with a budget
of movements. If the overlapped nodes are located in a small and dense
region, the budget of movements is not sufficient to move the nodes
far enough to leverage the layout’s empty spaces. This problematic
was already identified by Li et al. [24] and many Layout Adjustment
algorithms by Node Dispersion are affected. On the other hand, GIST
is very efficient (and sometimes faster than SU) on scatterplots where
the nodes are more uniformly distributed across the original layout’s
bounding box. An example of easy case is presented in Figure 5
bottom row. In practice, we did not observe problematic cases often,
as the data we consider are mostly organized in spread out clusters.
They appeared when there is a small dense area in the initial layout,
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Fig. 5: A problematic (top) and an easy (bottom) case for GIST. While
both have similar sizes (N = 41757 against N = 46278), the algorithm is
much faster (333ms) on the bottom example than on the top one (106ms).

that is confined in a zone of the layout’s bounding box because of
some sparser areas. Since many methods aim at preserving the layout’s
global shape, such distribution of points is problematic. We believe
that it is possible to anticipate such problematic cases by measuring the
distribution of distances or densities in the representation. For instance,
the Sparsity [12] score of the scatterplots in the Figure 5 are 894 for
the top row against 146 for the bottom one.

Overall, we identified three categories of algorithms. (i) Methods
such as GIST and SU are best suited to global shape preservation.
These two methods compete with (ii) standard Node Dispersion (ND)
algorithms such as PFS’ and GTRee, PRISM. Overall, our results cor-
roborate those of Chen et al. [3, 4] survey on ND algorithms: PFS’ is
better than PRISM and GTree on local neighborhood preservation, but
worse on global shape preservation. Finally, (iii) DGrid and HaGrid
win on node visibility maximization as they produce compact visual-
izations. Although they are also the fastest, they severely distort the
initial layout. Hence, they should only be preferred when compactness
is a high priority. On the other hand, we showed that approaches such
as GIST and SU are preferable to standard ND algorithms to preserve
the global shape of the initial layout, while also retaining a good level
of local neighborhood preservation. They also increase the the nodes
visibility in comparison to ND approaches, and scale better to large
data. Eventually, GIST provides better compromise between layout
preservation and nodes visibility than SU on most cases.

5 DISCUSSION

In this section, we compare GIST and state-of-the-art algorithms on
some visual examples. In addition, we qualitatively study the impacts
of tuning the tolerance to overlaps in the visual space, and its relation
with the target resolution. Finally we discuss a limitation of GIST.

5.1 Qualitative Evaluation
Figure 6 presents the adjusted layouts produced by GIST and all the
state-of-the-art algorithms considered in the quantitative evaluation (see
Section 4.2). As a reminder, an interactive demonstration of GIST is
also available online [11]. The scatterplots presented cover a wide range
of number of nodes (i.e., from 1024 to 93239). In addition, they were
selected as they do not have the problematic cases identified earlier. As
a reminder, the problematic scatterplots can be defined as having some

significantly small and dense regions, as illustrated in Figure 5. Since
state-of-the-art algorithms are also affected by these distributions, they
are not discussed here.

News popularity. One can see that News popularity was not prop-
erly drawn by either PFS’ or GTree. Both have significantly reduced
the node sizes on screen and the original layout structures are barely
recognizable. Even though PRISM’s layout is slightly better, it is not
satisfactory in regard to the results of the remaining algorithms. DGRID
has produced a compact visualization where all the nodes are visible. If
we can identify the blue structures of the original layout, most patterns
were lost during the layout adjustment process. For the three remaining
algorithms, we consider that the produced layouts have successfully
preserved the original layout’s global and local patterns. Among them,
GIST’s layout have the most visible nodes (i.e., the widest), followed
by HaGrid then SU.

MoCap and GaAsH6. As opposed to News popularity, all the
algorithms gave a relatively interpretable result on MoCap and GaAsH6.
PFS’ nodes are very small but the layout is recognizable despite having
some distortions. GTree’s layouts are not particularly satisfactory either
on these examples. On the other hand, PRISM has produced a very
compact layout that severely distorted MoCap. However, its result on
GaAsH6 is surprisingly satisfactory as the nodes are wider than other
algorithms, and the layout patterns are preserved. One can see that
HaGrid induces large deformations in dense regions of the layout in
both examples. The same observation can be made for DGRID. Its
compact results are not inconvenient on GaAsH6 as the clusters are
well defined and separated. However, they make MoCap difficult to
read because nodes with the same label are distributed all across the
layout, creating an effect of disorder. Finally, Both GIST and SU have
preserved the original layout structures, and we consider GIST’s results
more satisfying as nodes are wider and the clusters are easier to identify.

Elec board This scatterplot illustrates one of the limitations of
compact methods. Looking at DGRID and HaGrid layouts, it becomes
obvious that even though this approach can produce satisfactory results,
it cannot be used without additional visual encoding (e.g., node col-
ors) to identify the data structures. PRISM and GTree have seriously
damaged the original layout. Although PFS’ has preserved the original
layout’s patterns, the node sizes are too small in comparison with other
algorithms. Again, GIST and SU outperform the other algorithms, with
GIST proposing a layout where the nodes are wider.

Fashion and Helix On the two last scatterplots, PRISM has crit-
ically damaged the original layout. Although GTree, PFS’, and SU
have successfully preserved the original layout, they have significantly
reduced the node sizes to a point that is not satisfactory. DGRID lay-
outs are satisfactory on both scatterplots, although the “gridification”
of Helix might not be necessary considering its size (N = 1024). It
can even mislead a user by suggesting that some clusters are neighbors
(e.g., pink and red, brown and red) while they’re not. While HaGrid
result is great on Fashion, it suffers from a major deformation on Helix.
In addition to the misleading effect on the clusters’ neighborhood, the
pink and blue clusters are mixed. Finally, GIST results on these two
examples are arguably the best. They both retain the original layout’s
structures and maximize the nodes’ visibility.

Overall, we observe that PRISM, GTree and PFS’ do not provide
satisfactory results on large scale scatterplots, even though we excluded
those with problematic nodes’ distribution from this qualitative eval-
uation. DGRID and HaGrid results are good to obtain a compact
visualization but have several limitations. If there is no visual encoding
to dissociate the nodes or the clusters, no information can be read out
of their layout. Finally, their interpretation can be misleading as they
suggest a proximity that does not exist between some nodes or clus-
ters. Eventually, GIST proposes a great optimization of initial layout
preservation and the nodes’ visibility.

5.2 Increasing the Tolerance, Decreasing the Resolution
As presented in Section 3 and Algorithm 1, the tolerance to overlaps
was set to 1 pixel in a Visual Space (VS) of resolution R = 2000. This
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Fig. 6: Examples of adjusted layouts produced by GIST, ScatterplotUnfold (SU), DGRID, HaGrid, PFS’, GTree and PRISM. The images have a
resolution of 2000×2000px without anti-aliasing and nodes have an opacity of 90%. GIST found a solution in R = 2000 for all the scatterplots except
MoCap (where R = 4000). They were rendered with the Matplotlib Python library [17] relying on the C++ rendering library Anti-Grained Geometry. It
is recommended to read the figure with a viewer that can zoom (up to 6000%).
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Fig. 7: GIST result layouts on tsne-fashion scatterplot with various tolerances. The target resolution is set to R = 2000 and node radiuses in that
visual space (VS) are reported below each figure. Radiuses are floating pixel numbers computed with the interval change from the GS to the VS in
resolution R. The rasterization is done a posteriori by the image generation.

choice seemed to be evident as it eases the algorithm’s convergence
while being harmless to the visualization in the VS.

Yet, it is trivial to support a higher tolerance, if one wants to produce
an even more compact adjusted layout. However, it is important to make
sure that the nodes always have at least 1 pixel exclusively dedicated
to their representation. Formally, D− 2 ∗ t > 1 where D and t are
respectively the node diameters and the tolerance in the VS. The main
goals of using a higher tolerance are: (i) produce a more compact
layout; and (ii) fasten the algorithm’s convergence.

Figure 7 presents GIST adjusted layouts of the Fashion scatterplot
with visual tolerances t ∈ {1,3,6,10} in a resolution 2000× 2000.
Below every layout is reported its corresponding node radiuses. These
figures show that increasing the tolerance is not necessarily beneficial.
As we aim at guaranteeing the nodes’ visibility, we always consider
the worst case scenario. Hence, when the node radius is 6.4 with a
tolerance of 1, we consider that the nodes will be represented with a
radius of rmin = 6.4−1 pixels. With the image rasterization, we can
consider the worst case where the nodes will only be displayed with
rmin = floor(5.4) = 5 pixels. With the same reasoning, we observe that
the minimum number of exclusive pixels we can guarantee decreases
rmin ∈ {5,4,3,1} as the tolerance increases t = {1,3,6,10}. Although
it does not aesthetically seem beneficial to increase the tolerance, it
can be very useful to improve the reactivity in interactive visualizations
scenarios (see GIST’s demo [11]).

The target visual space resolution R was fixed during the experiment
to R = 2000. The effects of varying this parameter while setting the
tolerance to a fixed value is the same as doing the opposite. In fact,
the combination of tolerance and R define the available empty spaces
that the algorithm can use to either move or grow the nodes. Having a
tolerance of t = 1 pixel with R = 1000 allows as much available space
as having t = 2 and R = 2000 (i.e., nodes are larger but can overlap
more). It then leads to the same result as long as the image renderer’s
rasterization is uniform. Visual examples with varying R are proposed
in the Supplementary Materials. In practice, we expect R to be fixed
depending on the use case, while t has to be chosen carefully.

5.3 Limitation
The main limitation that was not yet discussed is GIST’s behavior
when the binary search ends while no solution was found. This mostly
happens on complex scatterplots where the algorithm hardly converges
towards a solution, and is already computationally expensive. But
what is not satisfactory is the need to restart the optimization from the
beginning with a higher resolution. This comes down to call GIST
several times on the same input by changing the target resolution, and
is severely expensive. Pre-processing based on the size of the original
layout could enable to preemptively refine the target resolution.

Although this behavior can be perceived as a limitation in terms
of computational cost, it is the result of a design choice we made to
ensure that GIST provides a layout that optimizes the initial layout
preservation. The other choice would have been to let the algorithm
move the nodes until it eventually converges. However, such a behavior

would significantly distort the original layout. There are already several
Layout Adjustment algorithms that allow severe distortions of the
original layout to produce compact embeddings, and we believe that
GIST proposes a good alternative with a unique compromise between
nodes’ visibility and initial layout preservation.

6 CONCLUSION

2D scatterplots are nowadays a common way to visualize high dimen-
sional datasets. However, both the 2D projection and the drawing of
the nodes with a non-zero width shape generate occlusions that hinder
the representation. Such an issue is commonly solved by using an
overlap removal algorithm that guarantees that all occlusions have been
removed, at the cost of deformations of the original data.

In this article, we proposed GIST: a novel method that can be
parametrized to perfectly or partially solve the occlusion issues. As
such, we prefer to use the term layout adjustment rather than overlap
removal as the user can accept partial occlusions. It relies on an hybrid
method that both operates in the Geometric Space, by moving node
coordinates thanks to the optimization of a stress function by gradient
descent, and in the Visual Space, by choosing the right nodes size using
a binary search. The algorithm’s goal is to optimize three criteria: (i)
nodes visibility guarantee (at least 1 pixel), (ii) node size maximization,
and (iii) the original layout preservation. By design, it is able to handle
larger datasets (in term of number of points) than other GS baseline
methods. An interactive demo of GIST is available [11].

An extensive evaluation has shown the efficiency of GIST on various
criteria. It has been compared to 6 state-of-the-art methods against
48 datasets of various complexity. It competes well against baseline
methods, and is better suited in several scenarios (e.g., cluster shape
preservation, outlier visibility, distribution dis-ambiguity).

The evaluation has also shown some limitations that could be tackled
in future works. For example, the algorithm has shown to be sensitive
to the distribution of node densities in the original layout. These cases
were also problematic for the other algorithms and it would be interest-
ing to investigate how to alleviate such problematic distributions. In the
Geometric Space, one could use some spatial deformation according
to local data densities. This would allow the nodes in dense regions to
move more, while keeping the movements allowed for those in sparse
regions reasonable. An other lead for future work is to optimize other
visual encodings in GIST. For example, the notion of tolerance to
overlaps could also include the optimization of the nodes opacity. This
could enable to have a higher tolerance (in number of pixels) while
still optimizing node visibility. The nodes rendering order could also
be optimized to maximize the visible node areas considering they can
partially overlap. To optimize perceptual metrics [27] is the next step
towards efficient human-centered visualization as it will enable to go
beyond the guarantee of visibility by ensuring the nodes perceivability
(i.e., make sure that the human perception system is able to capture and
faithfully interpret data representation).
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SUPPLEMENTARY MATERIALS

The suppl. materials provided alongside this manuscript contain:
• A video simulating steps in the GIST execution to illustrate its

convergence (this does not represent the real speed);

• Metrics and baseline Algorithms parameter settings;

• A study on adding negative padding to the Node Dispersion
algorithms PFS’, PRISM and GTree;

• Visual examples illustrating the similar effect between increasing
tolerance (with a fixed resolution) and reducing the resolution
(with a fixed tolerance).
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