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Abstract—Although the estimation of eHealth parameters from
face visuals (images and videos) has grown as a major area of
research in the past years, deep-learning-based models are still
challenged by RGB lack of robustness, for instance with changing
illumination conditions. As a means to overcome these limitations
and to unlock new opportunities, thermal imagery has arisen as
a favorable alternative to solidify different technologies such as
heart rate estimation from faces. However, the reduced number
of databases containing thermal imagery and the lack of health
annotation of the subjects in them limits the exploration of this
spectrum. Motivated by this, in this paper, we present our Label-
EURECOM Visible and Thermal (LVT) Face Database for face
biometrics. This database is the first that contains paired visible
and thermal images and videos from 52 subjects with metadata of
22 soft biometrics and health parameters. Moreover, we establish
the first study introducing the potential of thermal images for
weight estimation from faces on our database.

Index Terms—Face database, Visible spectrum, Thermal spec-
trum, eHealth, Weight estimation.

I. INTRODUCTION

Facial processing from visual content has gained a lot of
attention in the past years since it allows for non-invasive
contactless monitoring of a subject’s health status, useful in
numerous potential applications. Nowadays, there is a global
trend to monitor eHealth parameters without the use of physi-
cal devices enabling their estimation in at-risk situations such
as medical emergencies and road accidents besides at-home
daily monitoring and telehealth. Automatic face recognition
has consistently been one of the most active research areas
of computer vision [1]. Beyond people identification and soft
biometric prediction such as gender, age and ethnicity, a vast
amount of health information belonging to a subject has been
proved to be embedded in face visuals [2]. The estimation
of health indicators such as height, weight and Body Mass
Index (BMI) from a single facial shot, has been explored in
the literature by training a regression method based on the
50-layer ResNet-architecture [3]. Past them, researches have
extracted the called micro-signals from faces, information that
has played important roles in media security and forensics [4].
An established concept in the past fifteen years is derived from
the fact that blood draws more light than the ambient tissues
therefore subtle changes in blood volume can be captured
by cameras based on the above-mentioned light absorption.
This has allowed for remote photoplethysmography (rPPG).

Researches have shown how a mobile phone camera has
enough resolution to capture rPPG signal from faces leading
to a successful Heart Rate (HR) estimation [5]. Following the
same principle, recent works have successfully approximated
the Blood Pressure (BP) of a subject thanks to the differ-
ence between the times a pulse wave reaches two different
parts of the face [6]. In up-to-date investigations, the ratio
of oxygenated hemoglobin with respect to total hemoglobin
(SpO2) has been computed from facial videos employing
Convolutional Neural Networks (CNN) that consider the direct
current and alternating current components extracted from the
RGB signals of facial videos [7].

Facial eHealth models traditionally based their estimations
on images acquired in the visible spectrum. Despite those
networks have reached a significant level of maturity with
practical success, deep learning approaches based on data
images in the visible spectrum are affected by compromising
factors such as occlusion and illumination changes. Thermal
imagery has proved itself as a powerful caption tool [1].
Computer vision researchers have affirmed it as superior to
visible imaging in hard conditions such as the presence of
smoke, dust and absence of light sources [8]. Thermal imagery
operates by detecting electromagnetic radiation in the medium
MWIR (3− 8µm) and long LWIR (8− 15µm) wave infrared
spectrum [9] where skin heat lays within. This capability
enables thermal images to overcome the lack of illumination
or some types of occlusions. However, works have highlighted
how the thermal heat captured by thermal cameras can be
affected by various factors such as ambient temperature or
intense physical activity [1].

To enable the next step towards more accurate eHealth mod-
els and because we believe in the potential of thermal imagery,
we introduce a new database with visuals collected using a
paired thermal-visible camera and annotated with health traits
from each subject. The main contributions of this work are
the following: 1) We present our Label-EURECOM Visible
and Thermal Face Database for face biometrics composed
of 612 images and 416 videos from 52 different subjects
and a compendium of 22 health metrics and soft biometrics
annotated per person. 2) We propose the first study, up to the
authors’ knowledge, on weight estimation from facial thermal
imagery.



The rest of the paper is organized as follows, Section II
lists existing databases containing thermal visuals and some
descriptors of them as well as motivates the use of thermal
images for health-related applications. In Section III, our LVT
Face Database for face biometrics newly collected is presented
in detail. Section IV includes a brief state-of-art on weight
estimation from facial images and the results of an up-to-
date weight estimator when re-trained with our new thermal
images. Finally, Section V summarizes and concludes with the
future directions of our work. The LVT Face Database for face
biometrics is publicly available upon request.

II. POTENTIAL OF VISIBLE AND THERMAL PAIRED DATA

Existing biometric systems and facial eHealth applications,
are based on databases acquired in the visible or, lately
popular, Near InfraRed (NIR) spectrum. Particular studies have
however focused on the thermal spectrum for applications
such as cross-spectrum face recognition algorithms or HR
estimation.

Relevant thermal databases: Interest in employing thermal
face images has grown in the past years, nevertheless, this re-
gard has been restricted mostly to tasks such as landmarks and
face detection and Face Recognition (FR) [1], [10]. A relevant
subset of FR is Cross-FR (CFR) discipline that aims to identify
a person’s image in the thermal spectrum from a gallery
containing face images acquired in the visible spectrum [11].
Only a few databases have been provided involving visuals
acquired in thermal spectra and among them, the ones covering
health-related metadata are few. In Tab. I, we present an
exhaustive selection of relevant databases that include visuals
in the thermal spectrum and some key descriptors of them
including their year of release, the number of subjects, images
and videos present in the database and their initial intended
purpose. One of the first datasets containing thermal visual
data was presented in 2003 [12]. The data was acquired at
the University of Notre Dame and contains images from 240
distinct subjects with four views with different lighting and
facial expressions with the purpose of recognizing individuals.
Beyond people recognition, Wang et al. establish a similar
database for expression recognition containing both sponta-
neous and intended expressions of more than 100 subjects [13]
while Gault et al. recorded thermal videos from 32 subjects
under three imaging scenarios and their paired rPPG signals
for HR estimation [14]. In 2018 two new databases were ac-
quired for FR with multiple illuminations, pose and occlusion
variations [1] and including imagery from different modalities
namely visible, thermal, near-infrared and a computerized
facial sketch and 3D images of each volunteer’s face [15].
In the same year, Barbosa et al. collected thermal videos
from 20 healthy subjects in two phases: phase A (frontal view
acquisitions) and phase B (side view acquisitions) and the cor-
responding PPG and thoracic effort simultaneously recorded
for HR and Respiratory Rate (RR) estimation [16]. More
recently, two large-scale visible and thermal datasets have been
assembled. Abdrakhmanova et al. gathered a combination of
thermal, visual, and audio data streams to support machine

learning-based biometric applications [17] and Poster et al.
presented the largest collection of paired visible and thermal
face images up to date. Variability in expression, pose, and
eyewear were recorded [18]. Following, a thermal face dataset
with annotated face bounding boxes and facial landmarks
composed of 2556 images was introduced [10].

Thermal data for eHealth: Although the use of facial
thermal imagery has traditionally focused on face recognition
tasks, some researchers have intended for eHealth parameter
estimation in the thermal spectrum showing the potential
of this type of data. In 2017, Rai et al. suggested that
thermal imaging systems have the prospective of providing
details regarding physiological processes using skin temper-
ature distributions due to processes such as blood perfusion.
Indeed, cameras are often used to observe minute variations in
temperature in the medical field in applications including the
detection of malignant tumors [9]. The assessment of eHealth
parameters such as heart rate from face videos has been
studied in depth in recent years. Up to the authors’ knowledge,
all methods need proper illumination difficult to achieve in
uncontrolled environments. In 2018, Barbosa et al. presented
a new method for remote HR monitoring based on periodic
head movements caused by the cyclical ejection of blood flow
from the heart to the head. This new algorithm was based
on the use of thermal images as input data [16]. Moreover,
they proved possible the evaluation and measurement of a
subject’s RR by using temperature fluctuations under the
nose during the respiratory cycle. Thermal imagery proved
itself of high value to overcome illumination constraints since
thermal images are light invariant. In the same line, other
works continue investigating the future of heart rate and blood
pressure extraction from thermal images through deep-learning
approaches [19].

To the best of our knowledge, current literature focuses
on HR, RR and BP from thermal face data. The estimation
of other health traits such as SpO2 or weight from thermal
images remains untouched by the community. The collection
of a new database of visible face visual data and their thermal
counterpart is motivated by the potential that thermal images
and videos as input data have shown and by the limited number
of publicly available databases containing this type of data
and their associated health parameters annotation. Moreover,
existing databases are limited to visual face information con-
tent and one or two parameters. We believe in the value that
a database composed of more than 20 different soft biometric
and health measures can add to the biometric and health
research community.

III. DATABASE DESCRIPTION

In this section, we first introduce the recording setup of the
database and the characteristics of the acquisition devices. We
detail the data collection methodology as well as the database
design and associated subjects’ metadata.

Acquisition material: The visible and thermal face visual
data was acquired with the dual sensor from the camera FLIR
Duo R developed by FLIR Systems. The camera was designed



TABLE I
RELEVENT FACE DATABASES CONTAINING VISUALS IN THERMAL SPECTRA.

Year Dataset # of subjects # of images # of videos Objective
2003 UND-X1 [12] 241 4584 - FR

2010 NVIE [13] 215 Not provided Not provided Expression
recognition

2013 TH-HR [14] 32 - 96 HR
2018 VIS-TH [1] 50 2100 - FR
2018 TUFTS [15] 113 Over 10000 113 FR
2018 TH-HR-RR [16] 20 - 40 HR, RR

2021 Speaking
faces [17] 142 - 45 hours Biometric

Authentication
2021 ARL-VTF [18] 395 549712 - Cross-FR
2022 SF-TL54 [10] 142 2556 - Landmarks detection
2023 Ours: LVT 52 612 416 FR, Soft biometrics, e-health

for capturing simultaneously visible and thermal visuals by
unmanned aerial vehicles. FLIR Duo R dual camera has
been used in recent researches due to its suitability in data
collection for different tasks such as face recognition and
cross-spectrum applications [1], [8]. The visible and thermal
sensors of this camera are a CCD sensor with a pixel resolution
of 1920×1080 and an uncooled VOx microbolometer with
a pixel resolution of 640×512 respectively. Various devices
were used for a health status assessment of the subjects. A
contactless infrared thermometer with a precision of ±0.2°
Celsius (C) between 34°C and 42.0°C and a precision of
±0.3°C in the range of 42.1°C and 43.0°C was used for
computing the user’s body temperature. For calculating the BP,
an OMRON HEM-7155-E tensiometer was employed together
with a LED finger oximeter for SpO2 measurement with a
precision of ±2%. For HR tracking, the subjects were asked
to wear a Garmin Vivoactive®4 smartwatch that embeds an
optical PPG sensor able to detect the heart rate by shining a
green light through the subject’s skin thus reflecting the red
cells in the skin’s blood vessels. For quantifying bodyweight
related measures, we rely on the RENPHO®Body Fat Smart
scale. When a subject steps on the device and after entering
in the system their gender, age and height, the scale returns
13 metrics including weight and BMI.

Visuals collection protocol: Image and video acquisition
were performed in an indoor environment where the ambi-
ent temperature was set to 25°C. In Fig. 1 we present the
arrangements. The acquisition setup included a white wall
acting as background, a chair at a fixed distance of 0.25
m from the camera which is placed at a height of 1 meter
from the ground, and a two-point lighting kit placed to limit
shadows allowing and easing segmentation of the subject from
the background. Each volunteer participated in two separate
acquisition sessions, with an average time interval of 6 weeks.
Before the acquisition process, volunteers were asked to fill
out and sign consent forms. The visual data includes 6 images
per person (3 visible and their associated thermal pair) in
each session with 3 different conditions, Neutral (N), Ambient
light(A) and an occlusion in the form of eyeglasses (O)
resulting in a total of 612 images. Fig. 2 illustrates example
images of an individual from the database. In addition, four 60-

second videos are recorded per subject in each session with N
conditions. The first pair of videos (one in visible spectrum and
its paired thermal) are taken after the subject has been resting
for at least 5 minutes and the second pair follows moderate
exercise in the form of climbing up stairs to increase their HR
values making a total of 408 60s videos.

Fig. 1. Flir Duo R camera (left) and acquisition setup (right).

Subjects’ metadata: Several metadata pieces of informa-
tion were collected to describe the subject: gender, age and
height. Other parameters were quantified to assess their health
status: body temperature, HR, BP, SpO2, weight and BMI. In
addition to weight and BMI, the smart scale provided other
11 variables: body fat and body water percentages, skeletal
muscle, fat-free weight, muscle mass and bone mass, protein,
subcutaneous and visceral fat, Basal Metabolic Rate (BMR)
and metabolic age. Image and video filenames are constructed
by indicating the visual data spectrum, subject id, session id



Fig. 2. Example images obtained with Flir Duo R camera. The three variations
are displayed in visible (upper row) and thermal (bottom row) spectra, from
left to right: N, O and A.

(1 or 2) and in the case of the images the conditions at the
time of acquisition (N, O or A).

Summary: The introduced database is devised as a com-
pendium of images, videos, soft biometrics, and health param-
eters recorded from 52 different subjects in two sessions. It is
composed of 612 and 416 face and shoulders images and 60-
second videos respectively, corresponding to a total disk space
of about 285 GB. The 52 recorded participants, 38 male and
14 female are from 13 different countries from 4 continents
and their ages range between 22 and 51 years. An executive
summary of the dataset is presented in Tab. II.

IV. PRELIMINARY ASSESSMENT OF THE DATABASE

In this Section we present a preliminary evaluation of
thermal data for eHealth parameters estimation to assess
the applicability of the database. The suitability of thermal
imagery for a subject’s weight estimation from face images is
tested.

Weight estimation from face images:
Weight is a soft biometric trait and its estimation from

a single facial shot has attracted interest in the research
community in the latest years [3], [20], [21]. Besides being a
soft biometric trait, weight is an indicator of a person’s health
condition, and unlike other biometric traits such as gender
and height, body weight fluctuates during a person’s life and
needs to be periodically re-assessed. Remote estimation of
this trait has been signaled of special interest in scenarios
when a subject cannot be moved onto a scale due to different
disabilities or in the case of road accidents. In such cases,
estimating a person’s weight from facial appearance allows for
an inexpensive and contactless measurement [21]. Although
some researchers have intended to reduce the error presented
by AI-based contactless weight models, existing methods still
present several kilograms (kg) of error. Weight estimation
models from face data are typically evaluated on the public
dataset VIP attribute consisting of 513 female and 513 male
face images of different celebrities and their associated height,
weight and BMI metadata [3]. In 2018, Dantcheva et al.
conducted for the first time a study on the possibility of

estimating bodyweight from a subject’s face by implementing
a ResNet architecture with 50 layers [3] and reported a Mean
Absolute Error (MAE) of 8.15 kilograms (kg) of error and
a Pearson’s correlation coefficient (ρ) of ρ = 0.77. In 2020,
Han et al. presented an auxiliary-task learning framework for
weight estimation [20] with gender and age as auxiliary traits
obtaining in the same dataset a MAE of 7.20 kg. In 2023
Mirabet-Herranz et al. defined an optimal transfer learning
protocol for a ResNet50 architecture and experimented with
different influencing factors such as hair occlusions [21]
achieving a MAE of 6.91 kg and a ρ = 0.78.

Implementation details: Weight estimation from face im-
ages has proved to be possible using deep learning structures
known as Residual Neural Networks (ResNet) with 50 layers
and a final regression layer [3], [21]. We selected likewise to
those studies a ResNet50 structure and we carry out a two-
step Transfer Learning (TL) protocol as illustrated in Fig. 3.
From a largely trained model intended for age estimation from
face images, we complete TL using the visible images in
our LVT training set. In the second part, we continue with
the pipeline by performing once more TL this time with the
thermal images belonging to the LVT training set. Finally, each
weight network is tested in the images of the same spectrum
found in the LVT test set. Each weight model was re-trained
during 10 epochs and the final regression layer during 10 more
epochs. The first 20 layers in each TL step were fixed to be
frozen. Adam optimizer was adopted, with a learning rate of
0.01 and Huber loss as selected in [21] with δ = 1.

Fig. 3. Transfer learning protocol for weight estimation from visible and
thermal images.

Visible-thermal experimental results:
It is known in the research community that bone, muscle

and body fat do not conduct equally temperature [22]. Heat
emission patterns can be used to characterize a person since
they give information about the location of major blood
vessels, skeleton thickness, amount of tissues, and muscle
and fat amount 1. Therefore we believe thermal imagery will
access crucial information for weight estimation from faces

1https://biometrics.mainguet.org/types/face.htm#thermogram



TABLE II
SUMMARY OF THE INFORMATION CONTAINED IN THE LVT FACE DATABASE.

Identities Metadata

52 subjects Soft
biometrics

Health
parameters

2 sessions Gender Body temperature BMI Body mass
Age SpO2 Body fat (%) Bone massVisuals

(Thermal and visible) Height HR resting Body water (%) Proteins
6 paired images in

three conditions (N, O, A) Weight HR activity Skeletal muscle Subcutaneous fat

1 paired 60s videos
subject rested Biometric BP maximum Fat-free weight Visceral fat

1 paired 60s videos
after physical activity ID BP minimum BMR Metabolic age

neglecting skin tissues-related noise and the impact of certain
occlusions namely hair. The weight distribution associated
with the subjects present in our database has a maximum value
of 116.2 kg, a minimum value of 52.3 kg, a Mean=73.54
kg and a STD=14.03 kg. We perform a subject-exclusive
split of the training set (480 images from 40 subjects) and
the testing set (120 images from 12 remaining subjects).
Several metrics are reported in our experiments: the above-
mentioned correlation coefficient ρ and the MAE in kg,
which are the most common units of measurement in weight
estimation research; the root-mean-square error (RMSE) and
the Percentage of Acceptable Predictions (PAP) used in [21]
representing the percentage of the prediction whose error is
smaller than 10% of the initial weight, i.e. a reasonable error
in medical applications. In Tab. III the results of the weight
network are presented. The metrics show that ResNet50 has
a small advantage in the performance of weight estimation
when re-trained using thermal data. Both the MAE and RMSE
are lower for the thermal network at around 0.3kg. Moreover,
the correlation coefficient between the predicted and original
weight from the subjects is slightly higher for the thermal
spectrum. This confirms the potential of thermal imagery for
capturing hidden and more detailed information from human
faces.

TABLE III
COMPARISON OF WEIGHT ESTIMATION FROM FACES BETWEEN THERMAL

AND VISIBLE SPECTRA IMAGES.

Spectrum MAE RMSE Correlation PAP
Visible 8.31 15.03 0.43 61.6%

Thermal 7.98 14.73 0.49 61.6%

V. CONCLUSION

This paper presents the novel LVT Face Database for face
biometrics. This database contains visuals from 52 subjects
under different conditions, resulting in a total of 306 visible
and 306 thermal images in addition to 204 visible and 204
thermal videos collected simultaneously using a paired camera
(FLIR Duo R) allowing comparison or fusion of those different
data types. The visuals acquired are associated with metadata
belonging to the subjects both biometric- and health-related.
To the best of our knowledge, this is the first database

to provide visible-thermal face images and recordings with
accompanying gender, age, body temperature, SpO2, BP, HR
(resting and after physical activity), height, weight, BMI and
11 additional health metrics. We believe the extensive amount
of parameters annotated by every subject will help unlock
the potential of thermal data for assessing a person’s health
status. In addition, we provide preliminary experimental results
of weight estimation from facial images using a baseline
algorithm with ResNet50 architecture as a backbone, pre-
trained with visible images. Results exhibit the potential of
thermal data for contactless weight estimation. Based on this
promising outcome, future work will focus on considering
thermal imagery not only as an alternative to visible but also
as a complement. The estimation of other parameters such as
SpO2 or height from thermal depictions will be explored.
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