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ABSTRACT
The φ-divergence-based moment method was recently introduced Abdelmalik et al.
(2023) for the discretization of the radiative transfer equation. At the continuous
level, this method is very close to the entropy-based MN methods and possesses
its main properties, i.e. entropy dissipation, rotational invariance and energy con-
servation. However, the φ-divergence based moment systems are easier to resolve
numerically due to the improved conditioning of the discrete equations. Moreover,
exact quadrature rules can be used to compute moments of the distribution func-
tion, which enables the preservation of energy conservation, entropy dissipation and
rotational invariants, discretely. In this paper we consider different variants of the
φ−divergence closures that are based on different approximations of the exponential
function and the Planck function. We compare the approximation properties of the
proposed closures in the numerical benchmarks.

Keywords: Radiative transfer equation, Method of moments, φ-divergence

1. Introduction

This paper is a follow-up to Abdelmalik et al. (2023) and is concerned about the
discretization of the radiative transfer equation (RTE). This kinetic equation consists
in a transport at a velocity Ω with a constant norm combined with a collision operator.
Among the properties that this model satisfies, we want at least to preserve at the
discrete level: the conservation of energy, the dissipation of a convex entropy and the
rotational invariance.

The numerical methods commonly used for this model include the Monte-Carlo
solvers (DSMC;Carlson (1963); Lewis and Miller (1984); Pomraning (1973); Mihalas
and Mihalas (1983)) and the discrete ordinates method (DOM;Carlson (1963); Lewis
and Miller (1984); Pomraning (1973); Mihalas and Mihalas (1983)), but those are com-
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putationnally very expensive, not rotationally invariant and incapable to capture the
equilibria distribution the system converges to. Our work falls within the context of
the method of moments which is an efficient alternative. The most popular models in
this family are the polynomial PN models (Chandrasekhar (1950); Pomraning (1973);
Hesthaven et al. (2009); Canuto et al. (2006)) and the entropy-based MN models
(Minerbo (1978); Levermore (1996)) which rely on approximating the Ω-dependencies
of the solution respectively by polynomials or by a distribution minimizing the entropy
under moment constraints. Those are efficients, but the first fails at modelling beams,
the second requires high computational costs due to need to solve large numbers of (po-
tentially ill-conditionned) optimization problems. Those were an inspiration for many
other techniques developed in this field, including the simplified models (Frank et al.
(2007); McClarren (2010)), the flux-limited diffusion (Olson et al. (2000); Humbird
and McClarren (2017)), the interpolative methods (Pichard et al. (2017); Li and Li
(2020); Sarr and Groth (2020)) and others (see e.g. Schneider (2016); Pichard (2020)).

Recently, the entropy-based method of moment was simplified by exploiting φ-
divergence techniques (Csiszár (1972)) while preserving its main properties, originally
in the context of rarefied gases (Abdelmalik (2017); Abdelmalik and van Brumme-
len (2016)) and for the RTE in Abdelmalik et al. (2023). This method consists in a
Galerkin approximation where the test function space chosen to be polynomials set
and the approximation set is chosen to be a non-linear renormalization applied to the
same polynomial set. This renormalization is chosen to be a high degree polynomial
approximation of the exponential for the final model to dissipate an approximation
of Boltzmann entropy. This model was shown to preserve the three aforementionned
properties of conservation of energy, rotational invariance and entropy dissipation.
Therefore, it possesses the same properties as MN models but the optimization prob-
lem to solve requires a lower cost and they rely on exact quadrature rules and therefore
preserves further in the construction of the discretization the rotational invariance.

The present work exploits the versatility of the method in order to address two
issues: First, when the degree of the renormalization mapping tends to infinity, our
method falls back onto the MN method based on the Boltzmann entropy, it captures
therefore exactly the beam distributions but requires to solve worse-conditioned opti-
mization problems. We would like to adapt our method in order to choose the compro-
mise between the acccuracy in the beam regime and the condition of the optimization
problems to solve. Second, Boltzmann entrpopy is often considered in radiative trans-
fer by analogy with the rarefied gases models, but other entropies are more physically
relevant in this context. We would like to adapt our method such that it converges
toward other entropy-based models. These two problems are tackled by constructing
other polynomial renormalization mappings, and they eventually preserve the afore-
mentionned properties.

The paper is organized as follows. The next section recalls the radiative transfer
equation and its properties. The next recalls the construction of our φ-divergence mo-
ment closure. The novel construction and study of polynomial renormalization map-
pings arises in Section 4. Section 5 is devoted to numerical experiments with the
present method and Section 6 to conclusion.
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2. Radiative transfer equation

We aim at solving the radiative transfer equation (RTE)

∂tI +Ω · ∇xI = LI := σ

(
1

4π

∫
S2

I dΩ− I

)
, (1a)

where the unknown I(t, x,Ω) is the radiative intensity depending on Ω ∈ S2, x ∈ R3

and t ∈]0, T [. This equation is only supplemented with initial condition

I(t = 0, x,Ω) = I0(x,Ω), (1b)

and we still consider unbounded spatial domain in order to avoid the difficulties emerg-
ing with boundary conditions.

This problem is well-posed and preserves the integrability of the initial condi-
tion (Dautray and Lions (2000)) in the sense: if I0 ∈ Lp(Rd × S2), then there exists
a unique function I ∈ C

(
(0, T );Lp(Rd × S2)

)
satisfying (1). Furthermore, if I0 ≥ 0,

then I ≥ 0. In the following, we focus on L1 solutions.
This equation is known to dissipate any entropy, i.e. for all convex scalar functions

η, then

∂tH(I) +∇x ·G(I) = S(I) ≤ 0, H(I) =

∫
S2

η(I(Ω))dΩ, (2a)

G(I) =

∫
S2

Ωη(I(Ω))dΩ, S(I) =

∫
S2

η′(I(Ω))LI(Ω)dΩ. (2b)

In the present case, the space of collisional invariants

C =

{
f s.t.

∫
S2

f(Ω)LI(Ω)dΩ = 0

}
is one-dimensional and composed only of the isotropic functions

f ∈ C ⇔ f(Ω) =
1

4π

∫
S2

f(Ω)dΩ.

Therefore, for all convex function η, H is minimum when I is isotropic and the system
converges toward such equilibria.

For the construction of entropy-based moment closure as below, the Boltzmann-
Shannon (afterward denoted with the subscript BS) entropy

ηBS(I) = I log I

is often used as a comparison of the kinetic model (1a) with rarefied gas models. But
the Bose-Einstein (afterward denoted with the subscript BE) entropy

ηBE(I) = I log I − (I + 1) log(I + 1)

is more meaningful when considering more physically realistic collision models in (1).
Typically, interaction of the radiations with matter is often modeled by adding scat-
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tering and emission terms in (1a) (see e.g. Lowrie et al. (1999); Pomraning (1973);
Mihalas and Mihalas (1983)) which are equivalent, using Stefan’s law, to a relaxation
term toward a Planck function (η′BE)

−1 which parameters depend on matter temper-
ature and radiations frequencies. Therefore, dissipating ηBE is more relevant in this
context than ηBS , and moment closures should be adapted to such other types of
entropy.

Finally, Equation (1) was shown to be rotationnally invariant, meaning that its
solution I satisfies

(∂tI)(OΩ) = ∂t(I(OΩ)), (Ω·∇xI)(OΩ) = (OΩ)·∇x(I(OΩ)), (LI)(OΩ) = L(I(OΩ)),

for all rotation matrices O ∈ SO(3).

3. φ-divergence-based moment equations

We recall here the construction of the moment closure from Abdelmalik et al. (2023)
and the problems tackled in the present work.

3.1. Construction of the Galerkin framework

The moment system is obtained as a Galerkin approximation of (1a) in the Ω variable.
This formulation requires three elements, the choices and properties are recalled here:

• A finite dimensional test functions space M , which must be a subset of the
solution set dual L∞(S2). In order to preserve those properties at the numerical
level, M must contain the collision invariants 1 ∈ M ; and M must be rotational
invariant. The natural choice to satisfy both properties is the set of polynomials
up to a certain degree N

M := PN (S2).

• A renormalization map β to account for non-linearity in the approximation.
For a convex function η, choosing β = (η′)−1 corresponds to dissipating η at
the underlying kinetic level (see e.g. Levermore (1996)). Especially, β must be
monotonically increasing to match such an entropy. Natural choices include

βBS(g) = exp(g) = (η′BS)
−1(g), βBE(g) =

1

exp(g)− 1
= (η′BE)

−1(g). (3)

In our work, we aim at imposing β ∈ PK(R) withK ≥ 1 for numerical quadrature
(up to a sufficient order) to be exact, this provided a rotationally invariant
algorithm in Abdelmalik et al. (2023). We chose renormalization of the form

βK(g) =
(
1 +

g

K

)K
= (η′K)−1(g) with ηK(I) = KI

(
K

K + 1
I1/K − 1

)
, (4)

which are polynomial approximations of exp, and monotonically increasing for
odd K ≥ 1. We exhibit in the next section other choices.
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• A finite dimensional trial functions space V such that β(V ) ⊂ L1 is a subset of the
solution set. Again, β(V ) must contain the equilibrium distributions C ⊂ β(V );
and V must be rotational invariant, and we choose again

V := PN (S2).

Eventually, this yields seeking g ∈ PN (S2) such that for all m ∈ PN (S2)

∀(t, x) ∈ (0, T )× Rd,

∫
S2

m(Ω) [(∂t +Ω · ∇x)β(g)− Lβ(g(t, x, ·))(Ω)] dΩ = 0, (5a)

∀x ∈ Rd,

∫
S2

m(Ω)
[
β(g(t = 0, x,Ω))− I0(x,Ω)

]
dΩ = 0. (5b)

Let m denote a vector of all of the basis functions m(Ω) ∈ PN (S2), under the con-
straints mentioned in the last paragraph. Then (5) can be expressed as a system of
moment equations

∂tU+ divx(F(U)) = LU, (6a)

(U,F(U),LU) =

∫
S2

m(Ω)
(
β(λTm(Ω)), ΩTβ(λTm(Ω), Lβ(λTm(Ω)

)
dΩ, (6b)

which possesses a symmetrizer constructed from η (the anti-derivative of β−1) and
λ are the so-called entropic variables (Godlewski and Raviart (1996)) in which (6a)
can be written in the so-called symmetric hyperbolic form. Therefore, (6a) possesses a
convenient structure for the study of its well-posedness (Kawashima and Yong (2004)).

Remark 1. The entropic variables λ introduced in (6b) can also be conceived of
as Lagrange multipliers that enforce the moment constraints in the so-called entropy
minimization problem (Levermore (1996))

Find argmin

{
H(h) :

∫
S2

mIdΩ =

∫
S2

mhdΩ

}
. (7)

3.2. Position of the problem

In this paper, we investigate several modifications of the renormalization map (4)
and its impact on the closure Abdelmalik et al. (2023). The objective is to alter the
convergence of the φ-divergence solution when K → +∞ either to accelerate the
convergence or to modify the limit value:

First, when considering the moments of a Dirac distribution, e.g. U = m(e1) =∫
S2 mδe1 , numerical experiments in Abdelmalik et al. (2023) showed that the recon-

struction βK does converge in H−2 toward the distribution δe1 when K → +∞. How-
ever, the rate of convergence is slow. This slow rate of convergence is also illustrated
on Fig. 1 where the function βK(x) is plotted for various K odd together with its
limits lim

K→∞
βK = exp.

Formally, the Dirac distribution corresponds to the values x → −∞ and x → ∞.

Indeed, considering a Gaussian mollifier 1√
πσ

exp(−y2

σ ), then x = −y2

σ takes for values

±∞ in the limit.
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Figure 1.: Renormalization mappings βK for odd K and exponential function.

One observes that the sequence (βK)K∈N indeed converges pointwisely for bounded
x toward the exponential function, but this convergence is very slow. Furthermore, the
rate of the exponential in the limit x → +∞ is not accurately captured and one needs
high order K, and therefore higher complexity, to capture such large values. Similarly,
the zero limit when x → −∞ can not be reached by any βK function with finite K as
they are polynomials and cannot have bounded value in −∞. Eventually, such Dirac
distributions can only be approximated and we only aim at improving the range of
accuracy of such approximations.

Second, when K → +∞, the sequence (βK)K∈N of approximations may only con-
verge toward the exponential. As mentioned in the previous section, other types of
equilibrium can be expected from the solution of the RTE, typically the Planck dis-
tribution βBE defined in (3). The βK approximation does not possess the flexibility
to converge toward other β = (η′)−1 functions.

Therefore, the objective in the next section is to provide another type of approxi-
mations which is flexible enough to control the convergence when K → ∞, i.e. both
the convergence rate and the limit function.

4. Other monotonically increasing polynomial approximations

The solutions considered in this paper consist in polynomial approximations. The in-
tegral of such polynomial functions can be computed exactly using an appropriate
quadrature rule. Therefore, the coefficients λ of the approximation in (6a) can be ob-
tained using Newton iterations Abdelmalik et al. (2023) that can be computed exactly.
Remark that rotation invariance is lost when constructing entropy-based closures (see
e.g. Hauck (2011)) due to non-exact integration while the present choice of polynomial
approximation allows to compute the integrals exactly.

For the model to possess a convex entropy dissipated, we still need this approxima-
tion to be monotonically increasing. Therefore, we require

β′ > 0.
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4.1. Taylor expansion

A first idea originated in the observation that the Taylor expansion of the exponential
around zero converges faster (empirically) than the sequence (βK)K∈N. This consists

in writing in the shifted monomial basis b = bK(x) :=
(
1, . . . , (x− x0)

K
)T

TK(x) =

K∑
k=0

αk(x− x0)
k = αTb (8)

where αk = β(k)(x0)
k! for a generic function β. We provide a simple characterization of

monotonically increasing polynomials of this form.

Proposition 4.1. Suppose that β ∈ C2K+2 is such that β(i) ≥ 0 for all 1 ≤ i ≤ 2K+2.
Then the polynomial T2K+1 is monotonically increasing.

Proof. This simply follows from the Taylor formula with remainder of the derivative
of f : there exists ξ ∈ [x, x0] such that

β′(x)− T ′
2K+1(x) =

β(2K+2)(ξ)

(2K + 2)!
(x− x0)

2K+1,

which is negative for x < x0. Therefore, for x ≤ x0

2n∑
i=0

f (i+1)(x0)

i!
(x− x0)

i ≥ f ′(x) ≥ 0.

The derivative T ′
2K+1(x) is also positive for x > x0, then it is monotonically increasing.

All the derivatives of the exponential βBS = exp are positive, then it satisfies this
property and the polynomial

T2K+1(x) =

2K+1∑
k=0

ex0

k!
(x− x0)

k

is monotonically increasing for odd degree 2K + 1. The convergence radius of this
sequence is infinite. Therefore, we have convergence of the approximation toward the
desired results for all x ∈ R

T2K+1(x) −→
K−→∞

exp(x).

Concerning the Planck function βBE minimizing the Bose-Einstein entropy, it reads
for x ∈ R∗,−

βBE(x) =
1

e−x − 1
> 0,

and one verifies that its derivative satisfies β′
BE = (1+βBE)βBE such that all the suc-

cessive derivatives of βBE are polynomials in βBE with positive coefficients. Especially,
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those derivatives are all strictly positive for all x ∈ R∗,− since βBE > 0. Therefore,
the polynomial T2K+1 of odd degree with the Planck function are also monotonically
increasing. The convergence radius δ of this sequence remains bounded and it depends
on the chosen point of expansion x0. This radius δ < |x0| since the function βBE is
singular in zero (and undefined after). Therefore, we only have convergence of the
approximation toward the desired results for all x ∈ (x0 − δ, x0 + δ) ⊊ R∗,−

T2K+1(x) →
K→∞

βBE(x).

Especially, we do not have convergence T2K+1(x) ̸→
K→∞

βBE(x) for all points x < 2x0.

These are illustrated numerically in Section 4.3 below, which even exhibit divergence
for such values of x.

4.2. Optimized parameters

Another idea is to minimize the L2 difference between the function β to approximate
(βBS or βBE) and the polynomials of a given degree, with the constraint that the poly-
nomials must be monotonically increasing. This can be mathematically represented as

O2K+1 = argmin
p∈P2K+1

1

2

∫ b

a
|p(x)− β(x)|2 dx, (9)

subject to p′(x) ≥ 0, ∀x ∈ R.

4.2.1. Reformulation of the approximation

In order to enforce the constraint, we use the fact that all non-negative one-variable
polynomials can be represented as the sum of two squares, one of which has a lower
degree than the other (Lasserre (2009); Schmuedgen (2017); Szegö (1939)). Thus, the
derivative of the polynomial O2K+1(x) has the form:

O′
2K+1(x) = (a0 + a1x+ · · ·+ aKxK)2 + (b0 + b1x+ · · ·+ bK−1x

K−1)2.

Integrating this equation gives

O2K+1(x) = C +

K∑
i=0

K∑
j=0

(aiaj + bibj)
xi+j+1

i+ j + 1

= C +

K+1∑
n=1

n−1∑
i=0

(aian−1−i + bibn−1−i)
xn

n

+

2K+1∑
n=K+2

K∑
i=n−1−K

(aian−1−i + bibn−1−i)
xn

n
,

(10)

where we assumed bK = 0. With this form of O2K+1, we can turn the optimization
problem into an unconstrained optimization problem. For simplicity, we define inter-
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mediate parameters

α0 = C, αn =
1

n

min(k,n−1)∑
i=max(0,n−1−k)

(aian−1−i + bibn−1−i), n = 1, · · · , 2K + 1,

so that αn is the n-th coefficient of the polynomial O2K+1. Let

w = (C, a0, · · · , aK , b0, · · · , bK−1)
T , α(w) = (α0, α1, · · · , α2K+1)

T .

Then the Jacobian matrix J = ∂α/∂w has the following form:

J =

(
1 0 0
0 2A 2B

)
,

where

A =



a0 0 . . . . . . 0

a1

2
a0

2 0
...

a2

3
a1

3
a0

3

. . .
... a2

4
a1

4

. . .
. . .

...
...

... a2

5

. . .
. . . 0

aK

K+1

...
...

. . .
. . . a0

K+1

0 aK

K+2

...
. . . a1

K+2
...

. . . aK

K+3
a2

K+3
. . .

. . .
...

. . .
...

. . . aK

2K+1
0

...
...

0 . . . · · · 0



, B =



b0 0 . . . . . . 0

b1
2

b0
2 0

...

b2
3

b1
3

b0
3

. . .
... b2

4
b1
4

. . .
. . .

...
...

... b2
5

. . .
. . . 0

bK−1

K

...
...

. . .
. . . b0

K

0 bK−1

K+1

...
. . . b1

K+1
...

. . . bK−1

K+2
b2

K+2
. . .

. . .
...

. . .
...

. . . bK−1

2K−1
0

...
...

0 . . . · · · 0



.

To solve the optimization problem, we first reformulate the objective function w 7→
f(α(w)) as a function of the intermediate parameters α:

f(α) =
1

2

∫ b

a

∣∣∣∣∣
2K+1∑
n=0

αnx
n − β(x)

∣∣∣∣∣
2

dx

=
1

2
αTMα− βTα+

1

2

∫ b

a
β(x)2 dx.

Note that the value of the last integral does not matter in our optimization problem,
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and the matrix M and the vector β are given by

Mi,j =
bi+j+1 − ai+j+1

i+ j + 1
, βj =

∫ b

a
xjβ(x)dx.

In the case of the exponential β = βBS , the second coefficient rewrites

βj = (−1)j [Γ(j + 1,−b)− Γ(j + 1,−a)] ,

where the incomplete Γ function is well-implemented in standard numerical libraries.
In the case β = βBE , the integral can be represented using the polylogarithmic function
Lis(z):

βj =

j∑
k=0

(−1)j+kj!

k!

[
bk Lij+1−k(e

b)− ak Lij+1−k(e
a)
]
.

4.2.2. Details on the numerical computations

The minimum of f(α(w)) is attained where the gradient anihilates. Then we need to
solve the nonlinear system ∇wf(α(w)) = 0, or

[J(w)]TMα(w) = 0. (11)

Since J(w) is linear and α(w) is quadratic, these are actually cubic equations in w.
In the following, we compute numerically some parameters w and α(w) by using

Newton’s method for (11). Note that the f(α(w)) is a quartic function which is infinity
in infinity, but it might not be convex at all w ∈ R2K+2, and it may possess several
local extrema. Therefore, we cannot guarantee the convergence of Newton’s method
toward a global minimum. In practice, we choose 500 initial values of w randomly and
pick the final solution with the minimum value of the objective function.

Using the density of the (positive) polynomials in L2, we obtain that this approxi-
mation converges in L2(a, b) toward the desired β function. However, the convergence
is again restricted to the chosen interval (a, b) and we can not guarantee convergence
out of it. These are illustrated numerically in the next paragraph.

4.3. Comparing the monotonic polynomial approximations

4.3.1. Approximation for the Boltzmann-Shannon entropy

The approximations of the exponential βBS are compared in Fig. 2 for different degrees
2K + 1. The point of expansion is chosen to be x0 = 0 for the Taylor approximation
and the range for the optimized approximation is [−L,L] with L = 1, 3, 5. In general,
by comparing the β2K+1 model and the T2K+1 model, the β2K+1 model gives a better
approximation for x ∈ R∗,−, while the T2K+1 model does better for x ∈ R∗,+. For the
optimized approximation, the function depends on the choice of the range [−L,L].
As expected, when K is fixed, the function is approximated within the range [−L,L]
for smaller values of L. It balances the quality of the approximation for both the
negative and positive parts, and generally looks better than both β2K+1 and T2K+1 in
the plots with linear scales (left panel of Fig. 2). Similar phenomena can be observed
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in Fig. 3, where all the results for the optimized approximation are given for L = 5.
The log plots show a clear difference between the O2K+1 model and the β2K+1 and
T2K+1 models: for the latter, the entire approximation is below the exact exponential
function, whereas the O2K+1 approximation oscillates around the exponential, which
is a typical behavior in spectral approximations.

Another interesting phenomenon that can be observed from Fig. 2 is that the O2K+1

approximation seems to have a good capability in extrapolations. For instance, the red
curve in Fig. 2f is computed by minimizing the L2 distance (9) only on the interval
[−1, 1], but this approximation is also quite accurate for x ∈ [−3, 5]. Since the choice
of the approximation range usually depends on some preliminary estimation of the
problem, this property allows us to use the O2K+1 approximations without too much
worries about the function values out of the chosen range in actual simulations.
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Figure 2.: β2K+1, Taylor T2K+1 and optimized O2K+1 approximations of the exponen-
tial function βBS .

Fig. 4 plots the L2(−L,L) difference between the exponential function βBS and the
O2K+1 approximations. Unsurprisingly, the error increases as L increases and decreases
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Figure 3.: β2K+1, Taylor T2K+1 and optimized O2K+1 approximations of the exponen-
tial function βBS .

as K increases. For a fix L, the gaps between lines are nearly the same, showing the
spectral convergence rate with respect to K. When L gets larger, the gap becomes
narrower, indicating slower convergence. For a fixed K, the figure implies that the
error increases in the form of Lα for a certain value of α depending on K.

4.3.2. Approximation for the Bose-Einstein entropy

Similar experiments are done for the Planckian βBE . The results are plotted in
Fig. 5 and 6. Since the function is defined only for negative values, we choose the
range of approximation to be [−L,−1/L] with L = 2, 6, 10. In Fig. 5, three differ-
ent choices of x0 are considered for the Taylor expansion, and the choices are made
with x0 = −(L + 1/L)/2, which is the center of the interval [−L,−1/L] used in
the O2K+1 approximation. The general behavior is similar to the case of Boltzmann-
Shannon entropy: the optimized approximation fits the Planckian better within the
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Figure 4.: Error plot for the O2K+1 approximations of the exponential function βBS

range [−L,−1/L], but it may perform worse than the Taylor approximation out of this
interval. The convergence with respect to K can be better observed in Fig. 6, where
all Taylor series are expanded about the same point x0 = −3.08333, and the value of
L is fixed to be 6 for all optimized approximations. Compared with Taylor approx-
imations, the optimized approach better approximates the part with larger function
values, which suppresses the L2 error more efficiently. Note that both the T2K+1 and
O2K+1 approximations are increasing functions across the entire real axis R, despite
the seemingly oscillatory behavior of O2K+1 functions.

The L2(−L,−1/L) error of the O2K+1 approximation for different K and L is given
in Fig. 7, where we can again observe the spectral convergence with respect to K for
fixed L, and the convergence rates are lower for larger intervals. Comparing Fig. 7
with Fig. 4, we can find that the L2 error for the Bose-Einstein entropy is significantly
larger. This is likely due to the singularity of the Planckian at zero. No polynomial
possesses the same property, making the function more difficult to approximate using
polynomials. The exponential function, however, tends to infinity only when x tends
to infinity, which all polynomials with positive leading coefficients also satisfy.

5. Numerical approximation of specific distributions

To complete this study, we reproduce simulations from Abdelmalik et al. (2023) with
the different approximations and compare their results. These consist in approximat-
ing distributions that correspond to physical regime, namely a near-beam distribution,
a distribution corresponding to two beams crossing each others, and smooth distribu-
tions.

Finding the approximation requires solving the moment inversion problem:∫
S2

m(Ω)β(λTm(Ω)) dΩ = U, (12)

for a given vector of moments U of specific distributions. The vector function m(Ω) is
chosen as all real spherical harmonics up to a certain degree N . Here the function β(·)
is either the β2K+1, T2K+1 or O2K+1 approximation of the exponential function βBS ,
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Figure 5.: Taylor T2K+1 and optimized O2K+1 approximations of the Planckian βBE .

and either the T2K+1 or O2K+1 approximation of the Planckian βBE . The right-hand
side U is given by the moments of a given function, which means we first choose a
function I(Ω), and then set

U =

∫
S2

m(Ω)I(Ω) dΩ.

After solving λ from (12), the function β(λTm(Ω)) is regarded as an approximation
of I(Ω). For clarification, we will add the subscript N to the name of the model to
denote the moment method, the first subscript N refers to the moment order and the
second 2K+1 to the degree of the polynomial approximation β2K+1, T2K+1 or O2K+1.
For example, if we use spherical harmonics up to degree N in Ω and choose β(·) to be
T2K+1, the model is denoted as TN,2K+1. Similarly, we will also consider the βN,2K+1

and ON,2K+1 models below.
The equation (12) is solved by Newton’s method, for which we need to compute the
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Figure 6.: Taylor T2K+1 and optimized O2K+1 approximations of the Planckian βBE .
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Figure 7.: Error plot for the O2K+1 approximations of the exponential function βBS

Jacobian ∫
S2

m(Ω)[m(Ω)]Tβ′(λTm(Ω)) dΩ.

Since the integrand is a polynomial of Ω, the integral can be computed exactly using
appropriate integration formulas. Here we adopt the Lebedev quadrature (Lebedev
(1976); Lebedev and Laikov (1999)) as in Abdelmalik et al. (2023). The number of
quadrature points is chosen such that the degree of the quadrature is no less than the
degree of the polynomial.
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5.1. Single beam approximation

In this section, we apply these approximate entropy models in the approximation of
a single beam. Since all the models are rotationally invariant, the direction of the
beam does not affect the result. For simplicity, we consider the approximation of the
Dirac-delta function

I(Ω) = δ(Ω− Ω0),

where Ω0 = (0, 0, 1)T . Some approximations for the Boltzmann-Shannon entropy with
N = 1 and K = 2 are given in Fig. 8. The plots show that the β1,5 model gives a
remarkably better result than the T1,5. This is not surprising because the value of the
approximate function is all below 1.0, which corresponds to exp(x) with a negative x,
where the β1,5 model can give a better approximation. The quality of the O1,5 model
shown in Fig. 8c then lies in-between, since it approximates the exponential on the
interval [−5, 5], which balances both the positive and the negative parts. In order to
improve the result, we can shift the domain to the negative side as in Fig. 8d, so that
a result similar to the β1,5 model can be obtained.

(a) β1,5 (b) T1,5, B-S entropy, x0 = 0

(c) O1,5, B-S entropy, [−5, 5] (d) O1,5, B-S entropy, [−10, 0]

Figure 8.: Approximation of a single beam using different models approximating the
result of the maximum Boltzmann-Shannon entropy.

Similar phenomena can be observed when the approximation of the Bose-Einstein
entropy is applied. The results are plotted in Fig. 9. For both T1,2K+1 and O1,2K+1

models, the approximate intensity function is closer to I(Ω) if the parameters are
chosen to fit the range of the function values.
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(a) T1,5, B-E entropy, x0 = −2.6 (b) T1,5, B-E entropy, x0 = −5.5

(c) O1,5, B-E entropy, [−5,−0.2] (d) O1,5, B-E entropy, [−10,−1]

Figure 9.: Approximation of a single beam using different models approximating the
result of the maximum Bose-Einstein entropy.

All the results above are only for N = 1 and K = 2. To improve the results, we can
increase either N or K. Fig. 10 includes some results for K = 6. Increasing the value of
K from 2 to 6 does provide improved result for all other parameters, but the beam is
still widely spread for all cases. A more efficient way to get improvement is to increase
N from 1 to 3. The results shown in Fig. 11 exhibit much sharper beams compared with
all previous results, and the functions are mostly positive except the Taylor model with
x0 = 0. In this test case, the optimized model shows the highest peak value for both
types of entropy. Meanwhile, all these results show that the βN,2K+1 model studied
in Abdelmalik et al. (2023) is also a good choice for problems involving beams when
the Boltzmann-Shannon entropy is considered. However, this model does not have a
counterpart for the Bose-Einstein entropy.

5.2. Double beam approximation

We now considers the approximation of the following function:

I(Ω) = δ(Ω− Ω1) + δ(Ω− Ω2),

which often occurs when two beams cross each other. Here we focus only on the
TN,2K+1 and ON,2K+1 models, and we refer the readers to Abdelmalik et al. (2023)
for results of the βN,2K+1 models.
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(a) β1,13 (b) T1,13, B-S entropy, x0 = 0

(c) T1,13, B-S entropy, x0 = −5 (d) O1,13, B-S entropy, [−10, 0]

(e) T1,13, B-E entropy, x0 = −5.5 (f) O1,13, B-E entropy, [−10,−1]

Figure 10.: Approximation of a single beam using different models

Since there are two beams in the intensity function, a model with N = 1 cannot
give a meaningful approximation. In our experiments, we choose Ω1 = (0, 0, 1)T , Ω2 =
(1, 0, 0)T and use N = 3 and N = 9 in the approximation. Other parameters are chosen
to be the better combination in the previous subsection. In particular, the value of K
is fixed to be 2 in all our examples.

For N = 3 (see Fig. 12), the two Taylor models give quite similar results. The two
beams are correctly detected with correction locations, and they are both smeared
out due to the smooth approximation. The two optimized results provide sharper
beams, as the peak value of the distribution is higher. Negative values can still be
spotted near the point (0,−1, 0)T , which can be improved by increasing N or K. Here
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(a) β3,5 (b) T3,5, B-S entropy, x0 = 0

(c) T3,5, B-S entropy, x0 = −5 (d) O3,5, B-S entropy, [−10, 0]

(e) T3,5, B-E entropy, x0 = −5.5 (f) O3,5, B-E entropy, [−10,−1]

Figure 11.: Approximation of a single beam using different models

we only perform experiments with N = 9, which can be found in Fig. 13. The two
bright spots are much more pointy than the results of N = 3, and the peak values are
now significantly higher. Again, the ON,2K+1 models perform slightly better than the
TN,2K+1 models for both types of entropy.

5.3. Approximating smooth functions

We now consider the the approximation of smooth functions and hope to observe
spectral convergence. We take the six-Gaussian function considered in Abdelmalik
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(a) T3,5, B-S entropy, x0 = −5 (b) O3,5, B-S entropy, [−10, 0]

(c) T3,5, B-E entropy, x0 = −5.5 (d) O3,5, B-E entropy, [−10,−1]

Figure 12.: Approximation of a double-beam function using different models.

et al. (2023):

I(Ω) =

6∑
k=1

exp
(
−5∥Ω− Ωk∥2

)
,

where

Ω1 = (1, 0, 0)T , Ω2 = (−1, 0, 0)T , Ω3 = (0, 1, 0)T ,

Ω4 = (0,−1, 0)T , Ω5 = (0, 0, 1)T , Ω6 = (0, 0,−1)T .

This function and its approximation using the β5,5 model are plotted in Fig. 14. It can
be seen that the β5,5 approximation overestimates the peak value. Fig. 15 shows some
approximations based on the Boltzmann-Shannon entropy. It can be seen by naked
eyes that the O5,5 model defined by optimization on [−5, 5] gives the best result.

Fig. 16 shows the error decay as N increases. Although all methods provide spectral
convergence, the choice of parameters does affect the convergence rate. In this example,
the ON,5 model optimized on [−10, 0] and the TN,5 model with x0 = −5 have similar
performance, which is worse than the ON,5 model optimized on the interval [−5, 5]
but better the TN,5 model with x0 = 0. Note that the convergence rate of these
models is not determined by the quality of approximation to the β function. This is
also observed in Abdelmalik et al. (2023), where the PN (which corresponds to βN,1)
model has the best convergence rate among all βN,K models, although the βN,1 model
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(a) T9,5, B-S entropy, x0 = −5 (b) O9,5, B-S entropy, [−10, 0]

(c) T9,5, B-E entropy, x0 = −5.5 (d) O9,5, B-E entropy, [−10,−1]

Figure 13.: Approximation of a double-beam function using different models.

(a) Six-Gaussian function (b) β5,5 approximation

Figure 14.: The six-Gaussian function and its β5,5 approximation.

only approximates the exponential function by ex ≈ 1 + x, which is a poor fit. Here
we conjecture that the ON,5 model optimized on [−5, 5] has a better convergence rate
because the function O5(x) is relatively closer to a linear function with slope 1 for
a certain range on the negative part of the domain (see Fig. 16b). We focus on the
negative part because the value of I(Ω) is mostly between 0 and 1. This means the ON,5

model optimized on [−5, 5] is likely to be closer to the PN model when approximating
this function.

Now we test the performance of the methods based on the Bose-Einstein entropy.
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(a) T5,5, B-S entropy, x0 = 0 (b) O5,5, B-S entropy, [−5, 5]

(c) T5,5, B-S entropy, x0 = −5 (d) O5,5, B-S entropy, [−10, 0]

Figure 15.: Approximations of the six-Gaussian function based on the Boltzmann-
Shannon entropy.
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Figure 16.: Error decay for approximations of the six-Gaussian function based on the
Boltzmann-Shannon entropy and the corresponding approximations of the exponential
function

The results are shown in Fig. 17. It can be seen that the spectral convergence is ob-
served for three models except the ON,5 method optimized on the interval [−5,−0.2].
This is likely due to the flatness of the O5 function on the interval from [−2.5,−1.5]
caused by enforcing good approximations in the region closer to zero where the Planck-
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ian has larger values. This can be improved by slightly shifting the upper bound of the
domain. Fig. 17a gives the result for ON,5 method optimized on [−5,−0.5], where a
much better convergence rate is obtained. Nevertheless, since the choice of the domain
is not optimized, the numerical error is still significantly larger than other lines in
Figure 17a.
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Figure 17.: Error decay for approximations of the six-Gaussian function based on
the Bose-Einstein entropy and the corresponding approximations of the exponential
function
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Figure 18.: Error decay for approximations of the six-Gaussian function based on the
Bose-Einstein entropy

6. Conclusion

We have shown that the moment approximation developed in Abdelmalik et al. (2023)
is flexible enough to be adapted to dynamical models dissipating various types of en-
tropies. Especially, this construction is shown to be suitable to construct a closure dis-
sipating an approximation of a chosen physical entropy such as Boltzmann-Shannon’s
or Bose-Einstein’s entropy. In this work, the closure is constructed using polynomials
so that the integration can be carried out exactly in the moment inversion prob-
lem. Such an extension introduces many parameters to the approximate models. It is
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demonstrated by numerical tests that the quality of the moment closure depends on
the choice of these parameters, but in most cases, decent results can be obtained by
optimizing the distance between the polynomial and the physical entropy. In our fu-
ture work, we are going to further study their performance by applying these moment
models to the radiative transfer equation with interaction with matter.
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