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ON NONLINEAR EFFECTS IN MULTIPHASE WKB ANALYSIS

FOR THE NONLINEAR SCHRÖDINGER EQUATION

RÉMI CARLES

Abstract. We consider the Schrödinger equation with an external potential
and a cubic nonlinearity, in the semiclassical limit. The initial data are sums
of WKB states, with smooth phases and smooth, compactly supported initial
amplitudes, with disjoint supports. We show that like in the linear case, a
superposition principle holds on some time interval independent of the semi-
classical parameter, in several régimes in term of the size of initial data with
respect to the semiclassical parameter. For large data, we invoke properties of
compressible Euler equations. For smaller data, we show that there may be no
nonlinear interferences on some time interval independent of the semiclassical
parameter, and interferences for later time, thanks to explicit computations
available for particular phases.

1. Introduction

1.1. Setting. We consider the cubic defocusing Schrödinger equation on Rd, d > 1,
in the semiclassical régime

iε∂tψ
ε +

ε2

2
∆ψε = V ψε + |ψε|2ψε.

The potential V = V (x) is supposed real-valued, smooth, and at most quadratic:

(1.1) V ∈ C∞(Rd,R), ∂αV ∈ L∞(Rd), ∀α ∈ N
d, |α| > 2.

Typical examples are V = 0, V linear (V (x) = E ·x), V harmonic (V (x) = ω2|x|2),
V ∈ S(Rd), or any sum of such potentials. As initial data, we consider the sum of
WKB states:

ψε(0, x) = εγ/2
N∑

j=1

αj(x)e
iϕj(x)/ε,

with γ > 0. The value of γ measures the size of the initial data, and thus the
importance of nonlinear effects in the semiclassical limit ε → 0. The case γ = 0 is
supercritical in terms of WKB analysis: the evolution of the phase describing the
rapid oscillation is given by an eikonal equation which involves the leading order
amplitude, and a standard application of the WKB asymptotic expansion leads to
systems which are not closed, no matter how many correcting terms are considered
(see e.g. [5, Chapter 1] or [11]).
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BY public copyright license has been applied by the author to the present document and will
be applied to all subsequent versions up to the Author Accepted Manuscript arising from this
submission.
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2 R. CARLES

In order to consider solutions of size O(1) in terms of ε, we consider the unknown
function uε = ε−γ/2ψε instead of ψε, where uε thus solves

(1.2) iε∂tu
ε +

ε2

2
∆uε = V uε + εγ |uε|2uε,

with initial data

(1.3) uε(0, x) = uε0(x) :=

N∑

j=1

αj(x)e
iϕj(x)/ε.

The assumptions regarding the initial data are listed below:

Assumption 1.1. The phases are smooth and real-valued, ϕj ∈ C∞(Rd,R). The

initial amplitudes are smooth and compactly supported: αj ∈ C∞
0 (Rd,C), with pair-

wise disjoint supports,

suppαj1 ∩ suppαj2 = ∅, j1 6= j2.

The case N = 1, referred to as monokinetic case, is well understood for short

time, as we recall below, in the sense that the asymptotic behavior of uε as ε → 0
is described precisely, locally in time on some interval independent of ε. The large
time behavior is, in general, unknown; the one-dimensional case, with V = 0, is
an exception, since it is completely integrable, see e.g. [16, 27]. Consider the
case γ = 0. When V ≡ 0, the leading order asymptotic description involves the
compressible Euler equation

(1.4)

{
∂tρ+ div (ρv) = 0,

∂tv + v · ∇v +∇ρ = 0.

This equation is quasilinear, while (1.2) is semilinear (the nonlinear term is viewed
as a perturbation when solving the Cauchy problem). In Section 2, we recall how
to justify, in this case, the existence of a WKB approximation of the form

uε(t, x) =
(
a(t, x) + εa1(t, x) + . . .+ εkak(t, x)

)
eiφ(t,x)/ε +O

(
εk+1

)
,

in L∞([0, T ], L2 ∩ L∞(Rd)), for all k > 0, for some T > 0 independent of ε. We
choose to measure errors in L2∩L∞ in the spatial norm, in order to avoid to intro-
duce ε-dependent norms when derivatives are involved, due to rapid oscillations.
This time T can be taken as the lifespan of the smooth solution to the Euler equa-
tion (1.4) with suitable initial data. When N > 2, the new question arising is the
nonlinear interaction of the WKB states. As the problem is supercritical, even a
formal computation is a delicate issue: if we plug an approximate solution of the
form

uεapp(t, x) =

M∑

j=1

bj(t, x)e
iφj(t,x)/ε

into (1.2), how do we choose M (possibly infinite), and which equations must be
satisfied by the amplitudes bj and the phases φj? Surprisingly enough, it turns out
that as long as the solutions of the Euler equations, involved in the description of
each individual initial WKB state, are smooth, there is no interaction, at arbitrary
order in terms of powers of ε.
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Remark 1.2 (Infinitely many states). The case N = ∞ may also be addressed,
under suitable assumptions on the growth in space of the phases φj compared to
the size of the support of αj , as j → ∞. More precisely, as will be clear from the
proof of the main result, we can consider the case N = ∞ provided that we may
find cutoff functions χj so that

φ0 =

∞∑

j=1

ϕjχj ∈ H∞(Rd) := ∩s>0H
s(Rd),

or at least in a weaker form if φ0 ∈ Hs(Rd) for some s > 2+d/2. Another constraint,
in this case, is that we have to find a common lower bound for the lifespan of all the
approximate solutions (φj , aj) considered below, an aspect which is obvious when
N is finite, since we consider the minimum of a finite set.

1.2. Main results. The nonlinear evolution of each initial WKB state will play a
crucial role:

(1.5) iε∂tu
ε
j +

ε2

2
∆uεj = V uεj + εγ |uεj |2uεj ; uj|t=0 = αje

iϕj/ε.

Under our assumptions, for fixed initial data, we know that:

• If d 6 3, the equation is energy-subcritical, and for fixed ε > 0, there exists
a unique solution uε ∈ L∞(R;H1(Rd)), and it is smooth. See e.g. [8].

• If d = 4, the equation is energy-critical: the above conclusion is known
to remain when V = 0 ([29]), when V is an isotropic quadratic potential
([17]), or when V is harmonic at infinity ([15]).

• If d > 5, the equation is energy-supercritical: only a local in time smooth
solution is known to exist by classical theory.

In the cases where the global existence of a smooth solution is not known, the local
existence time might go to zero as ε→ 0, so the existence of a smooth solution on
a time interval independent of ε > 0 is already a nontrivial step. The description of
the solutions uεj as ε→ 0 on some time interval [0, Tj] independent of ε was evoked

above, and is recalled in Sections 2 (case V = 0) and 3 (V satisfying (1.1)). Our
main result is the following nonlinear superposition principle:

Theorem 1.3. Let d > 1, V satisfying (1.1), γ > 0, and initial data satisfying

Assumption 1.1. There exists T ∗ > 0 independent of ε ∈]0, 1] such that (1.2)-(1.3)
has a unique solution uε ∈ C([0, T ∗], H∞(Rd)). In addition,

sup
t∈[0,T∗]

∥∥∥∥∥∥
uε(t)−

N∑

j=1

uεj(t)

∥∥∥∥∥∥
L2∩L∞

= O
(
εk
)
, ∀k > 0,

where uεj is the solution of (1.5).

Let us discuss this result in the supercritical case γ = 0, as it is the case where
Theorem 1.3 may be the most surprising. The result follows from a detailed WKB
analysis, as well as a property of finite speed of propagation for the compressible
Euler equation, discovered initially in [21]. The key feature of our setting is the
compact, disjoint supports of the initial amplitudes αj . In the case V = 0, as long
as WKB analysis is valid for each uεj in (1.5), uεj remains supported in (essentially)

suppαj up to O(ε∞): all the amplitude terms of the WKB expansion (at leading
order, as well as correctors at arbitrary order) remain compactly supported, and
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amplitudes associated with uεj1 and uεj2 , respectively, with j1 6= j2, do not interact.
In the case V 6≡ 0, uεj remains supported in suppαj evolving according to the
classical flow generated by V , up to O(ε∞). In other words, we recover the same
phenomenon, regarding the evolution of supports, as in the linear case (see e.g.
[22, 28]), even though the régime associated to (1.2) is strongly nonlinear (of course
Theorem 1.3 is trivial in the linear case, as uε ≡ ∑

uεj). In particular, the initial
modes cannot interact at a “visible” order before WKB analysis for at least one of
the uεj ’s ceases to be valid, that is, before the solution of the corresponding Euler

equation (1.4) breaks down (see however Section 5 for a discussion on the influence
of our proof strategy on this statement). Recent progress on this precise question,
[24, 25, 3] (see also [23] for a relation with the nonlinear Schrödinger equation),
suggests that the expected scenario is rather that of an implosion: the conclusion
of Theorem 1.3 might remain valid even after WKB has ceased to be valid.

Remark 1.4 (Wigner measures). Since the proof of Theorem 1.3 relies on WKB
analysis, it also implies the characterization of Wigner measures. Recall that the
Wigner transform of uε is defined by

wε(t, x, ξ) = (2π)−d

∫

Rd

uε
(
t, x− ε

η

2

)
uε
(
t, x+ ε

η

2

)
eiη·ξdη.

The position and current densities can be recovered from wε, by

|uε(t, x)|2 =

∫

Rd

wε(t, x, ξ)dξ,

Im (εuε∇uε) (t, x) =
∫

Rd

ξwε(t, x, ξ)dξ.

Ameasure µ is a Wigner measure associated to uε (there is no uniqueness in general)
if, up to extracting a subsequence, wε converges to µ as ε→ 0 (see e.g. [12, 19]). In
the context of Theorem 1.3, each wave function uεj has a unique Wigner measure,
and the sum of these Wigner measures is the Wigner measure of uε. For instance,
if V = γ = 0,

µ(t, dx, dξ) =

N∑

j=1

ρj(t, x)dx ⊗ δξ=vj(t,x),

where (ρj , vj) solves (1.4) with initial data (ρj , vj)|t=0 = (|αj |2,∇(χjϕj)), and

χj ∈ C∞
0 (Rd, [0, 1])) is (any function) such that χj ≡ 1 on the support of αj . See

Section 5 for the dependence of this statement upon χj .

The next result shows that in the weakly nonlinear case γ = 1, some explicit
information is available, in the sense that indeed, nonlinear interferences are neg-
ligible on some time interval [0, T0] with T0 > 0 independent of ε, while nonlinear
interferences occur later.

Proposition 1.5. Let d > 1. There exist k1, k2 ∈ Rd, and α1, α2 ∈ C∞
0 (Rd) with

disjoint supports, such that the following holds. There exist T1 > 0 and T0 ∈ (0, T1)
independent of ε, such that the solution to

(1.6) iε∂tu
ε +

ε2

2
∆uε = ε|uε|2uε ; uε0(x) = α1(x)e

ik1·x/ε + α2(x)e
ik2·x/ε,
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satisfies

sup
t∈[0,T0]

∥∥∥∥∥∥
uε(t)−

2∑

j=1

uεj(t)

∥∥∥∥∥∥
Lp

= O
(
εk
)
, ∀k > 0, ∀p ∈ [2,∞],

and

lim inf
ε→0

sup
t∈[0,T1]

∥∥∥∥∥∥
uε(t)−

2∑

j=1

uεj(t)

∥∥∥∥∥∥
Lp

> 0, ∀p ∈ [2,∞].

The proof of Proposition 1.5 relies on explicit computations available in this
weakly nonlinear case, and the fact that for linear oscillations, no caustic appears
in the case of a single WKB state: the nature of nonlinear interferences is shown in
Section 6, and consists of nonlinear phase modulations. In an appendix, we give an
alternative argument illustrating another type of nonlinear interferences at leading
order, consisting of the creation of a new mode (when d > 2): starting from three
WKB states, a fourth one, associated with a new phase, may appear by resonant
interaction.

1.3. Content. In Section 2, we recall the WKB construction introduced in [14] for
the case γ = 0, and emphasize the finite speed of propagation which appears in our
framework. In Section 3, we explain how to adapt the previous approach to the
case where V satisfies (1.1), and address the case γ > 0. In Section 4, we complete
the proof of Theorem 1.3. Section 5 clarifies the role of the cutoff functions used
in the proof of Theorem 1.3. Propositions 1.5 is established in Section 6. In an
appendix, we propose an alternative proof of Proposition 1.5, in the case d > 2
with N = 3, showing that there are several sorts of nonlinear interferences in the
weakly nonlinear case.

2. The monokinetic case without potential

In this section, we consider (1.2)-(1.3) in the monokinetic N = 1, and in the
supercritical case γ = 0, with slightly different notations for future reference:

(2.1) iε∂tu
ε +

ε2

2
∆uε = |uε|2uε ; uε|t=0 = a0e

iφ0/ε.

In view of the setting of this paper, we assume a0, φ0 ∈ C∞
0 (Rd). In particular,

a0, φ0 ∈ H∞(Rd). We first consider the case V ≡ 0, then introduce the main ideas
that make it possible to incorporate a subquadratic potential V .

We recall the main steps to the construction introduced in [14] (see also [5,
Section 4.2]). The idea introduced in [14] consists in writing the solution to (2.1)
as

(2.2) uε(t, x) = aε(t, x)eiφ
ε(t,x)/ε,

with aε complex-valued and φε real-valued, solving

(2.3)





∂tφ
ε +

1

2
|∇φε|2 + |aε|2 = 0, φε|t=0 = φ0,

∂ta
ε +∇φε · ∇aε + 1

2
aε∆φε = i

ε

2
∆aε, aε|t=0 = a0.
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The key remark is that this leads to a symmetric hyperbolic system, perturbed
be a skew-symmetric term. The hyperbolic system appears when considering the
unknown

Uε =



Re aε

Im aε

∇φε


 =



Re aε

Im aε

vε


 .

Considering the gradient of the first equation in (2.3), the system can be written

(2.4) ∂tU
ε +

d∑

j=1

Aj(U
ε)∂jU

ε = εLUε,

with

A(Uε, ξ) =
d∑

j=1

Aj(U
ε)ξj =




vε · ξ 0 1
2 Rea

ε tξ
0 vε · ξ 1

2 Im aε tξ
2Reaε ξ 2 Imaε ξ vε · ξId


 ,

and

L =




0 −∆ 0 . . . 0
∆ 0 0 . . . 0
0 0 0d×d


 .

To be precise, the system is made symmetric thanks to the constant symmetrizer

S =

(
I2 0
0 1

4 Id

)
.

Once vε is known, one recovers φε by integrating in time the first equation in (2.3),

φε(t, x) = φ0(x)−
1

2

∫ t

0

|vε(s, x)|2ds−
∫ t

0

|aε(s, x)|2ds,

and since ∂t(v
ε − ∇φε) = 0, vε = ∇φε. Assuming that a0,∇φ0 ∈ Hs(Rd) for s

large (we will always assume a0, φ0 ∈ C∞
0 (Rd) in the forthcoming applications), the

limit ε→ 0 leads to an asymptotic expansion of the form

φε ∼ φ+ εφ(1) + ε2φ(2) + . . . , aε ∼ a+ εa(1) + ε2a(2) + . . .

The leading order term is obtained by simply setting ε = 0 in (2.4):

(2.5)





∂tφ+
1

2
|∇φ|2 + |a|2 = 0, φ|t=0 = φ0,

∂ta+∇φ · ∇a+ 1

2
a∆φ = 0, a|t=0 = a0.

Working with the intermediary unknown v = ∇φ, we get a system of the form

∂tU +
d∑

j=1

Aj(U)∂jU = 0,

and we infer the following result from [21]:

Proposition 2.1. Let a0, φ0 ∈ C∞
0 (Rd), with supp a0, suppφ0 ⊂ K. There exists

T∗ > 0 and a unique solution (φ, a) ∈ C([0, T∗], H
∞(Rd))2 to (2.5). Moreover,

(φ, a) remains compactly supported for t ∈ [0, T∗], and

suppφ(t, ·), supp a(t, ·) ⊂ K.
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The first part of the statement is a consequence of classical theory for symmetric
hyperbolic systems (see e.g. [2, 20]). The property stated that initial compactly
supported condition lead to a zero speed of propagation is due to the structure
of this hyperbolic system, and is well understood from the simplest model of the
Burgers equation

∂tu+ u∂xu = 0, u|t=0 = u0 ∈ C∞
0 (R).

Suppose we have a smooth solution on some time interval [0, T∗]. In particular,
∫ T∗

0

‖∂xu(t)‖L∞dt <∞.

We have directly, for all (t, x) ∈ [0, T∗]× R,

|∂tu(t, x)| 6 ‖∂xu(t)‖L∞ |u(t, x)|.
Gronwall lemma then shows that if u0(x0) = 0, then u(t, x0) = 0 for all t ∈ [0, T∗],
hence the zero speed of propagation for smooth solutions. As the matrix A(U, ξ) is
linear in U , the result follows in the setting of (2.5). Note that to prove this zero
speed of propagation, we do not invoke the symmetry of A: it was used in order to
get Sobolev estimates (which ensure that U ∈ L1([0, T∗],W

1,∞)), but only the fact
that it is (at least) linear in U is used at this stage. We then have, for the same T∗
as in Proposition 2.1:

Proposition 2.2. Let a0, φ0 ∈ C∞
0 (Rd). There exists T∗ > 0 independent of

ε ∈]0, 1] such that for all s > 0, there exists C = C(s) such that

‖φε − φ‖L∞([0,T∗],Hs(Rd)) + ‖aε − a‖L∞([0,T∗],Hs(Rd)) 6 Cε.

To infer the pointwise description of uε at leading order, we must in addition
know φε up to o(ε), which is achieved by considering the linearization of (2.5). At
the next step of the WKB expansion, we find that

‖φε − φ− εφ(1)‖L∞([0,T∗],Hs(Rd)) + ‖aε − a− εa(1)‖L∞([0,T∗],Hs(Rd)) 6 Cε2,

where the first corrector (φ(1), a(1)) solves the system:




∂tφ
(1) +∇φ · ∇φ(1) + 2Re

(
aa(1)

)
= 0,

∂ta
(1) +∇φ · ∇a(1) +∇φ(1) · ∇a+ 1

2
a(1)∆φ+

1

2
a∆φ(1) =

i

2
∆a,

φ
(1)
|t=0 = 0 ; a

(1)
|t=0 = 0.

At higher order k > 2, the corrector (φ(k), a(k)) is given by:





∂tφ
(k) +∇φ · ∇φ(k) + 2Re

(
aa(k)

)
= Fk

((
∇φ(ℓ)

)

16ℓ6k−1
,
(
a(ℓ)
)

16ℓ6k−1

)
,

∂ta
(k) +∇φ · ∇a(k) +∇φ(k) · ∇a+ 1

2
a(k)∆φ +

1

2
a∆φ(k) =

i

2
∆a(k−1)

−
∑

16ℓ6k−1

∇φ(ℓ) · ∇a(k−ℓ) − 1

2

∑

16ℓ6k−1

a(k−ℓ)∆φ(ℓ),

φ
(k)
|t=0 = 0 ; a

(k)
|t=0 = 0,

for some function Fk which is a polynomial in its arguments, without constant term,
and whose precise expression is unimportant here. The left hand side is always the
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linearization of the left hand side of (2.5) about (φ, a), and the right hand side
depends on previous correctors. We infer (see [14, 5]), by induction:

Proposition 2.3. Let a0, φ0 ∈ C∞
0 (Rd). Let T∗ > 0 given by Proposition 2.1. For

all k > 1, there exists a unique solution (φ(k), a(k)) ∈ C([0, T∗], H
∞(Rd))2 to the

above system, and for all s > 0, there exists C = C(k, s) such that
∥∥∥φε − φ− εφ(1) − . . .− εkφ(k)

∥∥∥
L∞([0,T∗],Hs(Rd))

+
∥∥∥aε − a− εa(1) − . . .− εka(k)

∥∥∥
L∞([0,T∗],Hs(Rd))

6 Cεk+1.

In addition, if supp a0, suppφ0 ⊂ K, then (φ(k), a(k)) remains compactly supported

for t ∈ [0, T∗], and

suppφ(k)(t, ·), supp a(k)(t, ·) ⊂ K.

The support property is a consequence of the same argument as in the proof
of Proposition 2.1. Using the embedding Hs(Rd) ⊂ L∞(Rd) for s > d/2, we also
deduce from the above error estimate the bound, for k > 1:

(2.6)

∥∥∥∥∥u
ε −

(
k−1∑

ℓ=0

εℓa(ℓ)

)
exp

(
i

ε

k∑

ℓ=0

εℓφ(ℓ)

)∥∥∥∥∥
L∞([0,T∗],L2∩L∞(Rd))

= O
(
εk
)
,

with the convention (φ(0), a(0) = (φ, a). The standard form of WKB expansions,

uε(t, x) =
(
a(t, x) + εa1(t, x) + . . .+ εkak(t, x)

)
eiφ(t,x)/ε +OL∞

T∗
(L2∩L∞)

(
εk+1

)
,

is then obtained by setting

a = aeiφ
(1)

, a1 = a(1)eiφ
(1)

+ iaφ(2)eiφ
(1)

, etc.

Remark 2.4 (Higher order nonlinearities). If instead of (2.1), one considers

iε∂tu
ε +

ε2

2
∆uε = |uε|2σuε ; uε|t=0 = a0e

iφ0/ε,

with σ > 2 an integer, then the justification of WKB analysis requires a different
approach. We refer to [1, 9] for two different proofs, which show that the conclusions
of the propositions stated in this section remain valid.

Remark 2.5 (Focusing nonlinearity). If instead of (2.1), one considers a cubic fo-
cusing nonlinearity,

iε∂tu
ε +

ε2

2
∆uε = −|uε|2uε ; uε|t=0 = a0e

iφ0/ε,

then the analogue of (2.5) is no longer hyperbolic, but elliptic. Working with
analytic initial data (φ0, a0) is then necessary in order to solve (2.5) ([18, 26]),
and this is a framework where nonlinear WKB analysis is fully justified ([11, 30]).
However, analyticity is incompatible with an initial compact support. On the other
hand, in the weakly nonlinear case γ = 1 (and more generally if γ > 1), it is possible
to justify WKB analysis with a focusing nonlinearity and compactly supported
initial data (see e.g. [4] or [5, Chapter 2]).
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3. The monokinetic case with a potential

In this section, we first recall some elements of WKB analysis in the linear case.
We then show how this case can be merged with the analysis presented in the
previous section, when γ = 0. We sketch how the case of a weaker nonlinearity,
0 < γ < 1. To conclude, we briefly discuss the weakly nonlinear régime γ = 1, and
more generally the situation γ > 1.

3.1. Linear case. The eikonal equation associated to

(3.1) iε∂tu
ε +

ε2

2
∆uε = V uε ; uε|t=0 = a0e

iϕ0/ε,

that is, without initial rapid oscillation, reads:

(3.2) ∂tφeik +
1

2
|∇φeik|2 + V = 0 ; φeik|t=0 = ϕ0.

In this subsection, we assume that ϕ0 is smooth and at most quadratic, in the
same sense as in (1.1). This eikonal equation is solved by introducing the classical
trajectories, solving
(3.3)

ẋ(t, y) = ξ(t, y), x(0, y) = y ; ξ̇(t, y) = −∇V (x(t, y)) , ξ(0, y) = ∇ϕ0(y).

As V is at most quadratic, from (1.1), the above system has a unique, global,
smooth solution, and in addition

∇yx(t, y) = Id +O(t),

uniformly in y ∈ Rd, for any matricial norm on Rd×d. Therefore, the Jacobi
determinant

Jt(y) = det∇yx(t, y),

remains non-zero and bounded on some time interval [0, T ] with T > 0. Since we
also have, by uniqueness in ordinary differential equations,

∇φeik (t, x(t, y)) = ξ(t, y),

for any smooth solutions to (3.2), the global inversion theorem implies the following
result (see also [5, Proposition 1.9]):

Lemma 3.1. Let V satisfying (1.1), and ϕ0 satisfying the same properties. There

exists T > 0 and a unique solution φeik ∈ C∞
(
[0, T ]× Rd

)
to (3.2). In addition,

this solution is at most quadratic in space: ∂αxφeik ∈ L∞([0, T ] × Rd) as soon as

|α| > 2. There exists C > 1 such that the Jacobi determinant satisfies:

1

C
6 Jt(y) 6 C, ∀(t, y) ∈ [0, T ]× R

d.

Since the above relations imply

ẋ(t, y) = ∇φeik (t, x(t, y)) ,
we infer the classical formula

(3.4) ∂tJt(y) = Jt(y)∆φeik (t, x(t, y)) .

In the linear case, the leading order amplitude is given by the linear transport
equation

∂ta+∇φeik · ∇a+
1

2
a∆φeik = 0 ; a|t=0 = a0.
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Following the classical trajectories, this transport equation becomes trivial, since
A(t, y) :=

√
Jt(y)a (t, x(t, y)) satisfies ∂tA = 0.

3.2. Supercritical case: γ = 0. We consider the same framework as in the pre-
vious section, now with a potential:

(3.5) iε∂tu
ε +

ε2

2
∆uε = V uε + |uε|2uε ; uε|t=0 = a0e

iφ0/ε.

As noticed in [4], it is possible to adapt the above WKB analysis in the presence
of an external potential satisfying (1.1) by simply mixing the standard approach
followed in the linear case (see e.g. [28]) and Grenier’s method.

3.2.1. Introducing the nonlinearity. As noticed in [4], the approach presented in the
case V = 0 for the nonlinear case can be adapted by changing the representation
(2.2) to

uε(t, x) = aε(t, x)eiφeik(t,x)/ε+iφε(t,x)/ε,

where φeik solves (3.2) with ϕ0 ≡ 0, and requiring

(3.6)






∂tφ
ε +∇φeik · ∇φε +

1

2
|∇φε|2 + |aε|2 = 0,

∂ta
ε +∇φeik · ∇aε +∇φε · ∇aε + 1

2
aε∆φeik +

1

2
aε∆φε = i

ε

2
∆aε,

φε|t=0 = φ0 ; aε|t=0 = a0.

The new terms compared to (2.3) involve φeik, and since φeik is at most quadratic in
space, it turns out that they can be estimated like (semilinear) perturbative terms
(using commutator estimates for the transport part). The natural limit for (3.9)
when ε→ 0 is given by

(3.7)





∂tφ+∇φeik · ∇φ+
1

2
|∇φ|2 + |a|2 = 0,

∂ta+∇φeik · ∇a+∇φ · ∇a+ 1

2
a∆φeik +

1

2
a∆φ = 0,

φ|t=0 = φ0 ; a|t=0 = a0.

The following result is a consequence of [4]:

Proposition 3.2. Let a0, φ0 ∈ C∞
0 (Rd), V satisfying (1.1), and T , φeik given by

Lemma 3.1. There exists 0 < T∗ 6 T independent of ε ∈]0, 1] such that (3.9)
has a unique solution (φε, aε) ∈ C([0, T∗], H

∞(Rd))2, (3.7) has a unique solution

(φ, a) ∈ C([0, T∗], H
∞(Rd))2, and for all s > 0, there exists C = C(s) such that

‖φε − φ‖L∞([0,T ],Hs(Rd)) + ‖aε − a‖L∞([0,T ],Hs(Rd)) 6 Cε.

The correctors
(
φ(j), a(j)

)
j>1

as obtained in the same fashion as in Section 2.

The only difference is that the operator ∂t is replaced by

∂t +∇φeik · ∇+
1

2
∆φeik.
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3.2.2. Finite speed of propagation: following the classical trajectories. In order to
prove that if a0 ∈ C∞

0 (Rd), the solution to (3.1) remains compactly supported in
the support of a0 transported by the classical flow (3.3), it is standard to introduce
the following change of unknown function (e.g. [28, 5]):

A(t, y) :=
√
Jt(y)a (t, x(t, y)) ,

where a solves the transport equation

∂ta+∇φeik · ∇a+
1

2
a∆φeik = 0 ; a|t=0 = a0.

as given by WKB analysis. Indeed, using (3.4), we easily check that A is constant
in time, ∂tA = 0. Correctors (a(k))k>1 in the (linear) WKB analysis solve the
equation

∂ta
(k) +∇φeik · ∇a(k) +

1

2
a(k)∆φeik =

i

2
∆a(k−1) ; a

(k)
|t=0 = 0,

with the convention a(0) = a. Setting

A(k)(t, y) :=
√
Jt(y)a

(k) (t, x(t, y)) ,

we infer that

suppA(k)(t, ·) ⊂ supp a0, ∀t ∈ [0, T ], ∀k > 0,

where T is given by Lemma 3.1. Thus, for t ∈ [0, T ], up to O(ε∞), uε remains
compactly supported, in the support of a0 transported by the classical flow.

In the nonlinear case, we check that the same argument remains valid. Consider
φeik solution to (3.2), and (φ, a) solving (3.7). The natural adaptation of the above
computation consists in showing that if φ0, a0 ∈ C∞

0 (Rd), the new unknown (ψ,A),
defined by

(3.8) A(t, y) :=
√
Jt(y)a (t, x(t, y)) , ψ(t, y) := φ (t, x(t, y)) ,

enjoys a zero speed of propagation. Note that in view of Proposition 3.2, we already
know that φ, a ∈ C([0, T∗], H

∞(Rd)), so it suffices to check that (ψ,A) solves a
system for which the argument presented on the toy model of Burgers equation in
Section 2 remains valid. Introducing

M(t, y) = ∇yx(t, y) ∈ R
d×d,

whose determinant is by definition Jt(y), we find:

∂tψ +
1

2

〈
M−1∇ψ,M−1∇ψ

〉
+

1

Jt(y)
|A|2 = 0, ψ|t=0 = φ0,

∂tA = −
√
Jt(y)

(
∇φ · ∇a+ 1

2
a∆φ

)
(t, x(t, y)) , A|t=0 = a0.

We do not express the right hand side of the last equation in terms of (ψ,A): differ-
entiating the first equation with respect to y, the bounds stated in Proposition 3.2
make it possible to infer an inequality of the form

|∂t∇ψ(t, y)|+ |∂tA(t, y)| . |∇ψ(t, y)|+ |A(t, y)|, (t, y) ∈ [0, T∗]× R
d.

Therefore, if suppφ0, supp a0 ⊂ K, then supp∇ψ(t, ·), suppA(t, ·) ⊂ K for all
t ∈ [0, T∗]. Integrating in time the equation solved by ψ, we conclude to the zero
speed of propagation for (ψ,A). Arguing like in Section 2 for the correctors, we
have:
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Proposition 3.3. Let φ0, a0 ∈ C∞
0 (Rd) with suppφ0, suppa0 ⊂ K. There for any

t ∈ [0, T∗], where T∗ is given by Proposition 3.2,

suppψ(t, ·), suppA(t, ·) ⊂ K,

where ψ and A are related to φ and a through (3.8). The same is true for the

correctors (ψ(k), A(k))k>1 corresponding to the next terms (φ(k), a(k))k>1 in the as-

ymptotic expansion in (3.9).

Remark 3.4 (Special potentials). In the case where V is linear in x or isotropic
quadratic, explicit formulas allow to bypass the above arguments. If V (x) = E · x
for some (constant) E ∈ Rd and uε solves (1.2), then

vε(t, x) = uε
(
t, x− t2

2
E

)
e
i
(

tE·x− t3

3 |E|2
)

/ε

solves (2.1). If V (x) = ω2

2 |x|2, ω > 0, then

wε(t, x) =
1

(1 + (ωt)2)
d/4

uε

(
arctan(ωt)

ω
,

x√
1 + (ωt)2

)
e
i ω2t

1+(ωt)2
|x|2

2ε

solves

iε∂tw
ε +

ε2

2
∆wε = (1 + t2)d/2−1|wε|2wε ; wε

|t=0 = a0e
iφ0/ε.

If d = 2 (the cubic nonlinearity is L2-critical), we recover exactly (2.1). Otherwise, a
(smooth) time dependent factor has appeared, which obviously does not change the
conclusion of Propositions 2.1 and 2.3. The case of a potential with the opposite
sign is obtained by changing ω to iω in the formulas. See e.g. [5, Section 11.2]
and references therein regarding these changes of unknown functions. For such
potentials, the classical trajectories given by (3.3) are computed explicitly, and we
can check directly the conclusions of Proposition 3.3.

3.3. Weaker nonlinearity. We now consider the case 0 < γ < 1. This case is still
a supercritical case as far as WKB analysis is concerned, in the sense described in
the introduction: a “natural” asymptotic expansion of the solution uε still involves
a system of equations which is not closed. As noticed in [4], this intermediary case
can be handled like the case γ = 0, by replacing (3.9) with

(3.9)





∂tφ
ε +∇φeik · ∇φε +

1

2
|∇φε|2 + εγ |aε|2 = 0,

∂ta
ε +∇φeik · ∇aε +∇φε · ∇aε + 1

2
aε∆φeik +

1

2
aε∆φε = i

ε

2
∆aε,

φε|t=0 = φ0 ; aε|t=0 = a0.

The matrices Aj and S now depend on ε, in an explicit way, and the asymptotic
expansion of (φε, aε) involves more terms. Let N = [1/γ], where [r] is the largest
integer not larger than r > 0: N new intermediary terms appear compared to the
case γ = 0,

φε = εγφ̃+ ε2γ φ̃(1) + · · ·+ εNγφ̃(N) +O(ε),

aε = a+ εγa(1) + · · ·+ εNγa(N) +O(ε),
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where the estimate holds in L∞([0, T ], Hs) for any s > 0. This can be seen by

setting φ̃ε = ε−γφε: the leading order term is given by






∂tφ̃+∇φeik · ∇φ̃+ |a|2 = 0 ; φ̃|t=0 = 0,

∂ta+∇φeik · ∇a+
1

2
a∆φeik = 0 ; a|t=0 = a0.

The leading order amplitude solves the same transport equation as in the linear
case, and it is readily observed that the analogue of Proposition 3.3 remains valid,
up to adapting the hierarchy of equations.

3.4. Weakly nonlinear and linearizable cases. We now assume γ > 1. As in
[4] (or [5, Chapter 2]), we present a strategy for any γ > 1, and emphasize the fact
that the value γ = 1 is specific. In this setting, the coupling between phase and
amplitude changes dramatically: rapid oscillations are described by φeik only, and
the analysis consists in expanding the amplitude aε = uεe−iφeik/ε in powers of ε:

∂ta
ε +∇φeik · ∇aε +

1

2
aε∆φeik = i

ε

2
∆aε − iεγ−1|aε|2aε ; aε|t=0 = a0.

Like above, the case when γ > 1 is not an integer requires a special asymptotic ex-
pansion, and we do not discuss this case. When γ > 1, the leading order amplitude
satisfies the same transport equation as in the linear case. When γ = 1, it satisfies

∂ta+∇φeik · ∇a+
1

2
a∆φeik = −i|a|2a ; a|t=0 = a0.

Following the classical trajectories, that is resuming the change of unknown function
(3.8), this equation reads ∂tA = −iJt(y)−1|A|2A. In particular, ∂t|A|2 = 0, and the
nonlinear effect in a consists of a phase selfmodulation. In particular, the support
of A(t, ·) is independent of t ∈ [0, T ]. The same is true for all correctors in the
asymptotic expansion, as can be checked easily.

4. Separation of states

We complete the proof of Theorem 1.3, by proving the nonlinear superposition.
For 1 6 j 6 N , let χj ∈ C∞

0 (Rd,R), 0 6 χj 6 1, with

χj ≡ 1 on suppαj , suppχj1 ∩ suppχj2 = ∅ if j1 6= j2.

We set

a0(x) =

N∑

j=1

αj(x), φ0(x) =

N∑

j=1

ϕj(x)χj(x).

Then a0, φ0 ∈ C∞
0 (Rd), φ0 is real-valued, and

uε0(x) = a0(x)e
iφ0(x)/ε.

We can then resume the analysis from the monokinetic case as presented in Sec-
tions 2 and 3, with the same notations. Let φeik be given by Lemma 3.1 (it does
not depend on the initial data, but only on V ).
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4.1. Supercritical case. When γ = 0, the WKB analysis for each uεj , solution to

(1.5), involves the following system:

(4.1)






∂tφj +∇φeik · ∇φj +
1

2
|∇φj |2 + |aj|2 = 0, φj|t=0 = ϕjχj ,

∂taj +∇φeik · ∇a+
1

2
a∆φeik +∇φj · ∇aj +

1

2
aj∆φj = 0, aj|t=0 = αj .

To simplify the discussion, suppose first that V = 0, hence φeik = 0. Each solution
to (4.1) remains smooth on some time interval [0, Tj] for some 0 < Tj 6 T , and,
on this time interval, enjoys a zero speed of propagation. As a consequence of
Proposition 2.1, we have

φ =

N∑

j=1

φj , a =

N∑

=1

aj ,

since nonlinear terms containing two indices j1 6= j2 involve two functions whose
supports are disjoint. Also, for all k > 1, the correctors satisfy

φ(k) =

N∑

j=1

φ
(k)
j , a =

N∑

=1

a
(k)
j .

Set
T ∗ = min (T∗, T1, . . . , TN ) .

As we have, in view of (2.6), in L∞([0, T ∗], L2 ∩ L∞), for any k > 0,

uε −
(

k−1∑

ℓ=0

εℓa(ℓ)

)
exp

(
i

ε

k∑

ℓ=0

εℓφ(ℓ)

)
= O

(
εk
)
,

uεj −
(

k−1∑

ℓ=0

εℓa
(ℓ)
j

)
exp

(
i

ε

k∑

ℓ=0

εℓφ
(ℓ)
j

)
= O

(
εk
)
, j = 1, . . . , N,

we obtain Theorem 1.3 in the case V = 0. In the case where V is not trivial, we
just have to resume the above arguments by replacing the functions (φ, a) (possibly
with indices and/or superscripts) with (ψ,A), as defined by the change of unknown
function (3.8), which involves only V (see (3.3)), and not the initial data.

4.2. Other cases. When γ > 0, we have seen that the leading order amplitude is
the same as in the linear case, up to a phase modulation. Leading order oscillations
are given by φeik, where we now set ϕ0 = φ0 in (3.2). The features used in the
supercritical case then remain, regarding the evolution of the support of the terms
involved in WKB analysis.

5. On the role of the cutoff function(s)

5.1. WKB analysis for the linear Schrödinger equation. Consider (3.1) in
the presence of rapid initial oscillations,

(5.1) iε∂tu
ε +

ε2

2
∆uε = V uε uε|t=0 = a0e

iφ0/ε,

with a0 ∈ C∞
0 (Rd) and φ0 ∈ C∞(Rd,R). Like in Section 4, consider χ ∈ C∞

0 (Rd, [0, 1]),
with

χ ≡ 1 on supp a0.
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For any such function χ, we have uε|t=0 = a0e
iχφ0/ε. However, the eikonal equation

now depends on χ, as (3.2) becomes

∂tφeik +
1

2
|∇φeik|2 + V = 0 ; φeik|t=0 = χφ0.

As recalled in Section 3.1 (in the case φ0 = 0), the solution is constructed, locally in
time, via the classical trajectories, or, equivalently, through characteristic curves.
As V is smooth, the slope of characteristic curves at time t = 0 is uniformly bounded
on the support of a0. By finite speed of propagation, there exists T (χ) > 0 such
that φeik does not depend on χ for t ∈ [0, T (χ)]. In practice, the introduction of χ
may shorten the time interval of validity of WKB analysis, as we now illustrate.

Let d = 1, V = 0, and φ0(x) = x2/2. The solution to the eikonal equation
(without cutoff χ) is given explicitly by

φeik(t, x) =
x2

2(1 + t)
.

This is a case where there is no singularity for t > 0 (but a caustic reduced to one
point at t = −1). Indeed, the classical trajectories, solving

ẋ(t, y) = ξ(t, y), x(0, y) = y ; ξ̇(t, y) = 0, ξ(0, y) = φ′0(y) = y,

are given by

x(t, y) = (1 + t)y,

obviously inverted, for all t > 0, as

y(t, x) =
x

1 + t
,

and the leading order amplitude in WKB analysis is given by

a(t, x) =
1√
1 + t

a0

(
x

1 + t

)
.

For χ a (usual) cutoff function as above, χφ0 has two humps: in the presence of χ,
y 7→ x(t, y) ceases to be invertible for all t > 0 (φ′eik solves the Burgers equation),

but for short time (independent of ε, but depending on χ), a(t)eiφeik(t)/ε does not
depend on χ.

5.2. Supercritical WKB analysis for the nonlinear Schrödinger equation.

In the case addressed in Section 2, the above eikonal equation is replaced by (2.5).
By considering the gradient of the phase instead of the phase, the Burgers equation
(in the case of WKB analysis for the linear Schrödinger equation without potential)
is replaced by the symmetrization of the Euler equation. Like above, finite speed
of propagation implies that the introduction of a cutoff function in the initial phase
does not alter the solution to (2.5) on some time interval [0, T (χ)], for some T (χ) > 0
possibly depending on χ. This time is of course independent of ε, as ε is absent
from (2.5). This is why in Remark 1.4, the Wigner measure does not depend on the
χj ’s, even though its construction seems to depend on these cutoff functions: the
time of validity that we can prove may, on the other hand, depend on the choice of
these cutoff functions.

We conclude this discussion by an illustration similar to the one given in the
previous subsection. Let a0 ∈ C∞

0 (Rd), and assume that for s > d/2+1, ‖a0‖Hs(Rd)

is sufficiently small. Suppose also that v0 = ∇φ0 satisfies: ∇2v0 ∈ Hs−1(Rd), ∇v0 ∈
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L∞(Rd), and there exists δ > 0 such that for all x ∈ Rd, dist(Sp(∇v0(x)),R−) > δ,
where we denote by Sp(M) the spectrum of a matrix M . Then it follows from the
main result in [13] that (2.5) has a global (in the future) solution

a, v − v ∈ Cj([0,∞), Hs−j(Rd)), j = 0, 1,

where v is the unique, global smooth solution to the (multidimensional) Burgers
equation

∂tv + v · ∇v = 0, v|t=0 = ∇φ0.
We may for instance consider φ0(x) = |x|2/2 (see the previous subsection), and
then

v(t, x) =
x

1 + t
.

On the other hand, if φ0 is multiplied by a cutoff function χ, then the initial data
in (2.5) belong to C∞

0 (Rd): it follows from [21] that the corresponding solution de-
velops a singularity in finite time. Like in the previous subsection, the introduction
of the cutoff χ reduces the lifespan of the solution involved in WKB analysis but,
for short time, does not alter the asymptotic description of the solution uε.

6. Weakly nonlinear case

In this section, we prove Proposition 1.5. Instead of (1.2)-(1.3), we consider the
weakly nonlinear case,

iε∂tu
ε +

ε2

2
∆uε = ε|uε|2uε ; uε0(x) =

N∑

j=1

αj(x)e
iϕj(x)/ε.

When d > 2, the creation of new WKB terms is possible by resonant interactions,
provided that N > 3, as recalled in the appendix. The one-dimensional cubic case
is special, as there are no nontrivial resonances, see [6]. In order to present an
argument including the cubic one-dimensional case, we propose a proof which does
not use the creation of, e.g., a fourth term out of three.

Consider linear phases,

ϕj(x) = kj · x.
The first part of Proposition 1.5 is simply a restatement of Theorem 1.3 in this
case. To prove the appearance of nonlinear interferences, we will not consider cutoff
functions, and rely on explicit computations. WKB analysis in the monokinetic case
N = 1 leads to the hierarchy

∂tφ+
1

2
|∇φ|2 = 0 ; φ(0, x) = k · x,

∂ta+∇φ · ∇a+ 1

2
a∆φ = −i|a|2a ; a(0, x) = α(x).

The eikonal equation is solved explicitly,

φ(t, x) = k · x− |k|2
2
t.

As ∆φ = 0, the initial amplitude α is transported along the vector k with a phase
self-modulation:

a(t, x) = α(x − tk)e−it|α(x−tk)|2 .
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In the case N = 2, no new WKB term is created, but interactions between the
two modes lead to a modification of the phase modulation. As computed in [6,
Section 3], we find

a1(t, x) = α1(x− tk1)e
−i(2

∫

t

0
|α2(x+(τ−t)k1−τk2)|

2dτ+t|α1(x−tk1)|
2),

a2(t, x) = α2(x− tk2)e
−i(2

∫

t

0
|α1(x+(τ−t)k2−τk1)|

2dτ+t|α2(x−tk2)|
2).

In addition, we have

sup
t∈[0,T ]

∥∥∥uε(t)− a1(t)e
iφ1(t)/ε − a2(t)e

iφ2(t)/ε
∥∥∥
L2∩L∞

= O(ε),

for any T > 0 (independent of ε); see Corollary 5.13 and Theorem 6.5 in [6].
The leading order nonlinear interactions between the two modes correspond to the
integrals in time in the exponentials. For small time though, the integrals are zero
on the support of the transported amplitudes: in other words, there exists T0 > 0
independent of ε such that for t ∈ [0, T0],

a1(t, x) = α1(x− tk1)e
−it|α1(x−tk1)|

2

,

a2(t, x) = α2(x− tk2)e
−it|α2(x−tk2)|

2

,

in agreement with the conclusion of Theorem 1.3 (up to the order of precision).
The conclusion in Proposition 1.5 then follows from the property:

sup
t∈[0,T1]

∥∥∥α1(· − tk1)
(
e−2i

∫

t

0
|α2(·+(τ−t)k1−τk2)|

2dτ − 1
)∥∥∥

Lp
> 0,

or, equivalently,

sup
t∈[0,T1]

∥∥∥∥α1 sin

(∫ t

0

|α2(·+ τ(k1 − k2))|2dτ
)∥∥∥∥

Lp

> 0.

This is possible as soon as the transport of the support of α1 meets the support of
α2, as transported in the above integral. Let α ∈ C∞

0 (Rd) supported in the ball
centered at the origin, of radius 1, and set

α1(x) = α(x), α2(x) = α(x + 3e1),

where (e1, . . . , ed) is the canonical basis of Rd. Setting k2 − k1 = λe1 for λ > 0,
we see that the above property is satisfied for some T1 > 0. We also remark that
T1 → 0 as λ→ ∞.

Appendix A. Weakly nonlinear case and creation of a new term

In this appendix, we prove that in the weakly nonlinear case, if d > 2, then
nonlinear interactions may lead to the creation of a new WKB term, which is a
stronger phenomenon than that used in the proof of Proposition 1.5. Consider

iε∂tu
ε +

ε2

2
∆uε = ε|uε|2uε ; uε0(x) =

N∑

j=1

αj(x)e
iϕj(x)/ε,

with now N = 3, and d > 2. The one-dimensional cubic case is special, as there
are no nontrivial resonances, see [6]. Again, we consider linear phases,

ϕj(x) = kj · x.
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Recall ([10], see also [6, Lemma 2.2]) that the resonant set is defined by

Res(n) = {(j, ℓ,m), kj − kℓ + km = kn, |kj |2 − |kℓ|2 + |km|2 = |kn|2}
is characterized as follows: (kj , kℓ, km) ∈ Res(n) when the endpoints of the vectors
kj , kℓ, km, kn form four corners of a nondegenerate rectangle with kℓ and kn oppos-
ing each other, or when this quadruplet corresponds to one of the following two
degenerate cases: (kj = kn, km = kℓ) or (kj = kℓ, km = kn). Note that we always
have

(A.1) {(j, j, n), ((n, j, j), aj 6≡ 0} ⊂ Res(n),

where aj is the amplitude associated with the phase

φj(t, x) = kj · x− |kj |2
2

t.

In order for the nonlinearity to create a term associated with a phase φ4, out of
three phases associated with wave numbers k1, k2 and k3, we must have

k4 := k2 − k1 + k3, |k4|2 = |k2|2 − |k1|2 + |k3|2.
This resonant condition is equivalent to the following conditions:

(k1 − k2) · (k1 − k3) = 0,

and the endpoints of k1, k2 and k3 are not aligned (the case of alignment corresponds
to the set on the left in (A.1)); this is possible with pairwise different k1, k2, k3 and
k4 6∈ {k1, k2, k3} provided that d > 2, see [6] (or [5, Section 2.6]). For instance if
d = 2, we can choose, for λ > 0,

k1 = λ(1, 1), k2 = λ(1, 0), k3 = λ(0, 1), hence k4 = (0, 0).

In higher dimension, we simply complete each vector by zero coordinates. Then
a new term, associated with the phase φ4 may be created by nonlinear resonance.
Because of the geometric characterization of resonances, no other term can be
created apart from this one, since we have completed a rectangle. The creation is
effective only if the associated amplitude does not remain zero. The equation for
the corresponding amplitude is

∂ta4 + k4 · ∇a4 = −i
∑

(j,ℓ,m)∈Res(4)

aj āℓam, a4|t=0 = 0.

More generally, the term an solves

∂tan + kn · ∇an = −i
∑

(j,ℓ,m)∈Res(n)

ajāℓam, an|t=0 = αn.

If we assume that the mode 4 is not effectively created, that is a4 ≡ 0, then the
inclusion (A.1) is actually an equality, and

∂taj + kj · ∇aj = −2i

3∑

k=1

|ak|2aj + i|aj|2aj, j = 1, 2, 3.

hence

aj(t, x) = αj(x− tkj)e
−iSj(t,x), j = 1, 2, 3,
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for some explicit real-valued phase, whose expression is irrelevant here (see [6,
Section 3.1] for the formula). Given any T > 0, we may choose α1, α2, α3 compactly
supported, with disjoint supports, k1, k2, k3 like above, so that

a2ā1a3|t=T/2 6≡ 0.

This shows that the term a4 is actually created, in the sense that a4 does not remain
trivial on [0, T ]. The error estimate proved in [7] (see also [5, Section 2.6]) yields

sup
t∈[0,T ]

∥∥∥∥∥∥
uε(t)−

4∑

j=1

aj(t)e
iφj(t)/ε

∥∥∥∥∥∥
L2∩L∞

= O(ε),

hence again the conclusion of Proposition 1.5. The proof also implies that for
t ∈ [0, T ], uε has a unique Wigner measure, given by

µ(t, dx, dξ) =

4∑

j=1

|aj(t, x)|2dx⊗ δξ=kj
.

Acknowledgments. The author wishes to thank Patrick Gérard for his remarks
which helped improve the consistency of the paper.
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