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Nonlinear optimal perturbation of turbulent
channel flow as a precursor of extreme events

N. Ciola!:2:1, P. De Palma!, J.-C. Robinet? and S. Cherubini!

IDMMM, Politecnico di Bari, Via Re David 200, 70125 Bari, Italy
2DynFluid, Arts et Métiers Paris/CNAM, 151 Bd de I’Hopital, 75013 Paris, France

This work aims at studying the mechanisms behind the occurrence of extreme dissipation
events in a channel flow, identifying nonlinear optimal perturbations as potential
precursors of these events. Nonlinear optimal perturbations with respect to a generic
turbulent instantaneous snapshot are computed for the first time using a direct-adjoint
algorithm in the channel flow at Re; ~ 180. The resulting initial perturbation displays the
upstream tilting characteristic of Orr’s mechanism and is positioned along the interfaces
between two opposite-sign velocity streaks of the pre-existing turbulent field. Such a
perturbation induces a sudden breakdown of the pre-existing structures and a heavier tail
in the dissipation probability density function distribution. Different mechanisms are at
play during this process: the high shear present at the interface between coherent low-
and high-momentum regions is exploited to break down the larger structures and drive
energy to small scales. This energy cascade is fed by an enhanced lift-up effect that
produces intense streaks near the wall. It is found that the optimal perturbation grows
exponentially during the first phase of its evolution reflecting the existence of a secondary
modal instability of the streaks. To corroborate the results, the conditional spatiotemporal
proper orthogonal decomposition (POD) analysis of Hack & Schimdt (J. Fluid Mech.,
vol. 907, 2021, A9) is performed both in the perturbed and in the unperturbed flow,
showing a clear agreement between the two cases and with the reference study. Thus,
the optimal perturbation at initial time can be considered as a precursor of extreme events.

Key words: turbulent flows, instability

1. Introduction

Despite their complex and chaotic nature, turbulent flows display organised motions
referred to as coherent structures. The first evidence of these structures in wall turbulence
dates back to Kline et al. (1967), who found streamwise elongated velocity defects,
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called streaks, in the near-wall region of a boundary layer flow. Since then, a large part
of turbulence research focused on the study of coherent structures, in the hope that
the understanding of their dynamics would lead to a deeper knowledge of turbulence
properties and more reliable reduced models (Jiménez 2018).

Velocity streaks are the key ingredient of the self-sustaining cycle theorised by Hall
& Smith (1991) and Hamilton, Kim & Waleffe (1995) and subsequently corroborated by
further studies (Jiménez & Pinelli 1999; Schoppa & Hussain 2002). In this cycle, velocity
streaks are created by streamwise vortices through the lift-up effect (Landahl 1980)
until they experience a linear instability. After their breakdown, nonlinear interactions
regenerate the streamwise vortices, closing the cycle (Waleffe 1997). A wide body of
literature has been published on the subject since then. Most importantly, it was shown
that also very large-scale structures, populating the outer layer, are prone to the same
dynamics independently of that of smaller structures (Hwang & Cossu 2010). Moreover, it
was conjectured that the cycle acts self-similarly on a wide range of scales, from the outer
to the inner ones (Hwang 2015; Hwang & Bengana 2016; Cossu & Hwang 2017; Yang,
Willis & Hwang 2019).

Nevertheless, the wall cycle does not explain entirely the complex dynamics of wall
turbulence. Indeed, other kind of coherent motions such as bursts (Kim, Kline &
Reynolds 1971; Lozano-Durén, Flores & Jiménez 2012) and hairpin vortices (Head &
Bandyopadhyay 1981; Adrian 2007) have been observed and studied extensively. These
structures live for a short time and are associated with intense levels of fluctuations
and dissipation, so that they are often related to extreme events, a class of phenomena
observed in turbulent flows (Yeung, Zhai & Sreenivasan 2015; Saw et al. 2016; Buaria,
Pumir & Bodenschatz 2020). Notably, the alternation of long space—time events of weak
fluctuation intensity with short events of high intensity, with gradients increasing by orders
of magnitude (Hack & Schmidt 2021), may explain the intermittency of turbulence at small
scales (Sreenivasan & Antonia 1997). Since the work of Kline et al. (1967), bursts have
been linked to the breakup of streamwise streaks through secondary instability. However,
a clear explanation of their dynamics in turbulent flows is still missing. Hack & Moin
(2018) provided a statistical analysis of several thousand turbulent hairpin vortices, linking
their formation to an exponential varicose instability mechanism and showing that such an
instability generates extreme events of both dissipation and production of turbulent kinetic
energy (TKE), exceeding the local mean levels by three orders of magnitude. However,
the magnitude of extreme events remains bounded due to the presence of quantities being
conserved, such as energy or momentum, and to the action of nonlinear mechanisms onto
the transient bursting phenomena. Being the result of complex nonlinear dynamics and
stochasticity, extreme events are characterised by uncertainty in the time and space of
occurrence. Thus, they might be identified by the long-tailed shape of the probability
density function (p.d.f.) of the observable, although the value of the associated p.d.f. is
small being, by definition, relatively rare. Since these events are not linked to a specific
frequency, methods based on spectral analysis, such as the dynamic mode decomposition
or Koopman modes decomposition cannot be employed for their identification and analysis
(Sapsis 2021).

The study of the dynamics of coherent structures in turbulence is interestingly connected
to that of transition. Andersson et al. (2001) and Brandt, Schlatter & Henningson (2004)
studied secondary instability of streaks in a transitional boundary layer emphasising the
dichotomy between sinuous and varicose instability, with the first being generally stronger
in transitional shear flows. More recently, Hack & Zaki (2014) and Hack & Moin (2018)
pointed out the inviscid, inflectional nature of the mechanism in transitional and turbulent
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boundary layers while Cassinelli, de Giovanetti & Hwang (2017) reported the same
findings in the turbulent channel. Recently, Hack & Schmidt (2021) argued that extreme
events in channel flow could originate from the varicose instability of streaks.

Beyond exponential linear instability, advancements in the comprehension of non-modal
instabilities also influenced turbulence research. The generation of velocity streaks by
the lift-up effect (Landahl 1980) was corroborated by the computation of optimal energy
growth of perturbations of the laminar flow (Butler & Farrell 1992; Reddy & Henningson
1993). Linear optimal growth analyses have been performed also on turbulent mean flows
(Butler & Farrell 1993; Del Alamo & Jimenez 2006; Cossu, Pujals & Depardon 2009),
showing that the optimal wavelengths are consistent with those of the prominent turbulent
structures measured in direct numerical simulations (DNS), among which the well-known
/lj ~ 100 spacing of near-wall streaks, first reported by Kline et al. (1967). Some years
later, weakly or fully nonlinear optimal perturbations of several laminar shear flows have
been computed (Cherubini et al. 2010; Pringle & Kerswell 2010; Monokrousos et al. 2011;
Pralits, Bottaro & Cherubini 2015), allowing to uncover very strong energy growth due to
the nonlinear coupling of linear production mechanisms, leading to transition in very short
times (Rabin, Caulfield & Kerswell 2012; Cherubini & De Palma 2013; Farano et al. 2015),
or along minimal-energy pathways (Pringle, Willis & Kerswell 2012; Duguet et al. 2013;
Rabin, Caulfield & Kerswell 2014; Cherubini & De Palma 2015; Cherubini, De Palma &
Robinet 2015).

These developments motivated Farano et al. (2017) to extend the nonlinear optimisation
method developed for transitional flows (Cherubini et al. 2010) to turbulent mean flows,
optimising the energy growth of perturbations of the time-averaged velocity profile in the
channel flow. Farano et al. (2017, 2018) found that the nonlinear optimal structures well
reproduced the premultiplied spectra of the turbulent flow. Moreover, the perturbation at
target time was characterised by hairpin vortices and intense bursting events. However,
since these optimal perturbations were computed with respect to a mean one-dimensional
velocity profile, they may be not representative of realistic perturbations that affect an
already turbulent channel flow. This shortcoming has been recently overtaken by Blonigan,
Farazmand & Sapsis (2019), that used nonlinear energy optimisation on a basis of proper
orthogonal decomposition (POD) modes approximating the turbulent attractor to compute
precursors of extreme dissipation events in a turbulent channel flow. Using this method,
they were able to extract the flow structures that precede laminarisation events that
subsequently lead to extreme dissipation episodes. These flow states have high probability
of occurrence and lead to extreme values of dissipation. Since this investigation has been
carried out at low Reynolds number in a minimal flow unit, the extreme dissipation
events happened as a consequence of a partial relaminarisation of the flow, leading to
a subsequent retransition to turbulence, taking several hundreds of eddy turnover times to
produce the dissipation peak. At higher Reynolds numbers and/or domain sizes, extreme
events typically occur over a much smaller time scale, estimated by Hack & Schmidt
(2021) to be less than 100 in inner scaling. Using theoretical arguments, Jiménez (2013)

limits the bursting events to a time scale ¢ < (3Re)!/3, much smaller than that reported
in Blonigan et al. (2019), and do not relate them to a preceding relaminarisation of the
flow. Moreover, considering a domain size able to fit large-scale structures is crucial for
allowing the occurrence of larger-scale bursts, which may be characterised by different
features than small-scale ones (Morrison, Tsai & Bradshaw 1988), as well as for taking
into account the influence of large-scale outer events on the small-scale bursts (Bernardini
& Pirozzoli 2011). Thus, a more complete framework able to take into account both small-
and large-scale extreme events, is needed.
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In this work, we attempt at extending the works of Farano e al. (2017) and Hack &
Schmidt (2021), searching for optimal perturbation leading to an increase of the probability
of extreme events. As mentioned previously, the mean flow approach employed by Farano
et al. (2017) is not appropriate for considering realistic extreme events, which do not
develop starting from a one-dimensional mean flow. Thus, here we directly perturb the
turbulent flow field and search for the perturbation that leads to maximum dissipation,
consequently inducing an increase of the dissipative events with respect to the unperturbed
flow. In some way, the proposed approach recalls the strategy proposed by Jimenéz (2020),
aiming at uncovering the causality link between the occurrence of extreme events and the
structure of the preceding fluctuations in a chaotic physical system such as the turbulent
channel flow. In the present case, we do not use a perturbation of given form, like in
Jimenéz (2020), but we rather compute an optimal perturbation with respect to a relevant
observable for randomly chosen realisations of the chaotic system, in order to establish
a causality relation between the perturbation and the probability distribution of extreme
events.

Thus, in this work, the structure of the extreme events has been captured through
conditional statistical samples based on the DNS data (Hack & Schmidt 2021; Sapsis
2021). It is shown that the dynamics of this optimal perturbation is representative of
the physical mechanisms governing the generation of extreme events, occurring through
streak instability. Due to the high computational cost of the procedure, the Reynolds
number is rather low, namely Re; = 180. However, the good agreement with the results
of Hack & Schmidt (2021), obtained at much higher Reynolds number, indicates that,
at least qualitatively, the conclusions drawn may be valid also at higher Reynolds
numbers.

The paper is organised as follows: the mathematical formulation is presented in § 2;
numerical results are discussed in § 3; conclusions are drawn in § 4.

2. Formulation

In this work, we consider the incompressible flow in a channel at Reynolds number Re =
Uph/v = 2800, where v is the kinematic viscosity, & the channel half height and U, =

( 02 h udy) /(2h) is the bulk velocity, which is kept constant during the evolution of the

flow. We will use Uj, and & throughout the rest of the paper to scale dimensional quantities.
An alternative scaling is based on the friction velocity u; = /t,,/p, p being the (constant)
density of the fluid and t,, the mean shear stress at the wall. Using this velocity one can
define the friction Reynolds number Re; = u;h/v, which for the considered flow is known
to be ~180 (Kim, Moin & Moser 1987). Finally, it is customary to define a viscous length
scale 8, = v/u;, which will be used to scale distances in wall units. The non-dimensional
quantities with respect to u; and 8, will be denoted by a + superscript.
The flow is governed by the Navier—Stokes equations for incompressible flows:

0 1
—u:—U'VU—Vp—FR—VZUZN(u),
e

at @2.1)

V-u=0.

We denote by x, y and z the streamwise, wall-normal and spanwise directions, respectively,
and by u, v and w the corresponding scalar components of the instantaneous velocity
vector. Long-time and space averaging along the wall-parallel directions the turbulent
flow, and subtracting the resulting mean flow from the instantaneous field, we obtain the
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turbulent fluctuations ' = («/, v/, w')T. Our aim is to find a perturbation maximising the
turbulent fluctuation dissipation averaged over a given time interval [7y, #o + 7] and in the
domain volume V, namely

1ot 1 1 [otT
J = —/ / —Vu' :Vu' ) dVdr = —/ — (v, V') dr, (2.2)
TV 1 1% Re T t() Re

0

where we have introduced the inner product:
1
(u, v) = —/ ujv;dV, (2.3)
Vi

with summation implied over the i, i.e. over the components of the vector (or tensor).
A similar objective function was already used by Monokrousos et al. (2011) and Eaves &
Caulfield (2015) for perturbations to the laminar flow. Here, we aim at finding an optimal
perturbation with respect to a developed turbulent flow.

Unlike previous studies (Farano et al. 2017, 2018), where an optimal perturbation
with respect to the mean flow was searched for, here we perturb a generic turbulent
snapshot. Let us denote with u, a three-dimensional turbulent snapshot obtained by a
DNS. We add to this flow a perturbation #y = u(x, fp) at time #y, so that for t > to,
we have

uy(x,t) = uy(x, 1)+ u(x, 1), (2.4a)
pp(x’ t) - Pu(x’ t) +ﬁ(xv t)v (24b)

where u), is the perturbed flow, u, the unperturbed flow and p,, p, the corresponding
pressure fields. Note that & is not a fluctuation with respect to the mean flow, but it
represents a perturbation of the time-varying turbulent flow.

To find the optimal perturbation %y maximising the objective function and such
that u,(x, r) verifies the governing equations, we introduce an augmented Lagrangian
functional:

to+T L9
‘C(upapp,uTaPT,/tEO,T) :j_f <u'7$—/\f(up)>dt
Io

to+T
_/ (P'V - wp)dt = 2 E0) ~ Eo)

0

—J+ (uT : u,,> o — (u*, up) loiT

to+T auf
ATyt
+/¢ <up, Py N (u )>dt

0

to+T )
+ / (ppV - ul)dr—aE@ - E). @9
1

0

where u', p* and A are the Lagrange multipliers or adjoint variables. Similarly to previous
studies (Eaves & Caulfield 2015; Farano er al. 2017) we have constrained the initial
perturbation to a given energy Eo = (ug, tg) /2, which is a parameter of the problem.
The second equality in (2.5) is obtained after integration by parts and N (-) denotes
the adjoint Navier—Stokes operator (Cherubini et al. 2010; Pringle & Kerswell 2010).
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Nullifying the first variation of the functional we obtain the following set of
equations:

(1) the direct equations,

SL  Oup 8L
st = o M) =0 SE=Veu =0 ¥ (2.6)
(i1) the adjoint equations,
SL  ou' 1 8L :
S= N (ul) - oV =0, Z=Veat=0 v @)
du at ReT op
(iii) the compatibility condition,
3L
Salo + 1) u'(th+7T)=0; (2.8)
(iv) the optimality condition,
=u'(19) — Aui(1p) = 0. 2.9
sty " (t0) — Au(to) (2.9

Note that the adjoint equations (2.7) are forced by the fluctuations due to the form chosen
for the objective function (2.2). The last equation (2.9) is not automatically satisfied,
therefore we use the classic direct-adjoint iterative method (Kerswell 2018). The iteration
is started with a random initial guess for #y and the solution is updated with the gradient
rotation method proposed by Foures, Caulfield & Schmid (2013). Note that we solve
the direct equations with respect to u,, using the operator N (-), which does not depend
explicitly on @, or u. For this reason, we need u,(x, f) only at = 0 for the update step.
Conversely, the adjoint equations contain the direct variable u,, in the operator A/ T(-) and
as a source term (although in the form of a fluctuation with respect to the mean flow), so
u, must be stored for each time step (Eaves & Caulfield 2015).

The direct and adjoint equations are solved using the channelflow code by Gibson
et al. (2021). Periodic boundary conditions are imposed in the streamwise and spanwise
directions and no-slip conditions are used at the walls (y = 0 and y = 2). The flow field is
discretised by Fourier and Chebyshev collocation methods in a domain having dimensions
[Ly, Ly, L;] = [47, 2, 27t]. In particular, 288, 129 and 240 collocation points are used in
the streamwise, wall-normal and spanwise directions, respectively, which, after dealiasing,
provides us the same resolution of Kim et al. (1987). The present DNS results have been
thoroughly validated with respect to this work.

The nonlinear optimisation procedure was validated with the results of Farano et al.
(2015) and Farano et al. (2017, 2018) for optimal perturbations with respect to the laminar
and turbulent mean flow. We could not validate the procedure for perturbations of a fully
turbulent flow snapshot because, to the best of the authors’ knowledge, this is the first
attempt of computing them.

3. Results

The proposed nonlinear optimisation depends on two free parameters: the target time
interval T and the initial perturbation energy Ep. While in the study of laminar-turbulent
flow transition their role is well understood (Cherubini et al. 2010; Pringle et al. 2012),
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when computing perturbations to a turbulent flow the choice of these parameters is less
clear and must be linked to the aim of the study. For instance, Butler & Farrell (1993)
chose the target time equal to the eddy turnover time at a given wall-normal distance.
Farano et al. (2017) made a similar choice, discussing thoroughly the influence of the target
time on the resulting optimals. Recalling the aim of the present work, here we should
choose a time interval typical of extreme events. Analysing the results of the DNS, we
have found that a typical lifetime for the dissipation peaks is 7 =2 (T ~ 23.1), which
will be chosen as target time interval. Note that such a timescale is not very different from
the observation time used by Hack & Schmidt (2021) for their conditional space—time
POD. Moderately changing such a value does not affect the conclusions of this work.
Considerably increasing it provides very different results, which are beyond the scope of
the paper.

Concerning the initial perturbation energy, we should choose a value sufficiently large
for having a non-negligible effect on the turbulent field, but limited to values that would not
disrupt completely the flow. We tried values in the interval [107%, 107#]. In the following,
we will show results only for the larger value, despite lower values of energy have very
similar (although less visible) effects. This value is (1.4 & 0.1)% of the pre-existing TKE
of the unperturbed initial snapshots u, (#9) used to compute the optimal. As the results will
show, such a value produces a physically consistent effect on the flow.

The fact that we are interested in short target times is a key aspect also for the feasibility
of the optimisation. Indeed, the presence of positive Lyapunov exponents, linked to the
chaotic nature of the turbulent flow, may undermine the convergence of the algorithm
or pollute the results (Jahanbakhshi & Zaki 2019). Nikitin (2018) indicates for this flow
(Re; = 180) a leading Lyapunov exponent of /IT ~ 0.021 (1; =~ 0.243), from which we
can estimate the characteristic Lyapunov time. As discussed by Boffetta et al. (1998), the
most restrictive predictability time is given by

T~ (2 L B 3.1)
~ — |n —_ ~ — In e y .
L2\ ) T E

where § is a measure of the initial uncertainty and A a tolerance on the final result. To
quantify this time in our context, we use energies rather than amplitudes as indicated in
the right-hand side of (3.1). A random perturbation having initial energy 10~* would grow
to an energy of 1073 in an estimated time of 7y ~ 4.73, which is more than twice our
chosen target time. Thus, we are confident that the positive Lyapunov exponents will not
hinder the convergence of the optimisation algorithm nor pollute significantly the results.

Following previous studies, the convergence of the iterative optimisation procedure is
measured by the successive variation of the objective function between two cycles, tol =
(J" = J"1/J"! (Cherubini ef al. 2010), and by the ratio between the component of
the gradient normal to #(0) and the full gradient (Foures et al. 2013):

1G] (G, u(0))
r= ) T
IGIl 12(0) |12

The behaviour of these two quantities is plotted in figure 1 together with 7. It can be
seen that we attain a good convergence on the value of 7, with fol decreasing by five orders
of magnitude. The ratio r decreases of three orders of magnitude, which is comparable to
the drop achieved in previous studies (Foures er al. 2013; Kerswell 2018). Finally, the
optimisations have been repeated starting from several different initial guesses and the
algorithm converged on essentially the same result. Thus, we may be confident that the

G=u'(0), G =G 1(0). (3.2a—c)
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Figure 1. Convergence plot of the nonlinear turbulent optimisation. The solid line indicates the objective

function (2.2) (right axis); the dashed line indicates rol = (J" — J”‘l)/j”_l; and the dotted line indicates
the convergence ratio (3.2a—c) (left axis).

computed perturbation is indeed the global optimal perturbation. We have also verified
that the optimisation procedure converges well for any chosen turbulent snapshot, leading
to optimal perturbations having similar structure.

3.1. Optimal perturbation

The initial optimal perturbation for Eg = 10 and T = 2 computed with respect to a
turbulent snapshot extracted from the DNS at 7y = 300 is provided in figure 2, which shows
a rather complex structure. The associated premultiplied spectra are rather broad and do
not show any clearly leading mode (figure 3). Nevertheless, we can note some relevant
features, which are common to the optimal perturbations computed for all the considered
turbulent snapshots. First, the structures are inclined against the flow (which, in figure 2,
goes from left to right) as reported in all previous studies about optimal perturbations
(Pringle & Kerswell 2010; Farano et al. 2015), probably to exploit the Orr’s mechanism
(Jiménez 2013; Encinar & Jiménez 2020). This mechanism is known to produce turbulent
bursts and seems to have a role in the initiation of turbulence production at small scale
allowing an energy transfer of the wall-normal energy from large to small scales, as
recently shown for a minimal shear stress-driven flow model by Doohan, Willis & Hwang
(2021) and by Jiao, Chernyshenko & Hwang (2022) in the case of a plane Couette flow
subject to an adverse pressure gradient.

Second, and more interestingly, the perturbation forms romboidal patterns, as
emphasised in figure 4 by the green lines. These lines form an angle with the streamwise
direction included between 10° and 20°. The angle varies in this range also for
perturbations computed with respect to different initial snapshots. These large-scale
modulations can be seen as local peaks in the spectrum. For instance, the starred point
in figure 3 corresponds to an angle # = tan™! (kj /kj) ~ 14°. We conjecture that this
peculiar shape is due to the influence of the coherent structures of the unperturbed
turbulent flow. Indeed, figure 5 shows the optimal perturbation along with the pre-existing
coherent velocity streaks on a wall-parallel plane at y* = 10. To obtain the streaky pattern,
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Figure 2. Optimal streamwise velocity perturbation isocontours (|u| = 0.02, |é|;uqx =~ 0.21), red/blue for
positive/negative.

102 . 10!
kx

Figure 3. Contours of the pre-multiplied spectrum of the streamwise component of the perturbation
i1ty = 300) at y* = 10 (log scale). The starred point is k& = 5.56 x 1073, k} =2.22 x 1072,
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Figure 4. Top view of the optimal streamwise velocity perturbation isocontours (as in figure 2). The green
lines highlight the romboidal pattern.

s,

. 4.0 P——
00 6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75 8.00
X X

Figure 5. Distribution of the optimal streamwise perturbation (shaded contours) superposed to the filtered
streaks of the unperturbed flow at £y (white lines, solid for positive and dashed for negative) in the y* = 10
plane. The top-left panel is the whole domain, the others are details of the same figure. The streaks are obtained
filtering the unperturbed flow and retaining modes between 0.02 < ki < 0.05 and 0.03 < k& < 0.1.

we have filtered the unperturbed turbulent snapshot (u,(x, fy)) at fn. We centred the
spanwise filter around the streaks’ typical spacing, A} ~ 100 (0.03 < kf < 0.1, 62 <
A+ < 210) and employed several intervals for the streamwise filter. In figure 5, the streaks
for 0.02 < k" < 0.05 (125 < A} < 314) are shown, but a fair agreement is also found
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Figure 6. Contours of the dissipation at = #o + 7 = 302 on the y© = 10 plane. Top left: unperturbed flow.
Top right: optimally perturbed flow. Bottom: two examples of locally perturbed flow.

for 0.003 < k" < 0.02 314 < A} < 2095). The local-view panels show that the optimal
perturbations are positioned along the interfaces between high- and low-momentum
streaks. In these regions, the shear is maximum, leading to an optimal production
of energy. Moreover, local inflection points may be present which could give rise to
localised instabilities (Schoppa & Hussain 2002). It is known that spanwise perturbations
of a streaky base flow can induce strong (transient or asymptotic) energy growth due
to the transport of the spanwise shear by the streamwise and spanwise perturbations
(Hoepffner, Brandt & Henningson 2005). This mechanism of streak instability and/or
transient growth has recently been shown to trigger turbulence dissipation events in a
shear stress-driven flow model of near-wall turbulence involving two integral length scales
of motion (Doohan et al. 2021, 2022). Thus, the structure of the optimal perturbation
obtained here suggests that this streak instability/transient growth, inducing the breakdown
of the streaky structures into fine scales, might be at the origin of the increase of the local
dissipation within the flow.

This point, and its connection with the generation of extreme events will be addressed
in § 3.3. In the following section, the overall effect of the optimal perturbation on the flow
is discussed.

3.2. Temporal evolution analysis

The evolution of two DNSs starting from the optimally perturbed and unperturbed
(turbulent) flows, are now compared. The top frames of figure 6 provides snapshots
extracted at the same time instant from these two simulations, showing the contours of the
dissipation on a horizontal near-wall plane (y*© = 10) at target time. In the perturbed flow
(right frame), there is a much higher density of small-scale structures. This observation,
together with the positioning of the perturbation along the pre-existing streaks, let us
conjecture that the effect of the optimal perturbation is to destabilise the pre-existing
coherent structures and engender an intense energy cascade towards the small scales.
The bottom frame of the same figure shows the contours of the dissipation for a flow
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Figure 7. Contours of the streamwise perturbation u(x, 1) = up,(x, 1) — u,(x, t) for an artificially localised
optimal perturbation. Top: contours of the streamwise perturbation superposed to the filtered streaks of the
unperturbed flow at #y (white lines, solid for positive and dashed for negative) in the y* = 10 plane; the right
frame shows a close-up of the left frame. Bottom: contours of the streamwise perturbation on the same plane
at r = 302, 305.

perturbed only in a subset of the computational domain with a clipping of the original
optimal perturbation (see figure 7). The clipped perturbation is obtained multiplying the
original global perturbation by a Gaussian function:

oo D) =exp{_ [(xe_/;c) * (Ze_/zc) “ G-

and subsequently projecting it on a divergence-free field. In the above equation, £, = 2
and ¢, =1 are the streamwise and spanwise dimensions of the localised perturbation,
respectively; x. and z. are the coordinates of the centroid of the perturbation, for which
several values have been chosen; the integer n is set equal to 30. It is striking that,
at target time, the flow surrounding the perturbed region is not at all modified by the
perturbation and displays the same structures of the unperturbed flow. This clearly shows
that the mechanisms exploited by this optimal perturbation have a local nature and that
the numerous instabilities that develop in the fully perturbed flow are independent of each
other.

Figure 8 shows the time evolution of relevant volume-averaged quantities such as the
TKE (K) and the dissipation (¢), for the unperturbed and optimally perturbed flow, as well
as for two other different perturbations of the undisturbed turbulent flow. In the optimally
perturbed case, a peak in the volume-averaged TKE and dissipation is observed at target
time. This also results in a peak of the mean wall shear stress (monitored through the
friction Reynolds number on the right frame). It is useful to remark that all simulations
have the same flow rate. The same figure shows that a generic, non-optimal perturbation,
rescaled with the same initial energy of the optimal perturbation, does not generate any
energy or dissipation peak, even if its effect on these quantities is not negligible, due
to the positive Lyapunov exponents. Moreover, for comparison, we superposed to the
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Figure 8. Time history of the volume-averaged TKE (a,d), dissipation (b,e) and friction Reynolds number
(c.f). Four flows are compared: the optimally perturbed flow (green line); the unperturbed flow (dashed black
line); the flow perturbed by a non-optimal perturbation (blue line); the flow perturbed by a linear optimal
perturbation with same initial energy (red line). The top line refers to the initial snapshot 7y = 300, whereas the
bottom line refers to 7y = 360.

turbulent snapshot also a monochromatic linear optimal perturbation with zero streamwise
wavenumber and spanwise wavenumber equal to 10, obtained with an optimisation around
the mean flow similar to that of Del Alamo & Jimenez (2006) (see also figure 17 and the
Appendix). In this case, even if a peak of TKE is indeed produced, the dissipation does not
increase very much (red line in the figure). This confirms that the peak of the dissipation
is given by the instability of the pre-existing structures, since the linear optimisation does
not take them into account, being computed with respect to the mean flow. Indeed, even
if one uses the nonlinear optimal perturbation computed with respect to a given turbulent
snapshot to perturb a different snapshot, the obtained effect would not be the same (not
shown).

The peak of turbulence intensity cannot be sustained by the flow because the background
turbulence is statistically stable. Therefore, after the target time, there is a relaxation
towards the unperturbed flow. The flow comes back to the statistically-steady turbulent
state after AT ~ 15 (ATI}F ~ 174). We have verified that the long time statistics of the
relaxed flow are the same of the reference DNS. Finally, it is noteworthy that this behaviour
is independent of the initial unperturbed snapshot chosen at #y. We have recomputed
the optimals and their evolutions for several snapshots and they always gave the same
qualitative behaviour, as can be seen in figure 8(d—f), where the optimal perturbation is
obtained for a turbulent snapshot extracted from the unperturbed DNS at 7y = 360.

It is not easy to identify the mechanism responsible of this extreme increase of
dissipation since, as we already remarked, the initial perturbation is complex and probably
exploits more than one mechanism. However, here we attempt to identify the effect of
the two main mechanisms of turbulent production in the channel flow: the lift-up effect
(Landahl 1980) and Orr’s mechanism (Orr 1907). While for the former the mean shear
transport occurs in the y—z plane, being due to streamwise-independent vortices, for the
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Figure 9. Time evolution of the turbulent split production on different horizontal planes. (a) Lift-up-like
production (Py,),. (b) Orr-like production (Po,r),. Solid lines are the optimally perturbed flow, dashed lines
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the unperturbed flow.

latter the production mechanism acts on the x—y plane (Jiménez 2013). Thus, averaging
the turbulent coherent structures in the streamwise, and in the spanwise directions, we can
define a lift-up-like production and an Orr-like production, respectively:

dU

Pu(y,z, 1) = —(u') (v'), T (3.4a)
dU

Porr(x.y, 1) = = {u'), {v), o (3.4b)

with U the mean turbulent profile and (-),, (-), denoting the streamwise and spanwise
average, respectively, where the prime indicates turbulent fluctuations with respect to the
mean flow, thus comprising the optimal perturbation. Their capability of capturing the
effect of streak-like perturbations and Orr-like perturbations is verified in the Appendix.
Figure 9 shows the time evolution of these production terms averaged along the
free wall-parallel direction for the optimally perturbed (solid lines) and the unperturbed
(dashed lines) flow. One can see that the averaged lift-up-like production shows a peak
at several wall-normal distances: the perturbation initially produces energy near the wall
(y* = 10, where the mean shear is maximum) and then reaches the upper layers below
yt = 90. Instead, a relevant effect on the Orr-like production can be observed only in
the near-wall layer (y*© = 10). Note also that the Orr-like production is almost two orders
of magnitude smaller than the lift-up production term and has a negative average value.
Nevertheless, a peak in the curve of Orr-like production at y© = 10 can be observed
for the perturbed flow. Comparing this peak with the corresponding peak in lift-up-like
production in terms of relative gain (value of the peak of the perturbed production
minus the production of the unperturbed one at the same time, divided by the value for
the unperturbed flow), it can be inferred that both the mechanisms give an important
contribution to the overall production. The peak in the Orr-like production is clearly linked
to the backward inclination of the optimal perturbations, whereas the reason behind the
peak in the lift-up-like production is better clarified by figure 10. This figure shows at times
t 2 ty (from top to bottom) the generation of intense positive-sign streaks in the near-wall
region, induced by an increased streamwise vorticity, absent in the unperturbed flow. The
intensified streaks increase the wall friction in the perturbed flow and consequently the
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Figure 10. Time evolution of the flow averaged along the streamwise direction: isocontours of the streamwise
velocity component and arrows for the transverse components. From top to bottom ¢ = [tg, fp + 1, tp + 2,
to + 5]. From left to right: perturbed flow, unperturbed flow, perturbation. For the first two columns the
streamwise component refers to the turbulent fluctuation, i.e. the instantaneous velocity minus the turbulent
mean profile.

energy extracted from the mean flow through wall friction, which is transformed in an
increase of dissipation.

These observations are consistent with those of recent works showing that the Orr-like
and lift-up-like mechanisms coexist for perturbations having non-zero wavenumbers
in both wall-parallel directions as none of the related terms vanish (Jiao, Hwang &
Chernyshenko 2021), and that the Orr mechanism is able to energise the lift-up effect
sustaining the wall cycle (Doohan et al. 2021). Thus, a sharp distinction between these
two mechanisms cannot be made. However, a further insight can be gained looking
at the spacetime plot of these production terms. Figure 11 shows that the perturbation
increases the production in the regions where the undisturbed flow is characterised by
local production peaks. This is directly linked to our previous remarks on the positioning
of the perturbation over the pre-existing coherent structures. Again, it appears that the
perturbation exploits the pre-existing structures and enhances their turbulent production.
Moreover, the close-ups in figure 5 show that the optimal perturbations are located in the
interface region between low- and high- momentum streaks, and are mostly characterised
by a varicose symmetry with respect to this interface. This suggests the presence of a
varicose instability of the streaks, which might be enhanced by the strengthening of the
streaks due to the lift-up-like mechanism.

To investigate whether an exponential instability is involved in these dissipative events,
the time evolution of the optimal perturbation energy is shown in figure 12 for three
different realisations (solid lines). In all cases, in the first time instants, the perturbation
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is amplified exponentially of approximately one order of magnitude in energy. This is
not true for a generic non-optimal perturbation (see the blue dashed line in the figures),
which grows much more slowly than the optimal and does not have relevant effects on the
dissipation. This significantly supports the idea that the optimal perturbation is exploiting
an exponential instability of the streaks. Moreover, due to the spatial distribution of the
disturbances with respect to the streaks, this instability appears mostly of varicose type.

It is now worth investigating whether the optimal perturbation actually increases the
number of extreme events in the flow, or it rather leads to an increase of the mean
dissipation. Towards this aim, the local turbulent dissipation is considered

1 (ou, Ou
_ /o /o i J
& = 2vsijsij’ Sij = 5 a—xj + a—XZ s (35a,b)

u’ being the turbulent fluctuation. The p.d.f. of the normalised dissipation is computed
on a given wall-parallel plane. Because extreme dissipative events are rare events, one
needs to compute accurately the tail of the p.d.f. up to at least 20 times the standard
deviation. To achieve this target, one simulation of the perturbed flow is not sufficient
because the transient effect of the perturbation is quite short. For this reason, we compute
an ensemble of optimal perturbations with respect to eight snapshots equispaced in time
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Figure 12. (a,b) Time evolution of the perturbation energy 1/2 (u, u) for different realisations of the perturbed
flow. The dashed blue line is the evolution for a flow perturbed with a random non-optimal perturbation.
(c.d) Time evolution of the individual perturbation energy budgets 1/2(i%), 1/2(3?) and 1/2(#?) (colours
as in top panels). The right panels are the dashed black rectangles magnified. The growth rate correspondent to
the dashed black line in the top right panel is ~ 3.69U, /h for the energy, i.e. 21.84U},/h for the perturbation
amplitude.

extracted from the reference DNS and the corresponding ensemble of short evolutions
(realisations). The dissipation is sampled on the given horizontal plane with a temporal
timestep At = 0.2 (Ar" ~ 2.3) and its normalised value with respect to the standard
deviation, std(¢), is plotted on a p.d.f. graph in figure 13. One can see that the perturbed
flow shows an increased tail, indicating a higher density of extreme events. This feature
is observed on the near-wall planes at y© = 10 and y™ = 30, whereas the flow near the
channel centreline (y© > 90) remains quasi-unperturbed (not shown). The same figure
shows that the linear optimal perturbation (red curve) does not produce any increment
of the p.d.f. tail, i.e. it does not bring to the formation of more extreme events, despite
increasing the volume-averaged dissipation. This is true also for the nonlinear optimal
perturbation computed using the perturbation energy as objective function, or for much
longer target times (not shown).

It is interesting to investigate the behaviour of the nonlinear optimal perturbation in the
phase space and, in particular, to address the question whether the optimally perturbed flow
belongs to the turbulent attractor. Indeed, Blonigan et al. (2019) constructed their optimal
perturbation combining POD modes of the reference turbulent flow in order to constrain
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Figure 13. Probability density function of the local dissipation normalised with the respective standard

deviation for the optimally perturbed flow (solid green line) and the unperturbed flow (dashed black):

(a) y* =10 plane; (b) y© = 30 plane. The solid red line is for the flow perturbed with a linear optimal
perturbation.
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on the perturbed zone in the locally perturbed flows (solid green line) and on the corresponding points in the
unperturbed flow (dashed black) on the y© = 10 plane.

it inside the turbulent attractor, ensuring that it would be highly probable or realistic.
Despite the differences between our study and their approach (namely, they searched
for an optimal turbulent field, not a small perturbation to a pre-existing turbulent field),
whether the optimal flow structures may be representative of precursors of real extreme
events represents an important issue concerning the physical validity of the present results.
Indeed, the optimal peaks of TKE and of dissipation appear too strong to be realistic. In
fact, figure 14(a) shows on a K — ¢ projection of the phase space that the trajectory of
the flow perturbed with the optimal perturbation resides out of the attractor already at the
initial time (the starting point is starred in the figure), continues its excursion far away
from it and finally falls back into the attractor. However, one has to consider that this
projection of the phase space makes use of integral quantities. The fact that the optimal
perturbation occupies the whole domain and induces many ‘synchronised’ extreme events
(while realistic extreme events are local, small-scale and not synchronised) is a possible
cause of this non-realistic increase of these integral quantities. On the other hand, in a real
flow the optimal mechanisms may be triggered locally, providing realistic values of the


https://doi.org/10.1017/jfm.2023.601

integral quantities such as dissipation and TKE, and thus being representative of a realistic
extreme event evolving inside the turbulent attractor.

To investigate in detail this issue, a series of simulations initialised with the optimal
perturbation artificially localised in different places of the domain is run for each of the
eight realisations used before for the p.d.f. In particular, for each of these considered initial
turbulent snapshots, the domain was divided in 36 rectangles having dimension ¢, = 2,
£, = 1 and, as explained previously, the portion of the optimal perturbation corresponding
to each of these rectangles was used to obtain a locally perturbed flow. In each of these
simulation, the perturbed zone was tracked in time taking into account the local mean
advection velocity (as done by Hack & Schmidt (2021)) and the dissipation was sampled
inside it, i.e. in the dashed rectangle shown in figure 7. The ensemble of the dissipation
sampled in this way in each of the locally perturbed flow, constitutes the statistical sample
used for the p.d.f. shown in figure 14. In figure 14(a) one can observe, in the K — ¢
projection of the phase space, that each of this locally perturbed flows (unlike the globally
perturbed one) remains within the turbulent attractor. Moreover, the right panel of the
figure shows that, even when the optimal perturbation is sampled locally, the p.d.f. of the
dissipation has the same increased tail of the fully perturbed flow.

Therefore, the fully perturbed flow does not reside in the projection of the turbulent
attractor because the bursting mechanism is triggered everywhere at the same time. On
the other hand, this is not true for locally perturbed flows, even if the perturbation is
still effective in producing extreme events. In any case, it must be remarked that this is
a low-dimensional projection of the attractor. Hence, this analysis alone does not prove
that the locally perturbed flow is equivalent to a naturally bursting flow. This will be better
investigated by means of the conditional POD analysis in § 3.3.

In the next section it will be shown that the perturbed and the unperturbed flows share
the same local mechanisms during an extreme event.

3.3. POD analysis

The aim of this section is twofold: (i) to show that, locally, the mechanisms leading to
an optimal dissipation in a turbulent flow are representative of those observed during the
generation of extreme events in a turbulent flow; (ii) to show that extreme events happen at
the interface between a positive and a negative streamwise velocity streak, exactly where
the perturbation was placed by the optimisation (figure 5). For this purpose, we use the
conditional spatiotemporal POD analysis proposed by Schmidt & Schmid (2019), already
used for the case of the turbulent channel flow by Hack & Schmidt (2021). Following these
works, extreme events are defined as local spatiotemporal dissipation peaks. In particular,
Hack & Schmidt (2021) considered the 99.9th percentile of the most intense events in
the dissipation of TKE, corresponding about to 20-30 times the local mean dissipation.
However, our Reynolds number is significantly smaller than that used by Hack & Schmidt
(2021) (Re; = 180 versus 2000), leading to a much smaller number of events, which are
statistically characterised by a lower intensity. For this reason, a lower threshold has been
chosen equal to 10 times the local mean dissipation. The velocity field is sampled around
each extreme event in a box having spatial dimension ;" x £ x ¢ ~ 785 x 75 x 320
comparable with that employed by Hack & Schmidt (2021) Moreover the field is sampled
at two instants of time before the dissipation peak and two instants of time after the
peak. The spacing between these instants of time is Atppop = 1.0 in global units which
corresponds to At;,LOD ~ 11.7 in wall units. The set of these five velocity fields constitutes
a snapshot for the conditional space—time POD. Note that the events are sampled as they
appear in the flow, i.e. randomly in space and time. Before performing the POD, the
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Figure 15. Distribution of the 30 leading eigenvalues of the POD. (a) Unperturbed flow. (b) Optimally
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velocity field has been split in a symmetric and antisymmetric part with respect to the
Z axis:
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where X, ¥, Z and 7 denote the spatiotemporal reference frame whose origin coincides with
the event location.

The following analysis refers to events sampled in the y* = 30 plane, the results in other
near-wall planes being similar.

For the unperturbed flow, for which a long DNS is available, up to 2000 snapshots were
used. For the optimally perturbed flow, the ensemble of realisations used for computing
the dissipation p.d.f. has been employed, which comprises 950 snapshots. Taking the
unperturbed case as a reference, it was possible to verify that there is a negligible difference
between the modes obtained with 1000 and 2000 snapshots. Thus, both POD analyses
were performed using 21000 snapshots. Note that in this conditional POD the underlying
expected value operator is not temporal averaging but ensemble averaging (Berkooz,
Holmes & Lumley 1993; Schmidt & Schmid 2019), therefore the approach is consistent.

Figure 15 shows that the distribution of the energy among the modes, given by
the eigenvalues of the correlation matrix, is comparable in the perturbed and in the
unperturbed cases. The same is true for the subdivision of energy between the symmetric
and the antisymmetric parts: 51.4 % versus 48.6 %, respectively, in the optimally perturbed
case and 50.8 % versus 49.2 % in the unperturbed case. The results agree quite well with
those of Hack & Schmidt (2021), although they found a stronger unbalance in favour of the
symmetric part (58 % versus 42 %). This discrepancy may be due to the very different
Reynolds numbers.

Figure 16 provides the comparison of the leading POD modes of the extreme events
generated in the optimally perturbed flow and in the undisturbed flow. The topology of the
structures is exactly the same: the antisymmetric mode (top frames) is made of two intense
streaks of opposite sign approaching each other at y* = 30 while the symmetric mode in
the transverse plane (middle frames) shows a three lobe structure encircling a streak of
opposite sign; lastly, the shear layer of the symmetric mode is inclined of the same angle
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Figure 16. Leading POD modes of the extreme events: streamwise fluctuation contours. From top to bottom:
transverse view of the leading antisymmetric mode, transverse view of the leading symmetric mode,
longitudinal view of the leading symmetric mode (the longitudinal view of the antisymmetric mode is not
relevant). (a,c,e) Unperturbed flow. (b,d, f) Optimally perturbed flow.

with respect to the streamwise direction (bottom frames). The slight differences between
the modes are due to an intrinsic variability of the turbulent flow in which these events are
immersed, as confirmed by performing the conditional POD on a different set of turbulent
snapshots. The comparison is very good also for instants of time before and after the
peak, which are not shown for brevity. Ultimately, the optimal perturbation is found to
reproduce very accurately the local mechanism behind the generation of extreme events in
a turbulent flow. It exploits the high shear at the interface region between coherent low-
and high-momentum regions to break down the larger structures and drive energy to small
scales. The last statement further corroborates the hypothesis of Hack & Schmidt (2021)
that links streak instability and the emergence of extreme dissipation in the channel flow.
Thus, the local structure of the initial optimal perturbation can be seen as a precursor of
extreme events.

4. Conclusion

Turbulent flows are characterised by intermittency at small scales consisting of the
alternation of long space—time events of weak fluctuation intensity with short events of
high intensity, known as extreme events, with gradients increasing by orders of magnitude.
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In this work, in order to investigate the mechanisms of formation of extreme events,
precursors of large dissipative events in the turbulent channel flow at Re; = 180 are
looked for. To this purpose, the nonlinear direct-adjoint optimisation procedure presented
by Farano et al. (2017) is extended to compute an optimally dissipative perturbation
of a generic three-dimensional turbulent-flow snapshot. The optimisation problem is
formulated using the turbulent dissipation as objective function and imposing a short target
time, typical of extreme events.

The application of the optimisation procedure to a turbulent flow has been successful
and, in all cases, a satisfactory convergence has been achieved. The results show that
the optimal perturbation is localised in the near-wall region and displays the upstream
tilting characteristic of Orr’s mechanism. Interestingly, it is found that the perturbation
is positioned along the pre-existing flow structures of the turbulent snapshot with respect
to which it was computed. In particular, it is placed at the interface between a positive
and a negative streamwise velocity streak, i.e. in the regions of highest shear, where the
perturbation may consistently exploit the lift-up mechanism. Moreover, in the near-wall
region, also the Orr mechanism appears to be involved.

Comparing the evolution of the perturbed flow to that of the unperturbed flow, one
can observe that the perturbation leads to: (i) a sudden breakdown of the pre-existing
structures; (ii) a strong peak in the global turbulent dissipation; (iii) a growth of the tail
in the p.d.f. of the dissipation indicating a higher number of extreme events. It is found
that the optimal perturbation, despite an intrinsic multimodal nature, grows exponentially
during the first phase of its evolution reflecting the existence of a secondary modal
instability of the streaks in the very first moments. This fact strongly corroborates the
idea of a connection between extreme events and exponential instability of turbulent
structures. Moreover, the perturbation also causes the formation of strong positive-sign
streaks near the wall through a modified lift-up effect. It is argued that this mechanism
is able to feed the energy cascade responsible for the extreme events. The robustness
and statistical relevance of this behaviour is assessed repeating the numerical experiment
using different initial snapshots (realisations). Most importantly, further computations
show that the instability mechanism has a local nature, namely, when only a portion of
the domain is optimally perturbed the surrounding structures are not affected and the flow
globally resides in the turbulent attractor. Even in this case, an increase of the tail of
the p.d.f. distribution of the dissipation is observed for the local region interested by the
perturbation.

Finally, a conditional POD analysis has been performed on the different realisations
of the optimisation and on the unperturbed turbulent flow, to show that the optimal
mechanisms are indeed representative of those occurring during extreme events in a
turbulent channel flow, i.e. that the optimal perturbation captures the physically relevant
mechanisms inducing extreme events.

Therefore, a large number of extreme events having the same local structure of naturally
occurring ones are generated in the optimally perturbed flow. Different mechanisms are at
play during this process: the high shear present at the interface region between coherent
low- and high-momentum regions is exploited to break down the larger structures and
drive energy to small scales. This energy cascade is fed by an enhanced lift-up effect
that produces intense streaks near the wall, causing a stronger wall friction. This process,
which is most efficiently triggered by the optimal perturbation, appears to be the same
of that observed in naturally occurring extreme events. Thus, the optimal perturbation at
initial time can be considered as a precursor of extreme events.
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Appendix. Production splitting validation

Two monochromatic perturbations were computed using local linear optimal growth
analysis (Del Alamo & Jimenez 2006; Cossu et al. 2009; Pujals et al. 2009). The linear
transient growth code was validated with the results of Pujals et al. (2009). A streak-like
perturbation with k, = 0 and k; = 10 and an Orr-like perturbation with k, = 1.5 and
k; = 0 were computed (figure 17a,b). These wavenumbers were selected looking at the
peak in the turbulent premultiplied spectra.

These perturbations were injected in the turbulent flow and evolved with our DNS code:
they generate transient energy growth and then vanish. As can be seen in figure 17(c,d),
the streaks show a non-zero lift-up-like production (Orr-like production is zero), while
the backward inclined perturbation shows a non-zero Orr-like production (lift-up-like
production is zero).

As a side note, we report that these linear, monochromatic perturbations, rescaled in
energy and injected in the actual turbulent flow, did not produce an increase of extreme
events like the nonlinear optimal perturbation discussed in the main text.
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Figure 17. Validation of the turbulent production splitting. Perturbation evolved around the turbulent mean
flow. The streaks on the left show only non-zero lift-up-like production (solid lines) while the Orr-like
perturbation on the right shows only non-zero Orr-like production (dashed lines).
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