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ABSTRACT Constraint-based modeling has risen as an alternative for characterizing 
metabolism of communities. Adaptations of flux balance analysis have been proposed 
to model metabolic interactions, which in most cases consider the maximization of 
biomass production as their objective. In nature, novel essential functions are not 
directly related to cell growth force communities to display suboptimal growth rates. 
These suboptimal states allow a degree of plasticity in their metabolism, thus allowing 
quick shifts between alternative flux distributions as an initial response to environmental 
changes. In this work, we introduce the abundance-growth space as a representation 
of metabolic phenotypes of a community. This space is defined by the composition 
of a community, represented by its members’ relative abundances, and their growth 
rate. The analysis of this space allows us to pinpoint how critical reactions respond 
to shifts of the environment, showing where changes in community plasticity occur. 
Interestingly, it highlights the relevance of the relative abundance of its members in 
the lost or gain of plasticity. This method is applied to two simple communities that 
exchange metabolites. A synthetic community of two mutant Escherichia coli strains and 
an environmental bioleaching community composed by Acidithiobacillus ferrooxidans 
Wenelen and Sulfobacillus thermosulfidooxidans Cutipay, where only Cutipay consumes 
organic matter disposed of by the community.

IMPORTANCE In nature, organisms live in communities and not as isolated species, and 
their interactions provide a source of resilience to environmental disturbances. Despite 
their importance in ecology, human health, and industry, understanding how organisms 
interact in different environments remains an open question.

In this work, we provide a novel approach that, only using genomic information, studies 
the metabolic phenotype exhibited by communities, where the exploration of subopti­
mal growth flux distributions and the composition of a community allows to unveil 
its capacity to respond to environmental changes, shedding light of the degrees of 
metabolic plasticity inherent to the community.

KEYWORDS constrained-based modeling, microbial communities, metabolic plasticity

I n nature, organisms live in communities rather than as isolated species. These 
communities emerge from interactions (1) and provide a source of resilience to 

perturbations such as biofilm development (2, 3), flux relation-feeding (4), or community 
resistance to environmental disturbances (5). The study of these interactions is impera­
tive in critical areas such as ecology (6), health (7), and the biotechnological industry 
(8). Understanding how organisms interact in different environments is still an open 
discussion despite their relevance.

The last decade saw the rise of metabolic modeling for formalizing microbial 
interactions. The metabolic cross-talking between microorganisms notably justifies the 
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metabolic abstraction for sustaining biogeochemical cycles (9). As a natural following, 
several approaches have been developed for modeling the metabolism of communi­
ties (10) using comprehensive genome-scale descriptions for which each organism is 
described by its inner biochemical machinery (11–14). This genome-scale description 
allows developing of several computational strategies to identify essential metabolic 
interactions (e.g., SteadyCom [15], RedCom [13], community flux balance analysis [cFBA] 
[16], and MICOM [microbial community] [17]). When applied in specific contexts, it 
results in insightful advances like the determination of essential interactions in anaerobic 
digestion for biogas production (18), cancer (19), and the gut microbiota (20, 21).

These approaches characterize metabolic flux distributions and community 
compositions using an adaptation of flux balance analysis (FBA) (22), where an objective 
function, usually biomass production, is optimized (13, 15–17, 23, 24). Maximization 
of biomass is of great interest for growth rate estimation, and it has shown substan­
tial benefits in the biotechnological context that aims at controlling single strains to 
improve yields for a product of interest (25, 26). However, in environmental communities, 
organisms should be prepared to face shifting conditions. Hence they increase their 
fitness by maximizing their growth rate for a subset of possible conditions (27), hence 
displaying suboptimal growth rates. Moreover, metabolic models do not always account 
for additional requirements, such as the synthesis of secondary metabolites essential to 
sustain communities (28) and survival in adverse environments (5). Suboptimal growth 
solutions allow for resources to be used in these additional functions, as it was observed 
experimentally for model species in references 29 and 30.

A challenge for studying and predicting metabolic interactions in community models 
is to propose methods allowing the exploration of alternative metabolic states that 
a community could display while preserving the practicality of traditional methods 
like FBA and flux variability analysis (FVA) (31). An idea that can be adapted to com­
munity models was proposed initially in reference 32, where metabolic phenotypes of 
an organism are studied by grouping couples of nutrient fluxes by their incidence in 
the optimal solution of an FBA for biomass. More recently, an alternative approach is 
proposed to directly explore the flux space defined by exchange reactions to charac­
terize the so-called metabolic niche (33). Comparison between this space for differ­
ent organisms allows us to determine environments where a community can thrive. 
However, these approaches still leave out the role and abundance of each organism in 
the community. Indeed, the relative abundance of members of a community shape the 
distribution of resources and synthesis of secondary metabolites (15). Although there 
are promising ideas regarding the laws governing its probabilistic distribution (34), the 
prediction of abundances is uncertain at steady state. Thus, the exploration of the effect 
of community composition is critical for studying metabolic interactions.

In this work, we explore the space of metabolic fluxes of a community, focusing 
on the distribution of abundances of its organisms and community growth rates. This 
space is partitioned according to displayed metabolic phenotypes compatible with 
each abundance-growth point, computed based on flux ranges for each reaction. These 
ranges are seen as descriptors of the system’s plasticity (35, 36) and allow us to distin­
guish between reactions that present flux plasticity, where their fluxes remain positive 
(i.e., always active) despite flux variations, from reactions associated with structural 
plasticity that shows zero flux on some solutions, emphasizing their putative replace­
ment by alternative pathways. Moreover, the proposed framework allows projecting the 
metabolic phenotype in a lower dimensional space for interpretation, thus providing a 
practical exploration of metabolic phenotypes in a community characterized by different 
relative abundances and growing at suboptimal growth rates.

For illustration, the method is applied to a synthetic E. coli community with a 
mandatory cross-feeding of leucine and lysine, and an environmental community 
composed of Acidithiobacillus ferrooxidans Wenelen and Sulfobacillus thermosulfidoox­
idans Cutipay, where only the latter consumes organic matter disposed of by the 
community.
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In both examples, the study of the abundance-growth space allows us to pinpoint 
how critical reactions respond to shifts in the environment, showing where changes 
in community plasticity occur. Notably, the method not only allows us to confirm that 
plasticity increases as the growth rate decreases as expected (29) but also highlights the 
relevance of the relative abundance of its members in the loss or gain of plasticity. In 
a more quantitative perspective, in both examples we show that despite the different 
degrees of plasticity, there are strong couplings between key reactions when reaching 
high growth rates or attaining very unbalanced communities.

RESULTS

Rationale of the abundance-growth space

We aim to understand mechanisms that support community structure and the 
ecosystem’s resilience to perturbations. To achieve this, we propose to study the 
metabolic phenotypes of a community through the definition of what we call the 
abundance-growth space.

A community model is constructed using single-organism genome-scale metabolic 
models, considering each organism as a compartment. Exchanges between organisms 
occur in the pool compartment. We assume the community is stable over time, i.e., all 
organisms grow at the same rate to maintain constant relative abundances, which is 
common in community modeling (13, 15, 16). The requirement of an identical growth 
rate between all organisms applies not at every time point but averaged over time. Thus, 
this hypothesis is a reasonable approximation for communities where composition is 
mainly maintained between spaced time points (15).

In this model, μ is the community growth rate, and the relative abundance fi
of organism i appears as a factor of the flux bounds for any reaction of its respec­
tive organism (Materials and Methods). Thus, variations on the vector of abundances F = (f1, …, fN) and on μ affect the set of flux distributions that are feasible solutions 
of the model. Specifically, for a given abundance-growth pair (F, μ), the polytope PF, μ is 
defined as the set of all flux distributions satisfying model’s constraints. We define the 
abundance-growth space as the set of all feasible pairs (F, μ), that is, when PF, μ ≠ ∅. 
We believe that this space is a good asset to capture the metabolic phenotype when 
changing growth rates and abundances of members of a community.

Characterizing PF, μ for each point, (F, μ) of the abundance-growth space is 
computationally hard and complex to describe. Thus, we represent it by the minimum 
[minF, μ(r)] and maximum [maxF, μ(r)] values of the flux vr of reaction r in PF, μ. We 
propose the range between minF, μ(r) and maxF, μ(r) as an indicator of metabolic 
plasticity as described in references 35 and 36. Indeed, a reaction r has flux plasticity 
if minF, μ(r) ≠ maxF, μ(r). In addition, the reaction has structural plasticity if zero is in 
between these extreme values, meaning that alternative pathways could replace r. To 
obtain a more quantitative description of PF, μ, one can consider the set of combined 
feasible fluxes of pairs of selected reactions (quantitative coupling). Computationally, 
this representation is achieved by defining a grid ℱ  of feasible abundance-growth 
points (Materials and Methods). For an example of the abundance-growth space for a 
community of two organisms, see Fig. 1B [we only plot (f1, μ) since f2 = 1 − f1].

Following this rationale, for studying metabolic phenotypes given by a set of 
reactions of interest R′ on an abundance-growth point (F, μ), we assign a categorical 
value to r ∈ R′ according to Table 1. In an exploratory study, R′ can be the whole set of 
reactions, but in a more precise context, for instance when focusing on the community’s 
metabolic interactions, it can be restricted to exchange reactions. Then, for each point of 
the grid, we compute a categorical vector for reactions in R′, generating a partition of the 
abundance-growth space in zones with identical vectors. Depending on the size of R′, 
the number of zones can be huge. To overcome this, we define a cluster-partition, whose 
zones are obtained by a clustering algorithm, and we attribute a consensus categorical 
vector to each cluster-partition (Materials and Methods).
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The abundance-growth space for a synthetic E. coli community

To illustrate this method, we first consider a synthetic cooperative community com­
posed of two E. coli strains auxotrophic for leucine (eco_L) and lysine (eco_K) (File 
S1, https://github.com/mathomics/ecosystem), studied in reference 37. Consumption 
and production of these amino acids were constrained based on their reported fluxes 
(Materials and Methods). In this community, cross-feeding of leucine and lysine is critical 
for survival (Fig. 1).

We obtain an abundance-growth space whose shape resembles a concave trian­
gle (Fig. 1B). Its dimensions are influenced by changes in the production capacity 
of leucine and lysine, as well as its external supplementation (Fig. S1), as discussed 
below. This shape shows that at high growth rates, abundances need to be balanced 
(feco_K ∼ feco_L), which is consistent with reference 37. On the other hand, communities 
with a dominant strain can only grow at lower rates, which was attributed to the less 
abundant strain being unable to satisfy amino acid requirements from the other (37). 
Indeed, at a fixed abundance of eco_K (eco_L), the minimum flux value for the produc­
tion of leucine (lysine) reaches the upper bound in the model, making it unfeasible for 
greater growth of the community (Fig. S2).

From the 5,068 reactions of the model, a cluster-partition is performed. Eight clusters 
allow us to distinguish relevant changes in this space (Materials and Methods and Fig. 
S3a). We distinguish 116 reactions whose consensus values change between clusters, 
1,880 that are unable to carry any flux in the abundance-growth space, and 2,371 
presenting fixed non-zero flux values (File S2, https://github.com/mathomics/ecosys­
tem). Blocked reactions are associated with the exchange of metabolites absent in the 
environment of the simulated community, as well as consequences of gene knockout 
performed on both strains. Fixed reactions are associated with biomass production 
requirements, such as NAD and tetrahydrofolate synthesis and transport of ions present 
in biomass. Interestingly, only leucine consumption by eco_L exhibits a fixed flux value in 
all the abundance-growth space (status –), while eco_K displays a small range in which 
consumption of lysine is observed (status –).

From the 116 changing reactions, 98 appear only in shifts between clusters of 
unbalanced communities at very low growth rates (clusters 2, 5, 1, and 4). Among the 
remaining 18 reactions, we determine that 10 are able to describe all the transitions 
between clusters, since redundant reactions (such as transporters of O2 and H2O) can 
be removed. Changes of these 10 reactions show that the community is set toward 
cell growth by breaking down glucose, rather than amino acid synthesis and consump­
tion. Indeed, these shifts correspond to indirect measurements of how active glucose 
catabolism is, hence displaying exchanges for oxygen, carbon dioxide, and water, for 
the community. Between clusters 7 and 8, shifts are observed in reactions depicting an 
active metabolism toward biomass synthesis: ATP synthesis (from −+ to + [Fig. 1C]) and 
ribose-5-phosphate isomerase (RPI), which reverses its flux toward nucleotide synthesis.

In addition, to get a deterministic description of the abundance-growth space, 
we compute the partition given by the qualitative vectors associated with these 10 

TABLE 1 Categorical values for a reaction r and a point (F, μ) of the abundance-growth space

Condition Category Flux sign Flux variability Flux requirement Level of plasticity

minF, μ(r) = maxF, μ(r) = 0 0 Zero Fixed Off No plasticity

minF, μ(r) = maxF, μ(r) < 0 − Negative Fixed Mandatory No plasticity

0 < minF, μ(r) = maxF, μ(r) + Positive Fixed Mandatory No plasticity

minF, μ(r) < maxF, μ(r) < 0 −− Negative Variable Mandatory Flux plasticity

0 < minF, μ(r) < maxF, μ(r) ++ Positive Variable Mandatory Flux plasticity

minF, μ(r) < maxF, μ(r) = 0 −0 Negative or zero Variable Optional Structural plasticity

0 = minF, μ(r) < maxF, μ(r) 0+ Positive or zero Variable Optional Structural plasticity

minF, μ(r) < 0 < maxF, μ(r) −+ Any Variable Optional Structural plasticity
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reactions. This yields nine areas (Fig. S4) revealing in more detail the shifts observed 
in the cluster partition. Particularly, shifts forcing ATP synthesis and water exchange by 
eco_L (Fig. 1A).

Finally, since states for both leucine and lysine exchanges remain constant along the 
abundance-growth space, we study the degree of quantitative coupling between these 
reactions. For this, we plot flux values for different couples of these reactions in six 
points of the space (Fig. 2A). In particular, Fig. 2B shows the consumption of lysine and 
production of leucine by eco_K. Here, flux ranges are affected by both composition and 
growth in such a way that when eco_K is more abundant and requires higher growth 
rates, lysine consumption by this bacterium tends to be fixed, but the production of 
leucine can vary on a wide interval. On the contrary, leucine production by eco_K tends 
to be fixed when this bacterium is less abundant at higher growth rates.

Also, in Fig. 2C, consumption of lysine by eco_K vs consumption of leucine by eco_L 
are plotted, showing the following assymetry: eco_L requires a fixed flux of leucine that 
increases at higher growth; on the other hand, the flux of lysine consumption by eco_K is 
more flexible, living in an interval which decreases with its abundance. Fixed values on 
leucine consumption reflect its exclusive requirement for biomass synthesis, while lysine 

FIG 1 Analysis of the abundance-growth space for a synthetic Escherichia coli community. (A) A synthetic cooperative microbial community of two E. coli 

mutants is constructed by knocking out key genes for leucine (eco_L) and lysine (eco_K) production. Bounds on exchange reactions for each strain are 

constrained based on their abundances (depicted as intervals). (B) Cluster-partition (k = 8) of the abundance-growth space for the presented community with 

no leucine or lysine supplementation. (C) Table of reactions in which qualitative states change between neighboring clusters. Clusters are organized according 

to their location in the abundance-growth space from low to high growth rate and from feco_K 0 to 1. Lysine and leucine exchange reactions (gray rows) 

do not exhibit changes among the analyzed clusters. EX: exchange reactions, h2o: water, o2: oxygen, lys: lysine, leu: leucine, ATPS4rpp: ATP synthase, RPI: 

ribose-5-phosphate isomerase.
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can be transformed into 1,2-diaminepentane through the lysine decarboxylase reaction 
and this metabolite can be exported.

Although this has not been reported (37), by simulating the supplementation of 
leucine and lysine, this method can give insights into how metabolism is affected by 
shifts in its environment. When both lysine and leucine are supplemented (Fig. 3) at a flux 
of 0.01 (mmol/g DWcom/h), we get that a cluster-partition of 10 sets accurately represent 
qualitative states (Fig. S3B).

We observe an area of low growth rates, where the community can opt to not 
synthesize leucine and lysine (clusters 7, 9, 8, and 10). By increasing the community 
growth rate, both bacteria are required to produce leucine and lysine. First, in clusters 4 
and 6, the key reaction for leucine synthesis (eco_K_IPPS) changes from 0+ to ++. But its 
supplementation for the other bacterium (eco_K_EX_leu_L_e) is only required when 
eco_K is less abundant (cluster 6) (Fig. 3). In Fig. S5, a partition of the abundance-growth 
space for the previous reactions highlights these phenomena. For lysine synthesis, an 
analogous phenomena is observed, where its key reaction (eco_L_DAPDC) shifts from 0+ 
to ++. From this point upwards (clusters 5, 1, 2, and 3), both bacteria are required to 

FIG 2 Quantitative flux coupling analysis for the exchange of lysine and leucine in the synthetic E. coli community. (A) Selected points in the abundance-growth 

space. (B) Feasible fluxes for the consumption of lysine and production of leucine by eco_K at the different points marked in panel A. (C) Feasible fluxes for the 

consumption of lysine by eco_K and consumption of leucine by eco_L. Fluxes are in units of (mmol/g DWorg/h).
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supplement lysine and leucine, respectively (++ state). No more changes are observed 
with respect to the scenario without the supplementation of lysine and leucine.

The quantitative analysis of Fig. 2 in this scenario only reflects that there is more 
plasticity due to amino acid supplementation (Fig. S6), measured as an increase in the 
range of minimum and maximum fluxes.

The abundance-growth space for a bioleaching community

To test the method in an environmental community, we consider a simple microbial 
consortium between A. ferrooxidans Wenelen and S. thermosulfidooxidans Cutipay (see 
File S3 and File S4 in https://github.com/mathomics/ecosystem and Materials and 
Methods), obtaining a community competing for inorganic energy sources (Fe(II) and 
thiosulfate). Both bacteria are able to fix carbon available as CO2 but only Cutipay can 
consume organic matter made available by the degradation of community biomass, 
which is modeled as a pseudo-reaction transforming a fraction α of the biomass 
produced by the community (Materials and Methods).

We consider the case study where α = 0.2 and a substrate level composed of 
energetically equivalent amounts of Fe(II) and thiosulfate. The obtained abundance-
growth space has a convex shape such that the maximum community growth rate 
increases when Wenelen decreases, showing that Cutipay is more efficient in producing 
biomass than Wenelen. Since both bacteria have been observed together in equilibrium 
(38), it seems that they are not maximizing the growth rate of the community in these 
conditions.

Considering R′ as the set of 100 exchange reactions, a cluster-partition is computed 
using 20 clusters (Fig. 4B) (Materials and Methods and Fig. S7 to justify the number of 
clusters).

We find that 23 reactions change between neighboring clusters (Fig. 4B). The 27 
remaining reactions are blocked, coupled with their biomass production requirements, 
or exhibited structural plasticity on each grid point. The curation of these 23 reactions 
allowed to remove those that are coupled in all clusters, such as consumption of Fe(II) 
and production of Fe(III), pairs of exchange reactions for H2O and H, and SO4 and H. 
Additionally, reactions in which changes are only attributed to a few clusters were 

FIG 3 Analysis of the abundance-growth space for a synthetic community of E. coli supplemented with leucine and lysine. (A) Cluster-partition (k = 10) of the 

abundance-growth space. (B) Key reactions associated with changes in their states between neighboring clusters together with their qualitative values along the 

clusters. Clusters are organized according to their location in the abundance-growth space from low to high growth rates and from f eco_K0 to 1. EX: exchange 

reactions, h2o: water, o2: oxygen, lys: lysine, leu: leucine, ATPS4rpp: ATP synthase, IPPS: 2-isopropylmalate synthase, RPI: ribose-5-phosphate isomerase, DAPDC: 

diaminopimelate decarboxylase
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removed, notably the exchange of H2, which production is optional only in cluster 1. 
After this curation, 11 critical reactions associated with iron, sulfur, and carbon metabo­
lism were obtained. Five of them belong to Cutipay, three to Wenelen, and three to the 
microbial community as a whole (Fig. 4C).

Six sections are distinguished (Fig. 4B and C). A high plasticity section is defined at 
lower growth rates, where most exchanges are optional (−0 and −+) and independent 
of abundances. As growth requirements increase, oxidation of both inorganic energy 
sources by the community becomes mandatory (–), as well as the consumption of 

FIG 4 Analysis of the abundance-growth space for the bioleaching community. (A) A community composed of A. ferrooxidans Wenelen (wen) and S. 

thermosulfidooxidans Cutipay (cut) is studied in an environment with Fe(II) and thiosulfate in the presence of organic matter. A pseudo-reaction represents 

organic matter (OM) availability as a fraction (α, here α = 0.2) of the total community biomass. (B) Twenty clusters are computed for the 100 exchange reactions 

of the community model. (C) Key reactions associated with qualitative changes between neighboring clusters define six areas for the behavior of this community. 

A status is associated with a cluster when over 80% of the points in the cluster exhibit a certain state. If no consensus is reached, an empty cell is presented. 

Clusters are organized according to their location in the abundance-growth space from low to high growth rate and from fwen 0 to 1. OM: organic matter, EX: 

exchange reactions, h: hydrogen (proton), tsul: thiosulfate, co2: carbon dioxide, fe2: Fe(II), glc: organic matter, CW-P: Cutipay Wenelen plasticity.
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sulfur and iron, which indicates a loosing of global structural plasticity. Next, we define 
a proton plasticity section (clusters 10, 11, and 12), where the community needs to 
consume Fe(II) and thiosulfate, preserving structural plasticity (−+) for the exchange 
of protons (H). This indirectly measures the balance between Fe(II) and thiosulfate 
oxidation, since the first requires protons while the second produces them (39). Thus, 
in this section, the community can still opt not to affect the pH of its environment.

In the Wenelen plasticity section, all reactions associated with this bacterium exhibit 
structural plasticity. Here Cutipay shifts from no plasticity for Fe(II) oxidation in cluster 
20 (where it is abundant) to structural plasticity in cluster 16. Also, we observe a less 
active Fe(II) oxidation (cut_EX_h_e, from – to −+). Analogously, in the Cutipay plasticity 
section its associated reactions display structural plasticity, while Wenelen loses it for 
thiosulfate (cluster 13) and iron (cluster 9) consumption when approaching fwen = 1. 
Cluster 7 shows an increase in carbon metabolism structural plasticity, where it no longer 
requires CO2 consumption to support its growth (cut_EX_co2_e).

In between the above two sections stands the Cutipay-Wenelen plasticity section, 
where high plasticity is observed for both organisms. It is a desirable area where 
organisms can adapt to shifts in their environment, maintaining high growth rates. 
Finally, in the low plasticity section, characterized by the highest growth rates, all 
reactions lose plasticity, and the high energy requirements force Cutipay to consume 
organic matter (represented by equivalent carbon units in the form of glucose [Materials 
and Methods]).

Eleven critical exchange reactions were selected from the previous clustering analysis, 
producing a partition of 40 areas, among which an organic matter consumption area is 
clearly defined for Cutipay as well as a much specific description of the low plasticity 
section (Fig. S8), thus confirming in a deterministic way previous observations regarding 
plasticity in the abundance-growth space.

To quantitatively illustrate previous results, explore competition for resources (Fig. 5B; 
Fig. S9), and use of different substrates to support cell growth (Fig. 5C; Fig. S10), we 
computed the feasible solution space for critical pairs of reactions associated with the 
consumption of energy sources at specific points of the abundance-growth space. As 
expected, there is an overall reduction in plasticity while moving into the growth-orien­
ted area, where exchange fluxes for energy sources are perfectly coupled. This result is 
evident in the points (0.388 and 0.095), where for a given consumption of thiosulfate, 
there is a unique consumption of iron (Fig. 5B). Plasticity reduction is also observed when 
moving into extreme compositions of the community, where being more abundant 
results in having less specific consumption rates. Notably, when the community becomes 
balanced, the feasible solution space of critical pairs of reactions concentrates more 
at higher growth rates. This is less evident just from the abundance-growth space 
observation.

Impact of organic matter availability on a bioleaching community

Organic compounds are detrimental for some autotrophic bioleaching bacteria (40), 
toxic for chemolithotrophic (41), having inhibitory effects in iron oxidation (42), thus 
favoring the abundance of heterotrophs or facultative heterotrophs in bioleaching 
communities (43).

Scenarios with increasing amounts of organic matter availability were simulated by 
moving α, and partitions of the abundance-growth space were computed for essential 
bioleaching reactions (Fig. 6). By increasing α, a direct effect in the enlargement of the 
space with the maximum growth rate of the community and an increase of the higher 
structural plasticity areas are observed (Fig. 6). In Wenelen, this only happens until the 
maximum uptake of inorganic sources is reached when α = 0.6. Interestingly, in Cutipay, 
the enlargement of the space is given by the mandatory consumption of organic matter 
(− −), and it exhibits a shift where CO2 consumption is no longer required to support its 
growth (gray area in Fig. 6A). Moreover, new areas appeared near the maximum com­
munity growth section, where this bacterium is forced to break down organic matter, 
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hence producing CO2 to survive (Fig. 6). This shows that organic matter is beneficial for 
achieving higher growth rates and that Cutipay does not present a preference for organic 
matter over inorganic sources.

This result, at higher growth rates, initially contradicts literature regarding the 
behavior of bioleaching communities in the presence of organic matter, which is 
characterized by an increased abundance of heterotrophs and facultative heterotrophs, 
which favor the consumption of carbon sources for energy production (43) and will be 
explored by imposing additional objectives. This could mean that these communities 
grow at low rates.

FIG 5 Quantitative flux coupling analysis for competition for thiosulfate and distribution of resources by A. ferrooxidans in the bioleaching community. 

(A) Selected points in the abundance-growth space. (B) Feasible fluxes for thiosulfate exchanges (EX_tsul_e) for A. ferrooxidans (wen) and S. thermosulfidooxidans 

(cut) at the different points marked in panel A. (C) Feasible fluxes of Fe(II) and thiosulfate exchanges (EX_fe2_e and EX_tsul_e) for A. ferrooxidans at different 

points marked in panel A. Fluxes are in units of (mmol/g DWorg/h).
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Impact of substrate composition on the bioleaching community

Different stages of the bioleaching process are characterized by changes in chemical 
and physical properties, which shape the distribution of resources, metabolic states, and 
community compositions (43). In particular, uniform distribution of substrates is not 

FIG 6 Effects of organic matter availability in the bioleaching community. A partition of the abundance-growth space is computed for key reactions of the 

bioleaching community when increasing organic matter availability (α). α represents the ratio of the biomass generated by the community that could be 

degraded to serve as an additional carbon source. The reference case is highlighted with thicker edges; dashed lines show the maximum community growth rate 

for α = 0. (A) Qualitative states of reactions of S. thermosulfidooxidans Cutipay (cut). (B) Qualitative states of reactions of A. ferrooxidans Wenelen (wen). Partition 

tables are ordered according to the location of different zones in the abundance-growth space from lower to higher growth rates, from fwen 0 to 1, and their 

occurrence in different scenarios from left to right. EX: exchange reactions, fe2: Fe(II), tsul: thiosulfate, h: hydrogen (proton).
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always guaranteed, and nutrient bioavailability could pose a bottleneck for bioleaching 
efficiency.

Consistently, in our model, changing the relative availability of Fe(II) and thiosulfate 
has drastic effects on the behavior of the community (Fig. 7). Iron-predominant scenarios 
present new metabolic states where iron availability overpasses the effect of preference 
for thiosulfate as an energy source, which has been observed up to this point in these 
analyses. It is worth noticing that sulfur compounds have higher energy yields than Fe(II) 
since they have more electrons available (44). Although, A. ferrooxidans is believed to 
exhibit a preference for iron (45), evidence shows the simultaneous expression of genes 

FIG 7 Effect of relative substrate availability in the bioleaching community. A partition of the abundance-growth space 

defined by qualitative states for key reactions of the bioleaching community in scenarios with changing ratios between 

both energy sources. Two partition tables for each bacteria are displayed for the qualitative states in different scenarios. 

(A) Partition tables of reactions for S. thermosulfidooxidans Cutipay. (B) Partition tables of reactions for A. ferrooxidans Wenelen. 

The reference case is highlighted with thicker edges. Partition tables are ordered according to the location of different zones 

in the abundance-growth space from lower to higher growth rates, from fwen 0 to 1 and from their occurrence in different 

scenarios from left to right.
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for the consumption of iron and sulfur (46), being solubilization of sulfur compounds is 
key to consuming both energy sources (47). This result is consistent with our analysis, 
where a preference for Fe(II) oxidation is only displayed when its availability surpasses 
thiosulfate.

Impact of considering alternative objectives

For testing a more realistic representation of a bioleaching community, a parsimonious 
FBA, where minimization of the sum of fluxes is performed as a proxy for energetic 
efficiency. This has surged as a realistic alternative to retrieve flux distributions (29, 48). 
This analysis allows a 10%, 20%, and 50% deviation from the optimal solution to maintain 
a certain degree of plasticity. The results (Fig. 8) show a significant change with the one 
observed in Fig. S8.

FIG 8 Effect on qualitative states when optimizing energetic efficiency in the bioleaching community. A partition of the 

abundance-growth space defined by qualitative states for key reactions of the bioleaching community in scenarios where 

10%, 20%, and 50% of deviation from the optimal solution for energy efficiency is allowed. (A) Two partition tables are 

displayed for S. thermosulfidooxidans Cutipay (cut) for the qualitative states presented in different scenarios (B). Partition table 

of reactions for A. ferrooxidans Wenelen (wen). Partition tables are ordered according to the location of different zones in the 

abundance-growth space from lower to higher growth rates, from fwen 0 to 1, and from their occurrence in different scenarios 

from left to right.
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Regarding energy source preferences, it is remarkable how thiosulfate becomes 
mandatory at significantly lower growth rates as we are close to the optimal energy 
efficiency value. However, the degrees of plasticity in Fe(II) consumption remain 
unaltered concerning the reference case in both bacteria. This observation is valid in all 
areas of the space, except for Cutipay in fwen ≥ 0.8, where this bacteria retains structural 
plasticity for both inorganic sources. Interestingly, organic matter consumption by this 
bacteria is required at lower growth rates, which is in agreement with the literature, 
where the presence of organic matter is beneficial for heterotrophs that use this energy 
source for biomass production (43, 49, 50).

DISCUSSION

Environmental communities are subjected to constant shifts that affect their survival. 
Adaptation to such changes includes gene mutations (51), gene transfer, and even 
gene loss in collaborative communities (52), as well as the development of regulatory 
processes that result in efficient resource distribution such as flux distributions that result 
on increased metabolic plasticity (30, 53). This raises the long-standing discussion of 
whether the community opts to live at suboptimal growth rates to increase the capacity 
to use alternative metabolic pathways and if it is possible to predict their metabolic 
phenotypes at a given condition, as proposed in references 29 and 30.

Constraint-based modeling for single organisms has historically based most of their 
flux predictions on the maximization of biomass production (54). This assumption yields 
promising results for organisms well characterized in laboratory settings for being 
efficient in the growth and synthesis of a product of interest (55, 56). In contrast, 
organisms in nature are exposed to constant shifts in their environment, which implies 
the production of secondary metabolites that provide favorable conditions for survival, 
deviating resources to the detriment of growth maximization (5, 29). Additionally, 
communities interact in a complex manner (51, 52), where the abundance of each 
member has implications in the growth rate of the community.

Several optimization strategies have been developed to characterize interactions 
between organisms (12–15). From a more ecological perspective, the notion of metabolic 
niche was proposed to characterize all possible environments in which an organism 
could live in suboptimal conditions (33). This niche concept uses the feasible flux space 
to study how organisms interact with their environment, represented by few exchange 
reactions, depicting new relationships between genotype and metabolic phenotypes 
(33). Even though these methods consider all feasible metabolic fluxes, they do not fully 
explore emergent properties arising from organism relative abundances.

In this work, we introduce the abundance-growth space defined by the composition 
of a community and its growth rate, as an approach to characterize the metabolic 
phenotype attained by a community and the plasticity of its metabolism. More precisely, 
we describe, on each point of this space, which reactions are required to carry flux 
(mandatory vs optional flux) and whether their function can be partially replaced by 
alternative pathways (variable vs fixed flux). Since these characteristics vary across the 
abundance-growth space, partitioning this space into zones of similar metabolic profiles 
gives a characterization of the most relevant phenotypes presented and their relation 
with the composition of the community.

In addition, the partition of the abundance-growth space allows us to pinpoint critical 
reactions involved in significant changes in interactions of the community with their 
environment and establishes, in a precise manner, where critical changes in commun­
ity plasticity occur. Notably, in both examples developed here, this method allows to 
unveil how plasticity changes in the abundance-growth space, not only confirming that 
plasticity increases as the growth rate decreases as expected (29) but also highlighting 
the relevance of the relative abundance of its members in the loss/gain of plasticity 
and in the flux coupling of some reactions. Additionally, in these examples only few 
reactions are found to explain most of the metabolic shifts and many reactions become 
fixed. Particularly, reactions related to inorganic energy sources exchange and organic 

Methods and Protocols mSystems

Month XXXX  Volume 0  Issue 0 10.1128/msystems.00492-23 14

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

7 
Se

pt
em

be
r 

20
23

 b
y 

19
3.

52
.1

05
.1

31
.

https://doi.org/10.1128/msystems.00492-23


matter consumption in the bioleaching community, and reactions for leucine and lysine 
exchange and energetic metabolism in the synthetic E. coli community are critical for 
community plasticity. Certainly, this number can increase as the environment becomes 
more complex.

However, the characterization of reactions solely based on their qualitative values 
does not allow to recover the degree of coupling between reactions. This is 
complemented by performing a quantitative flux coupling analysis,  which illustrates 
how the coupling between reactions changes along the abundance-growth space. 
In both examples, we show that despite the different degrees of plasticity, there 
are strong couplings when reaching high growth rates or attaining very unbalanced 
communities.

The examples presented show the versatility of the method to study changes 
in the metabolic phenotype in communities with different interactions. On the one 
hand, those that supply each other with metabolites (cross-feeding) and on the other 
hand, communities where their complexity lies in variable capacities of its members 
to consume energy sources, such as the bioleaching community where autotroph and 
heterotroph bacteria coexist. Interestingly, the abundance-growth space shows a very 
different behavior in different cases.

An obvious observation of the method has to do with its scalability when the size 
of the community grow, since the number of grid points can increase exponentially. 
It is worth mentioning that, both the computation of the grid points in the abundance-
growth space and the categorical values of the reactions associated to each feasible grid 
point admit a parallel implementation, which makes this method usable for communities 
of few organisms. However, for bigger communities, the method it is still versatile. For 
instance, one could compute the abundance-growth space for selected combinations 
of two or three organisms, fixing the abundance of the remaining members of the 
community, at a reasonably computing cost and still keeping a suitable visualization, or 
one could reduce this analysis to a fixed number of interesting points of the abundance-
growth space.

In any case, we think this method provides a valuable tool for studying, in a detailed 
manner, different metabolic scenarios where a small community decides to live given a 
certain environmental condition and to reveal the critical drivers for such functioning, 
considering the relevance of their relative abundances. In addition, we believe that it 
could provide a useful approach for the design of synthetic communities of high impact 
in biotechnology and medicine.

MATERIALS AND METHODS

Modeling microbial community metabolism

An expansion of constraint-based modeling for microbial communities was proposed by 
Koch et al. (13). In summary, N  organisms belonging to a community are considered. 
For each organism i ∈ {1, …, N}, a single model comprised a set of Mi metabolites 
differentiated by organism and compartment and a set Ri of all reactions of organism i. These reactions include all internal reactions, transport between compartments, and 
exchange of metabolites with their media. A biomass reaction rbiom_i is also included 
in Ri, whose stoichiometric values on their substrates correspond to the amounts (in 
millimoles) of metabolites present in 1 g of dry weight of biomass of the organism i (g 
DWi).

If vr denotes the flux over reaction r expressed in (mmol/gDWi/h), then the following 
constraints exist for organism i:
LBr ≤ vr ≤ UBr,  for all r ∈ Ri,
r ∈ Ri Smrvr = 0, for allm ∈ Mi .
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The constants LBr and UBr are the lower and upper bounds for the flux over a 
reaction r and are used to control the amount and direction of fluxes in the system.

Given N  single-organism models, a community is represented as a single compart­
mentalized system as previously established in references 16 and 57. In this model, 
each metabolic network is incorporated as a meta-compartment with an additional pool 
compartment that represents the shared media where metabolites can be exchanged 
among community members and the exterior.

A set of pool metabolites Mpool is created containing metabolites present in the 
extracellular compartment of at least one organism. Consequently, any exchange 
reaction of organism i is considered a transport reaction between the extracellular 

compartment of i and the pool. Finally, a new set REX of exchange reactions is defined to 
control external conditions for all metabolites in the pool.

In this community model, each member i makes up a fraction fi of the total amount 

of community biomass (with ∑i = 1
N fi = 1). These fractions are relevant to compare the 

feasible fluxes on reactions of different organisms accurately.
Indeed, in this community model, fluxes are expressed in a single unit (mmol/g 

DWcom/h), where g DWcom is a gram of dry weight of the community biomass. Since 
bounds on reaction fluxes of organism i were originally expressed in (mmol/g DWi/h) in 
the single-organism model, they must be recomputed in the community model, which is 
done by weighting by fi each bound previously defined on a flux reaction of organism i
(15).

Given this unit conversion, the flux vbiom_i of the biomass reaction of organism i is 
not expressing the growth μi of organism i, but the grams of organism i produced by 
each gram of the community per hour. Hence, if we consider a state of balanced growth, 
where the fraction fi of each organism i is maintained over time, then we should impose 
that all organisms are growing at the same rate: μ1 = … = μN = μcom, which is equivalent 
to imposing: vbiom_i = fi μcom for all i ∈ {1, …, N} (15).

The balanced growth assumptions indicate that the community has reached a stable 
state that allows the organisms to maintain their relative abundances over time, which 
is a common assumption in community modeling (13, 15, 16). If this constrain is not 
assumed, the faster-growing organism will ultimately displace all other organisms in the 
community. The requirement of identical growth rate between all organisms applies 
not necessarily at every time point but averaged over time, allowing small variations 
in the relative abundances. Thus, this hypothesis is a reasonable approximation for 
communities where composition is mainly maintained between spaced time points (15).

Considering all these observations, the set of constraints on the fluxes vr of the 
community are the following:

r ∈ Ri   Smrvr = 0, m ∈ Mi, i ∈ 1, . . . , N,Vm_pool_excℎange = i = 1
N Vm_extracell_i → pool, m ∈ MpoolfiLBr ≤ vr ≤ fiUBr, r ∈ Ri, i ∈ {1, …, N}

LBm_pool_exchange ≤ vm_pool_exchange ≤ UBm_pool_exchange, m ∈ Mpoolμcom = i = 1
N Vbio_i,vbiom_i = fiμcom, i ∈ {1, …, N} .

If the fractions fi are fixed (as in cFBA [16]) or if the community growth rate μcom is 
fixed (as in the case of SteadyCom [15] and RedCom [13]), then all constraints are linear.

Eventually, any other interaction between the organisms or additional information 
that can be expressed as a linear constraint on the fluxes can be easily added to the 
model. For instance, the model can directly include fixing values to reaction fluxes or 
imposing coupling between reactions. In the case of the bioleaching community, a 
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pseudo-reaction models the capacity of one organism to use degraded organic matter as 
an additional energy source.

Analysis of the abundance-growth space

The definition and analysis of the abundance-growth space are performed as follows.
Definition of abundance-growth space. Considering N  organisms in the community, 

an abundance-growth pair is given by (F, μ) = (f1, …, fN, μ) ∈ RN + 1, where f1, …, fN
are the relative abundances of the organisms (with ∑i = 1

N fi = 1) and μ is the growth 

rate of the community (15). Each pair (F, μ) defines a polytope PF, μ of flux distributions 
satisfying all constrains of the model for the abundance F and growth rate μ. We say 
that the pair (F, μ) is feasible if given F and μ, at least one flux distribution satisfies all 
constraints of the community model, that is, PF, μ ≠ ∅. We define the abundance-growth 
space as the set of all feasible abundance-growth pairs. We use the term “space” to 
remark that each point (F, μ) is a representation of the set of PF, μ of feasible fluxes. 
It is important to note that, since the constraints related to the flux of biomass of 
each organism are not linear when both F and μ are variables, then the set of feasible 
abundance-growth points is not necessarily convex, as shown in the synthetic E. coli 
community example. However, for fixed values of the vector F or μ they become linear, 
and so, the convexity is assured. This means that convexity is assured in horizontal and 
vertical sections of the abundance-growth space.

Defining a grid of feasible abundance-growth points. A set ℱ , corresponding to a 
discretization of the abundance-growth space, is defined as follows. Specifically, for 
a given resolution parameter ℓ, we define a discretization of the possible relative 

abundances values by considering the set [0, 1]¨  corresponding to ℓ equidistant values 
in the interval [0, 1]. Thus, the set A of relative abundance points (f1, …, fN) that we 
consider is defined by:

A = {(f1, …, fN) ∈ [0, 1]¨ N | ∑i = 1

N fi = 1} .
A second discretization is done for the community growth rate μ by defining the 

set [0,MAXbiomass]¨  corresponding to ℓ equidistant values in the interval [0,MAXbiomass], 
where MAXbiomass is the maximum biomass computed in the model for all abundance 
points in A. The set of abundance-growth points considered in the analysis is defined by:

A × G = {(f1, …, fN, μ) ∈ [0, 1]¨ N × [0,MAXbiomass]¨   | i = 1

N fi = 1} .
Finally, the set of points that define the grid ℱ  are those that are feasible. That is, 

the points (f1, …, fN, μ) in A × G such that the community can reach a growth μ for the 

given relative abundances (f1, …, fN). Note that, since ∑i = 1
N fi = 1, then an abundance 

of one organism can be omitted in an abundance-growth point, which is especially 
useful in the case when N = 2, since this implies that abundance-growth points (f1, μ)
can be depicted in a two-dimensional plot.

Computing qualitative vectors for the abundance-growth points. Each point (F, μ) of the 
abundance-growth space is a representation of all the flux distributions in its associated 
polytope PF, μ. Given a point (F, μ) ∈ ℱ  in the abundance-growth space, the range 
of feasible fluxes of a reaction r is exactly the interval [minF, μ(r),maxF, μ(r)], where 
min(r) = min{vr  |  for all v ∈ PF, μ}, max(r) = max{vr  |  for all v ∈ PF, μ}. Both amounts 
are easily determined in the community model by running flux variability analy­
sis (FVA) (31) fixing F and μ in the constraint-based model. Thus, the interval [minF, μ(r),maxF, μ(r)] is computed for all reactions r in each point (F, μ) of the grid 

Methods and Protocols mSystems

Month XXXX  Volume 0  Issue 0 10.1128/msystems.00492-23 17

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

7 
Se

pt
em

be
r 

20
23

 b
y 

19
3.

52
.1

05
.1

31
.

https://doi.org/10.1128/msystems.00492-23


ℱ . Computation of these amounts can be done in parallel or by efficiently imple­
menting consecutive LP formulations with the same feasible space (58). The range [minF, μ(r),maxF, μ(r)] is used to give a categorical value to each reaction r and 
abundance-growth point (F, μ) (Table 1). These qualitative values are encapsulated in 

the vector X(F, μ) ∈ C|R| of dimension equal to the number of analyzed reactions in 
the community model, where C is the set of categories. In the applications of this 
method, a subset R′ ⊂ R of selected reactions will be considered, and thus we will focus 
our analysis on the restriction of X(F, μ) to the coordinates associated with R′, say X′(F, μ) ∈ C|R′|.

Partition and cluster-partition of the abundance-growth space. As stated previously, 

the vectors X′(F, μ) ∈ C|R′| are qualitative descriptions of the set of reactions on each 
point (F, μ) of the grid ℱ . We define two ways of partitioning this grid. First, using 
the categorical vectors X′(F, μ), a partition of the grid can be defined by stating that 
two feasible abundance-growth points in the grid (F1, μ1) and (F2, μ2) are equivalent if X′(F1, μ1) = X′(F2, μ2). Thus, each set of the partition can be considered a zone where 
selected reactions in the model have identical categorical descriptions. It is called the 
partition of the abundance-growth space defined by the selected reactions in R′.

Depending on the size of the set of selected reactions R′, the number of zones in 
this partition can be huge. To address this issue, we propose to use a coarser partition 
based on the degree of similarity of the categorical vectors. More precisely, we perform 
a classification of the vectors X′(F, μ) for each (F, μ) ∈ ℱ  and r ∈ R′ using a hierarchical 
clustering algorithm with a Jaccard distance, where the number of clusters (k) is defined 
a priori. In other words, we can identify zones of the grid where reactions have a similar 
categorical behavior according to the clustering method used. We call this partition the 
cluster-partition of the abundance-growth space (defined by the selected reactions in R′). Alternatively, this method can be implemented using other clustering methods.

Additionally, we want to summarize the qualitative state for each reaction on a given 
zone defined by a cluster partition. To achieve this, for each reaction, given a cluster, we 
assign a qualitative value to each reaction if such a qualitative state is present in over 80%
of the points of that cluster.

Determination of the number of clusters for analysis. Determination of the number 
of clusters to be used is performed as follows: for a given number k of clusters, each 
categorical vector X′(F, μ) is compared to its assigned cluster-partition descriptor. For 
each reaction, a score value between 0 and 1 represents the fraction of points consistent 
with the cluster-partition descriptor. This analysis is performed with different values of k clusters to retrieve the minimum number of clusters where all analyzed reactions are 
represented correctly in at least 80% of points of the grid.

Quantitative flux coupling analysis. Given an abundance-growth point, the space of 
feasible fluxes for two given reactions r1 and r2 is computed by defining a homogeneous 
grid of 50 values between the minimum and maximum value of the flux of r1 computed 
by FVA. Then, for each flux value of r1 in this grid, an FVA is performed for reaction r2 
to compute the minimum and maximum flux values of r2. The interval defined by these 
values is the feasible fluxes of r2 for the given flux value of r1. Normalization by fi is 
performed to retrieve flux values in units of (mmol/g DWi/h) for each analyzed reaction.

Analysis of a synthetic E. coli community

A community defined by two strains of Escherichia coli auxotrophic for leucine and 
lysine was selected from reference 37. The E. coli genome-scale model iAF1260 (59) was 
modified by constraining reactions associated to gene knock-outs made in reference 
37: diaminopimelate decarboxylase (DAPDC) for the lysine auxotrophic strain (eco_K) 
and 2-isopropylmalate synthase (IPPS) for the leucine auxotrophic strain (eco_L). Glucose 
availability was set up to be 10 (mmol/g DWorg/h), amino acid production was set up to 
be 0.2 (mmol/g DWorg/h) for both leucine and lysine, and consumption for both amino 
acids for both strains was constrained according to reported values of production and 
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consumption stated in reference (37). A grid of ℓ = 50 points is generated according 
to what was described previously, obtaining that from the 2,500 potential points of 
the grid, only 973 are feasible given how consumption and production constraints set 
up for this model are affected by community composition (File S1, https://github.com/
mathomics/ecosystem). If amino acid availability is simulated, an external supplementa­
tion of 0.01 (mmol/g DWorg/h) for both leucine and lysine is added by modifying the 
lower bound of exchanges for these amino acids.

Analysis of bioleaching community

Reconstruction of genome-scale models for bioleaching organisms. Two genome-scale 
models were reconstructed for Acidithiobacillus ferrooxidans Wenelen (iML510) and 
Sulfobacillus thermosulfidooxidans Cutipay (ISM517). Genome sequences for A. ferrooxi­
dans Wenelen and S. thermosulfidooxidans Cutipay were retrieved from references 60–62. 
The AuReMe workflow (63, 64) was used for the independent reconstruction of each 
metabolic network. For S. thermosulfidooxidans Cutipay, a model previously reconstruc­
ted in reference 63 for this bacteria was used as a starting point for manual curation.

For A. ferrooxidans, a draft reconstruction was first obtained using reference metabolic 
models from other species and gene orthology (65). For A. ferrooxidans Wenelen, the 
model iMC507 for A. ferrooxidans ATCC23270 (66) was used as a reference (67).

Drafts for both A. ferrooxidans Wenelen and S. thermosulfidooxidans Cutipay were 
manually curated. Particular attention was given to iron and sulfur oxidation metabolism 
(68, 69). Pathways from these subsystems were completed after including reactions 
from the literature (File S3, https://github.com/mathomics/ecosystem) (68–71). Since 
no biomass composition information was available for either of the bacteria studied, 
adaptations of biomass functions from models iMC507 and iHN637 were used for 
Wenelen and Cutipay, respectively. Both models were checked using Memote to ensure 
their quality before publication (72, 73).

Final metabolic models for A. ferrooxidans Wenelen (iML510) and S. thermosulfi­
dooxidans Cutipay (iSM517) are available at the following address: https://github.com/
mathomics/ecosystem and in File S3. The obtained models display the associations 
between 495 genes for S. thermosulfidooxidans and a metabolic network comprising 985 
metabolites and 1,056 reactions. On the other hand, the genome-scale model for A. 
ferrooxidans includes 506 genes associated with 612 reactions and 579 metabolites.

Single genome-scale models for A. ferrooxidans Wenelen and S. thermosulfidooxidans 
Cutipay were adjusted to exhibit realistic growth rates in simulations with FBA under the 
presence of iron [Fe(II)] or sulfur (thiosulfate) as energy sources. For this purpose, lower 
bounds associated with exchanging reactions for Fe(II) and thiosulfate were modified to 
retrieve growth rates reported in the literature, particularly a maximum growth rate of 
0.15 per hour (49, 66, 74).

Metabolic model of the bioleaching community. The individual models previously 
reconstructed were merged to represent a bioleaching community model in which there 
is competition for carbon dioxide consumption as well as two external resources: iron 
[Fe(II)] and sulfur (thiosulfate). Single-entry fluxes for these compounds are supplied in 
a pool compartment to which both bacteria have access and represent their growth 
environment. The total availability of these resources was modeled by setting the lower 
bound of the exchange reactions of the community (EX_fe2_e, EX_tsul_e) depending 
on different analyzed scenarios described in the next section. Iron and sulfur direct 
assimilations as part of biomass composition for both bacteria were represented by 
the metabolites fe2aa (iron assimilation) and so4aa (sulfate assimilation), respectively, 
to differentiate them from iron and sulfur consumption for energy production. These 
metabolites are available in non-growth-limiting entry fluxes for both members of the 
community. Other nutrients required for growth were modeled as equally available for 
both bacteria.

The capacity of Cutipay to use the degraded organic matter of the community 
as an additional energy source is modeled as an incorporation of the following 
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pseudo-reactions representing the degradation of community biomass and its 
transformation into carbon equivalent units of glucose:

Biomasscommunity → αBiomassdegraded + (1 − α)Biomassnet
Biomassdegraded → 6.169glcpool

where parameter α represents that the death rate of the organisms is equivalent to 
a fraction α of the community growth rate. The choice of glucose as a unique represen­
tation of organic matter is an arbitrary simplification in the absence of more informa­
tion about how the organisms are degraded. This was done because glucose can be 
easily assimilated by the metabolic network (File S3, https://github.com/mathomics/eco­
system), as well as that it can be incorporated to synthesize nucleotides, amino acids, as 
well as other simpler organic acids found in bioleaching environments, such as acetate.

The set of 1,717 reactions of this community model comprises 1,668 reactions 
from the original single models and 49 reactions that appear in the construction of 
the community model. The set of 1,611 metabolites of the community model compri­
ses 1,564 metabolites from single models and 47 metabolites from the community 
construction.

Definition of parameters and scenarios for simulations of bioleaching communities. 
Different external and internal conditions are explored to determine how these scenarios 
change the distribution of qualitative states in the abundance-growth space. External 
conditions are represented by available resources, both organic and inorganic, for the 
community. Meanwhile, internal conditions correspond to alternative requirements for 
the obtained flux distributions, mainly being energetically efficient.

Modeling the availability of organic matter is achieved by setting the parameter α. 
The availability of inorganic sources is modeled, defining the available fluxes of Fe(II) 
and thiosulfate in the community. It is achieved by adjusting the lower bounds for the 
community exchange reactions of both sources.

Thus, we define the values MaxFe(II) =  150 (mmol/g DWcom/h) and Maxtsul =  10 
(mmol/g DWcom/h) as reference values, which correspond to the uptakes of Fe(II) and 
thiosulfate that produce the maximum level of biomass on both organisms according to 
their single models.

Any convex combination of these amounts generates an equivalent amount of 
inorganic sources. Formally, a relative combination of λ Fe(II) and 1 − λ thiosulfate means 
that there is a flux of λMaxFe(II) of Fe(II) and a flux of (1 − λ)Maxtsul of thiosulfate 
available to the community. With these definitions, the following scenarios are defined:

1. A reference case is defined as having a low organic availability (α = 0.2), and a 
relative combination of 0.5 Fe(II) and 0.5 thiosulfate (λ = 0.5).

2. Analysis of the effects of organic matter is performed by changing α in the 
reference case scenario (λ = 0.5). The analyzed values of α are 0, 0.2, 0.4, 0.6, and 
0.8.

3. Analysis of the effect of substrate composition is performed by variations in the 
value of λ in the reference case (α = 0.2). The analyzed values of λ are 0.25, 0.4, 0.5, 
0.6, and 0.75.

4. Analysis of alternative objective functions is performed by analyzing the reference 
case (α = 0.2, λ = 0.5) when additional functions are required. Specifically, 
energetic efficiency is represented as an additional constraint which states that 
the sum of fluxes of all reactions is less than a factor of the minimum sum of fluxes. 
The analyzed values for this factor are 1.1, 1.2, and 1.5.
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