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Graphical Abstract

Abstract

The homogenized constrained mixture theory (H-CMT) is an attractive and efficient computational framework to simulate
rowth and remodeling (G&R) of soft tissues within finite deformations. It considers several prestressed constituents within
mixture and it enables their continuous individual mass removal and production to be taken into account. However, the

eferred theory was developed for specific mixtures, whose remodeling occurred on unidimensional constituents (fibers) only,
hile being embedded in an isotropic matrix. As the microstructure of soft tissues is generally more complex, we propose an

xtension of the H-CMT, which enables remodeling to occur on tridimensional constituents. This was achieved by manipulating
he remodeling stress rate equation of the H-CMT. By rearranging the tensorial expression, it was possible to re-interpret its
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erms as variables of the classical plasticity theory and the resulting equation is a particular case of kinematic hardening. This
nterpretation, in turn, enables standard return mapping algorithms, which are classical in plasticity, to be quickly adapted to
&R problems. Therefore, not only we explore the intersection of both the H-CMT and the plasticity frameworks, but we

lso propose new algorithmic implementations of G&R that closely resemble those used in standard elasto-plastic problems.
pplications to the simulation of G&R in mixtures composed of anisotropic constituents are eventually shown to demonstrate

he capabilities of the new algorithms.
2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/4.0/).

eywords: Plasticity; Kinematic hardening; Growth and remodeling; Tissue engineered vascular graft

1. Introduction

The research field known as mechanobiology encompasses the study of G&R in response to mechanical or
hemical cues, through which biological tissues seek to restore or maintain a homeostatic state [1], while its
onstituents are continuously produced or degraded. The study of G&R has grown substantially during the past
ears [2] and researchers made efforts to develop adequate computational models, so as to support a deeper
nderstanding of the undergoing phenomena.

Among these models, a significant number of them were developed on top of the noticeable constrained mixture
heory (CMT) [3]. Such a framework was extensively used to predict the evolution of pathologies related to the
orta [4–6] or other blood vessels [7], while varying hemodynamic loads or simulating the effects of inflammation.
hese studies mainly assumed that the constituents undergoing remodeling were fibers [collagen & smooth muscle
ells (SMCs)] that could be represented with Fung exponentials [8,9] [1D-like strain energy density functions
SEDs)]. More recently, the CMT was also used to predict the same phenomena on dispersed collagen [10]
ithin arterial walls [11]. This more recent representation of collagen is not onedimensional, but a 3D anisotropic

onstituent.
Additionally, the CMT elucidated questions about how a functional neo-tissue could be formed from a degrading

issue-Engineered Vascular Graft (TEVG) [12–16]. These examples show that phenomenological models might
upport the development of several clinical applications, such as the prevention of aneurysmal diseases or the design
f TEVGs.

Despite the continuing insights into G&R, the CMT remains computationally expensive [17]. It requires the
torage in memory of all past configurations of every constituent within the mixture, as their stresses and mass
volutions are based on hereditary integrals. The main approach to circumvent this issue is to represent the simulated
aterial with simplified geometries, such as cylinders. However, if one wishes to predict G&R on patient-specific

eometries, memory storage will likely be a bottleneck. This, in turn, motivated the development of models that
re cost effective (i.e., “reduced models”).

Cyron et al. [18] proposed a reduced version of the CMT by homogenizing the elastic and inelastic deformation
radients in time. It is referred to as the H-CMT. Its key feature relies on assuming that the Cauchy stress rate
σ̇” can be defined via a mass-averaged Cauchy stress of all mass increments. From that rate expression in tensor

form, Cyron et al. [18] derived a scalar variant, which is appropriate to describe the remodeling of 1D-like materials
only. For instance, Cyron et al. [18] used Fung exponential SEDs to test that scalar expression of remodeling. An
explicit and ready-to-use equation was only presented for these unidimensional cases and, to our knowledge, no
explicit framework was given about its original tensor form.

This reduced approach paved the way for the application of the H-CMT to more complex geometries. For
instance, Mousavi and Avril [19] and Mousavi et al. [20] studied the development of aortic aneurysmal growth
via the H-CMT, while using patient-specific data. In those studies, elastin was the only constituent of the mixture
to be modeled as a tridimensional and isotropic solid, and it is assumed not to remodel. On the other hand, all
other constituents suffer remodeling and are all represented as 1D Fung exponentials. As only the fibers undergo
remodeling, Cyron et al. [18] implemented the aforementioned scalar-rate equation, as there was no need to
implement its tensor variant.

Another attempt to circumvent the computational costs of the classical CMT was the development of a

mechanobiologically equilibrated CMT (ME-CMT) [21,22]. Here, the hereditary integrals are transformed into rate
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xpressions, while assuming that equilibrium occurs at a time that is much larger than the characteristic G&R
ime-scale.

Although being built under a more stringent assumption, it describes well the G&R problems cited above. For
nstance, Latorre and Humphrey [23] studied an aortic aneurysm by locally varying the mass fractions of elastin,
hile Latorre et al. [17] went further and used this reduced framework to predict G&R occurring in TEVGs.
The development of H-CMT & ME-CMT are important steps towards patient-specific simulations on irregular

patient-specific) geometries. However, numerical issues might still arise. For instance, such models could experience
onvergence issues, if (almost) no 3D material is cementing the aforementioned fibers within an element. Briefly,
hese instabilities might occur, as 1D fibers do not support shear. This leads to undesired high shear effects in the
D materials, if the latter are almost absent within the mixture.

A logical solution to alleviate this problem is the inclusion of a 3D constituent in the model, so the material
an support these shear effects. This 3D constituent could be isotropic and is implemented solely for numerical
tability. Another alternative is the substitution of the unidimensional constituents to the equivalent dispersed-like
ber proposed by Gasser et al. [10].

In both cases, the inclusion of either an isotropic or an anisotropic material would require G&R to occur in
he added material as well. If the H-CMT is the chosen approach to develop such a model, one requires to solve
he stress rate equation of the H-CMT in its tensor form. To our best knowledge, the referred original tensor-like

equation was not explicitly presented, as the implementation of its scalar variant was sufficient to predict remodeling
f all cited problems [18,20].

In the current paper, we propose a strategy based on the H-CMT, which is built on top of its original tensor
equation [18]. For that, we re-interpreted the H-CMT as a variant of finite plasticity, as already suggested by Vignes
and Papadopoulos [24], Grillo et al. [25], Soleimani [26] and Lamm et al. [27]. Our G&R strategy stems from the
work of Cyron and Aydin [28], who formalized the H-CMT by splitting the total energy of a material undergoing
remodeling into an elastic (ψc

e ) and a remodeling energy (ψc
r ), such that,

ψc(Fe,Fr ) = ψc
e (Fe) + ψc

r (Fr ). (1)

The additive split of energies in Eq. (1) is similar to the ground expressions, from which the plasticity phenomena
f kinematic hardening emerges. By feeding the Clausius–Duhem inequality with that sum of energies, the well-
nown subtraction between current stress and backstress arises naturally. Given this resemblance, we manipulated
he Cauchy stress rate “σ̇” [18] in such a way that the aforementioned subtraction could be stated. This task led us to
laborate a formal extension of the H-CMT that can address remodeling more globally, and in particular within 3D
sotropic and anisotropic materials. Not only our framework and plasticity seemed to match well, but the resulting
lgorithm was able to generate results that were in good agreement with experimental data [29]. Lastly, we also
ested our algorithm on models containing anisotropic dispersed fibers within a mixture.

. Theory

.1. Kinematics

We start from 2 assumptions that arise from the H-CMT and the CMT frameworks:

1. The studied solid mixture is composed of several constituents, each of them having a specific stress-free
configuration,

2. The total deformation gradient F of the referred mixture can be decomposed into an elastic and an inelastic
component.

Since all materials in this mixture deform together via the unified F, the combination of the aforementioned
assumptions can be expressed for every constituent “i” with

F = Fi
e Fi

gr , (2)

here Fi
e is the elastic deformation gradient, which generates the stresses; Fi

gr is the inelastic component; and the
uperscript “i” indicates a property or a variable of the constituent “i”. The inelastic term Fi

gr represents the G&R
ccurring within the mixture and it can be decomposed further into 2 additional components:

i i i
Fgr = Fr Fg, (3)

3
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Fig. 1. Multiplicative split used in the Homogenized Constrained Mixture Theory and related configurations. We show an example of a
ixture with 2 constituents: constituent “⃝” & constituent “□”.

where Fi
r is associated with remodeling (i.e., changes in the tissue’s micro-structure) and Fi

g is related to a
constituent’s differential mass turnover.

In this work, it is assumed that the growth deformation Fi
g of a volume element is affected by the combined

mass variations of all constituents. We assume that the growth deformation satisfies [30]

Fi
g = Fg =

(
Jg − 1

)
N⊥

⊗ N⊥
+ I, (4)

where N⊥ is a vector indicating the growth direction [for instance along the sample’s thickness for a blood
essel [30]], and

Jg =
ρ0

ρ0 init
,

ρ0 =

∑
ρi

0,

ρ0 init =

∑
ρi

0 init,

(5)

where ρ0 and ρi
0 are the reference mass densities of the mixture and of a constituent “i” at current time, respectively;

and the subscript “init” indicates densities being evaluated at the beginning of the G&R process (i.e., at “t = 0”).
Eqs. ((2), (3), (4)) can then be combined and recast as

F = Fi
e Fi

r Fg. (6)

n this decomposition [Eq. (6)], we can establish proper configurations and they are schematically presented in
ig. 1. The inelastic deformations (Fi

r Fg) modify the material points from the reference configuration Γ0 to the
ntermediate remodeling configuration Γ̄ i . Fi

e is the deformation from that intermediate configuration to the current
onfiguration Γ . We also define the intermediate growth configuration Γ̃ as the deformation of Γ0 by the growth
eformation Fg only.

For a given state where all deformation gradients F, Fi
e, Fi

r and Fg are known, we wish to derive their increments
or any material point. Relevant quantities for the increments of remodeling deformations are:

• the remodeling velocity gradient tensor

L̄i
r = Ḟi

r Fi−1

r , (7)

• the symmetric remodeling velocity gradient tensor

D̄i
r = sym

[
L̄i

r

]
, (8)

• the rate of the right Cauchy–Green remodeling deformation tensor

˙̃Ci
r = 2Fi T

r D̄i
r Fi

r . (9)

The objective of our study is to extend the framework proposed by Cyron et al. [18] from 1D materials to
D isotropic and anisotropic constituents. It is done by defining a flow rule as in plasticity and with the help of

qs. ((7), (8), (9)) [used in Section 2.5].

4
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.2. Equilibrium & constitutive equations

The quasi-static equilibrium of the mixture can be written as

DIV (P)+ ρ0b0 = 0,
ρ0 = ρ |F|,

(10)

here P is the 1st Piola–Kirchhoff stress, b0 is the body force per unit reference mass and ρ is the current and
nchanged total mass density.

The stress tensor P is derived from the total SED per unit reference volume ψ (i.e., P =
∂ψ

∂F ),

ψ =

∑
ρi

0W i , (11)

being W i a SED per unit reference mass of the constituent “i”. In turn, the 2nd Piola–Kirchhoff stress of the mixture
(S) and of each constituent (Si ) can be obtained such as

S = 2
∂ψ

∂C
= 2

∑
ρi

0
∂W i

∂C
=

1
ρ0

∑
ρi

0Si ,

Si
= 2ρ0

∂W i

∂C
.

(12)

inally, by using a push-forward operation, one can obtain the Cauchy stress σ i of a constituent “i”:

σ i
=

1
|F|

FSi FT . (13)

In this work, the variations of the stress σ i [Eq. (13)] for a constituent “i” occur due to remodeling. As several
ew variables are introduced further, the superscripts “i” used so far are dropped from here onwards for the sake
f clarity.

.3. Intersecting H-CMT with plasticity

In the H-CMT [18], it is assumed that remodeling occurs while the growth and the total deformation gradients
re kept constant. Accordingly, the Cauchy stress rate of a single constituent “i” satisfies

σ̇ |F,Fg=const. = −

[
ρ̇0+

ρ0

] [
σ − σ pre

]
, (14)

here σ is the current Cauchy stress, σ pre is the preferred or homeostatic stress, and ρ̇0+ is referred to as the
eposition rate. Cyron et al. [18] also assumed that the rate of mass removal (ρ̇0−) is governed by a Poisson
rocess, such as

ρ̇0− = −
ρ0

T
, (15)

where T is the exponential survival function or the averaged turnover time. Hence, the total rate of the reference
density is

ρ̇0 = ρ̇0+ + ρ̇0−. (16)

From here, we combine 4 features that are commonly implemented in finite plasticity or modeled biological
tissues:

1. Discrete time steps, denoted tn , are introduced and an approximate solution of Eq. (14) is computed with the
backward (implicit) Euler scheme [31–34],

2. The remodeling tensor Fi
r is incompressible [18,30],

3. The SED of the 3D material can be split into a volumetric and a deviatoric contribution,

4. It is assumed that only the isochoric component of the preferred stress σ pre triggers remodeling in the tissue.

5
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In this section, we only present the final equation that can be established from the aforementioned points. More
etails can be found in Appendix A. Here, we recast Eq. (14) as

σ̂
′(tn+1) = σ ′(tn+1) − σ ′

r (tn+1) = 0, (17)

here σ̂ is the relative stress, σ r is the backstress and the superscript “′” is an indication that only the deviatoric
erm should be taken into account. In turn, the backstress can be represented as

σ r (tn+1) =

[(
△ ρ0+

△ ρ0+ + ρ0

)
k+1

σ pre +

(
ρ0

△ ρ0+ + ρ0

)
k+1

σ (tn)
]
, (18)

where the tensor σ (tn) indicates a fictitious stress state prior to remodeling but after growth, the subscript “k + 1”
represents the updated density quantities related to the phenomena of growth prior to remodeling. △ρ0+ is the
ncremental equivalent of ρ̇0+ and it is also discretized with the same time-integration scheme, which results in

(△ρ0+)k+1 =

{(
1 +

△t
T

)
ρ0k+1 − ρ0k , if △ρ0+ ≥ 0,

0, otherwise,
(19)

here ρ0k is the reference density of the material before growth, and △t is the time increment (i.e., △t = tn+1 − tn).
By introducing the Kirchhoff stresses τ = Jσ (more commonly used in problems involving incompressible

lasticity), we recast Eq. (17) into

τ̂
′
= τ ′

− τ ′

r = 0. (20)

s τ̂
′ is a null tensor, all meaningful deviatoric invariants are zero as well (i.e., J2 = J3 = 0). In agreement with

tandards in plasticity, we chose J2 as the meaningful scalar stress equivalent and we rewrote Eq. (20) such as

f =
1
2
τ̂

′
: τ̂

′
= 0, (21)

where f is a scalar function which can be re-interpreted as a yield criterion in plasticity and it sets the basis to
stablish a flow rule providing the remodeling deformation rates of Eq. (14).

.4. Comparing the H-CMT with the plasticity framework

.4.1. Similarities
We established a bridge between the H-CMT [18] and classical plasticity through the “ f ” scalar function in

q. (21), which can be interpreted as a von Mises yield criterion with kinematic hardening. The backstress tensor
r is the variable responsible for that hardening effect. It triggers remodeling to occur in the material.

Re-interpreting the H-CMT framework as a kinematic hardening problem is in perfect agreement with the work
f Cyron and Aydin [28] shown in Eq. (1). From that equation, the current stress σ would emerge from the elastic
ED ψc

e , whereas the backstress σ r , from its inelastic counterpart (ψc
r ).

.4.2. Differences
In spite of the aforementioned similarities, Eq. (21) is different from standard kinematic hardening. A typical

yield criterion of that type would be written such as [32,33]:

f p =

√
3
2
τ̂

′
: τ̂

′
− τ0 ≤ 0,

elastic, if f p < 0
plastic, if f p = 0

(22)

However, in Eq. (21), τ0 = 0, or in other words, the yield criterion f is always null. This singularity reduces
our von Mises “circle” (defining the elastic domain) to a “dot”. As a consequence, the backstress τ r and the current
tress τ are always identical.

Another aspect of Eq. (21) is its applicability on anisotropic materials. It is well known that yield surfaces of such
aterials are usually defined with extra coefficients or with exotic combinations of “J2” and “J3” [35]. However,

ince both invariants are null in Eq. (20), equations containing both invariants would lead us to expressions that
re also null. This feature can be interpreted geometrically in the stress space: As an elastic domain is not present
n Eq. (21), any formulation (i.e., the classical von Mises “circle” or a complex anisotropic yield function) will be
educed to a “dot”.
6
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Another key difference is related to how the backstress is obtained in both frameworks. In standard plasticity, the
ackstress is traditionally obtained from a predefined inelastic SED [as shown in Eq. (1)]. In the H-CMT framework,
here is no explicit expression and the backstress tensor is recovered from stress rate expressions given in Eq. (14)
nstead.

.5. Deriving remodeling deformation rates

Following the notation of Hashiguchi and Yamakawa [32], we introduce Mandel and Eshelby-like stresses, so
s to describe the yield criterion such as

f =
1
2
τ̂

′
: τ̂

′
=

1
2

ˆ̄M′
:

ˆ̄M′T
=

1
2

ˆ̃M′
:

ˆ̃M′T
= 0, (23)

here ˆ̄M and ˆ̃M represent the relative Mandel stress (configuration Γ̄ ) and Eshelby-like stress (configuration Γ̃ ),
respectively, such as

ˆ̄M = FT
e τ̂ F−T

e ,

ˆ̃M =
(
FF−1

g

)T
τ̂

(
FF−1

g

)−T
.

(24)

We can now define the direction of a plastic flow rule with a flow vector N̄, while considering that the stress-like
tensors in Eq. (23) might not be isotropic. To that end, we use the widely assumed spinless & isoclinic configuration
Γ̄ [25,32,36–39]. By also defining the flow vector to be of the associative type, it follows that

N̄ = sym
[
∂ f
∂M̄

] /sym
[
∂ f
∂M̄

] , (25)

here M̄ is the Mandel stress.
With the aforementioned assumptions, skew[L̄r ] = 0 and the remodeling velocity tensor is symmetric:

L̄r = D̄r = λ̇N̄, (26)

here λ̇ is the plastic multiplier rate.
By performing a pull-back operation of Eq. (26) to the configuration Γ̃ ,

˙̃Cr = 2
√

2 λ̇
sym

[(
∂ f
∂M̃

)T
Cr

]
√[

Cr
∂ f
∂M̃

C−1
r

]
:

(
∂ f
∂M̃

)
+

(
∂ f
∂M̃

)
:

(
∂ f
∂M̃

)T
(27)

here Cr is the right Cauchy–Green tensor
(
Cr = FT

r Fr
)
.

Lastly, we use the well-known exponential time-integration scheme [32,34,39,40], ensuring plastic incompress-
bility and we obtain

Cr (tn+1) = [Q(tn+1)] Cr (tn) [Q(tn+1)]T ,

Q = exp [Z]

Z =
√

2△λ

ˆ̃M′√[
C−1

r
ˆ̃M′Cr

]
:

ˆ̃M′ +
ˆ̃M′ :

ˆ̃M′T

.
(28)

here △λ is the incremental plastic multiplier △λ = △t λ̇.

. Methods

.1. Algorithmic implementations

This section is focused on the algorithmic implementation of the theory exposed in the previous section. We
hoose the Newton–Raphson Method to solve the system of nonlinear (and incremental) equations, as it is standard

n plasticity. We developed algorithms for 3 specific applications:

7
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1. Remodeling with prescribed growth: The simplest of all cases are those where the variation of reference
mass density is given. For instance, Drews et al. [15] uses an analytical function to describe the mass evolution
related to inflammation in a tissue. For this type of problem, the corresponding “ρ0” can be directly assigned
into the algorithm at each time increment.

2. Stress-mediated G&R: It is acknowledged in mechanobiology that growth might be regulated by a myriad
of chemical stimuli. Therefore, an extra expression for growth should be added in the system of equations.

3. Mixture: The aforementioned approaches deal only with materials that are modeled with a single SED. How-
ever, mixtures are widely used in soft tissue biomechanics. Therefore, we present possible implementations
of this framework in the context of a composite containing 2 anisotropic constituents undergoing G&R.

.2. Remodeling with prescribed growth

Only Eqs. ((23), (28)) should be solved if the reference mass densities ρ0k and ρ0k+1 are known [see
qs. ((18), (19))]. Moreover, due to the similarities between the H-CMT and kinematic hardening [see Section 2.4.1],
qs. ((23), (28)) can be easily adapted to already existing codes related to plasticity. Since the Newton–Raphson
ethod is used in this work, these expressions are rewritten as residuals:

RCr = Cn+1
r − QCn

r QT
= 0,

R f = f =
1
2

ˆ̃M′
:

ˆ̃M′T
= 0.

(29)

As Cr is symmetric, it is possible to use the Voigt notation and RCr can be transformed into a vector with 6
components. We symbolically represent and group the residuals’ elements of RCr and R f together in a vector YPG .
The same procedure is performed on Cr and △λ which are gathered in vector XPG :

YPG =

{
RCr

R f

}
7x1
, XPG =

{
Cr

△λ

}
7x1
, (30)

where the “PG” subscript means that a “Prescribed Growth” problem is considered here.
Linearization is achieved by introducing a Jacobian tensor JPG in Voigt notation and a corrector for XPG (defined

here as △XPG), such as

JPG ∗ △XPG = −YPG,

JPG =

⎡⎣ ∂RCr
∂Cr

∂RCr
∂△λ

∂R f
∂Cr

∂R f
∂△λ

⎤⎦
7x7

. (31)

Each individual derivative of JPG in Eq. (31) can be found in Appendix B.

3.3. Stress-mediated G&R

In the previous section we assumed that the mass density rates are known prior to remodeling. However, mass
density rates may vary as functions of several biological phenomena. For instance, it could be defined to evolve with
the migration and proliferation of cells [1], which can be triggered by chemicals. E.g., Garbey et al. [41] proposes
a model that accounts for the diffusion of growth factors triggered by shear stresses across an arterial wall. In turn,
the growth factors affect the production of SMCs. As another example, Soares and Sacks [42] also created a model
taking into account the local concentration of oxygen.

Phenomenologically motivated approaches were also proposed. Mass density rates may evolve as functions of
stresses and deformations [15,30,43,44]. For instance, Ghavamian et al. [44] postulated that the degradation of
uniaxial fibers depends on the I4 pseudo-invariant and Drews et al. [15] proposed a mass deposition rate based on
the stresses.

There may be many factors affecting tissue growth. Since we focus only on the results that can be obtained with
Eq. (28), we chose to generally define the rate of reference mass density to be dependent on stresses, such that( )
ρ̇0 ≡ ρ̇0 σ , σ pre,Fe,Fh . (32)

8
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Table 1
Test cases to demonstrate the coupling of Jacobian
matrices.

Case 1 Case 2

Material a PG [Eq. (31)] GR [Eq. (35)]
Material b GR [Eq. (35)] GR [Eq. (35)]

The mass turnover is not known beforehand and growth should be coupled with remodeling as an additional
lgebraic equation to complete Eq. (29). By applying the backward Euler method to Eq. (32) and transforming it
nto a residual expression, we obtain

Rρ0 = ρ0k+1 − ρ0k − △t ρ̇0k+1 = 0. (33)

This residual and the updated variable “ρ0” are then included in the vectors introduced in Eq. (30). The updated
xpression is

YG R =

⎧⎨⎩RCr

R f

Rρ0

⎫⎬⎭
8x1

, XG R =

⎧⎨⎩Cr

△λ

ρ0

⎫⎬⎭
8x1

, (34)

here the “G R” subscript means that a “Growth & Remodeling” problem is considered here.
The Newton–Raphson algorithm for G&R becomes

JG R ∗ △XG R = −YG R,

JG R =

⎡⎢⎢⎢⎣
∂RCr
∂Cr

∂RCr
∂△λ

∂RCr
∂ρ0

∂R f
∂Cr

∂R f
∂△λ

∂R f
∂ρ0

∂Rρ0
∂Cr

∂Rρ0
∂△λ

∂Rρ0
∂ρ0

⎤⎥⎥⎥⎦
8x8

.
(35)

Each additional derivative of JG R in Eq. (35) can be found in Appendix D.

.4. Mixture

Eqs. ((31), (35)) only deal with a single SED. In this section, we show an example involving 2 materials. Each
aterial should be implemented with either Eqs. (31) or (35) and we considered 2 cases as reported in Table 1.
“Material a” might affect the remodeling of “material b”, and vice versa, via the growth deformation gradient

g . As shown in Eq. (4), this tensor evolves w.r.t. to the mass densities of all constituents of the mixture. Therefore,
coupling between the 2 materials should be explicitly defined in the final Jacobian matrix.

For “Case 1”, the updated mass density ρ0 from the “material b” should affect the remodeling of “material a”
via a sub-matrix JG R⇀PG :[

JPG JG R⇀PG

0 JG R

]
∗ △

{
XPG

XG R

}
= −

{
YPG

YG R

}
. (36)

he detailed expressions of JG R⇀PG are given in Appendix C. For “Case 2”, the mass densities of one material
nterferes with the other. Hence, 2 sub-matrices should be included in the global Jacobian matrix, which are named
G R a⇀G R b and JG R b⇀G R a , yielding[

JG R a JG R b⇀G R a

JG R a⇀G R b JG R b

]
∗ △

{
XG R a

XG R b

}
= −

{
YG R a

YG R b

}
. (37)

he derivatives in the coupling matrices of Eq. (37) can be found in Appendix E.
The sub-matrices have different dimensions and elements depending on how remodeling is defined for each

onstituent, as they can be ruled by either the “PG” case or the “GR” one. Fig. 2 illustrates how the elements of
he global Jacobian matrices shown in Eqs. ((36), (37)) are arranged.

It shows that coupling effects between 2 3D constituents only appear in the equations due to the variations of their
ndividual mass densities. The coupling terms are the column-like arrays in both global matrices, which correspond

o partial derivatives w.r.t. ρ0.

9



F. Sempértegui and S. Avril Computer Methods in Applied Mechanics and Engineering 412 (2023) 116059

4

a
i
o

w

h

A
c

b

Fig. 2. Graphical illustration of the global Jacobian matrices of “case 1” [Eq. (36)] and “case 2” [Eq. (37)].

. Numerical examples

The stress updating algorithms shown in Eqs. ((31), (35), (36), (37)) were incorporated in an in-house FEM code
nd the consistent tangent modulus was computed by means of the perturbation technique [34,45]. For the examples
n Sections 4.1 & 4.2, we chose the Nearly Incompressible Neo-Hookean material to represent the elastic response
f isotropic constituents. It can be formulated such as

ψ̂e
e =

µ

2

[
Î1 − 3

]
,

U e
e =

Λe

2

[
I e
3 − 1

]2
,

I e
3 =

√
|be|,

Î1 =
[
I e
3

]−
2
3 [be : I] ,

(38)

here µ and κ are material constants and be is the elastic left Cauchy–Green tensor
(
be = FeFT

e

)
.

Naturally, we chose the same SED to represent the isochoric preferred stress, which is computed from a preferred
omeostatic stretch tensor Fh such as,

τ ′

pre = Rτ ′

hRT ,

τ ′

h = µ I h
3

−2/3
[

bh −
1
3

I h
1 I

]
,

I h
3 =

√
|bh |,

I h
1 =

[
I h
3

]−
2
3 [bh : I] ,

bh = FhFT
h .

(39)

s for the example in Section 4.3, we implemented an anisotropic material, which is suitable for modeling dispersed
ollagen fibers [10].

A mesh refinement study was performed in all examples. However, since they were all well defined with Dirichlet
oundary conditions, 2 elements in each cartesian direction were sufficient for the models to provide us with accurate
10
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Fig. 3. Constrained geometry. All gray facets are constrained. The only unconstrained surface is the frontal one. The normal direction of
that facet is defined to be the growth direction N⊥ [Eq. (4)].

G&R solutions. Thus, all results presented next were extracted from models containing only 8 elements (i.e., 2
elements in each direction).

4.1. Remodeling with prescribed growth

4.1.1. Proof-of-concept
The first example is an implementation of Eq. (31), where the rate of mass deposition is equal to that of

degradation. For that, we enforce ρ̇0+ = ρ̇0− and, consequently, ρ̇0 = 0. Fig. 3 shows the simulated element,
which is constrained at all facets with the exception of the top surface (this also serves for the numerical example
of the next subsection).

The material is set to be stress-free at the start of the simulation, while the preferred deformation state Fh is set
to be Fh = diag

[
λ, 1

√
λ
, 1

√
λ

]
. Tensor Fh is given to Eq. (39), which, in turn, provides the algorithm with τ ′

pre.
Then, the internal stresses of the material develop from a stress-free state towards τ ′

pre as the simulation progresses.
Fig. 4(a) shows the internal stresses of the element presented in Fig. 3. As expected, the isochoric components

of the stresses undergo remodeling, so as to develop the internal stresses until eventually reaching τ ′
pre.

This evolution can also be seen in the stress-space from the deviatoric plane [Fig. 4(b)]. The stress tensor starts
at the axes origin [σ (t = 0)] and it approaches the prestress σ pre. In the same figure, we also depict the yield
surface (as explained before, it reduces to a dot as the yield surface’s radius is actually null).

4.1.2. Comparison against experimental data
We also used Eq. (31) to reproduce experimental data. Eichinger et al. [29] measured the tension produced by

constrained cell-seeded collagen in uniaxial and biaxial settings, showing that the cells tend to establish and maintain
a preferred (homeostatic) tension.

In the right-hand side of Fig. 5, we depict cell-seeded collagen elements. The regions where they are constrained
and where the tension was measured is represented by gray facets. In the left-hand side of the same figure, one can
see that the measured tension on those facets stabilizes to a certain homeostatic tension.

In that experiment, Eichinger et al. [29] inhibited cell proliferation. This corresponds to a case, where the mass
density remains approximately constant (ρ̇0 ≈ 0). These conditions allowed us to compare the “PG” algorithm
Eq. (31)] to their findings.

Fig. 5 shows that the results predicted by our algorithm are in very good agreement with the experimental
easurements. While 2 mass turnovers were necessary to mimic the experimental data in Figs. 5(a) and (c); only

ne was sufficient for Fig. 5(b).
Particular attention was paid to the comparison shown in Fig. 5(c). That experiment starts after an initial stretch

f 1.8% along the x-direction and the tension normal to the yz plane is pronounced at the start of the experiment.
ue to the in-plane coupling, the tension along the coordinate y is also non-zero, even though the values are less
rominent. Nevertheless, our predicted stress evolution along both directions were still in very good agreement with
he experiments.
11
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Fig. 4. (a) Evolution of the isochoric Cauchy stress components. (b) Stresses in the stress-space and viewed from the deviatoric plane.

.2. Stress-mediated G&R

Here, the model shown in Fig. 3 was used to test the algorithm of Eq. (35). The top facet was unconstrained
nd the z coordinate was set to be the direction of growth, such that N⊥

= [0, 0, 1] in Eq. (4). The density rate
xpression in Appendix J was used in this example and it was set to reproduce 2 phenomena:

1. In the first numerical experiment, there is more deposition than degradation of mass, i.e., ρ̇0 > 0.
2. In the second numerical experiment, degradation was more pronounced, with ρ̇0 < 0.

n both cases, the material was stress-free at the beginning of the simulation. The evolution of a stress component
s shown for both simulations in Fig. 6. It can be noted that internal stresses converge towards the preferred stress.
he difference between the 2 numerical experiments is the time required for the convergence to occur. In the case
here the deposition dominates (ρ̇0 > 0), the isochoric stress and σ ′

pre are practically equal at t = 4T . However,
he other case shows a slower increase of the stresses towards the homeostatic value.

These results are physically consistent. The higher the rate of mass deposition, the sooner the average stress
ithin a given volume will reach σ ′

pre. Conversely, the average stress would evolve slower if lower quantities of
ass deposition were prescribed, which was the case of the second experiment (ρ̇0 < 0).

.3. Mixture with anisotropic constituents

In this section, we present an implementation of Eqs. ((36), (37)) on mixtures, while taking into account the
resence of anisotropic constituents. The test model is shown in Fig. 7. It is a mixture containing some constituents
f an arterial wall: an isotropic elastin ground matrix and 2 dispersed collagen fibers [10]. The SMCs (represented
s 1-D materials) were not incorporated here, as we only focus our analysis on the stress evolution of the dispersed
ollagen.

The only constituents that undergo G&R in this model are the 2 fiber families and this characteristic allows
q. (37) to be our candidate of choice for this section. The expression describing the growth of these constituents

s shown in Appendix J.
The SED of the elastin constituent used here is the one shown in Eq. (38) and the anisotropic SED ψ

f
e of the

ispersed fibers is [10]:
12
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A
t

Fig. 5. (a) Measurements performed in a uniaxial setting. Eq. (31) was applied on a isotropic material with 2 mass turnover rates:
T1=7 hours (φ1 = 50%) and T2=8 hours (φ2 = 50%). In order to reproduce the uniaxial protocol, Fh was set to be diag

[
λ, 1

√
λ
, 1

√
λ

]
. (b)

Measurements of the equi-biaxial setting. A single mass turnover rate of T =5 h was sufficient to fit our simulated data to the experiments.
Here, Fh was set to be diag

[
λ, λ, 1

λ2

]
. (c) Strip-biaxial protocol after applying an initial stretch of λi = 1.018 to the cell-seeded collagen.

short mass turnover rate of T1=0.21 h (φ1 = 33%) and another of T2 =21 hours (φ = 67%) provided us with the simulated data shown in
he graph. Fh was set to be the same as in (b). Eichinger et al. [29] authorized the authors to expose their experimental data in this work.

Fig. 6. Evolution of the Cauchy stress under a more pronounced deposition (ρ̇0 > 0) and degradation (ρ̇0 < 0).
13
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d
T
T

Fig. 7. Model of a tissue representing a strip of an arterial wall. This model is composed of an elastin matrix (shown in white) and 2
ispersed fiber families [10]. The direction of these fibers are shown as black lines and their dispersion are represented with the color gray.
he vectors n, ez , eθ represent the current configuration of the normal, axial and circumferential directions of the arterial wall, respectively.
he vectors a1 and a2 are the current directions of the 2 fibers constituents.

ψ f
e = ψ̂ f

e + U f
e

ψ̂ f
e (Ce) =

k1

2 k2

[
exp

{
k2

[
κ Ī1 + (1 − 3κ) Ī4 − 1

]2
}

− 1
]

Ī1 = tr
[(

I f
3

)−2/3
Ce

]

Ī4 =

(
I f
3

)−2/3

Cgr : (a0 ⊗ a0)
[C : (a0 ⊗ a0)]

U f
e =

Λ f

2

[
I f
3 − 1

]2
,

I f
3 =

√
|be|,

Cgr = FT
g Cr Fg,

(40)

where a0 is the fiber direction in reference configuration.
The boundary condition of the test model is of the dirichlet type and it is represented by “λ” in Fig. 7. The

prescribed displacement is set under 2 distinct conditions in order to analyze the evolution of the fiber stresses’:

• Stage 1: (t < T ) At this stage, the model is set with an initial configuration, which is under homeostasis.
Then, the tissue is monotonically stretched up to “λ = 1.1” under a period of 100 simulated days, a time
frame which is equivalent to the prescribed mass turnover “T ” of the dispersed fibers (see Table 2). This time
setting allows the fiber constituents to undergo growth and remodel, while being stretched. A purely elastic
case is also run at this stage, so as to analyze the effects of G&R on the stresses of the fibers.

• Stage 2: (T < t < 8T )
After reaching a prescribed stretch of “λ = 1.1”, the boundary condition is kept constant and the simulation
is run up to 800 simulated days (i.e., “t = 8T ”). Since the model is fixed and the simulated period is much
larger than the mass turnover “T ” (see Table 2), it is expected that the fibers’ stresses will be driven towards
their homeostatic targets.

The parameters used in each constituent of the material is shown in Table 2 and the simulation was run using the
Newton–Raphson algorithm represented in Eq. (37). Fig. 8 shows the evolution of one of the fibers’ stresses during
the first 100 simulated days. The model starts at homeostasis and the stress increases as the tissue is continuously
stretched.

Also, since the simulated time frame is equivalent to the fibers’ mass turnover “T ”, the G&R algorithm is able to
significantly affect the stress configuration of the fibers. This is seen more clearly, by analyzing the stress evolution
alongside a purely elastic case (shown in the same figure) and it is evident that the current framework enables the

fiber constituents to return to their homeostatic state.

14
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Table 2
Material parameters used for the mixture model. In this example, 2 fibers were
implemented and they only differ in orientation (i.e., the variable “ϕ”).

Constituent Parameters Value

Elastin
Eq. (38)

ρe
0 [kg/m3]
µ [J/kg]
Λ [J/kg]

241.5
12.42
20 µ

Dispersed fibers
Eq. (40)

ρ
f

0 [kg/m3]
k1 [J/kg]
k2 [–]
κ [–]
Λ [–]
ϕ [degrees]
T [days]
α [–]
(Appendix J)

404.25
352.74
4.45
0.046
20 k1
±10◦

100
10−9

Fig. 8. Evolution of stress of the fiber pointing at the direction “a1”, while being continuously pulled. The variable shown in the figure is
σ ′

: (a1 ⊗ a1)/ρ0”. The solid line shows the stress configuration, if Eq. (37) is implemented. The dashed lines presented the same model,
hile assuming the constituents to behave elastically.

Fig. 9. Solid lines: Evolution of the stress components “σ ′
: (a1 ⊗ a1)/ρ0” (red) and “σ ′

: (n ⊗ n)/ρ0” (blue). Dashed lines: homeostatic
targets “σ ′

pre : (a1 ⊗ a1)/ρ0” (red) and “σ ′
pre : (n ⊗ n)/ρ0” (blue). (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

The tendency towards returning to a homeostatic stress configuration becomes more evident by analyzing the
results obtained in “Stage 2” and they are presented in Fig. 9 . Since the tissue is fixed between 100 and 800

simulated days, the fibers are free to undergo G&R until its stress configuration reaches homeostasis.
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. Discussion and concluding remarks

In the current paper, for the first time, we provide explicit and ready-to-use expressions describing remodeling
f 3D isotropic and anisotropic materials using the H-CMT. Our approach uses similar expressions as in kinematic

hardening models in standard plasticity. These expressions were obtained by transforming the rate-like equation of
the H-CMT [Eq. (14)] into an incremental-type equation [Eq. (21)], where an equivalent backstress tensor arises
naturally.

Standard numerical strategies of classical plasticity, such as the exponential time-integration scheme, were
mplemented here to expand the works of Cyron et al. [18] to 3D materials. As several modeled biological tissues
re assumed to be incompressible, this technique could be used in Eq. (21) as well.

We were able to demonstrate the capabilities of our algorithms with several test cases (Section 4). In all examples,
he simulations provided physically consistent results. With the simplest case [Section 4.1 (no mass variation)],
e showed that the model clearly evolves from a stress-free state towards homeostasis (determined by σ ′

pre) with
Eq. (31). This algorithm also generated stress evolutions that were in good agreement with experimental data in cell-
seeded collagen [29]. Additionally, the algorithm is also sensitive to rates of mass deposition and degradation. For
instance, in Fig. 6, we showed that the larger the mass deposition, the faster the internal tension reaches homeostasis
(σ ′

pre).
We also explored interactions among anisotropic constituents, which are governed by Eq. (35). These interactions

are accounted for with a “coupling sub-matrix” [presented in Eqs. (36) and (37)]. The results of Figs. 8 and 9 show
that the proposed coupling also simulates G&R of anisotropic constituents within a mixture. This last example paves
the way for more complex and significant models. For instance, by adding SMCs to the mixture of Section 4.3, it
will be possible to create a G&R model of an arterial wall and to compare the simulations with the ones of Horvat
et al. [11], who created a similar model withing the classical CMT framework.

Lastly, it should be noted that the proposed coupling is a direct consequence of the chosen assumptions related
to the growth deformation gradient Fg . As a major application of our models are related to vascular grafts, veins
and arteries, it was reasonable to restrict growth to a single direction [Eq. (4)] [30]. This simplification permitted to
only elaborate a scalar residual related to the constituent’s density [Eq. (33)]. In applications where a more general
growth tensor would be needed, a tensor residual should be developed instead. Its implementation would go beyond
the scope of this work and an algorithm of anisotropic growth was recently proposed [27].
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Appendix A. Assumptions of Eq. (21)

Here, we explain the implications of the assumed features in Section 2.3. The first bullet-point is related to
transforming the problem from its original rate-like form [Eq. (14)] to its incremental variant [Eq. (17)].

That time discretization is widely used in standard finite plasticity, even thought the original problem is stated
with rate constitutive laws and evolution equations. However, the expressions are usually solved at an established
load or time increment. This requires the rate-like expressions to be integrated over a time interval (tn and tn+1)

and they are reformulated with their equivalent expressions in incremental form.
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This is a common strategy to update the stresses and inelastic terms at tn+1. The incremental setting is typically
ormulated with the backward (implicit) Euler scheme [31–34], as it is unconditionally stable. For this reason, the
uthors decided to discretize Eq. (14) with that same scheme and the following expression is obtained:

σ (tn+1) =

(
△ ρ0+

△ ρ0+ + ρ0

)
k+1

σ pre +

(
ρ0

△ ρ0+ + ρ0

)
k+1

σ (tn) . (A.1)

The next bullet-point addresses the assumption of volume-preserving remodeling. Incompressibility is a feature
that is often imposed in modeled biological tissues [10] and the evolution of an incompressible remodeling is also
used by Cyron et al. [18] and Braeu et al. [30]. Hence, it is assumed that |Fr | = const . for all time increments.
Also, since F and Fg are constant quantities between tn and tn+1, so are their jacobians (|F|&|Fg|). As |Fr | is now
fixed, it is also implied that

|Fe|n+1 = |Fe|n. (A.2)

The next assumption is that the SED of the 3D material is composed of a volumetric and distortional SED, such
that

ψe ≡ ψ̂e(Ce) + Ue(|Fe|), (A.3)

being ψ̂e the distortional SED and Ue, the volumetric component. Thanks to Eqs. ((A.2), (A.3)), it is implied that
the volumetric contributions of the stresses do not alter between tn and tn+1.

The last bullet-point is then introduced: we postulate that the volumetric component of the preferred stress σ pre

nd of the current stress are equal. It then necessarily follows from Eq. (A.1) that only the isochoric components
f the stresses contribute to the evolution of remodeling. That equation is now pressure insensitive and it follows
hat

σ ′ (tn+1) =

(
△ ρ0+

△ ρ0+ + ρ0

)
k+1

σ ′

pre +

(
ρ0

△ ρ0+ + ρ0

)
k+1

σ ′ (tn) . (A.4)

Eq. (A.4) is then used to derive the equivalent yield function in Section 2.3.

Appendix B. Elements of JP G [Eq. (31)]

The elements of the jacobian matrix JPG shown in Eq. (31) are shown below:[
∂RCr

∂Cr

]
i jkl

= Ii jkl ...

−
∂Qim

∂Crkl

Crmn QT
mj − QioCrop

∂QT
pj

∂Crkl

,

∂RCr

∂△λ
= −

∂Q
∂△λ

Cr QT
− QCr

∂QT

∂△λ
,[

∂R f

∂Cr

]
i j

=

[
∂ f

∂
ˆ̃M

]
mn

⎡⎣ ∂ ˆ̃M
∂Cr

⎤⎦
mni j

,

∂R f

∂△λ
= 0,

(B.1)

where,

Ii jkl =
1
2

(
δikδ jl + δilδ jk

)
,

∂ f

∂
ˆ̃M

=
ˆ̃M′ T ,[

∂Q
]

=

[
∂Q

] [
∂Z

]
, (B.2)
∂Cr i jkl ∂Z i jmn ∂Cr mnkl
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A

[
∂QT

∂Cr

]
i jkl

= δinδ jm

[
∂Q
∂Cr

]
mnkl

,[
∂Q
∂△λ

]
i j

=

[
∂Q
∂Z

]
i jmn

[
∂Z
∂△λ

]
mn
.

The term ∂Q
∂Z [present in Eqs. ((B.2), (C.1), (D.1))] was explicitly derived by Hashiguchi and Yamakawa [32].

As for ∂Z
∂Cr

& ∂Z
∂△λ

, they are presented in Appendix F.

Appendix C. Elements of JG R⇀P G [Eq. (36)]

The elements of the sub-matrix JG R⇀PG [Eq. (36) and displayed in Fig. 2(a)] are the tensors
∂Ra

Cr
∂ρb

0
and

∂Ra
f

∂ρb
0

:

∂RC
a
r

∂ρb
0

= −
∂Qa

∂ρb
0

Cr QT
− QCr

∂Qa T

∂ρb
0
,

∂Ra
f

∂ρb
0

=

[
∂ f a

∂
ˆ̃Ma

]
:

⎡⎣∂ ˆ̃Ma

∂ρb
0

⎤⎦ ,
[
∂Qa

∂ρb
0

]
i j

=

[
∂Qa

∂Za

]
i jmn

[
∂Za

∂ρb
0

]
mn

.

(C.1)

The formulation of ∂Za

∂ρb
0

is shown in Appendix F.

ppendix D. Elements of JG R [Eq. (35)]

The tensors ∂RCr
∂Cr

, ∂RCr
∂△λ

, ∂R f
∂Cr

and ∂R f
∂△λ

of Eq. (35) are identical to the expressions shown in Eq. (B.1). All other
tensors that must be defined for the “growth & remodeling” case are displayed below:

∂RCr

∂ρ0
= −

∂Q
∂ρ0

Cr QT
− QCr

∂QT

∂ρ0
,

∂R f

∂ρ0
=

[
∂ f

∂
ˆ̃M

]
:

⎡⎣∂ ˆ̃M
∂ρ0

⎤⎦ ,
∂Rρ0

∂Cr
= −△t

∂ρ̇0

∂Cr
,

∂Rρ0

∂△λ
= 0,

∂Rρ0

∂ρ0
= 1 − △t

∂ρ̇0

∂ρ0
,[

∂Q
∂ρ0

]
i j

=

[
∂Q
∂Z

]
i jmn

[
∂Z
∂ρ0

]
mn
.

(D.1)

Appendix E. Elements of JG R b⇀G R a [Eq. (37)]

The tensors
∂Ra

Cr
∂ρb

0
and

∂Ra
f

∂ρb
0

shown in Eq. (37) can be implemented directly from Eq. (C.1). The remaining
derivative that should be defined is

∂Ra
ρ0

∂ρb
0

= −△t
∂ρ̇a

0

∂ρb
0
, (E.1)

ppendix F. Derivatives of the tensor Z

As to avoid introducing even more equations, we represent the tensor ∂Z
∂ρ0

[shown in Eq. (D.1)] as a variant of
∂Za

∂ρb
0

[shown in Eq. (C.1)] in this section. ∂Z
∂ρ0

can be retrieved only by neglecting the superscripts “a” and “b” of
∂Za

b in Eq. (F.1). This is also applicable for any tensor shown in Eq. (F.3) and (F.4).

∂ρ0
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• Derivatives of Z:

∂Z
∂Cr

=
√

2△λ
1
D

⎧⎨⎩∂ ˆ̃M′

∂Cr
−

1
2

1
D2

ˆ̃M′
⊗
∂D2

∂Cr

⎫⎬⎭ ,
∂Z
∂△λ

=
√

2
ˆ̃M′

D
,

∂Za

∂ρb
0

=
√

2△λ
1
D

⎧⎨⎩∂ ˆ̃M′
a

∂ρb
0

−
1
2

1
D2

ˆ̃M′
∂Da2

∂ρb
0

⎫⎬⎭ ,
D =

√[
C−1

r
ˆ̃M′Cr

]
:

ˆ̃M′ +
ˆ̃M′ :

ˆ̃M′ T .

(F.1)

• ∂D2/∂Cr:

[
∂D2

∂Cr

]
i j

= T1 + T2 + T3,

[T1]kl =

∂
[
C−1

r
ˆ̃M′Cr

]
mn

∂Crkl

ˆ̃M′

mn,

∂
[
C−1

r
ˆ̃M′Cr

]
i j

∂Crkl

=
∂C−1

rim

∂Crkl

ˆ̃M′

mnCrnj + · · ·

C−1
rim

∂
ˆ̃M′

mn

∂Crkl

Crnj + C−1
rim

ˆ̃M′

mnInjkl ,

[T2]kl =

[
C−1

r
ˆ̃M′Cr

]
mn

∂
ˆ̃M′

mn

∂Crkl

,

[T3]kl = 2
∂

ˆ̃M′
mn

∂Crkl

ˆ̃M′ T
mn

(F.2)

• ∂Da2
/∂ρb

0 :

∂Da2

∂ρb
0

= U1 + U2 + U3,

U1 =

∂
[
C−1

r
ˆ̃M′

a Cr

]
∂ρb

0
:

ˆ̃M′,

∂
[
C−1

r
ˆ̃M′

a Cr

]
i j

∂ρb
0

= C−1
rim

∂
ˆ̃M′

a
mn

∂ρb
0

Crnj ,

U2 =

[
C−1

r
ˆ̃M′Cr

]
:
∂

ˆ̃M′
a

∂ρb
0
,

U3 = 2
∂

ˆ̃M′
a

b :
ˆ̃M′ T

(F.3)
∂ρ0
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c

• Derivatives of ˆ̃M′:

∂
ˆ̃M′

i j

∂Crkl

= Di jmn
∂

ˆ̃Mmn

∂Crkl

,

∂
ˆ̃M′

a

i j

∂ρb
0

= Di jmn
∂

ˆ̃Ma
mn

∂ρb
0
,

Di jkl = δikδ jl −
1
3
δi jδkl .

(F.4)

Appendix G. Derivatives of the relative stress-like tensors

The residuals shown in Appendices B–E and the exponential terms in Appendix F are directly or indirectly
dependent on the tensors ∂

ˆ̃M
∂Cr

, ∂
ˆ̃M

∂ρ0
and ∂

ˆ̃Ma

∂ρb
0

.
The manner by which these terms are computed depend on the algorithm at hand. They are shown next for each

ase and labeled with the subscripts “PG” or “G R” to indicate a “Prescribed Growth” or “Growth & Remodeling”,
respectively.

• JPG [Eq. (31)]:
The remaining tensor that must be defined for the Prescribed growth case in Eq. (B.1) is ∂

ˆ̃M
∂Cr

. With the help
of Eq. (24) and labeling the tensor with the subscript “PG”, we obtain⎡⎣ ∂ ˆ̃M

∂Cr

⏐⏐⏐⏐
PG

⎤⎦
i jkl

=

[(
FF−1

g

)T
]

im

[
∂ τ̂

∂Cr

⏐⏐⏐⏐
PG

]
mnkl

[(
FF−1

g

)−T
]

nj
. (G.1)

The tensor ∂ τ̂
∂Cr

⏐⏐
PG in Eq. (G.1) can be derived from Eq. (20). For the cases, where the growth is prescribed,

the remodeling tensor Cr has no effect on the backstress. Hence, from ∂τ r
∂Cr

is null in Eq. (20) and we finally
obtain

∂ τ̂

∂Cr

⏐⏐⏐⏐
PG

=
∂τ

∂Cr
. (G.2)

• JG R⇀PG [Eq. (36)]
The extra variable that must be defined is ∂

ˆ̃Ma

∂ρb
0

and it is obtained with Eq. (24):⎡⎣∂ ˆ̃Ma

∂ρb
0

⏐⏐⏐⏐
PG

⎤⎦
i j

= · · ·

[
∂F−T

g

∂ρb
0

]
im

[
FT τ̂

aF−T ]
mn

[
FT

g

]
nj

+ · · ·

[(
FF−1

g

)T
]

im

[
∂ τ̂

a

∂ρb
0

⏐⏐⏐⏐
PG

]
mn

[(
FF−1

g

)−T
]

nj
+ · · ·

[
F−T

g

]
im

[
FT τ̂

aF−T ]
mn

[
∂FT

g

∂ρb
0

]
nj

(G.3)

It is worth reminding the reader that the growth deformation gradients of all constituents are identical in the
present work (i.e., Fa

g = Fg). Due to this and for clarity, the superscript “a” is dropped from Fg in Eq. (G.3).
The derivative ∂Fg

∂ρb
0

is computed with the help of Eq. (4):

∂Fg
b =

[
1

]
N⊥

⊗ N⊥. (G.4)

∂ρ0 ρ0 init
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Here, the density of “constituent b” does affect the backstress of “constituent a” and ∂ τ̂a

∂ρb
0

⏐⏐
PG is obtained via

Eq. (20):

∂ τ̂
a

∂ρb
0

⏐⏐⏐⏐
PG

=
∂τ a

∂ρb
0

−
∂τ a

r

∂ρb
0

⏐⏐⏐⏐
PG

(G.5)

• JG R [Eq. (35)]
For the growth & remodeling case, the derivatives of the Eshelby-like stress tensors ∂

ˆ̃M
∂Cr

and ∂
ˆ̃M

∂ρ0
are required.

They can be computed with the help of Eq. (24):⎡⎣ ∂ ˆ̃M
∂Cr

⏐⏐⏐⏐
G R

⎤⎦
i jkl

=

[(
FF−1

g

)T
]

im

[
∂ τ̂

∂Cr

⏐⏐⏐⏐
G R

]
mnkl

[(
FF−1

g

)−T
]

nj
,

⎡⎣∂ ˆ̃M
∂ρ0

⎤⎦
i j

=

[
∂F−T

g

∂ρ0

]
im

[
FT τ̂F−T ]

mn

[
FT

g

]
nj

+ · · ·

[(
FF−1

g

)T
]

im

[
∂ τ̂

∂ρ0

]
mn

[(
FF−1

g

)−T
]

nj
+ · · ·

[
F−T

g

]
im

[
FT τ̂F−T ]

mn

[
∂FT

g

∂ρ0

]
nj

.

(G.6)

The terms related to ∂Fg
∂ρ0

in Eq. (G.6) are obtained directly from Eq. (4):

∂Fg

∂ρ0
=

[
1

ρ0 init

]
N⊥

⊗ N⊥ (G.7)

The backstress is independent from remodeling in the “prescribed growth” case. This does not hold for a
“growth & remodeling” material, as the updated density is not known beforehand. Since the backstress is now
indirectly dependent on remodeling and the density, it follows from Eq. (20)
that:

∂ τ̂

∂Cr

⏐⏐⏐⏐
G R

=
∂τ

∂Cr
−
∂τ r

∂Cr
,

∂ τ̂

∂ρ0
=
∂τ

∂ρ0
−
∂τ r

∂ρ0
.

(G.8)

• JG R b⇀G R a [Eq. (37)]
The tensor ∂

ˆ̃Ma

∂ρb
0

must be defined here:⎡⎣∂ ˆ̃Ma

∂ρb
0

⏐⏐⏐⏐
G R

⎤⎦
i j

= · · ·

[
∂F−T

g

∂ρb
0

]
im

[
FT τ̂

aF−T ]
mn

[
FT

g

]
nj

+ · · ·

[(
FF−1

g

)T
]

im

[
∂ τ̂

a

∂ρb
0

⏐⏐⏐⏐
G R

]
mn

[(
FF−1

g

)−T
]

nj
+ · · ·

[
F−T

g

]
im

[
FT τ̂

aF−T ]
mn

[
∂FT

g

∂ρb

]
.

(G.9)
0 nj

21



F. Sempértegui and S. Avril Computer Methods in Applied Mechanics and Engineering 412 (2023) 116059
In this case, the backstress is also affected by the updated densities of other constituents within the mixture.
Hence,

∂ τ̂
a

∂ρb
0

⏐⏐⏐⏐
G R

=
∂τ a

∂ρb
0

−
∂τ a

r

∂ρb
0

⏐⏐⏐⏐
G R
. (G.10)

Appendix H. Derivatives of the backstresses

This appendix shows the derivatives of the backstresses shown in Appendix G:

• Eq. (G.5)

∂τ a
r

∂ρb
0

⏐⏐⏐⏐
PG

=

[
ρa

0

ρa
0 + △ρa

0+

]
∂τ a

n

∂ρb
0

(H.1)

• Eq. (G.8)[
∂τ r

∂Cr

]
i jkl

= · · ·[
∂ (ρ0 + △ρ0+)

−1

∂Cr

]
kl

[
△ρ0+τ pre + ρ0τ n

]
i j + · · ·

[ρ0 + △ρ0+]−1
[
∂△ρ0+

∂Cr

]
kl

[
τ pre

]
i j

∂τ r

∂ρ0
= · · ·[
∂ (ρ0 + △ρ0+)

−1

∂ρ0

] [
△ρ0+τ pre + ρ0τ n

]
+ · · ·

[ρ0 + △ρ0+]−1
[
∂△ρ0+

∂ρ0
τ pre + τ n + ρ0

∂τ n

∂ρ0

]

(H.2)

where

∂ (ρ0 + △ρ0+)
−1

∂Cr
= − (ρ0 + △ρ0+)

−2
(
∂△ρ0+

∂Cr

)
,

∂△ρ0+

∂Cr
= △t

∂ρ̇0

∂Cr
,

∂ (ρ0 + △ρ0+)
−1

∂ρ0
= − (ρ0 + △ρ0+)

−2
(

1 +
∂△ρ0+

∂ρ0

)
,

∂△ρ0+

∂ρ0
= △t

∂ρ̇0

∂ρ0
+

△t
T
.

(H.3)

• Eq. (G.10)

∂τ a
r

∂ρb
0

⏐⏐⏐⏐
G R

= · · ·[
∂

(
ρa

0 + △ρa
0+

)−1

∂ρb
0

] [
△ρa

0+
τ a

pre + ρa
0 τ a

n

]
+ · · ·

[
ρa

0 + △ρa
0+

]−1
[
∂△ρa

0+

b τ a
pre + ρa

0
∂τ a

n
b

]
,

(H.4)
∂ρ0 ∂ρ0
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d
a
g
t

r

W

where

∂
(
ρa

0 + △ρa
0+

)−1

∂ρb
0

= −
(
ρa

0 + △ρa
0+

)−2
(
∂△ρa

0+

∂ρb
0

)
∂△ρa

0+

∂ρb
0

= △t
∂ρ̇a

0

∂ρb
0

(H.5)

Appendix I. Derivatives of the current stresses

The Eqs. (G.2), (G.5), (G.8) and (G.10) also depend on derivatives of the current stress τ . In this work, we
emonstrated our results with a Nearly Incompressible Neo-Hookean material [Eq. (38)] and with dispersed &
nisotropic fibers [Eq. (40)], but the proposed framework is also applicable to other material types as well. As to
eneralize the current derivation, we assume that the stress is a function of the left Cauchy–Green deformation
ensor be, and its invariants I1 and I3:

τ ≡ τ (be, I1, I3) ,

I1 = be : I,

I3 =
√

|be|.

(I.1)

Therefore, the derivatives of the stress w.r.t. Cr [Eqs. ((G.2), (G.8))] and “ρ0” [Eqs. ((G.5), (G.8), (G.10))] can be
epresented as

∂τ

∂Cr
≡

∂τ

∂Cr

(
∂be

∂Cr
,
∂ I1

∂Cr
,
∂ I3

∂Cr

)
,

∂τ

∂ρ0
≡
∂τ

∂ρ0

(
∂be

∂ρ0
,
∂ I1

∂ρ0
,
∂ I3

∂ρ0

)
.

(I.2)

By representing the tensor be with the total deformation and the inelastic terms, we obtain:

be = FF−1
g C−1

r F−T
g FT . (I.3)

ith Eq. (I.3), we can compute the derivatives required in Eq. (I.2) and the explicit derivations are presented below:

[
∂be

∂Cr

]
i jkl

=
[
FF−1

g

]
im

[
∂C−1

r

∂Cr

]
mnkl

[
F−T

g FT ]
nj
,[

∂ I1

∂Cr

]
kl

=

[
1
2

I1 b−1
e

]
mn

[
∂be

∂Cr

]
mnkl

,[
∂ I3

∂Cr

]
kl

= δmn

[
∂be

∂Cr

]
mnkl

,[
∂C−1

r

∂Cr

]
i jkl

= −
1
2

{[
C−1

r

]
ik

[
C−1

r

]
l j +

[
C−1

r

]
jk

[
C−1

r

]
li

}
,

∂be

∂ρ0
= F

[
∂F−1

g

∂ρ0

]
C−1

r F−T
g FT

+ FF−1
g C−1

r

[
∂F−T

g

∂ρ0

]
FT ,

∂ I1

∂ρ0
=

[
1
2

I1 b−1
e

]
:

[
∂be

∂ρ0

]
,

∂ I3

∂ρ0
=

[
∂be

∂ρ0

]
: I.

(I.4)

Finally, the tensors ∂τ and ∂τ can be finally obtained.

∂Cr ∂ρ0
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A

T
i

ppendix J. Stress-induced density rules

The density rate expression used in Section 4.2 is an adaptation of the rule proposed by Drews et al. [15].
hey created such rules for unidimensional fibers only and they are dependent on their scalar stresses and pseudo-

nvariants I4. As we work with isotropic materials, the aforementioned inputs were modified to the invariants J2

and I1:

ρ̇0 = ρ̇D
0+

+ ρ̇D
0−
,

ρ̇D
0+

= mh
[
1 − exp(−t)

] [
1 + Kσ

(
J2

J h
2

− 1
)]
,

ρ̇D
0−

= khρ
D
0

[(
1 +

I1

I h
1

)2
]
.

(J.1)

being

J h
2 =

1
2
τ ′

pre : τ ′

pre,

I h
1 = Fh : I.

(J.2)

The numerical experiment in Section 4.3 required a density rate expression for the dispersed fibers and it is
shown below:

ρ̇0 = α ρ0 fg

fg =
1
2

(τ ′
− τ ′

pre) : (τ ′
− τ ′

pre).
(J.3)
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