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HEADSET: Human Emotion Awareness under Partial Occlusions
Multimodal DataSET

Fatemeh Ghorbani Lohesara , Davi Rabbouni Freitas, Christine Guillemot, Karen Eguiazarian, and Sebastian Knorr

Fig. 1: Details of our proposed dataset (HEADSET) in terms of modalities and use cases. (A): Textured 3D meshes with 6 facial
expressions, (B): three types of 3D point cloud with participant wearing an HMD, (C): RGB images and depth maps from 3 views,
(D): multi-view representation of LF, (E): point clouds evaluation results, (F): result of HMD removal, and (G): classified LF images
with 6 facial expressions.

Abstract—The volumetric representation of human interactions is one of the fundamental domains in the development of immersive
media productions and telecommunication applications. Particularly in the context of the rapid advancement of Extended Reality
(XR) applications, this volumetric data has proven to be an essential technology for future XR elaboration. In this work, we present a
new multimodal database to help advance the development of immersive technologies. Our proposed database provides ethically
compliant and diverse volumetric data, in particular 27 participants displaying posed facial expressions and subtle body movements
while speaking, plus 11 participants wearing head-mounted displays (HMDs). The recording system consists of a volumetric capture
(VoCap) studio, including 31 synchronized modules with 62 RGB cameras and 31 depth cameras. In addition to textured meshes, point
clouds, and multi-view RGB-D data, we use one Lytro Illum camera for providing light field (LF) data simultaneously. Finally, we also
provide an evaluation of our dataset employment with regard to the tasks of facial expression classification, HMDs removal, and point
cloud reconstruction. The dataset can be helpful in the evaluation and performance testing of various XR algorithms, including but not
limited to facial expression recognition and reconstruction, facial reenactment, and volumetric video. HEADSET and its all associated
raw data and license agreement will be publicly available for research purposes.

Index Terms—Extended reality, multimodal dataset, virtual reality, volumetric video, light field
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Nowadays, immersive visual technologies including Virtual Reality
(VR), Augmented Reality (AR) and Mixed Reality (MR), or short Ex-
tended Reality (XR), play a key role in providing virtual experiences for
users in various domains, such as XR teleconferencing, XR games, and
XR experiences. Photorealistic representation of human interaction is
essential for creating a life-like user experience and natural non-verbal
communication among users. Specifically, the realistic representation
of human facial expressions has a considerable impact on the quality of
human interaction and communication [26].

An explicit volumetric representation can be visualized in XR ap-
plications by means of colored point clouds or textured meshes. Point
clouds have drawn considerable interest due to their relatively simple
process of collection and shortage of connectivity information. These
features make them appropriate for real-time applications in XR, which
require natural communication between users [41].
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Nonetheless, the lack of human datasets, that are compulsory for
volumetric representations, causes many challenges in developing pho-
torealistic XR applications. The development of XR technologies and
computer vision techniques is highly dependent on the quality of the
datasets that can foster the progress of those fields and their evalua-
tion. In contrast to the high number of research works in designing
volumetric data generation algorithms [1, 2, 12, 19, 20, 22, 33, 35, 51]
and three-dimensional (3D) reconstruction [37, 38, 43], there have not
been enough studies in which we can discover relatively diverse and
high-quality volumetric datasets with multiple modalities.

In this paper, we introduce a new multimodal database that consists
of colored 3D point clouds, textured 3D meshes, light field (LF) images,
and multi-view RGB-D images acquired from 27 ethnically diverse
human participants. We have designed data collection tasks aimed at
capturing all participants’ posed and spontaneous facial expressions,
and body language while speaking. Besides, we have also conducted
an experiment for human full-body recording under occlusion caused
by an HMD to collect human facial expressions under real-world XR
scenarios from 11 participants out of 27. The database captured by
our VoCap studio contains 31 ground truth depth cameras and 62 RGB
cameras configured in 31 synchronized modules to also allow depth-
from-stereo estimation. Additionally, we have used a Lytro Illum
camera to collect the human facial expressions of all individuals from a
frontal view to address the lack of publicly available LF face resources.
Along with the raw and post-processed data, we also provide the labels
of the facial expressions for the data collected from the VoCap studio
(HEADSET-VoCap) and Lytro Illum LF camera (HEADSET-LF) as
part of the main database.

The motivation to create such a dataset is to serve as the basis for
research in XR-related use cases, especially in XR teleconferencing,
where participants meet and interact in a virtual shared environment.
In XR teleconferencing, participants are usually wearing headsets that
need to be removed to enable eye contact. The knowledge about the
emotion of the participant, who is wearing a headset, might increase
the quality of the facial reconstruction. Many studies have focused on
HMD removal [7, 29, 34, 54, 59], which is referred to as the task of
virtual removal of HMD, which fill in the occluded color and geomet-
ric information of a user’s face. The emergence of new MR glasses
with emotion recognition capabilities and transparent displays, such
as Meta Quest Pro and Apple Vision Pro, may increase the quality of
the facial reconstruction results when removing the headset in such
a study. HEADSET aims at providing ground-truth 3D models of
individuals with and without wearing an HMD, and the HMD as an
individual object captured with a volumetric capture studio. HEAD-
SET can be utilized by further studies focused on reconstructing faces
and gaze directions of the participants under the partial occlusions of
the HMD. In this way, the data can be used to evaluate the person’s
identity after an occlusion removal algorithm is applied. Moreover, in
XR teleconferencing scenarios, volumetric data needs to be compressed
and streamed in high quality and low latency to increase the feeling of
presence within an immersive environment. As the volumetric capture
studio used in this study has the live-streaming capability, it allows XR
teleconferencing in real time. On top of that, the proposed dataset has
potential applications in rendering technologies, animation and simula-
tion, perception, interaction, and user interfaces. We aim to contribute
to the development of such approaches beyond their current capabil-
ities to encourage a larger technical advancement in the fast-moving
human-centric research domains.

This database can be used as a foundation for testing and validation
of various computer vision problems such as 3D face and expression
modeling, human activity and movement recognition, multi-view facial
emotion recognition, facial reenactment, stereo matching, 3D compres-
sion, etc. on real-world high-quality data. In the design process of our
data collection tasks and their contents, we have mainly focused on
including HMD occlusions and human facial expressions during cap-
turing to address issues related to XR communications. For example,
HMDs significantly hinder the virtual experience as the headset covers
the person’s upper face and eyes. Our dataset thus includes representa-
tions of the individuals with and without wearing a VR headset, and

the headset as an individual object for studies focused on reconstruct-
ing the faces of the participants under HMDs occlusions, as shown in
Fig. 1. Research problems regarding the performance evaluation of
facial expression recognition in multi-view RGB images and creating
3D models from a single image are also considered as the purpose of
the usage of the proposed dataset. We have therefore incorporated these
modalities as part of our dataset, an example of which is displayed in
Fig. 1.

The main contributions of this paper can be summarized as follows.

1. We introduce a multimodal high-resolution database for immer-
sive media productions in which LF images, RGB images, depth
maps, textured meshes, and colored point clouds are crucial.
HEADSET and its all associated raw data and license agreement
will be publicly available for research purposes1.

2. We collected the data taking into account the diversity of ethnicity
and gender from our participants.

3. To the best of our knowledge, we are the first to provide volu-
metric data as a foundation for applications of emotion and face
recognition under partial occlusions. This is done by capturing
data of the individuals with and without an HMD to serve as
ground truth for real-world XR scenarios.

4. Among many use cases, we selected three applications, in partic-
ular multi-view facial expression classification, HMDs removal,
and visual quality assessment, for evaluating the dataset. The
visual quality experiments are provided on different volumetric
representations, i.e. textured meshes and point clouds.

The remainder of the paper is organized as follows. We first, review
the related work in terms of available datasets in Sec. 2. Then, we
present data acquisition steps and the capturing setup in Sec. 3. Par-
ticipant selection criteria and ethical issues are also discussed in this
section. Sec. 4 describes the data collection design in our user study.
The data post-processing is explained in Sec. 5. We then report and
discuss the results of three use cases of HEADSET. Finally, Sec. 7
summarizes our work.

2 RELATED WORK

This section reviews related work on available human datasets for each
modality, i.e. volumetric data, light field data, and RGB-D data with
respect to human participants.

2.1 Volumetric dataset
CMUPanoptic [23] is the largest public volumetric dataset in terms of
the number of capturing modules. In their work, human interactions of
8 participants in distinct social activities were recorded. The multi-view
Panoptic Studio [23] consists of 31 HD, 480 VGA, and 10 RGB-D
(Kinect v2) modules. Although CMUPanoptic stands as one of the
largest currently available datasets, it does not provide hardware volu-
metric synchronization as the time alignment between the Kinect v2
RGBD streams is performed via a hardware modification. Zhixuan et al.
released HUMBI [55], another publicly available and relatively large
multi-view dataset. They captured the human body poses of 772 partic-
ipants that participated in their study while wearing everyday clothes.
The capturing setup included 107 synchronized HD cameras without
any depth sensors. Therefore, no information about the ground truth ge-
ometry of the scene was acquired. Human4D [6] is another multimodal,
marker-based approach to generate 4D data from volumetric sensors of
4 individuals performing 19 human daily activities. With the purpose of
creating a dataset of high movement precision for the development of
spatiotemporally aligned poses research, this dataset uses professional
motion-capture (MoCap) markers and hardware synchronization for
the multi-view data. However, this pursuit for high accuracy has its
drawbacks: to produce more authentic movements, only 4 professional
actors were selected to produce the 19 scenes, which is detrimental to

1https://webpages.tuni.fi/headset
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the diversity aspect of the dataset. Also, the usage of MoCap apparel
instead of natural clothing by the participants hinders the potential
modeling of gaze, face, and body features.

Furthermore, one of the latest available dynamic point cloud datasets
is CWIPC-SXR [41]. In this study, 23 human individuals performed
activities in social XR settings, thus generating 45 unique scenes. How-
ever, the limited number of views used in the capture process – 7 Azure
Kinect DK sensors – produced low complexity representations, result-
ing in low-resolution and non-watertight point clouds. In other words,
the limited number of views during capture generated models with
not so accurate textures and holes in the geometry from the occluded
points.

The 8iVSLF dataset [25] is another dynamic voxelized point cloud
dataset only containing 6 high-resolution single-frame models for 6
human individuals. The capturing setup included 39 synchronized RGB
cameras configured in either 12 or 13 rigs.

Finally, Volograms & V-SENSE [36] have also introduced a small
volumetric video dataset. The published dataset consists of three tex-
tured mesh sequences with differing characteristics and relatively short
sessions. The dataset was captured in VoCap studios, which include 12
or 60 studio cameras.

In addition to the available volumetric datasets, HEADSET enables
further research perspectives by collecting multimodal human data with
the help of numerous camera modules. In our proposed dataset, along
with the LF data, we present new volumetric sequences (HEADSET-
VoCap) captured by a VoCap studio including 62 RGB and 31 depth
cameras arranged in 31 synchronized camera modules. It contains post-
processed textured meshes, point clouds with different resolutions, and
multi-view RGB-D frames from 27 individuals displaying posed facial
expressions and subtle body movements while speaking. Sequences
under HMD occlusions are also part of the main database to introduce
additional modalities compared to the available volumetric datasets. To
better compare the proposed database with existing volumetric human
databases as described before, we give an overview in Tab. 1.

2.2 Light field dataset

To the best of our knowledge, only four LF human face datasets have
been made publicly available. The Light Field Face and Iris Database
(LiFFID) [40] is the first human face dataset that contains images
captured with an LF camera for the purpose of facial recognition. It
comprises a group of 2D greyscale images created from the LF content
captured by a Lytro lenslet camera. Nevertheless, LiFFID does not
contain raw LF images, which is a considerable challenge for many re-
search fields. The IST-EURECOM Light Field Face Database (LFFD)
[48] is the second LF face dataset which includes both raw and rendered
data from 100 persons, with 20 LF samples per participant acquired
by a Lytro Illum lenslet camera in a controlled capturing setup with
several facial variants. In [49], the authors introduced the Light Field
Faces in the Wild (LFFW) and Light Field Face Constrained (LFFC)
face datasets. LFFW includes 1908 LF images from 53 individuals
captured in the wild in both indoor and outdoor environments without
any predefined protocol. LFFC complements the LFFW dataset by in-
cluding 1060 LFs from the same 53 participants acquired in constrained
conditions. Despite the recent advances in LF face analysis [14] and
facial expression recognition [49], highly accurate recognition results
are still not achievable for some specific conditions due to the lack of
data.

In our work, we present the HEADSET-LF dataset in addition to the
volumetric data, which contains two subsets. The first one is collected
from 27 participants showing 6 basic human emotions, totaling 162
LF images with corresponding labels for the facial expressions. The
second one includes 10 LF frontal images of 10 individuals wearing
a VR headset. Since this dataset will be publicly available, it may
be used as the basis for the future validation and assessment of LF-
based facial expression classification and recognition as well as facial
reconstruction.

2.3 RGB-D dataset

Despite the wide availability of large RGB face image datasets
[3, 27, 32], similarly sized datasets containing RGB-D face images
are not available yet. RGB-D face datasets contain a limited number
of samples [8, 31, 57], or they have been captured without consid-
ering HMD occlusions [60] and any additional modalities. Hence,
researchers mostly tend to use a synthetic dataset with a high degree
of variety in order to solve their research problems related to human
faces. While the usage of a synthetic dataset reduces the potential of
generalization to real-world data, this approach has been widely used
in the literature. For example, for HMD removal/ facial reconstruction,
the authors of [34] built a data synthesis pipeline to create a synthetic
dataset of RGB-D images with a random pose, ambient illumination,
and expression of faces based on the Basel Face Model (BFM) 2017
[15]. To address the aforementioned challenges, our dataset contains
additional sequences under HMD occlusions in order to be used as the
testing set for the future validation and assessment of such research
work. Along with LF and RGB-D data, HEADSET also includes 3D
point clouds and 3D textured meshes with an average number of frames
of 272 for every 27 individuals. The sequences under HMD occlusions
also contain 58 frames per participant for 11 participants out of 27.

3 DATA ACQUISITION

In this section, we provide more details of the data acquisition process
with regard to the capturing setups, VoCap studio and Lytro Illum
camera, and the performed steps for participant selection.

3.1 Capturing Setup

3.1.1 Volumetric capture studio

We have utilized a 3D VoCap Studio (Mantis Vision Volumetric Cap-
ture System2, version: studio ring) for capturing the volumetric dataset.
A custom room setting with a cylindric recording area was employed
(radius: 1.6 m, height: 2.5 m). Similarly, the capture rigs were placed
in a cylinder with radius of 2.5 m and height of 3 m. The VoCap studio
contains an aluminum frame with a black background and adjustable
lighting. Hence, the capturing scene was illuminated by 34× Quasar
Science Q50XG lights. They were spread evenly around the studio in
order to provide enough light for our capturing scenes. The floor of
the recording space is also black. The black backgrounds and floor
reduce reflections during the capturing process. The complete setup is
shown in Fig. 2. The studio has three types of uEye cameras and 31
camera modules. Each camera module has a laser and monochromatic
UI-3140xCP-M for structured light based depth estimation. In addition,
it has two UI-3080xCP-C or UI-3280xCP-C cameras for color informa-
tion. Therefore, a total of 62 RGB cameras (2054×2456 pixel) and 31
depth cameras (1024×1280 pixel) were used.

The depth camera supports several modes by which the frame rate,
resolution, exposure time, operating range of the module, and region
of interest can be modified. The modes of the color camera, including
frame rate, resolution, field of view, aspect ratio, and format can be
also determined. In our work, all the raw data had been captured with
25 frames per second (fps) during the data collection.

The calibration and synchronization of the VoCap studio was carried
out once before starting the capture, and the calibration parameters
are enclosed within each dataset based on its modality. As the VoCap
studio can be seen as a single fully calibrated capturing device for
capturing high-quality 3D models, the recorded volumetric data can be
used as ground truth. However, we extracted 3 RGB-D module outputs
separately based on their field of view and our experiments’ analysis.
Thus, the exact internal and external camera parameters have also been
provided within the RGB-D dataset. When the participant stands in the
center, the distance to the cameras varies roughly from 80 cm to 120 cm.
While standing in the center and looking ahead, 11-13 camera modules
have a good view of the person’s face within about 130 degrees angle
in the individual’s field of view.

2https://mantis-vision.com/3d-studio-3iosk/
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Table 1: Comparison of state-of-the-art volumetric datasets with ours in terms of modalities and capturing details.

Dataset Participants Description Data type Capturing modules
CMUPanoptic
[23]

8 Participants performing social activities Multi-view RGB-D, 3D
point clouds

31 HD, 480 VGA, and
10 RGB-D

HUMBI [55] 772 Human body expressions Multi-view RGB, 3D
meshes

107 HD

Human4D [6] 4 Professional actors performing full-body
movements and expressions

Multi-view RGB-D, point
clouds, 3D meshes

24 motion capture and 4
depth sensors

CWIPC-SXR
[41]

23 Human interaction in social XR settings Multi-view RGB-D, 3D
point clouds

7 Azure Kinect DK sen-
sors

8iVSLF [25] 6 Full-body of a human participant 3D point clouds 39 RGB cameras in
12/13 rigs

Volograms&V-
SENSE [36]

3 Monologue and dancing Meshes with texture images 12/60 camera studio

HEADSET 27 Posed facial expressions and subtle body
movements w/o VR headset

Multi-view RGB-D, 3D
point clouds, 3D textured
meshes, light field

62 RGB, 31 depth, and
1 Lytro Illum cameras

Fig. 2: The complete capturing setup for the data collection. In addition
to the VoCap studio, we also used one Lytro Illum camera, one display,
and a microphone.

3.1.2 Lytro Illum light field camera

Complementary to the VoCap studio, we added one microphone to
record the audio signal, one frontal Lytro Illum LF camera to capture
the frontal view, and one large display for showing the necessary content
of the experiment to the participant. The Lytro Illum is a 40 megaray
LF camera with constant F/2.0, 8X optical zoom, and a 4-inch tilt
screen. The camera provides data in Light Field Raw (LFR) and
depth map (PNG and TIFF, 2022×1404 pixel) file formats, which are
contained in our dataset. The LFR file stores the image information in
an uncompressed lenslet image before further processing. The relative
depth of field coordinates (λmax and λmin) along with the calibration
information have been also included in the dataset, which has been
extracted using the Lytro Desktop Application. The camera height
and zoom ratio were properly adjusted to capture the individual’s face
based on its height. During the capturing process, the camera was
located in front of the participant while the person was standing at the
VoCap studio’s central point (153 cm distance from the Lytro camera’s
location). Calibration was performed before every recording session,
using a 3 m, 16 mm steel tape measure. The complete setup and the
location of the display, and LF camera are depicted in Fig. 2.

3.2 Participant selection

3.2.1 Ethical issues

Before taking part in the data collection tasks, each individual had to
read and sign an information sheet and consent form, which allowed
the use of data for research purposes and data publication.

The participants were also supposed to read the safety training ma-
terial. All of the possible risks of taking part in our study, such as
physical discomfort, which may potentially happen due to wearing a
VR headset or posing facial expressions, have been mentioned in the
participant information sheet. In order to collect high-fidelity records,
the volunteer was asked to avoid large head and body movements dur-
ing the capturing. The ethical issues in our work had been carefully
considered and were fully approved by the Academic Ethics Commit-
tee of the Tampere Region, Tampere University. The complementary
explanations of the ethics procedure in our work can be found in the
supplementary material.

3.2.2 Participants

We looked for people who were interested to take part as volunteers
in our study. There were no specific criteria for participant inclusion,
with the exception of each participant having to be above the age of
18 years. Although we did not inquire about the participants’ ethnicity
due to ethical concerns, we attempted to keep the dataset ethnically
diverse to the best of our efforts. There are 19 male participants with
an average age of 26.37 years and an average height of 178.05 cm. The
corresponding figures for the 8 female participants are 27.5 years and
165 cm. 10 out of 27 participants were wearing glasses at the time of
the capture, there being 9 male and 1 female.

4 DATA COLLECTION DESIGN

Our data collection tasks aimed to capture posed expressions (task
A), spontaneous facial expressions, and body poses while speaking
(task B). Moreover, we have also collected human face and full-body
recording under occlusion caused with a VR headset (task C), i.e. we
have designed three types of assignments for data collection.

Before starting the data collection, two training examples were given
to the volunteers to explain what they were supposed to do during each
session: one before A and B, and the other before C. Thus, tasks A
and B were carried out uninterrupted. In the first training session, we
explained the tasks of tasks A and B to the participants and showed
them sample images (dissimilar to the images shown in the effective
tasks but in the same category). In the second training session, which
was performed after finishing assignments A and B, we asked the
participant to wear a VR headset. More details of the data collection
task are explained in the following subsections.



4.1 Data collection Task A
This data collection task consisted of showing the volunteer 6 basic
human emotions on a big display screen in front of the person and
the VoCap studio. The basic emotions included happiness, surprise,
anger, disgust, sadness, and fear. The target emotions were defined and
displayed as described in [53]. Presenting facial images on a display
was our main way to elicit such expressions. The participants were
asked to look at each picture that appeared on the display and then to
try to mimic the expression that had the same semantic meaning as the
displayed one.

4.2 Data collection Task B
In this assignment, we displayed three pictures to the volunteer with
background sounds related to the content of the pictures. These three
images contained animals, a baby, and a nature scene, respectively. The
participants were then asked to look at each picture and describe it
and their feelings about each of them in their own words. The spoken
language was either English or the participant’s mother tongue based
on their own preference. We encouraged them to express their thoughts
in their mother tongue so that they could generate facial expressions
that were as close to natural as possible when speaking. In total, 15 out
of 27 participants spoke in English, and the rest preferred to speak in
their mother tongue.

4.3 Data collection Task C
In the final task, the participants were asked to wear an HTC Vive Pro
Eye headset [21] while standing in the center of the capturing studio,
where they looked at different points on the headset’s display. The
participants were supposed to move their body around without changing
their location. During this process, participants mostly showed Neutral
emotions while looking at different cameras. In addition to recording
sequences from the volunteers, we also reconstructed a 3D model of
the VR headset, which we used for task C, for 2 frames. This recording
aims at providing a ground-truth 3D model of the occlusion object for
further studies focused on reconstructing faces and gaze directions of
the participants under the partial occlusions of the headset. In cases
where identity preservation is critical, such as HMD removal and facial
expression reconstruction, we have provided representations of the
individual wearing a VR headset and without it, and the headset as an
individual object. In this way, all three types of data can be used to
evaluate the identity of the person after an occlusion removal algorithm
is applied.

5 DATA POST-PROCESSING

We recorded over 5 hours of raw data with 25 frames per second (fps).
However, it was neither feasible nor necessary to post-process all of
them mainly because of the high computational cost and memory issues.
Therefore, we post-processed each of the sequences based on data type
usage with different segments. The post-processing frame rate was 3
fps for data collection tasks A, B, and C. It is worth mentioning that
in addition to the post-proceed data, the raw captured data @25 fps
and camera calibration parameters are also made available. Each data
type has been organized according to the participant’s identification
number and frame number. Detailed instructions on data structure
and synchronization information are also given within each dataset.
In this section, we go through each data type and explain the applied
post-processing steps.

5.1 Textured 3D meshes
In order to reduce the amount of data processing as well as to avoid
collecting too many similar frames, we decided to reduce the sampling
rate of the post-processed data. In order to generate the 3D meshes,
the Poisson surface reconstruction [24]technique was applied from
the raw point cloud data. In addition to capturing sequences from the
participants, we also built a 3D model of the VR headset, which we
used for data collection task C, for 2 frames. Fig. 3 illustrates examples
of reconstructed textured meshes post-processed after recording, and
RGB images captured during the recording of data collection tasks B
and C.

Fig. 3: Example of reconstructed textured meshes. (A): full-body 3D
model of a participant, (B): RGB image captured by camera number 30,
(C): full-body 3D model with HMD occlusion, and (D): RGB image
captured by camera number 16.

5.2 Colored 3D point clouds

The raw point cloud data is obtained by generating the geometry from
the ground truth depth maps captured by the 31 depth cameras of the
VoCap Studio. The 2 stereo images from each capture module further
improve the geometry by applying depth-from-stereo, while also col-
oring the scene’s points. Fig. 4 illustrates examples of reconstructed
point clouds acquired after recording and corresponding RGB images
captured from an individual wearing glasses during the capturing pro-
cess.

Due to the sparse and noisy nature of the raw point clouds ( Fig. 4-B)
– which contain around ∼ 300,000 points –, we also provide post-
processed versions of them. This is done by removing outlier points
and applying a Poisson surface reconstruction [24], as done in [16], to
increase their resolution. Afterwards, we sample the points from the
mesh [10] with a surface density – the number of points per square unit
– of 0.05, resulting in point clouds of around ∼ 900,000 points. One ex-
ample is depicted in Fig. 4-C. Finally, even though the post-processed
point clouds increase the models’ resolution, certain materials like ex-
tremely non-Lambertian objects, e.g. mirror-like surfaces, are not well
represented only from the RGB-D images due to the lack of geometry
of the raw depth data. Thus, we also provide an additional type of
post-processed point cloud, which is sampled from textured meshes.
An example of this type of a post-processed point cloud is illustrated in
Fig. 4-D.



Fig. 4: Example of colored point clouds of a participant wearing glasses
in task A. (A): RGB image captured by camera number 30, point
cloud representation from (B): raw data, (C): post-processed, and (D):
sampled from textured meshes.

5.3 RGB-D
We have also collected RGB-D images for tasks A and B from two of
the capture modules based on the cameras’ field of view and the capture
setup’s layout. Their corresponding indices are 1 and 30. These indexes
were chosen since they provided a good field of view for capturing
the volunteer’s facial expressions. The distance between the depth
cameras and between the RGB cameras of modules number 30 and
1 is 989.565 mm and 991.126 mm, respectively. At the beginning
of each sequence, the participants were trying to understand the first
task. To that end, we decided to check all the sequences manually and
remove the redundant frames from the start and end of capturing to
avoid the collection of many similar and incomplete frames. The script
for exporting the depth maps for each frame is also published together
with the RGB-D dataset. The script that reads, processes, and visualizes
the camera transformations is included in the dataset along with the
exact positions of each camera. Therefore, each subset of the RGB-D
data processed for all data collection tasks contains the extrinsic and
intrinsic calibration matrices for both RGB cameras and the extrinsic
matrix for each module’s depth sensor at the time of capture.

For task C in which the person was wearing a VR headset, RGB-D
images have been collected from one frontal module (number 16) for
20 seconds at 3 fps. Here, module number 16 provided the frontal view
because the participant was looking in the opposite direction compared
to data collection tasks A and B.

In Fig. 5, a sample of RGB images and depth maps from camera
number 1 and 30 is shown, where the individual was performing the
"Surprise" expression. An example of RGB-D representation from
module 16 in task C, in which the volunteer is wearing an HMD, is also
depicted in Fig. 5 (C, F).

5.4 Light field
The LF image dataset consists of two subsets according to their content.
The first one was collected from 27 volunteers showing 6 basic human
emotions, totaling 162 LF images. The data is labeled into 6 classes
based on the participant’s performed emotion. The second one includes

Fig. 5: Sample of RGB images and depth maps from three views.
(A,D): RGB-D image of module number 30, (B,E): RGB-D image of
module number 1, (C,F): RGB-D image of module number 16.

10 LF frontal images of 10 people wearing an HMD. Along with LF
raw data (.lfr files), their related depth maps are also available in TIFF
and PNG file formats.

Tab. 2 summarizes the details of the HEADSET multimodal dataset
captured by the VoCap studio and Lytro Illum camera.

5.5 Post-processed labeled data
We have also created two RGB labeled subsets of our main database
which include human facial expressions. The first one is the multi-view
representation of LF data captured by the Lytro Illum camera, and the
second one contains RGB images from two non-frontal views captured
by the VoCap studio. The label of each image has been defined based
on the ground truth emotion described in task A. The images that we
used further for the evaluation of the facial expressions classification
(FEC) in our dataset include VoCap RGB data (HEADSET-VoCap), and
multi-view representation of light field data (HEADSET-LF), both in
PNG file format. HEADSET-LF is created from sub-aperture images of
the LF raw data as multi-view RGB images. For this work, each LF raw
data is converted into a 5×5 RGB view matrix. It is noteworthy that
in some cases the participant showed "Neutral" emotion instead of the
required emotion. Thus, we removed the samples that are apparently not
matched to the ground truth label by human observation. However, we
made both the original and the modified datasets with labels available.
The number of RGB images in the modified datasets, which we used
for the evaluation, are as follows: HEADSET-VoCap: {Anger: 363,
Disgust: 266, Fear: 209, Happiness: 264, Sadness: 284, Surprise: 420}
and HEADSET-LF: {Anger: 650, Disgust: 550, Fear: 450, Happiness:
675, Sadness: 375, Surprise: 575}, which are acquired from the multi-
view RGB representations of the raw LF images.

For our evaluations and experiments, which we describe in Sec. 6,
we first applied a deep cascaded multi-task framework method for face
detection (MTCNN) proposed in [58] on both labeled datasets in order
to make the evaluation faster. We then checked the facial images and
landmarks of all views of the dataset and proved that the facial region
is detected in all the frames.

Fig. 6 depicts two non-frontal views (left: camera number 1, and
right: camera number 30 of the VoCap studio) of HEADSET-VoCap,
and one frontal view (middle: captured by the Lytro Illum camera,
central sub-aperture) of HEADSET-LF as examples for the "Happiness"
class after applying the face detection algorithm.

6 EXPERIMENTAL RESULTS AND DATASET EVALUATION

We conducted multiple experiments using different types of our data in
order to report HEADSET’s performance compared to similar ones in



Table 2: HEADSET modality details with regard to its content. All the raw data captured by the VoCap studio @25fps is additionally available in
.mvx file format with a total size of 2598 GB.

Data type Participants
(out of 27)

Content Occlusion Capturing
modules

Avg. # of
frames

Avg.
size

Format

Colored
point clouds

27 6 posed expressions and
subtle body movements

Natural (caused by
glasses or hair)

31 272 4.33 GB .ply

Colored
point clouds

11 Subtle body movements HMD 31 58 885 MB .ply

Meshes with
textures

27 6 posed expressions and
subtle body movements

Natural 31 272 2.07 GB .obj

Meshes with
textures

11 Subtle body movements HMD 31 58 339 MB .obj

RGB-D 27 Posed and spontaneous fa-
cial expressions

Natural 2 455 6.7 GB .png

RGB-D 11 Subtle facial movements HMD 1 20 595 MB .png
LF 27 6 posed expressions Natural 1 6 377 MB .lfr
LF 10 Face HMD 1 1 65 MB .lfr

Fig. 6: Three synchronized views (two non-frontal views in HEADSET-
VoCap, and one frontal view in HEADSET-LF) of detected faces show-
ing a "Happiness" expression.

a multitude of applications. We first present the volumetric assessment
of sequences under the HMD occlusion compared to a similar currently
available dataset. Then, we evaluate the dynamic scenes in the context
of compression with two state-of-the-art 3D codecs for voxelized point
clouds. Afterward, we focus on two popular computer vision problems
which can be a use case of the proposed dataset. The first application
involves facial expressions classification in HEADSET-VoCap and
HEADSET-LF collected from Experiment A, as described in Sec. 5.5
in order to prove the expression variations in the collected data. We
also present the results of a deep video inpainting model on our dataset
for solving the HMDs removal problem as the second application. In
this section, we explain each of the experiments in detail.

6.1 No-reference volumetric assessment of headset-
wearing participants

Although the volumetric datasets from Tab. 1 provide different scenes
for immersive applications, including typical social XR situations as
well as body poses and movements, few of them include a photoreal-
istic representation of the participants’ occluded expressions. More
precisely, only the CWIPC-SXR dataset [41] contains such data from
the aforementioned datasets, where two scenes depict three individu-
als performing actions while wearing an HMD. Our HEADSET data
contains volumetric information (both meshes and point clouds) from
high-resolution captures for 11 different persons wearing an HMD,
while also providing scenes of the same individuals without it.

In order to assess the quality of our generated volumetric data, we
estimate the subjective quality of our 3D data using a no-reference
(NR) metric to evaluate the post-processed point clouds derived from
the textured meshes as described in Sec. 5.2. The usage here of an NR
point cloud quality assessment (PCQA) is paramount due to the lack of
a reference point cloud to compare to. That is, potential distortions over

Table 3: Average Pseudo Mean Opinion Scores of participants wearing
a head-mounted display. Higher is better. Results were averaged from
20 frames of 3 individuals from [41] and 11 individuals from our
dataset.

Point cloud type MOS ↑
CWIPC-SXR [41] 2.885
Raw 4.127
Post-processed 4.443
Sampled from texture meshes 4.853

the geometry and texture data are due to the nature of the capturing
and processing pipeline of the dataset to generate the scenes. There-
fore, it is important for the selected NR-PCQA metric to have a good
generalization capability over the different kinds of possible distortions
regarding the geometry and the attributes.

With that in mind, we assess our generated data for participants
wearing an HMD via the ResSCNN NR metric [28], which leverages a
sparse convolutional neural network to estimate the subjective quality
of point clouds without the usage of reference models. To properly
evaluate our and the CWIPC-SXR scenes, we use a ResSCNN model
trained on a large-scale point cloud quality assessment dataset, which
contains 104 reference point clouds with more than 22,000 example
cases with 31 different types of distortion over the geometry and the
attributes data. These distorted samples are annotated with a pseudo
mean opinion score (MOS) to subjectively evaluate the 3D data (see
[28] for a more detailed explanation). In short, this pseudo MOS is a
scale of five quality levels in the range [1,5], where 1 means that the
distortions significantly hinder the perception of the scene and 5 means
that almost no distortion is perceived.

Our experiments are performed over 20 frames for each of the scenes.
The 11 participants of HEADSET-VoCap are evaluated against the two
scenes from the CWIPC-SXR [41] dataset that contains participants
wearing an HMD: scene 14 (“Rock-paper-scissors in VR"), containing
two persons, and scene 19 (“Boxer in VR"), with one. As recommended
in [28], all the sequences’ coordinates were scaled in the range of
[0−2000] for the evaluation.

Results from Tab. 3 suggest a superior subjective quality of our
scenes than the ones in [41] according to their pseudo-MOS. In par-
ticular, these results show that even our raw types of point clouds still
present a decent subjective quality, even in the presence of outliers.
Our post-processed scenes, which include the outlier removal in the
post-processing step – a procedure that is also done for the data in [41]
–, show an even greater improvement over our raw types, which is
expected, with the ones derived from the textured meshes performing
the best out of them. Moreover, we not only provide a larger number of



Fig. 7: Visualization of a frame from a) “Boxer in VR", from [41] and
versions for our three types of point clouds: b) raw, c) post-processed,
and d) derived from textured meshes, for Participant 19 of our dataset.

participants, but also their ground truth non-occluded physiognomies,
making our data suitable for applications targeting the study of facial
occlusion directly over the 3D data.

Fig. 7 also shows an illustration of four 3D models of the compared
datasets, with one frame from the sequence “Boxer in VR" from [41]
and the other three being our three types of point clouds. Notice how
the sequence from [41] in Fig. 7-a) presents significant distortions in the
geometry from “holes", i.e. missing points, and also in its colors. On
the other hand, the frame taken from the raw point cloud for participant
19 of our dataset in Fig. 7-b) appears to have less evident distortions
for the colors, while presenting a more significant number of outlier
points. This number of outliers is greatly reduced for our post-processed
sequence in Fig. 7-c), although it presents some minor holes and lacks
some of the finer texture and geometry details. Our 3D model derived
from the textured meshes, which can be seen in Fig. 7-d), not only
provides a watertight geometry but is able to depict some of the scene’s
finer details, such as the watch and the harness on the person’s belt.

6.2 Point clouds evaluation in terms of compression

In order to popularize applications that provide virtual experiences
with low latency, like XR telepresence, XR games, and free-viewpoint
videos, it is paramount for the volumetric data to be efficiently conveyed
in real-time. As such, we benchmark our dynamic scenes in the context
of compression with two state-of-the-art 3D codecs for voxelized point
clouds from the Moving Picture Experts Group (MPEG): the geometry-

Fig. 8: RD Results for the average D1 metric from 4 frames for codecs
G-PCC (top) and V-PCC (bottom).

based point cloud compression (G-PCC) and the video-based point
cloud compression (V-PCC) standards [47]. Since our dataset consists
of sequences with multiple frames of volumetric data for each scene,
we provide a testbench for the development of both static – or intra-
frame – and dynamic – or inter-frame – methods for volumetric video
compression. Hence, we selected V-PCC due to its suitability for
temporal video compression, and G-PCC for its profile of static data
compression. More details on both solutions can be found in [18, 47].

As both codecs require the point cloud data to be voxelized, that
is, the points are quantized into volumetric elements, we constrain our
data into three different voxel grid resolutions, b = {8,10,11}. This
quantization procedure allows us to assess the visual quality and size of
our data with regard to different resolution levels, and how it manifests
into applications where the data has to be conveyed. Therefore, we
assess our three different types of point clouds, as outlined in Sec. 5.2,
with a rate-distortion (RD)-based approach in order to evaluate three
key outcomes: 1) evaluate how the different characteristics (number
of points, density, "watertightness", etc.) from these three types are
materialized in a transmission context; 2) observe which voxelized res-
olutions prove to be more adequate in a live-streaming case according
to the data that we generated; 3) assess the conveyance of our data both
in an inter-frame and an intra-frame scenario.

To address objective number 3), 4 consecutive frames of each of
our 27 scenes were selected to be conveyed through V-PCC and G-
PCC. Further information about the selection of the frames from the
scenes and the specifications used for both codecs are explained in the
supplementary material.

The naming convention for our results is based on the type of the
point cloud, the codec used, and the resolution that was applied to
the data, with the format hset-codec-pctype-b, where pctype = {raw,



post_proc, sampled}, codec = {gpcc, vpcc} and b = {8,10,11}. The
RD results are constructed such that the rate consists of the total rate, in
bits, required for transmission. For the quality metric, we evaluate the
geometry by using the point-to-point metric, also known as D1 [52],
and for the attributes, we use the Peak-Signal-to-Noise-Ratio (PSNR)
for the Y, U, and V channels of the original and decoded point clouds.

The results for the average D1 metric from 4 frames of our 27
sequences can be observed in Fig. 8, while the results for the attributes
are presented and discussed in the supplementary material. Notice that,
even though the bitrate increase is expected and increases with the
resolution, the conveyed size increases more significantly when going
from a resolution of 10 to 11 bits, which is particularly noticeable for the
hset-vpcc-raw point clouds due to their lower density in comparison to
hset-vpcc-post_proc and hset-vpcc-sampled. The significant decrease
in the D1 metric also indicates that the number of decoded points is
much larger than the original voxelized point clouds. You can observe
this effect for b = 10 for the hset-vpcc-raw and b = 11 for hset-vpcc-
post_proc and hset-sampled, with the same happening for G-PCC
in a lesser degree. Finally, note that V-PCC provides a better RD
performance over G-PCC for the 4 transmitted frames, in particular for
b = 10. This is to be expected, due to V-PCC’s inter-frame scope.

6.3 Facial expression classification (FEC)
As described, the MTCNN detector without any margins is utilized
before applying the FEC models, so that most parts of the background
such as hair follicles are not present. As a result, the learned facial
features are more suitable for emotional analysis.

To make comparisons for evaluation in FEC, we selected four similar
datasets namely JAFFE [30], AffectNet [32], AFEW [11], and VGAF
[50], which are used as benchmark by prior works on the FEC problem.
In the following, we briefly explain each dataset’s characteristics with
regard to its content.

• JAFFE [30]: The Japanese Female Facial Expression (JAFFE)
database contains 213 grayscale images of acted Japanese female
facial emotions. All the images are resized into (256×256 pixel).
It includes 7 basic human facial emotions (Anger, Disgust, Fear,
Happiness, Sadness, Surprise, and Neutral). For the comparison,
we used all 213 images as the testing set.

• AffectNet [32]: This RGB image dataset includes 287,651 images
in its training set, and 3,999 images in its validation set of 8 human
facial expressions (Anger, Disgust, Fear, Happiness, Sadness,
Surprise, Contempt, and Neutral). We used 7 classes (excluding
Contempt emotion) of the original validation set of 3,499 images
for testing purposes of AffectNet. The faces are detected by the
authors of the dataset before evaluation.

• AFEW [11]: The AFEW dataset with 773 train and 383 validation
samples contains audio-video short clips acquired from TV serials
and movies with different poses, spontaneous expressions, and
illuminations. They are grouped by a single emotion label to the
video clip from 6 basic emotions (Anger, Disgust, Fear, Happiness,
Sadness, and Surprise) and Neutral, as described in [46].

• VGAF [50]: This dataset shows a wide amount of variations in
both training and validation sets. The data contains 2,661 clips
and 766 videos for training and validation, respectively. The FEC
problem in VGAF is to classify each video into 3 classes (Positive,
Neutral, and Negative emotions) [46].

Then, we applied five state-of-the-art methods for facial expression
classification on the aforementioned and our HEADSET dataset. These
methods include the models Ad-Corre (trained on RAF-DB [27] dataset
for 7 classes) [13], ResMaskingNet (trained on FER-2013 dataset [17]
for 7 classes) [39], as well as lightweight EfficientNet-B0 (trained for
8 classes), EfficientNet-B2 (trained for 8 classes), and EfficientNet-B2
(trained for 7 classes) [44–46], which were trained on the VGGFace2
dataset [4]. The accuracy performance metric is then computed for
all datasets. Tab. 4 gives a summary of the accuracy measures for

all five models on our datasets as well as on the validation sets of
AFEW [11], AffectNet [32], VGAF [50], and all images of the JAFFE
dataset [30]. As EfficientNet-B0 and EfficientNet-B2 are capable of
extracting emotional features in video frames [46], AFEW and VGAF
datasets have only been used for video-based emotion recognition. The
details of F1 scores are presented in the supplementary material due to
space limitations.

It is worth mentioning that the usage of a model trained on 8 or 7
classes to predict 7 or 6 emotional categories presents a slightly lower
accuracy, though it is more general as it can be used to predict either 8,
7, or 6 emotions [44].

As proved in [9], multi-view representation of light field images
recorded by a Lytro Illum camera can provide complementary informa-
tion beneficial for face recognition. Thus, we have processed the raw
data of Lytro Illum camera to render LF images as multi-view RGB
images, each one collected from a slightly shifted point of view. For
this experiment, each data is transformed in a 5x5 RGB view matrix,
each view with size 620× 432 pixels. As it is observable in Tab. 4,
the results of all five models on our datasets are comparable to other
benchmark datasets in FEC.

6.4 HMD removal

For facial reconstruction of the areas occluded by an HMD in the col-
lected video frames, we used a GAN-based method for deep video
inpainting, named Learnable Gated Temporal Shift Module (LGTSM)
introduced in [5], with the same hyperparameters and training pro-
cedure. The following modifications were applied. We added an
additional self-attention layer and its non-local operations, introduced
in [56], in its encoder part before the dilated convolution layers in
order to capture long-range dependencies between different regions of
an input feature map. Specifically, the self-attention module takes a
feature map as input and applies three convolution layers to compute
the key, query, and value vectors. The kernel size and stride for each
convolutional layer are set to 1×1 and 1, respectively, to capture spatial
relationships between neighboring feature map locations while keeping
computational costs low.

We used FaceForensics dataset [42] and our collected RGB data
from VoCap as the training set and validation set, respectively. Face-
Forensics is comprised of 1,004 videos including more than 500,000
frames with faces collected from Youtube. They consist of only frontal
faces cropped to 128×128. The whole RGB video sequences in our
dataset collected from VoCap include 11,584 frames captured by cam-
era number 30 and 1 from all 27 volunteers, as described in Sec. 5.3.
We first applied MTCNN for face recognition, then resized the frames
to 128×128 to make them similar to the training set.

Fig. 9: Face completion of three different participants from HEAD-
SET. The images are ground truth, input frame, inpainted result, and
occlusion-free reference image, respectively.



Table 4: Accuracy of FEC models for our datasets (HEADSET-VoCap and HEADSET-LF) compared to available benchmark datasets for FEC.

Model HEADSET-
VoCap

HEADSET-LF JAFFE
[30]

AffectNet
[32]

AFEW
[11]

VGAF
[50]

EfficientNet-B0, 8 classes [44] 58.19 61.98 46.00 60.10 55.14 68.29
EfficientNet-B2, 7 classes [46] 67.44 62.25 54.00 64.30 59.63 69.84
EfficientNet-B2, 8 classes [45] 62.46 61.50 54.00 60.90 57.78 70.23
ResMaskingNet, 7 classes [39] 51.11 53.34 46.95 49.81 – –
Ad-Corre, 7 classes [13] 46.90 50.78 41.31 54.07 – –

For preparing HMD masks on the video frames, we first created
binary masks of the VR headset captured in experiment C. Then, we
applied the masks to the ground truth images to be the input data for
the inpainting network. We also used the first frames from each video
sequence without any occlusion as a reference image that imposes an
identity prior to the searching space of the network. The reference
images were fed into the network jointly with the masked frames.

Samples of the qualitative results of the LGTSM model with a self-
attention module on HEADSET are illustrated in Fig. 9. The examples
are from three different individuals and captured by two distinct cam-
eras. The first two rows are the inpainted results from starting frames,
and the last row demonstrates an illustration of HMD removal outputs
from the final frames. While the qualitative findings are promising,
they exhibit temporal inconsistencies across frames, underscoring the
need for additional research to comprehensively investigate potential
strategies for mitigating HMD occlusion removal.

7 CONCLUSION

In this work, we have captured and presented a multimodal database that
depicts humans performing posed and spontaneous facial expressions
and subtle body movements. We have also recorded a part of the
database with HMD occlusion. Our capturing setup includes a VoCap
studio and a Lytro Illum camera. On top of the obtained textured
meshes, colored point clouds, multi-view RGB-D images, and light
field images, the raw captured data, calibration, and camera parameters
are also made available. The proposed databases’ performance in
comparison with similar datasets has also been evaluated in different
application scenarios. The provided material can facilitate the design of
immersive media technologies and XR applications in which realistic
human interaction is necessary. We believe that our database will then
promote further research in data-driven techniques, computer vision
for XR, human interactions in XR, and volumetric data reconstruction
by providing a high-quality testing set for performance evaluation.
Although the utilization of HEADSET holds significant potential for
advancing research pertaining to XR applications, an extension of the
existing HEADSET version can further enhance the progress of these
technologies. This extension encompasses the inclusion of a greater
number of participants, extended recording capabilities, as well as an
examination of the impact of diverse factors such as age and medical
conditions on individuals’ perceived emotions.

ACKNOWLEDGMENTS

This project has received funding from the European Union’s Horizon
2020 research and innovation program under the Marie Skłodowska-
Curie grant agreement No 956770. The data collection part was carried
out with the support of Centre for Immersive Visual Technologies
(CIVIT) research infrastructure, Tampere University, Finland. We want
to especially thank Jani Käpylä, for his help during the capturing.

REFERENCES

[1] D. S. Alexiadis, A. Chatzitofis, N. Zioulis, O. Zoidi, G. Louizis,
D. Zarpalas, and P. Daras. An integrated platform for live 3d human
reconstruction and motion capturing. IEEE Transactions on Circuits and
Systems for Video Technology, 27(4):798–813, 2016.

[2] T. Alldieck, M. Magnor, W. Xu, C. Theobalt, and G. Pons-Moll. Video
based reconstruction of 3d people models. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 8387–8397,
2018.

[3] E. Barsoum, C. Zhang, C. C. Ferrer, and Z. Zhang. Training deep networks
for facial expression recognition with crowd-sourced label distribution.
In Proceedings of the 18th ACM international conference on multimodal
interaction, pp. 279–283, 2016.

[4] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman. Vggface2:
A dataset for recognising faces across pose and age. In 2018 13th IEEE
International Conference on Automatic Face & Gesture Recognition (FG
2018), pp. 67–74. IEEE, 2018.

[5] Y.-L. Chang, Z. Y. Liu, K.-Y. Lee, and W. Hsu. Learnable gated temporal
shift module for deep video inpainting. arXiv preprint arXiv:1907.01131,
2019.

[6] A. Chatzitofis, L. Saroglou, P. Boutis, P. Drakoulis, N. Zioulis, S. Sub-
ramanyam, B. Kevelham, C. Charbonnier, P. Cesar, D. Zarpalas, et al.
Human4d: A human-centric multimodal dataset for motions and immer-
sive media. IEEE Access, 8:176241–176262, 2020.

[7] S.-Y. Chen, Y.-K. Lai, S. Xia, P. Rosin, and L. Gao. 3d face reconstruction
and gaze tracking in the hmd for virtual interaction. IEEE Transactions
on Multimedia, 2022.

[8] P. Chhokra, A. Chowdhury, G. Goswami, M. Vatsa, and R. Singh. Un-
constrained kinect video face database. Information Fusion, 44:113–125,
2018.

[9] V. Chiesa and J.-L. Dugelay. On multi-view face recognition using lytro
images. In 2018 26th European Signal Processing Conference (EUSIPCO),
pp. 2250–2254. IEEE, 2018.

[10] P. Cignoni, C. Rocchini, and R. Scopigno. METRO: Measuring error on
simplified surfaces. Computer Graphics Forum, 17:167 – 174, 06 1998.
doi: 10.1111/1467-8659.00236

[11] A. Dhall. Emotiw 2019: Automatic emotion, engagement and cohesion
prediction tasks. In 2019 International Conference on Multimodal Inter-
action, pp. 546–550, 2019.

[12] M. Dou, S. Khamis, Y. Degtyarev, P. Davidson, S. R. Fanello, A. Kowdle,
S. O. Escolano, C. Rhemann, D. Kim, J. Taylor, et al. Fusion4d: Real-
time performance capture of challenging scenes. ACM Transactions on
Graphics (ToG), 35(4):1–13, 2016.

[13] A. P. Fard and M. H. Mahoor. Ad-corre: Adaptive correlation-based loss
for facial expression recognition in the wild. IEEE Access, 10:26756–
26768, 2022.

[14] C. Galdi, V. Chiesa, C. Busch, P. Lobato Correia, J.-L. Dugelay, and
C. Guillemot. Light fields for face analysis. Sensors, 19(12):2687, 2019.

[15] T. Gerig, A. Morel-Forster, C. Blumer, B. Egger, M. Luthi, S. Schönborn,
and T. Vetter. Morphable face models-an open framework. In 2018 13th
IEEE International Conference on Automatic Face & Gesture Recognition
(FG 2018), pp. 75–82. IEEE, 2018.

[16] D. Girardeau-Montaut. Cloudcompare. France: EDF R&D Telecom
ParisTech, 11, 2016.

[17] I. J. Goodfellow, D. Erhan, P. L. Carrier, A. Courville, M. Mirza, B. Ham-
ner, W. Cukierski, Y. Tang, D. Thaler, D.-H. Lee, et al. Challenges in
representation learning: A report on three machine learning contests. In
International Conference on Neural Information Processing, pp. 117–124.
Springer, 2013.

[18] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and
A. Tabatabai. An overview of ongoing point cloud compression stan-
dardization activities: video-based (v-pcc) and geometry-based (g-pcc).
APSIPA Transactions on Signal and Information Processing, 9:e13, 2020.
doi: 10.1017/ATSIP.2020.12

[19] K. Guo, P. Lincoln, P. Davidson, J. Busch, X. Yu, M. Whalen, G. Harvey,
S. Orts-Escolano, R. Pandey, J. Dourgarian, et al. The relightables: Vol-
umetric performance capture of humans with realistic relighting. ACM

https://doi.org/10.1111/1467-8659.00236
https://doi.org/10.1017/ATSIP.2020.12


Transactions on Graphics (ToG), 38(6):1–19, 2019.
[20] K. Guo, F. Xu, T. Yu, X. Liu, Q. Dai, and Y. Liu. Real-time geometry,

albedo, and motion reconstruction using a single rgb-d camera. ACM
Transactions on Graphics (ToG), 36(4):1, 2017.

[21] HTC. Vive pro eye overview.
[22] A. S. Jackson, C. Manafas, and G. Tzimiropoulos. 3d human body recon-

struction from a single image via volumetric regression. In Proceedings
of the European Conference on Computer Vision (ECCV) Workshops, pp.
0–0, 2018.

[23] H. Joo, H. Liu, L. Tan, L. Gui, B. Nabbe, I. Matthews, T. Kanade,
S. Nobuhara, and Y. Sheikh. Panoptic studio: A massively multiview
system for social motion capture. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 3334–3342, 2015.

[24] M. Kazhdan, M. Chuang, S. Rusinkiewicz, and H. Hoppe. Poisson surface
reconstruction with envelope constraints. In Computer Graphics Forum,
vol. 39, pp. 173–182. Wiley Online Library, 2020.

[25] M. Krivokuca, P. A. Chou, and P. Savill. 8i voxelized surface light field
(8iVSLF) dataset. ISO/IEC JTC1/SC29/WG11 MPEG, input document
m42914, 2018.

[26] C. Kyrlitsias and D. Michael-Grigoriou. Social interaction with agents and
avatars in immersive virtual environments: A survey. Frontiers in Virtual
Reality, 2:168, 2022.

[27] S. Li, W. Deng, and J. Du. Reliable crowdsourcing and deep locality-
preserving learning for expression recognition in the wild. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
2852–2861, 2017.

[28] Y. Liu, Q. Yang, Y. Xu, and L. Yang. Point cloud quality assessment:
Dataset construction and learning-based no-reference metric. ACM Trans-
actions on Multimedia Computing, Communications and Applications,
19(2s):1–26, 2023.

[29] J. Lou, Y. Wang, C. Nduka, M. Hamedi, I. Mavridou, F.-Y. Wang, and
H. Yu. Realistic facial expression reconstruction for vr hmd users. IEEE
Transactions on Multimedia, 22(3):730–743, 2019.

[30] M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba. Coding facial
expressions with gabor wavelets. In Proceedings Third IEEE International
Conference on Automatic Face and Gesture Recognition, pp. 200–205.
IEEE, 1998.

[31] R. Min, N. Kose, and J.-L. Dugelay. Kinectfacedb: A kinect database for
face recognition. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 44(11):1534–1548, 2014.

[32] A. Mollahosseini, B. Hasani, and M. H. Mahoor. Affectnet: A database
for facial expression, valence, and arousal computing in the wild. IEEE
Transactions on Affective Computing, 10(1):18–31, 2017.

[33] R. A. Newcombe, D. Fox, and S. M. Seitz. Dynamicfusion: Reconstruction
and tracking of non-rigid scenes in real-time. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 343–352,
2015.

[34] N. Numan, F. Ter Haar, and P. Cesar. Generative rgb-d face completion
for head-mounted display removal. In 2021 IEEE Conference on Virtual
Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 109–
116. IEEE, 2021.

[35] S. Orts-Escolano, C. Rhemann, S. Fanello, W. Chang, A. Kowdle, Y. Degt-
yarev, D. Kim, P. L. Davidson, S. Khamis, M. Dou, et al. Holoportation:
Virtual 3d teleportation in real-time. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology, pp. 741–754,
2016.

[36] R. Pagés, K. Amplianitis, J. Ondrej, E. Zerman, and A. Smolic. Volo-
grams & v-sense volumetric video dataset. ISO/IEC JTC1/SC29/WG07
MPEG2021/m56767, 2021.

[37] K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman, S. M. Seitz,
and R. Martin-Brualla. Nerfies: Deformable neural radiance fields. In
Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 5865–5874, 2021.

[38] S. Peng, Y. Zhang, Y. Xu, Q. Wang, Q. Shuai, H. Bao, and X. Zhou.
Neural body: Implicit neural representations with structured latent codes
for novel view synthesis of dynamic humans. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
9054–9063, 2021.

[39] L. Pham, T. H. Vu, and T. A. Tran. Facial expression recognition using
residual masking network. In 2020 25th International Conference on
Pattern Recognition (ICPR), pp. 4513–4519. IEEE, 2021.

[40] R. Raghavendra, K. B. Raja, and C. Busch. Exploring the usefulness of
light field cameras for biometrics: An empirical study on face and iris

recognition. IEEE Transactions on Information Forensics and Security,
11(5):922–936, 2015.

[41] I. Reimat, E. Alexiou, J. Jansen, I. Viola, S. Subramanyam, and P. Cesar.
Cwipc-sxr: Point cloud dynamic human dataset for social xr. In Pro-
ceedings of the 12th ACM Multimedia Systems Conference, pp. 300–306,
2021.

[42] A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Nießner.
Faceforensics: A large-scale video dataset for forgery detection in human
faces. arXiv preprint arXiv:1803.09179, 2018.

[43] S. Saito, T. Simon, J. Saragih, and H. Joo. Pifuhd: Multi-level pixel-
aligned implicit function for high-resolution 3d human digitization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 84–93, 2020.

[44] A. V. Savchenko. Facial expression and attributes recognition based on
multi-task learning of lightweight neural networks. In 2021 IEEE 19th
International Symposium on Intelligent Systems and Informatics (SISY),
pp. 119–124. IEEE, 2021.

[45] A. V. Savchenko. Video-based frame-level facial analysis of affective
behavior on mobile devices using efficientnets. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
2359–2366, 2022.

[46] A. V. Savchenko, L. V. Savchenko, and I. Makarov. Classifying emotions
and engagement in online learning based on a single facial expression
recognition neural network. IEEE Transactions on Affective Computing,
2022.

[47] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou,
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