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Abstract

The product of two Alt logics possesses the polynomial product finite model
property and its membership problem is coNP-complete. Using a reduction from
an undecidable domino-tiling problem, we prove that its admissibility problem is
undecidable.
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1 Introduction
An inference rule is admissible in a modal logic if the logic is closed with respect to
applications of the rule. And the admissibility problem in a modal logic L is to de-
termine, given an inference rule Γ

φ , whether for all substitutions σ, if σ(Γ) ⊆ L then
σ(φ) ∈ L. In 1984, the admissibility problem has been proved by Rybakov [21] to
be decidable in Intuitionistic Propositional Logic and in transitive modal logics such
as S4. Algorithms deciding admissibility of inference rules in these modal logics have
been proposed by Ghilardi [14] and Iemhoff [16]. The computational complexity of the
admissibility problem in some of these modal logics has been shown by Jer̆ábek [17]
to be coNEXPTIME-complete.

The ideas of Rybakov and the algorithms of Ghilardi and Iemhoff are applicable to
a wide set of modal logics. Since the modal logics considered in [14, 16, 21] are all
decidable, one may ask whether for all modal logics, the decidability of its membership
problem ensures the decidability of its admissibility problem. In 1992, this question
has been negatively answered by Chagrov [7] who has constructed a modal logic with
∗Contact author. Email address: philippe.balbiani@irit.fr.
†Email addresses: cigdem.gencer@irit.fr and cigdemgencer@aydin.edu.tr.
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a decidable membership problem and an undecidable admissibility problem. However,
the modal logic constructed by Chagrov was rather artificial. Therefore, one may ask
whether more natural modal logics exist with a decidable membership problem and an
undecidable admissibility problem.

The effect of adding the universal modality to modal logics has been investigated
by Hemaspaandra in 1996. In particular, for modal logics such as K and K4, it
has been proved in [15] that enriching the modal language by the universal moda-
lity increases the complexity of the membership problem from PSPACE-complete to
EXPTIME-complete. Although the computability of the admissibility problem for
K is unknown, the admissibility problem for K4 is known to be decidable since the
pioneering work of Rybakov [22]. Hence, it came as a surprise when Wolter and Za-
kharyaschev [24] proved that the admissibility problem for all modal logics between K
and K4 is undecidable when the modal language is enriched by the universal modality.

Pushing further the envelope, one may ask whether modal logics exist with a member-
ship problem in coNP and an undecidable admissibility problem. The combination
method on modal logics known as the product construction has been firstly investigated
in [11]. For more on it, see [10, 19]. In this paper, we consider the product of two Alt
logics. This product has many interesting properties: it possesses the polynomial pro-
duct finite model property; its membership problem is coNP-complete. However,
using a reduction from an undecidable domino-tiling problem, we prove that its admis-
sibility problem is undecidable. We assume the reader is at home with the basic tools
and techniques in modal logics. For more on them, see [6, 8, 18].

2 A domino-tiling problem
For all I ∈ N, let (I) = {i: 1 ≤ i ≤ I}.

The following domino-tiling problem (Π) has been used for proving undecidability re-
sults about description logicALCQIO [20]. An instance of (Π) is a 7-tuple (∆, V,H,
∆up,∆down,∆right,∆left) where ∆ is a finite set of domino-types, V and H are bi-
nary relations on ∆ and ∆up, ∆down, ∆right and ∆left are subsets of ∆. A tiling of an
instance (∆, V,H,∆up,∆down,∆right,∆left) of (Π) is a triple (I, J, f) where I, J ≥
1 and f is a function associating an element f(i, j) ∈ ∆ to each (i, j) ∈ (I)× (J). We
shall say that a tiling (I, J, f) of an instance (∆, V,H,∆up,∆down,∆right,∆left) of
(Π) is correct if the following conditions hold:

• for all (i, j) ∈ (I − 1)× (J), (f(i, j), f(i+ 1, j)) ∈ V ,

• for all (i, j) ∈ (I)× (J − 1), (f(i, j), f(i, j + 1)) ∈ H ,

• for all j ∈ (J), f(I, j) ∈ ∆up,

• for all j ∈ (J), f(1, j) ∈ ∆down,

• for all i ∈ (I), f(i, J) ∈ ∆right,
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• for all i ∈ (I), f(i, 1) ∈ ∆left.

Proposition 1 It is undecidable to determine, given an instance (∆, V,H,∆up,
∆down,∆right,∆left) of (Π), whether there exists a correct tiling of (∆, V,H,∆up,
∆down,∆right,∆left).

Proof: See [20]. a

3 Syntax and semantics
Let VAR be a countable set of variables (x, y, etc). The formulas are inductively
defined by the following rule:

• φ ::= x | ⊥ | ¬φ | (φ ∨ ψ) | 21φ | 22φ.

The other Boolean constructs are defined as usual. We adopt the standard rules for
omission of the parentheses. The formulas 31φ and 32φ are the abbreviations defined
as follows:

• 31φ ::= ¬21¬φ,

• 32φ ::= ¬22¬φ.

For all non-negative integers n, the formulas 2n1φ and 2n2φ are the abbreviations in-
ductively defined as follows:

• 20
1φ ::= φ,

• 20
2φ ::= φ,

• 2n+1
1 φ ::= 212

n
1φ,

• 2n+1
2 φ ::= 222

n
2φ.

For all non-negative integers n, the formulas 3n
1φ and 3n

2φ are the abbreviations de-
fined as follows:

• 3n
1φ ::= ¬2n1¬φ,

• 3n
2φ ::= ¬2n2¬φ.

A substitution is a function σ associating to each variable x a formula σ(x). For all
formulas φ, let σ(φ) be the formula obtained from φ after having uniformly replaced
each occurrence of x by σ(x) for each variable x. For all finite sets Γ of formulas, let
σ(Γ) = {σ(φ) : φ ∈ Γ}. An inference rule is a pair Γ

φ consisting of a finite set Γ of
formulas and a formula φ.

For all I, J ∈ N, let I
⊗
J = {(i, j): 0 ≤ i ≤ I and 0 ≤ j ≤ J}. For all I, J ∈ N, let

� be the well-founded partial order on I
⊗
J such that for all (i, j), (k, l) ∈ I

⊗
J ,
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(i, j)� (k, l) if and only if either i < k and j ≤ l, or i ≤ k and j < l.

A model is a triple M = (I, J, v) where I, J ∈ N and v is a function associating
a subset v(x) of I

⊗
J to each x ∈ V AR. In this case, we shall say thatM is based

on I and J . The truth of a formula φ in a modelM = (I, J, v) at (i, j) ∈ I
⊗
J (in

symbols (i, j) |=M φ) is inductively defined as follows:

• (i, j) |=M x if and only if (i, j) ∈ v(x),

• (i, j) 6|=M ⊥,

• (i, j) |=M ¬φ if and only if (i, j) 6|=M φ,

• (i, j) |=M φ ∨ ψ if and only if (i, j) |=M φ or (i, j) |=M ψ,

• (i, j) |=M 21φ if and only if if i < I then (i+ 1, j) |=M φ,

• (i, j) |=M 22φ if and only if if j < J then (i, j + 1) |=M φ.

A formula φ is said to be true in a modelM = (I, J, v) (in symbols |=M φ) if for all
(i, j) ∈ I

⊗
J , (i, j) |=M φ. We shall say that a finite set Γ of formulas is true in a

modelM = (I, J, v) (in symbols |=M Γ) if for all φ ∈ Γ, |=M φ.

A formula φ is said to be valid (in symbols |= φ) if for all models M, |=M φ. We
shall say that a finite set Γ of formulas is valid (in symbols |= Γ) if for all φ ∈ Γ, |= φ.
An inference rule Γ

φ is said to be admissible if for all substitutions σ, if |= σ(Γ) then
|= σ(φ).

Proposition 2 The set of all valid formulas is coNP -complete.

Proof: See [10, Theorem 8.53]. a

Proposition 3 The set of all admissible inference rules is undecidable.

Proof: See Section 4. a

4 Reduction of (Π)

Considering an instance I = (∆, V,H,∆up,∆down,∆right,∆left) of (Π), we will
define an inference rule RI such that RI is not admissible if and only if there exists
a correct tiling of I. Let δ1, . . . , δa be a list of I’s domino-types. We will use the
variables x1, . . . , xa in correspondence with its elements. We will also use the variables
y, z. Let us consider the following formulas:

φ1: 2122¬(xb ∧ xc) where b, c ∈ (a) and b 6= c,

φ2: 2122(xb → 21

∨
{xc: c ∈ (a) and (δb, δc) ∈ V }) where b ∈ (a),
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φ3: 2122(xb → 22

∨
{xc: c ∈ (a) and (δb, δc) ∈ H}) where b ∈ (a),

φ4: 2122(y ∧21⊥ →
∨
{xb: b ∈ (a) and δb ∈ ∆up}),

φ5: 22(y ∧ ¬z → 21(z →
∨
{xb: b ∈ (a) and δb ∈ ∆down})),

φ6: 2122(z ∧22⊥ →
∨
{xb: b ∈ (a) and δb ∈ ∆right}),

φ7: 21(¬y ∧ z → 22(y →
∨
{xb: b ∈ (a) and δb ∈ ∆left})),

φ8: y → 21y ∧22y,

φ9: z → 21z ∧22z,

φ10: ¬y → 21¬y,

φ11: ¬z → 22¬z.

Let

• ΓI = {φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8 φ9, φ10, φ11},

• ψI = ¬(¬y ∧ ¬z ∧32y ∧31z ∧2122

∨
{xb: b ∈ (a)}).

Let RI = ΓI
ψI

.

Proposition 4 If RI is not admissible then there exists a correct tiling of I.

Proof: See Section 5. a

Proposition 5 If there exists a correct tiling of I then RI is not admissible.

Proof: See Section 6. a

Proposition 3 is an immediate consequence of Propositions 1, 4 and 5.

5 Proof of Proposition 4
SupposeRI is not admissible. Let σ be a substitution such that |= σ(ΓI) and 6|= σ(ψI).
Let M = (I, J, v) be a model such that 6|=M σ(ψI). Since |= σ(ΓI), |=M σ(ΓI).
Since 6|= σ(ψI), let (i0, j0) ∈ I

⊗
J be such that (i0, j0) 6|=M σ(ψI). Without loss of

generality, we can assume (i0, j0) = (0, 0). Hence, (0, 0) 6|=M σ(y), (0, 0) 6|=M σ(z),
(0, 0) |=M 32σ(y), (0, 0) |=M 31σ(z) and (0, 0) |=M 2122

∨
{σ(xb): b ∈ (a)}.

Since |=M σ(ΓI),

(1.1) for all (i, j) ∈ I
⊗
J , (i, j) |=M σ(φ1),

(1.2) for all (i, j) ∈ I
⊗
J , (i, j) |=M σ(φ2),

(1.3) for all (i, j) ∈ I
⊗
J , (i, j) |=M σ(φ3),
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(1.4) for all (i, j) ∈ I
⊗
J , (i, j) |=M σ(φ4),

(1.5) for all (i, j) ∈ I
⊗
J , (i, j) |=M σ(φ5),

(1.6) for all (i, j) ∈ I
⊗
J , (i, j) |=M σ(φ6),

(1.7) for all (i, j) ∈ I
⊗
J , (i, j) |=M σ(φ7),

(1.8) for all (i, j) ∈ I
⊗
J , (i, j) |=M σ(φ8),

(1.9) for all (i, j) ∈ I
⊗
J , (i, j) |=M σ(φ9),

(1.10) for all (i, j) ∈ I
⊗
J , (i, j) |=M σ(φ10),

(1.11) for all (i, j) ∈ I
⊗
J , (i, j) |=M σ(φ11).

Since (0, 0) |=M 32σ(y) and (0, 0) |=M 31σ(z), 0 < I and 0 < J . Moreover,
(0, 1) |=M σ(y) and (1, 0) |=M σ(z). Since (0, 0) |=M 2122

∨
{σ(xb): b ∈ (a)},

(1, 1) |=M
∨
{σ(xb): b ∈ (a)}.

Lemma 1 For all i ∈ (I), (i, 0) |=M ¬σ(y) ∧ σ(z).

Proof: By induction, using (1.9), (1.10), the fact that (0, 0) 6|=M σ(y) and the fact
that (1, 0) |=M σ(z). a

Lemma 2 For all j ∈ (J), (0, j) |=M σ(y) ∧ ¬σ(z).

Proof: By induction, using (1.8), (1.11)), the fact that (0, 1) |=M σ(y) and the fact
that (0, 0) 6|=M σ(z). a

Lemma 3 For all i ∈ (I) and for all j ∈ (J), (i, j) |=M σ(y) ∧ σ(z).

Proof: By induction, using (1.8), (1.9) and Lemmas 1 and 2. a

Lemma 4 Let (i′, j′) ∈ (I)× (J). There exists b ∈ (a) such that (i′, j′) |=M σ(xb).

Proof: By induction. Let (i′, j′) ∈ (I)× (J) be such that for all (i′′, j′′) ∈ (I)× (J),
if (i′′, j′′)� (i′, j′) then there exists b ∈ (a) such that (i′′, j′′) |=M σ(xb).

Case i′ = 1 and j′ = 1: Since (1, 1) |=M
∨
{σ(xb): b ∈ (a)}, (1, 1) |=M σ(xb)

for some b ∈ (a).

Case i′ > 1: By induction hypothesis, let b ∈ (a) be such that (i′ − 1, j′) |=M σ(xb).
By (1.2), (i′ − 2, j′ − 1) |=M σ(φ2). Hence, (i′ − 2, j′ − 1) |=M 2122(σ(xb) →
21

∨
{σ(xc): c ∈ (a) and (δb, δc) ∈ V }). Thus, either (i′ − 1, j′) 6|=M σ(xb), or

(i′, j′) |=M
∨
{σ(xc): c ∈ (a) and (δb, δc) ∈ V }). Since (i′ − 1, j′) |=M σ(xb),

(i′, j′) |=M
∨
{σ(xc): c ∈ (a) and (δb, δc) ∈ V }). Consequently, (i′, j′) |=M σ(xc)
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for some c ∈ (a).

Case j′ > 1: By induction hypothesis, let b ∈ (a) be such that (i′, j′ − 1) |=M σ(xb).
By (1.3), (i′ − 1, j′ − 2) |=M σ(φ3). Hence, (i′ − 1, j′ − 2) |=M 2122(σ(xb) →
22

∨
{σ(xc): c ∈ (a) and (δb, δc) ∈ H}). Thus, either (i′, j′ − 1) 6|=M σ(xb), or

(i′, j′) |=M
∨
{σ(xc): c ∈ (a) and (δb, δc) ∈ H}). Since (i′, j′ − 1) |=M σ(xb),

(i′, j′) |=M
∨
{σ(xc): c ∈ (a) and (δb, δc) ∈ H}). Consequently, (i′, j′) |=M σ(xc)

for some c ∈ (a). a

Lemma 5 Let (i′, j′) ∈ (I) × (J). For all b, c ∈ (a), if (i′, j′) |=M σ(xb) and
(i′, j′) |=M σ(xc) then b = c.

Proof: Let b, c ∈ (a). Suppose (i′, j′) |=M σ(xb) and (i′, j′) |=M σ(xc). For the
sake of the contradiction, suppose b 6= c. By (1.1), (i′ − 1, j′ − 1) |=M σ(φ1). Since
b 6= c, (i′ − 1, j′ − 1) |=M 2122¬(σ(xb) ∧ σ(xc)). Hence, either (i′, j′) 6|=M σ(xb),
or (i′, j′) 6|=M σ(xc): a contradiction. a

By Lemmas 4 and 5, for all (i, j) ∈ (I) × (J), let b(i, j) be the unique b ∈ (a) such
that (i, j) |=M σ(xb). Let f be the function associating the element δb(i,j) ∈ ∆ to
each (i, j) ∈ (I)× (J). Obviously, for all (i, j) ∈ (I)× (J), (i, j) |=M σ(xb(i,j)).

Lemma 6 (I, J, f) is a correct tiling of I.

Proof: We demonstrate for all (i, j) ∈ (I − 1) × (J), (f(i, j), f(i + 1, j)) ∈ V .
Let (i, j) ∈ (I − 1) × (J). Hence, 1 ≤ i ≤ I − 1 and 1 ≤ j ≤ J . Thus,
(i − 1, j − 1) ∈ I

⊗
J . By (1.2), (i − 1, j − 1) |=M σ(φ2). Consequently,

(i − 1, j − 1) |=M 2122(σ(xb(i,j)) → 21

∨
{σ(xc): c ∈ (a) and (δb(i,j), δc) ∈

V }). Hence, either (i, j) 6|=M σ(xb(i,j)), or (i + 1, j) |=M
∨
{σ(xc): c ∈ (a) and

(δb(i,j), δc) ∈ V }. Since (i, j) |=M σ(xb(i,j)), (i + 1, j) |=M
∨
{σ(xc): c ∈ (a)

and (δb(i,j), δc) ∈ V }. Thus, (i + 1, j) |=M σ(xc) for some c ∈ (a) such that
(δb(i,j), δc) ∈ V . Consequently, b(i + 1, j) = c. Hence, by definition of f , since
(δb(i,j), δc) ∈ V , (f(i, j), f(i+ 1, j)) ∈ V .

We demonstrate for all (i, j) ∈ (I) × (J − 1), (f(i, j), f(i, j + 1)) ∈ H . Let
(i, j) ∈ (I) × (J − 1). Thus, 1 ≤ i ≤ I and 1 ≤ j ≤ J − 1. Consequently,
(i−1, j−1) ∈ I

⊗
J . By (1.3), (i−1, j−1) |=M σ(φ3). Hence, (i−1, j−1) |=M

2122(σ(xb(i,j)) → 22

∨
{σ(xc): c ∈ (a) and (δb(i,j), δc) ∈ H}). Thus, either

(i, j) 6|=M σ(xb(i,j)), or (i, j+1) |=M
∨
{σ(xc): c ∈ (a) and (δb(i,j), δc) ∈ H}. Since

(i, j) |=M σ(xb(i,j)), (i, j + 1) |=M
∨
{σ(xc): c ∈ (a) and (δb(i,j), δc) ∈ H}. Con-

sequently, (i, j + 1) |=M σ(xc) for some c ∈ (a) such that (δb(i,j), δc) ∈ H . Hence,
b(i, j+1) = c. Thus, by definition of f , since (δb(i,j), δc) ∈ H , (f(i, j), f(i, j+1)) ∈
H .

We demonstrate for all j ∈ (J), f(I, j) ∈ ∆up. Let j ∈ (J). Consequently,
by Lemma 3, (I, j) |=M σ(y). By (1.4), (I − 1, j − 1) |=M σ(φ4). Hence,
(I, j) |=M σ(y) ∧ 21⊥ →

∨
{σ(xb): b ∈ (a) and δb ∈ ∆up}. Since (I, j) |=M σ(y)
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and (I, j) |=M 21⊥, (I, j) |=M σ(xb) for some b ∈ (a) such that δb ∈ ∆up. Thus,
by definition of f , f(I, j) ∈ ∆up.

We demonstrate for all j ∈ (J), f(1, j) ∈ ∆down. Let j ∈ (J). Consequently,
by Lemmas 2 and 3, (0, j) |=M σ(y) ∧ ¬σ(z) and (1, j) |=M σ(z). By (1.5),
(0, j − 1) |=M σ(φ5). Hence, (0, j) |=M σ(y) ∧ ¬σ(z) → 21(σ(z) →

∨
{σ(xb):

b ∈ (a) and δb ∈ ∆down}). Since (0, j) |=M σ(y) ∧ ¬σ(z) and (1, j) |=M σ(z),
(1, j) |=M σ(xb) for some b ∈ (a) such that δb ∈ ∆down. Thus, by definition of f ,
f(1, j) ∈ ∆down.

We demonstrate for all i ∈ (I), f(i, J) ∈ ∆right. Let i ∈ (I). Consequently, by
Lemma 3, (i, J) |=M σ(z). By (1.6), (i − 1, J − 1) |=M σ(φ6). Hence, (i, J) |=M
σ(z) ∧ 22⊥ →

∨
{σ(xb): b ∈ (a) and δb ∈ ∆right}. Since (i, J) |=M σ(z) and

(i, J) |=M 22⊥, (i, J) |=M σ(xb) for some b ∈ (a) such that δb ∈ ∆right. Thus, by
definition of f , f(i, J) ∈ ∆right.

We demonstrate for all i ∈ (I), f(i, 1) ∈ ∆left. Let i ∈ (I). Consequently,
by Lemmas 1 and 3, (i, 0) |=M ¬σ(y) ∧ σ(z) and (i, 1) |=M σ(y). By (1.7),
(i − 1, 0) |=M σ(φ7). Hence, (i, 0) |=M ¬σ(y) ∧ σ(z) → 22(σ(y) →

∨
{σ(xb):

b ∈ (a) and δb ∈ ∆left}). Since (i, 0) |=M ¬σ(y) ∧ σ(z) and (i, 1) |=M σ(y),
(i, 1) |=M σ(xb) for some b ∈ (a) such that δb ∈ ∆left. Thus, by definition of f ,
f(i, 1) ∈ ∆left. a

Here finishes the proof of Proposition 4.

6 Proof of Proposition 5
Let (I, J, f) be a correct tiling of I. Hence, the following conditions hold:

• for all (i, j) ∈ (I − 1)× (J), (f(i, j), f(i+ 1, j)) ∈ V ,

• for all (i, j) ∈ (I)× (J − 1), (f(i, j), f(i, j + 1)) ∈ H ,

• for all j ∈ (J), f(I, j) ∈ ∆up,

• for all j ∈ (J), f(1, j) ∈ ∆down,

• for all i ∈ (I), f(i, J) ∈ ∆right,

• for all i ∈ (I), f(i, 1) ∈ ∆left.

Let σ be the substitution such that

• for all b ∈ (a), σ(xb) =
∨
{3I−i

1 21⊥ ∧ 3
J−j
2 22⊥: (i, j) ∈ (I) × (J) and

f(i, j) = δb},

• σ(y) = 2J2⊥,

• σ(z) = 2I1⊥.
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Lemma 7 |= σ(ΓI).

Proof: For the sake of the contradiction, suppose 6|= σ(ΓI). Hence, let M′ =
(I ′, J ′, v′) be a model such that 6|=M′ σ(ΓI). Let φ ∈ ΓI and (i′, j′) ∈ I ′

⊗
J ′

be such that (i′, j′) 6|=M′ σ(φ).

Case φ = φ1: Thus, (i′, j′) 6|=M′ 2122¬(σ(xb′) ∧ σ(xc′)) for some b′, c′ ∈ (a)
such that b′ 6= c′. Consequently, i′ < I ′, j′ < J ′, (i′ + 1, j′ + 1) |=M′ σ(xb′) and
(i′+ 1, j′+ 1) |=M′ σ(xc′). Hence, (i′+ 1, j′+ 1) |=M′

∨
{3I−i

1 21⊥∧3J−j
2 22⊥:

(i, j) ∈ (I) × (J) and f(i, j) = δb′} and (i′ + 1, j′ + 1) |=M′
∨
{3I−i

1 21⊥ ∧
3
J−j
2 22⊥: (i, j) ∈ (I) × (J) and f(i, j) = δc′}. Let (ib′ , jb′) ∈ (I) × (J) be

such that f(ib′ , jb′) = δb′ and (i′ + 1, j′ + 1) |=M′ 3
I−ib′
1 21⊥ ∧ 3

J−jb′
2 22⊥

and (ic′ , jc′) ∈ (I) × (J) be such that f(ic′ , jc′) = δc′ and (i′ + 1, j′ + 1) |=M′

3
I−ic′
1 21⊥ ∧ 3

J−jc′
2 22⊥. Thus, I − ib′ = I ′ − (i′ + 1), J − jb′ = J ′ − (j′ + 1),

I−ic′ = I ′−(i′+1) and J−jc′ = J ′−(j′+)1. Consequently, ib′ = ic′ and jb′ = jc′ .
Since f(ib′ , jb′) = δb′ and f(ic′ , jc′) = δc′ , δb′ = δc′ . Hence, b′ = c′: a contradiction.

Case φ = φ2: Thus, (i′, j′) 6|=M′ 2122(σ(xb′) → 21

∨
{σ(xc): c ∈ (a) and

(δb′ , δc) ∈ V }) for some b′ ∈ (a). Consequently, i′ < I ′, j′ < J ′, (i′ + 1, j′ +
1) |=M′ σ(xb′) and (i′ + 1, j′ + 1) 6|=M′ 21

∨
{σ(xc): c ∈ (a) and (δb′ , δc) ∈

V }. Hence, (i′ + 1, j′ + 1) |=M′
∨
{3I−i

1 21⊥ ∧ 3
J−j
2 22⊥: (i, j) ∈ (I) × (J)

and f(i, j) = δb′}, i′ + 1 < I ′ and (i′ + 2, j′ + 1) 6|=M′
∨
{σ(xc): c ∈ (a)

and (δb′ , δc) ∈ V }. Let (ib′ , jb′) ∈ (I) × (J) be such that f(ib′ , jb′) = δb′ and
(i′ + 1, j′ + 1) |=M′ 3

I−ib′
1 21⊥ ∧ 3

J−jb′
2 22⊥. Thus, I − ib′ = I ′ − (i′ + 1) and

J − jb′ = J ′ − (j′ + 1). Since j′ < J ′ and i′ + 1 < I ′, ib′ < I and jb′ ≤ J . Let
c′ ∈ (a) be such that f(ib′ + 1, jb′) = δc′ . Since f(ib′ , jb′) = δb′ , (δb′ , δc′) ∈ V . Since
(i′+2, j′+1) 6|=M′

∨
{σ(xc): c ∈ (a) and (δb′ , δc) ∈ V }, (i′+2, j′+1) 6|=M′ σ(xc′).

Consequently, (i′+ 2, j′+ 1) 6|=M′
∨
{3I−i

1 21⊥∧3J−j
2 22⊥: (i, j) ∈ (I)× (J) and

f(i, j) = δc′}. Since f(ib′ +1, jb′) = δc′ , either (i′+2, j′+1) 6|=M′ 3
I−(ib′+1)
1 21⊥,

or (i′ + 2, j′ + 1) 6|=M′ 3
J−jb′
2 22⊥. Hence, either I − (ib′ + 1) 6= I ′ − (i′ + 2), or

J − jb′ 6= J ′− (j′+ 1). Thus, either I− ib′ 6= I ′− (i′+ 1), or J − jb′ 6= J ′− (j′+ 1):
a contradiction.

Case φ = φ3: Consequently, (i′, j′) 6|=M′ 2122(σ(xb′) → 22

∨
{σ(xc): c ∈ (a)

and (δb′ , δc) ∈ H}) for some b′ ∈ (a). Hence, i′ < I ′, j′ < J ′, (i′ + 1, j′ +
1) |=M′ σ(xb′) and (i′ + 1, j′ + 1) 6|=M′ 22

∨
{σ(xc): c ∈ (a) and (δb′ , δc) ∈

H}. Thus, (i′ + 1, j′ + 1) |=M′
∨
{3I−i

1 21⊥ ∧ 3
J−j
2 22⊥: (i, j) ∈ (I) × (J)

and f(i, j) = δb′}, j′ + 1 < J ′ and (i′ + 1, j′ + 2) 6|=M′
∨
{σ(xc): c ∈ (a)

and (δb′ , δc) ∈ H}. Let (ib′ , jb′) ∈ (I) × (J) be such that f(ib′ , jb′) = δb′ and
(i′+ 1, j′+ 1) |=M′ 3

I−ib′
1 21⊥∧3J−jb′

2 22⊥. Consequently, I − ib′ = I ′− (i′+ 1)
and J − jb′ = J ′ − (j′ + 1). Since i′ < I ′ and j′ + 1 < J ′, ib′ ≤ I and jb′ < J . Let
c′ ∈ (a) be such that f(ib′ , jb′ +1) = δc′ . Since f(ib′ , jb′) = δb′ , (δb′ , δc′) ∈ H . Since
(i′+1, j′+2) 6|=M′

∨
{σ(xc): c ∈ (a) and (δb′ , δc) ∈ H}, (i′+1, j′+2) 6|=M′ σ(xc′).

Hence, (i′ + 1, j′ + 2) 6|=M′
∨
{3I−i

1 21⊥ ∧ 3
J−j
2 22⊥: (i, j) ∈ (I) × (J) and

f(i, j) = δc′}. Since f(ib′ , jb′ + 1) = δc′ , either (i′ + 1, j′ + 2) 6|=M′ 3
I−ib′
1 21⊥,
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or (i′ + 1, j′ + 2) 6|=M′ 3
J−(jb′+1)
2 22⊥. Thus, either I − ib′ 6= I ′ − (i′ + 1), or

J − (jb′ + 1) 6= J ′ − (j′ + 2). Consequently, either I − ib′ 6= I ′ − (i′ + 1), or
J − jb′ 6= J ′ − (j′ + 1): a contradiction.

Case φ = φ4: Hence, (i′, j′) 6|=M′ 2122(σ(y) ∧ 21⊥ →
∨
{σ(xb): b ∈ (a) and

δb ∈ ∆up}). Thus, i′ < I ′, j′ < J ′, (i′ + 1, j′ + 1) |=M′ σ(y), (i′ + 1, j′ + 1) |=M′

21⊥ and (i′ + 1, j′ + 1) 6|=M′
∨
{σ(xb): b ∈ (a) and δb ∈ ∆up}. Consequently,

(i′ + 1, j′ + 1) |=M′ 2J2⊥. Let j ∈ (J) be such that (i′ + 1, j′ + 1) |=M′ 3
J−j
2 22⊥.

Since (i′ + 1, j′ + 1) |=M′ 21⊥, (i′ + 1, j′ + 1) |=M′ 3I−I
1 21⊥ ∧ 3

J−j
2 22⊥.

Let b′ ∈ (a) be such that f(I, j) = δb′ . Hence, δb′ ∈ ∆up. Moreover, since
(i′ + 1, j′ + 1) |=M′ 3I−I

1 21⊥ ∧ 3
J−j
2 22⊥, (i′ + 1, j′ + 1) |=M′ σ(xb′). Thus,

(i′ + 1, j′ + 1) |=M′
∨
{σ(xb): b ∈ (a) and δb ∈ ∆up}: a contradiction.

Case φ = φ5: Consequently, (i′, j′) 6|=M′ 22(σ(y)∧¬σ(z)→ 21(σ(z)→
∨
{σ(xb):

b ∈ (a) and δb ∈ ∆down})). Hence, j′ < J ′, (i′, j′ + 1) |=M′ σ(y), (i′, j′ + 1) |=M′

¬σ(z) and (i′, j′ + 1) 6|=M′ 21(σ(z) →
∨
{σ(xb): b ∈ (a) and δb ∈ ∆down}).

Thus, (i′, j′ + 1) |=M′ 2J2⊥. Let j ∈ (J) be such that (i′, j′ + 1) |=M′ 3
J−j
2 22⊥.

Since (i′, j′ + 1) 6|=M′ 21(σ(z) →
∨
{σ(xb): b ∈ (a) and δb ∈ ∆down}), i′ <

I ′, (i′ + 1, j′ + 1) |=M′ σ(z) and (i′ + 1, j′ + 1) 6|=M′
∨
{σ(xb): b ∈ (a) and

δb ∈ ∆down}. Since (i′, j′ + 1) |=M′ 3
J−j
2 22⊥, (i′ + 1, j′ + 1) |=M′ 3

J−j
2 22⊥.

Since (i′, j′ + 1) |=M′ ¬σ(z), (i′, j′ + 1) |=M′ ¬2I1⊥. Consequently, I ≤ I ′ − i′.
Since (i′ + 1, j′ + 1) |=M′ σ(z), (i′ + 1, j′ + 1) |=M′ 2I1⊥. Since I ≤ I ′ − i′,
(i′ + 1, j′ + 1) |=M′ 3I−1

1 21⊥. Since (i′ + 1, j′ + 1) |=M′ 3
J−j
2 22⊥, (i′ +

1, j′ + 1) |=M′ 3I−1
1 21⊥ ∧ 3

J−j
2 22⊥. Let b′ ∈ (a) be such that f(1, j) = δb′ .

Hence, δb′ ∈ ∆down. Moreover, since (i′ + 1, j′ + 1) |=M′ 3I−1
1 21⊥ ∧ 3

J−j
2 22⊥,

(i′ + 1, j′ + 1) |=M′ σ(xb′). Thus, (i′ + 1, j′ + 1) |=M′
∨
{σ(xb): b ∈ (a) and

δb ∈ ∆down}: a contradiction.

Case φ = φ6: Consequently, (i′, j′) 6|=M′ 2122(σ(z) ∧ 22⊥ →
∨
{σ(xb): b ∈

(a) and δb ∈ ∆right}). Hence, i′ < I ′, j′ < J ′, (i′ + 1, j′ + 1) |=M′ σ(z),
(i′+1, j′+1) |=M′ 22⊥ and (i′+1, j′+1) 6|=M′

∨
{σ(xb): b ∈ (a) and δb ∈ ∆right}.

Thus, (i′+1, j′+1) |=M′ 2I1⊥. Let i ∈ (I) be such that (i′+1, j′+1) |=M′ 3I−i
1 21⊥.

Since (i′ + 1, j′ + 1) |=M′ 22⊥, (i′ + 1, j′ + 1) |=M′ 3I−i
1 21⊥ ∧ 3J−J

2 22⊥. Let
b′ ∈ (a) be such that f(i, J) = δb′ . Consequently, δb′ ∈ ∆right. Moreover, since
(i′ + 1, j′ + 1) |=M′ 3I−i

1 21⊥ ∧ 3J−J
2 22⊥, (i′ + 1, j′ + 1) |=M′ σ(xb′). Hence,

(i′ + 1, j′ + 1) |=M′
∨
{σ(xb): b ∈ (a) and δb ∈ ∆right}: a contradiction.

Case φ = φ7: Thus, (i′, j′) 6|=M′ 21(¬σ(y) ∧ σ(z) → 22(σ(y) →
∨
{σ(xb):

b ∈ (a) and δb ∈ ∆left})). Consequently, i′ < I ′, (i′ + 1, j′) |=M′ ¬σ(y),
(i′ + 1, j′) |=M′ σ(z) and (i′ + 1, j′) 6|=M′ 22(σ(y) →

∨
{σ(xb): b ∈ (a) and

δb ∈ ∆left}). Hence, (i′+ 1, j′) |=M′ 2I1⊥. Let i ∈ (I) be such that (i′+ 1, j′) |=M′

3I−i
1 21⊥. Since (i′ + 1, j′) 6|=M′ 22(σ(y) →

∨
{σ(xb): b ∈ (a) and δb ∈ ∆left}),

j′ < J ′, (i′ + 1, j′ + 1) |=M′ σ(y) and (i′ + 1, j′ + 1) 6|=M′
∨
{σ(xb): b ∈ (a) and

δb ∈ ∆left}. Since (i′ + 1, j′) |=M′ 3I−i
1 21⊥, (i′ + 1, j′ + 1) |=M′ 3I−i

1 21⊥.
Since (i′ + 1, j′) |=M′ ¬σ(y), (i′ + 1, j′) |=M′ ¬2J2⊥. Thus, J ≤ J ′ − j′.

10



Since (i′ + 1, j′ + 1) |=M′ σ(y), (i′ + 1, j′ + 1) |=M′ 2J2⊥. Since J ≤ J ′ − j′,
(i′ + 1, j′ + 1) |=M′ 3J−1

2 22⊥. Since (i′ + 1, j′ + 1) |=M′ 3I−i
1 21⊥, (i′ + 1, j′ +

1) |=M′ 3I−i
1 21⊥ ∧ 3J−1

2 22⊥. Let b′ ∈ (a) be such that f(i, 1) = δb′ . Conse-
quently, δb′ ∈ ∆left. Moreover, since (i′ + 1, j′ + 1) |=M′ 3I−i

1 21⊥ ∧ 3J−1
2 22⊥,

(i′ + 1, j′ + 1) |=M′ σ(xb′). Hence, (i′ + 1, j′ + 1) |=M′
∨
{σ(xb): b ∈ (a) and

δb ∈ ∆left}: a contradiction.

Case φ = φ8: Thus, (i′, j′) 6|=M′ σ(y) → 21σ(y) ∧ 22σ(y). Consequently, (i′, j′)
|=M′ σ(y) and either (i′, j′) 6|=M′ 21σ(y), or (i′, j′) 6|=M′ 22σ(y). Hence, either
(i′, j′) |=M′ 2J2⊥ and (i′, j′) 6|=M′ 212

J
2⊥, or (i′, j′) |=M′ 2J2⊥ and (i′, j′) 6|=M′

222
J
2⊥. In the former case, i′ < I ′ and (i′ + 1, j′) 6|=M′ 2J2⊥. Since (i′, j′) |=M′

2J2⊥, (i′ + 1, j′) |=M′ 2J2⊥: a contradiction. In the latter case, j′ < J ′ and
(i′, j′ + 1) 6|=M′ 2J2⊥. Since (i′, j′) |=M′ 2J2⊥, (i′, j′ + 1) |=M′ 2J2⊥: a con-
tradiction.

Case φ = φ9: Thus, (i′, j′) 6|=M′ σ(z) → 21σ(z) ∧ 22σ(z). Consequently, (i′, j′)
|=M′ σ(z) and either (i′, j′) 6|=M′ 21σ(z), or (i′, j′) 6|=M′ 22σ(z). Hence, either
(i′, j′) |=M′ 2I1⊥ and (i′, j′) 6|=M′ 212

I
1⊥, or (i′, j′) |=M′ 2I1⊥ and (i′, j′) 6|=M′

222
I
1⊥. In the former case, i′ < I ′ and (i′ + 1, j′) 6|=M′ 2I1⊥. Since (i′, j′) |=M′

2I1⊥, (i′ + 1, j′) |=M′ 2I1⊥: a contradiction. In the latter case, j′ < J ′ and (i′, j′ +
1) 6|=M′ 2I1⊥. Since (i′, j′) |=M′ 2I1⊥, (i′, j′ + 1) |=M′ 2I1⊥: a contradiction.

Case φ = φ10: Thus, (i′, j′) 6|=M′ ¬σ(y) → 21¬σ(y). Consequently, (i′, j′) |=M′

¬σ(y) and (i′, j′) 6|=M′ 21¬σ(y). Hence, (i′, j′) |=M′ ¬2J2⊥ and (i′, j′) 6|=M′

21¬2J2⊥. Thus, i′ < I ′ and (i′ + 1, j′) 6|=M′ ¬2J2⊥. Consequently, (i′, j′) 6|=M′

¬2J2⊥: a contradiction.

Case φ = φ11: Hence, (i′, j′) 6|=M′ ¬σ(z) → 22¬σ(z). Thus, (i′, j′) |=M′ ¬σ(z)
and (i′, j′) 6|=M′ 22¬σ(z). Consequently, (i′, j′) |=M′ ¬2I1⊥ and (i′, j′) 6|=M′

22¬2I1⊥. Hence, j′ < J ′ and (i′, j′ + 1) 6|=M′ ¬2I1⊥. Thus, (i′, j′) 6|=M′ ¬2I1⊥: a
contradiction. a

Lemma 8 6|= σ(ψI).

Proof: Let M = (I, J, v) be a model based on I and J . Obviously, (0, 0) |=M
¬2J2⊥, (0, 0) |=M ¬2I1⊥, (0, 0) |=M 322

J
2⊥, (0, 0) |=M 312

I
1⊥ and (0, 0) |=M

2122

∨
{
∨
{3I−i

1 21⊥ ∧3
J−j
2 22⊥: (i, j) ∈ (I) × (J) and f(i, j) = δb}: b ∈ (a)}.

Hence, (0, 0) |=M ¬σ(y) ∧ ¬σ(z) ∧ 32σ(y) ∧ 31σ(z) ∧ 2122

∨
{σ(xb): b ∈ (a)}.

Thus, (0, 0) 6|=M σ(ψI). Consequently, 6|=M σ(ψI). Hence, 6|= σ(ψI). a

Here finishes the proof of Proposition 5.
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7 Conclusion
We have proved that the admissibility problem of the product of two Alt logics is un-
decidable.

In a modal logic L, the importance of the admissibility problem lies in its correspon-
dence with the unifiability problem which is to determine, given a formula φ, whether
there exists a substitution σ such that σ(φ) ∈ L [1, 4, 9, 13]. In that case, φ is L-
unifiable. Indeed, the correspondence between the admissibility problem in L and the
unifiability problem in L can be expressed as follows: the formula φ is unifiable if and
only if the inference rule {φ}⊥ is not admissible. Hence, in a modal logic L, an impor-
tant question is the following: is the unifiability problem in L decidable?

In many modal logics, to solve the unifiability problem is easy. For instance, if KD⊆L
then the unifiability problem in L is in NP. Moreover, using a reduction to the pro-
blem of determining whether a given graph contains an Hamiltonian path, it has been
proved that the Alt-unifiability problem is in PSPACE [5]. In other respect, by
means of the so-called universal model, non-deterministic polynomial time algorithms
for solving the unifiability problem in transitive modal logics such as GL have been
designed [12, 23].

However, in some other modal logics, to solve the unifiability problem is not a mere
formality. For instance, the computability of the unifiability problem remains open in
K. When parameters are allowed, the computability of the unifiability problem re-
mains open as well in many modal logics containing KD [2, 3]. For instance, the
computability of the unifiability problem is unknown in DAlt, a modal logic which
has many interesting properties: it possesses the polynomial finite model property; its
membership problem is coNP-complete.

Therefore, a challenging open question is whether the unifiability problem of the pro-
duct of two Alt logics is undecidable. Other challenging open questions concern the
admissibility problem and the unifiability problem in the products of two arbitrary
modal logics, for instance the product of two K logics. Although this product does
not possess the polynomial product finite model property, its membership problem is
decidable. Has it an undecidable admissibility problem? Has it an undecidable unifia-
bility problem?

Funding
The preparation of this paper has been supported by the Programme Professeurs invités
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