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ON NONLINEAR EFFECTS IN MULTIPHASE WKB ANALYSIS

FOR THE NONLINEAR SCHRÖDINGER EQUATION

RÉMI CARLES

Abstract. We consider the Schrödinger equation with an external potential
and a cubic nonlinearity, in the semiclassical limit. The initial data are sums
of WKB states, with smooth phases and smooth, compactly supported initial
amplitudes, with disjoint supports. We show that according to the size of the
initial data, a superposition principle may or may not hold. Surprisingly, it
holds for large data, like in the linear case, but not for smaller ones. The proof
relies on WKB analysis: for large data, we use the theory known in the case
of a single initial WKB state, and properties of compressible Euler equations,
while for smaller data, nonlinear interactions are present at leading order.

1. Introduction

1.1. Setting. We consider the cubic defocusing Schrödinger equation on Rd, d > 1,
in the semiclassical régime

(1.1) iε∂tu
ε +

ε2

2
∆uε = V uε + |uε|2uε.

The potential V = V (x) is supposed real-valued, smooth, and at most quadratic:

(1.2) V ∈ C∞(Rd;R), ∂αV ∈ L∞(Rd), ∀α ∈ N
d, |α| > 2.

Typical examples are V = 0, V linear (V (x) = E ·x), V harmonic (V (x) = ω2|x|2).
As initial data, we consider the sum of WKB states of size O(1), so we are in a
supercritical case in terms of WKB analysis:

(1.3) uε(0, x) = uε0(x) :=
N
∑

j=1

αj(x)e
iϕj(x)/ε.

We refer to [5, Chapter 1] for the reason why this setting is supercritical in terms of
WKB analysis. Essentially, the evolution of the phase describing the rapid oscilla-
tion is given by an eikonal equation which involves the leading order amplitude, and
a standard application of the WKB asymptotic expansion leads to systems which
are not closed, no matter how many correcting terms are considered.

Assumption 1.1. The phases are smooth and real-valued, ϕj ∈ C∞(Rd;R). The

initial amplitudes are smooth and compactly supported: αj ∈ C∞
0 (Rd;C), with pair-

wise disjoint supports,

suppαj1 ∩ suppαj2 = ∅, j1 6= j2.
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2 R. CARLES

The case N = 1, referred to as monokinetic case, is well understood for short

time, as we recall below, in the sense that the asymptotic behavior of uε as ε → 0
is described precisely, locally in time on some interval independent of ε. The large
time behavior is, in general, unknown; the one-dimensional case, with V = 0, is an
exception, since it is completely integrable, see e.g. [13, 23]. In the case V ≡ 0, the
leading order asymptotic description involves the compressible Euler equation

(1.4)

{

∂tρ+ div (ρv) = 0,

∂tv + v · ∇v +∇ρ = 0.

This equation is quasilinear, while (1.1) is semilinear (the nonlinear term is viewed
as a perturbation when solving the Cauchy problem). In Section 2, we recall how
to justify, in this case, the existence of a WKB approximation of the form

uε(t, x) =
(

a(t, x) + εa1(t, x) + . . .+ εkak(t, x)
)

eiφ(t,x)/ε +O
(

εk+1
)

,

in L∞([0, T ];L2 ∩ L∞(Rd)), for all k > 0, for some T > 0 independent of ε. We
choose to measure errors in L2∩L∞ in the spatial norm, in order to avoid to intro-
duce ε-dependent norms when derivatives are involved, due to rapid oscillations.
This time T can be taken as the lifespan of the smooth solution to the Euler equa-
tion (1.4) with suitable initial data. When N > 2, the new question arising is the
nonlinear interaction of the WKB states. As the problem is supercritical, even a
formal computation is a delicate issue: if we plug an approximate solution of the
form

uεapp(t, x) =

M
∑

j=1

bj(t, x)e
iφj(t,x)/ε

into (1.1), how do we choose M (possibly infinite), and which equations must be
satisfied by the amplitudes bj and the phases φj? Surprisingly enough, it turns out
that as long as the solutions of the Euler equations, involved in the description of
each individual initial WKB states, are smooth, there is no interaction, at arbitrary
order in terms of powers of ε.

Remark 1.2 (Infinitely many states). The case N = ∞ may also be addressed,
under suitable assumptions on the growth in space of the phases φj compared to
the size of the support of αj , as j → ∞. More precisely, as will be clear from the
proof of the main result, we can consider the case N = ∞ provided that we may
find cutoff functions χj so that

φ0 =
∞
∑

j=1

ϕjχj ∈ H∞(Rd) := ∩s>0H
s(Rd),

or at least in a weaker form if φ0 ∈ Hs(Rd) for some s > 2+d/2. Another constraint,
in this case, is that we have to find a common lower bound for the lifespan of all the
approximate solutions (φj , aj) considered below, an aspect which is obvious when
N is finite, since we consider the minimum of a finite set.

1.2. Main results. The nonlinear evolution of each initial WKB state will play a
crucial role:

(1.5) iε∂tu
ε
j +

ε2

2
∆uεj = V uεj + |uεj |2uεj ; uj|t=0 = αje

iϕj/ε.

Under our assumptions, for fixed initial data, we know that:
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• If d 6 3, the equation is energy-subcritical, and for fixed ε > 0, there exists
a unique solution uε ∈ L∞(R;H1(Rd)), and it is smooth. See e.g. [8].

• If d = 4, the equation is energy-critical: the above conclusion is known
to remain when V = 0 ([25]), when V is an isotropic quadratic potential
([14]), or when V is harmonic at infinity ([12]).

• If d > 5, the equation is energy-supercritical: only a local in time smooth
solution is known to exist by classical theory.

In the cases where the global existence of a smooth solution is not known, the local
existence time might go to zero as ε→ 0, so the existence of a smooth solution on
a time interval independent of ε > 0 is already a nontrivial step. The description of
the solutions uεj as ε→ 0 on some time interval [0, Tj] independent of ε was evoked

above, and is recalled in Sections 2 (case V = 0) and 3 (V satisfying (1.2)). Our
main result is the following nonlinear superposition principle:

Theorem 1.3. Let d > 1, V satisfying (1.2), and initial data satisfying Assump-

tion 1.1. There exists T ∗ > 0 independent of ε ∈]0, 1] such that (1.1)-(1.3) has a

unique solution uε ∈ C([0, T ∗];H∞(Rd)). In addition,

sup
t∈[0,T∗]

∥

∥

∥

∥

∥

∥

uε(t)−
N
∑

j=1

uεj(t)

∥

∥

∥

∥

∥

∥

L2∩L∞

= O
(

εk
)

, ∀k > 0,

where uεj is the solution of (1.5).

This result is actually a corollary of a detailed WKB analysis, as well as a prop-
erty of finite speed of propagation for the compressible Euler equation, discovered
initially in [17]. The key feature of our setting then is the compact, disjoint supports
of the initial amplitudes αj . More precisely, in the case V = 0, as long as WKB
analysis is valid for each uεj in (1.5), uεj remains supported in (essentially) suppαj
up to O(ε∞): all the amplitude terms of the WKB expansion (at leading order as
well as correctors at arbitrary order) remain compactly supported, and amplitudes
associated with uεj1 and uεj2 , respectively, with j1 6= j2, do not interact. In the case
V 6≡ 0, uεj remains supported in suppαj evolving according to the classical flow
generated by V , up to O(ε∞). In other words, we recover the same phenomenon
as in the linear case (see e.g. [18, 24]), even though the régime associated to (1.1)
is strongly nonlinear. In particular, the initial modes cannot interact at a “visible”
order before WKB analysis for at least one of the uεj ’s ceases to be valid, that is,
before the solution of the corresponding Euler equation (1.4) breaks down. Recent
progress on this precise question, [20, 21, 3] (see also [19] for a relation with the
nonlinear Schrödinger equation), suggest that the expected scenario is rather that
of an implosion: the conclusion of Theorem 1.3 might remain valid even after WKB
has ceased to be valid.

Surprisingly enough, the conclusion of Theorem 1.3 is false in the weakly nonlin-
ear case (which amounts to multiplying the nonlinearity in (1.1) by ε, leaving (1.3)
unchanged):

Proposition 1.4. Let d > 1 and T > 0. There exist k1, k2 ∈ Rd, and α1, α2 ∈
C∞

0 (Rd) with disjoint supports, such that the solution to

(1.6) iε∂tu
ε +

ε2

2
∆uε = ε|uε|2uε ; uε0(x) = α1(x)e

ik1·x/ε + α2(x)e
ik2·x/ε,



4 R. CARLES

satisfies

lim inf
ε→0

sup
t∈[0,T ]

∥

∥

∥

∥

∥

∥

uε(t)−
2
∑

j=1

uεj(t)

∥

∥

∥

∥

∥

∥

Lp

> 0, ∀p ∈ [2,∞],

where each uεj solves

iε∂tu
ε
j +

ε2

2
∆uεj = ε|uεj |2uεj ; uεj(0, x) = αj(x)e

ikj ·x/ε.

Setting vε =
√
εuε, we see that (1.6) is equivalent to

iε∂tv
ε +

ε2

2
∆vε = |vε|2vε ; vε(0, x) =

√
ε

2
∑

j=1

αj(x)e
ikj ·x/ε.

In other words, vε solves (1.1) with V = 0, and initial data (1.3) have been mul-
tiplied by

√
ε, which is another way to see that nonlinear effects are attenuated

compared to (1.1)-(1.3) (small data). This shows that the superposition result
stated in Theorem 1.3 is actually the consequence of strong nonlinear effects.

1.3. Content. In Section 2, we recall the WKB construction introduced in [11],
and emphasize the finite speed of propagation which appears in our framework.
In Section 3, we explain how to adapt the previous approach to the case where V
satisfies (1.2) and is not necessarily trivial. In Section 4, we complete the proof
of Theorem 1.3. Proposition 1.4 is established in Section 5. In an appendix, we
propose an alternative (statement and) proof of Proposition 1.4, in the case d > 2
with N = 3, showing that there are indeed several obstructions for Theorem 1.3 to
be valid in the weakly nonlinear case.

2. The monokinetic case without potential

In this section, we consider (1.1)-(1.3) in the monokinetic N = 1, with slightly
different notations for future reference:

(2.1) iε∂tu
ε +

ε2

2
∆uε = |uε|2uε ; uε|t=0 = a0e

iφ0/ε.

In view of the setting of this paper, we assume a0, φ0 ∈ C∞
0 (Rd). In particular,

a0, φ0 ∈ H∞(Rd). We first consider the case V ≡ 0, then introduce the main ideas
that make it possible to incorporate a subquadratic potential V .

We recall the main steps to the construction introduced in [11] (see also [5,
Section 4.2]). The idea introduced in [11] consists in writing the solution to (2.1)
as

(2.2) uε(t, x) = aε(t, x)eiφ
ε(t,x)/ε,

with aε complex-valued and φε real-valued, solving

(2.3)











∂tφ
ε +

1

2
|∇φε|2 + |aε|2 = 0, φε|t=0 = φ0,

∂ta
ε +∇φε · ∇aε + 1

2
aε∆φε = i

ε

2
∆aε, aε|t=0 = a0.

The key remark is that this leads to a symmetric hyperbolic system, perturbed
be a skew-symmetric term. The hyperbolic system appears when considering the
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unknown

Uε =





Re aε

Im aε

∇φε



 =





Re aε

Im aε

vε



 .

Considering the gradient of the first equation in (2.3), the system can be written

(2.4) ∂tU
ε +

d
∑

j=1

Aj(U
ε)∂jU

ε = εLUε,

with

A(Uε, ξ) =

d
∑

j=1

Aj(U
ε)ξj =





vε · ξ 0 1
2 Rea

ε tξ
0 vε · ξ 1

2 Im aε tξ
2Reaε ξ 2 Imaε ξ vε · ξId



 ,

and

L =





0 −∆ 0 . . . 0
∆ 0 0 . . . 0
0 0 0d×d



 .

To be precise, the system is made symmetric thanks to the constant symmetrizer

S =

(

I2 0
0 1

4 Id

)

.

Once vε is known, one recovers φε by integrating in time the first equation in (2.3),

φε(t, x) = φ0(x)−
1

2

∫ t

0

|vε(s, x)|2ds−
∫ t

0

|aε(s, x)|2ds,

and since ∂t(v
ε − ∇φε) = 0, vε = ∇φε. Assuming that a0,∇φ0 ∈ Hs(Rd) for s

large (we will always assume a0, φ0 ∈ C∞
0 (Rd) in the forthcoming applications), the

limit ε→ 0 leads to an asymptotic expansion of the form

φε ∼ φ+ εφ(1) + ε2φ(2) + . . . , aε ∼ a+ εa(1) + ε2a(2) + . . .

The leading order term is obtained by simply setting ε = 0 in (2.4):

(2.5)











∂tφ+
1

2
|∇φ|2 + |a|2 = 0, φ|t=0 = φ0,

∂ta+∇φ · ∇a+ 1

2
a∆φ = 0, a|t=0 = a0.

Working with the intermediary unknown v = ∇φ, we get a system of the form

∂tU +

d
∑

j=1

Aj(U)∂jU = 0,

and we infer the following result from [17]:

Proposition 2.1. Let a0, φ0 ∈ C∞
0 (Rd), with supp a0, suppφ0 ⊂ K. There exists

T∗ > 0 and a unique solution (φ, a) ∈ C([0, T∗];H
∞(Rd))2 to (2.5). Moreover,

(φ, a) remains compactly supported for t ∈ [0, T∗], and

suppφ(t, ·), supp a(t, ·) ⊂ K.
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The first part of the statement is a consequence of classical theory for symmetric
hyperbolic systems (see e.g. [2, 16]). The property stated that initial compactly
supported condition lead to a zero speed of propagation is due to the structure
of this hyperbolic system, and is well understood from the simplest model of the
Burgers equation

∂tu+ u∂xu = 0, u|t=0 = u0 ∈ C∞
0 (R).

Suppose we have a smooth solution on some time interval [0, T∗]. In particular,
∫ T∗

0

‖∂xu(t)‖L∞dt <∞.

We have directly, for all (t, x) ∈ [0, T∗]× R,

|∂tu(t, x)| 6 ‖∂xu(t)‖L∞ |u(t, x)|.
Gronwall lemma then shows that if u0(x0) = 0, then u(t, x0) = 0 for all t ∈ [0, T∗],
hence the zero speed of propagation for smooth solutions. As the matrix A(U, ξ) is
linear in U , the result follows in the setting of (2.5). Note that to prove this zero
speed of propagation, we do not invoke the symmetry of A: it was used in order to
get Sobolev estimates (which ensure that U ∈ L1([0, T∗];W

1,∞)), but only the fact
that it is (at least) linear in U is used at this stage. We then have, for the same T∗
as in Proposition 2.1:

Proposition 2.2. Let a0, φ0 ∈ C∞
0 (Rd). There exists T∗ > 0 independent of

ε ∈]0, 1] such that for all s > 0, there exists C = C(s) such that

‖φε − φ‖L∞([0,T∗];Hs(Rd)) + ‖aε − a‖L∞([0,T∗];Hs(Rd)) 6 Cε.

To infer the pointwise description of uε at leading order, we must in addition
know φε up to o(ε), which is achieved by considering the linearization of (2.5). At
the next step of the WKB expansion, we find that

‖φε − φ− εφ(1)‖L∞([0,T∗];Hs(Rd)) + ‖aε − a− εa(1)‖L∞([0,T∗];Hs(Rd)) 6 Cε2,

where the first corrector (φ(1), a(1)) solves the system:






















∂tφ
(1) +∇φ · ∇φ(1) + 2Re

(

aa(1)
)

= 0,

∂ta
(1) +∇φ · ∇a(1) +∇φ(1) · ∇a+ 1

2
a(1)∆φ+

1

2
a∆φ(1) =

i

2
∆a,

φ
(1)
|t=0 = 0 ; a

(1)
|t=0 = 0.

At higher order k > 2, the corrector (φ(k), a(k)) is given by:














































∂tφ
(k) +∇φ · ∇φ(k) + 2Re

(

aa(k)
)

= Fk

(

(

∇φ(ℓ)
)

16ℓ6k−1
,
(

a(ℓ)
)

16ℓ6k−1

)

,

∂ta
(k) +∇φ · ∇a(k) +∇φ(k) · ∇a+ 1

2
a(k)∆φ +

1

2
a∆φ(k) =

i

2
∆a(k−1)

−
∑

16ℓ6k−1

∇φ(ℓ) · ∇a(k−ℓ) − 1

2

∑

16ℓ6k−1

a(k−ℓ)∆φ(ℓ),

φ
(k)
|t=0 = 0 ; a

(k)
|t=0 = 0,

for some function Fk which is a polynomial in its arguments, without constant term,
and whose precise expression is unimportant here. The left hand side is always the
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linearization of the left hand side of (2.5) about (φ, a), and the right hand side
depends on previous correctors. We infer (see [11, 5]), by induction:

Proposition 2.3. Let a0, φ0 ∈ C∞
0 (Rd). Let T∗ > 0 given by Proposition 2.1. For

all k > 1, there exists a unique solution (φ(k), a(k)) ∈ C([0, T∗];H
∞(Rd))2 to the

above system, and for all s > 0, there exists C = C(k, s) such that
∥

∥

∥φε − φ− εφ(1) − . . .− εkφ(k)
∥

∥

∥

L∞([0,T∗];Hs(Rd))

+
∥

∥

∥aε − a− εa(1) − . . .− εka(k)
∥

∥

∥

L∞([0,T∗];Hs(Rd))
6 Cεk+1.

In addition, if supp a0, suppφ0 ⊂ K, then (φ(k), a(k)) remains compactly supported

for t ∈ [0, T∗], and

suppφ(k)(t, ·), supp a(k)(t, ·) ⊂ K.

The support property is a consequence of the same argument as in the proof
of Proposition 2.1. Using the embedding Hs(Rd) ⊂ L∞(Rd) for s > d/2, we also
deduce from the above error estimate the bound, for k > 1:

(2.6)

∥

∥

∥

∥

∥

uε −
(

k−1
∑

ℓ=0

εℓa(ℓ)

)

exp

(

i

ε

k
∑

ℓ=0

εℓφ(ℓ)

)∥

∥

∥

∥

∥

L∞([0,T∗];L2∩L∞(Rd))

= O
(

εk
)

,

with the convention (φ(0), a(0) = (φ, a). The standard form of WKB expansions,

uε(t, x) =
(

a(t, x) + εa1(t, x) + . . .+ εkak(t, x)
)

eiφ(t,x)/ε +OL∞
T∗

(L2∩L∞)

(

εk+1
)

,

is then obtained by setting

a = aeiφ
(1)

, a1 = a(1)eiφ
(1)

+ iaφ(2)eiφ
(1)

, etc.

Remark 2.4 (Higher order nonlinearities). If instead of (2.1), one considers

iε∂tu
ε +

ε2

2
∆uε = |uε|2σuε ; uε|t=0 = a0e

iφ0/ε,

with σ > 2 an integer, then the justification of WKB analysis requires a different
approach. We refer to [1, 9] for two different proofs, which show that the conclusions
of the propositions stated in this section remain valid.

Remark 2.5 (Focusing nonlinearity). If instead of (2.1), one considers a cubic fo-
cusing nonlinearity,

iε∂tu
ε +

ε2

2
∆uε = −|uε|2uε ; uε|t=0 = a0e

iφ0/ε,

then the analogue of (2.5) is no longer hyperbolic, but elliptic. Working with
analytic initial data (φ0, a0) is then necessary in order to solve (2.5) ([15, 22]),
and this is a framework where nonlinear WKB analysis is fully justified ([10, 26]).
However, analyticity is incompatible with an initial compact support.

3. The monokinetic case with a potential

We consider the same framework as in the previous section, now with a potential:

(3.1) iε∂tu
ε +

ε2

2
∆uε = V uε + |uε|2uε ; uε|t=0 = a0e

iφ0/ε.
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As noticed in [4], it is possible to adapt the above WKB analysis in the presence
of an external potential satisfying (1.2) by simply mixing the standard approach
followed in the linear case (see e.g. [24]) and Grenier’s method.

3.1. Linear case. The eikonal equation associated to

(3.2) iε∂tu
ε +

ε2

2
∆uε = V uε ; uε|t=0 = a0,

that is, without initial rapid oscillation, reads:

(3.3) ∂tφeik +
1

2
|∇φeik|2 + V = 0 ; φeik|t=0 = 0.

This eikonal equation is solved by introducing the classical trajectories, solving

(3.4) ẋ(t, y) = ξ(t, y), x(0, y) = y ; ξ̇(t, y) = −∇V (x(t, y)) , ξ(0, y) = 0.

As V is at most quadratic, from (1.2), the above system has a unique, global,
smooth solution, and in addition.

∇yx(t, y) = Id +O(t),

uniformly in y ∈ Rd, for any matricial norm on Rd×d. Therefore, the Jacobi
determinant

Jt(y) = det∇yx(t, y),

remains non-zero and bounded on some time interval [0, T ] with T > 0. Since we
also have, by uniqueness in ordinary differential equations,

∇φeik (t, x(t, y)) = ξ(t, y),

for any smooth solutions to (3.3), the global inversion theorem implies the following
result (see also [5, Proposition 1.9]):

Lemma 3.1. Let V satisfying (1.2). There exists T > 0 and a unique solution

φeik ∈ C∞
(

[0, T ]× Rd
)

to (3.3). In addition, this solution is at most quadratic in

space: ∂αxφeik ∈ L∞([0, T ]× R
d) as soon as |α| > 2. There exists C > 1 such that

the Jacobi determinant satisfies:

1

C
6 Jt(y) 6 C, ∀(t, y) ∈ [0, T ]× R

d.

Since the above relations imply

ẋ(t, y) = ∇φeik (t, x(t, y)) ,
we infer the classical formula

(3.5) ∂tJt(y) = Jt(y)∆φeik (t, x(t, y)) .

3.2. Introducing the nonlinearity. As noticed in [4], the approach presented in
the case V = 0 for the nonlinear case can be adapted by changing the representation
(2.2) to

uε(t, x) = aε(t, x)eiφeik(t,x)/ε+iφ
ε(t,x)/ε,

and requiring

(3.6)























∂tφ
ε +∇φeik · ∇φε +

1

2
|∇φε|2 + |aε|2 = 0,

∂ta
ε +∇φeik · ∇aε +∇φε · ∇aε + 1

2
aε∆φeik +

1

2
aε∆φε = i

ε

2
∆aε,

φε|t=0 = φ0 ; aε|t=0 = a0.
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The new terms compared to (2.3) involve φeik, and since φeik is at most quadratic in
space, it turns out that they can be estimated like (semilinear) perturbative terms
(using commutator estimates for the transport part). The natural limit for (3.6)
when ε→ 0 is given by

(3.7)























∂tφ+∇φeik · ∇φ+
1

2
|∇φ|2 + |a|2 = 0,

∂ta+∇φeik · ∇a+∇φ · ∇a+ 1

2
a∆φeik +

1

2
a∆φ = 0,

φ|t=0 = φ0 ; a|t=0 = a0.

The following result is a consequence of [4]:

Proposition 3.2. Let a0, φ0 ∈ C∞
0 (Rd), V satisfying (1.2), and T , φeik given by

Lemma 3.1. There exists 0 < T∗ 6 T independent of ε ∈]0, 1] such that (3.6)
has a unique solution (φε, aε) ∈ C([0, T∗];H

∞(Rd))2, (3.7) has a unique solution

(φ, a) ∈ C([0, T∗];H
∞(Rd))2, and for all s > 0, there exists C = C(s) such that

‖φε − φ‖L∞([0,T ];Hs(Rd)) + ‖aε − a‖L∞([0,T ];Hs(Rd)) 6 Cε.

The correctors
(

φ(j), a(j)
)

j>1
as obtained in the same fashion as in Section 2.

The only difference is that the operator ∂t is replaced by

∂t +∇φeik · ∇+
1

2
∆φeik.

3.3. Finite speed of propagation: following the classical trajectories. In
order to prove that if a0 ∈ C∞

0 (Rd), the solution to (3.2) remains compactly sup-
ported in the support of a0 transported by the classical flow (3.4), it is standard to
introduce the following change of unknown function (e.g. [24, 5]):

A(t, y) :=
√

Jt(y)a (t, x(t, y)) ,

where a solves the transport equation

∂ta+∇φeik · ∇a+
1

2
a∆φeik = 0 ; a|t=0 = a0.

as given by WKB analysis. Indeed, using (3.5), we easily check that A is constant
in time, ∂tA = 0. Correctors (a(k))k>1 in the (linear) WKB analysis solve the
equation

∂ta
(k) +∇φeik · ∇a(k) +

1

2
a(k)∆φeik =

i

2
∆a(k−1) ; a

(k)
|t=0 = 0,

with the convention a(0) = a. Setting

A(k)(t, y) :=
√

Jt(y)a
(k) (t, x(t, y)) ,

we infer that
suppA(k)(t, ·) ⊂ supp a0, ∀t ∈ [0, T ], ∀k > 0,

where T is given by Lemma 3.1. Thus, for t ∈ [0, T ], up to O(ε∞), uε remains
compactly supported, in the support of a0 transported by the classical flow.

In the nonlinear case, we check that the same argument remains valid. Consider
φeik solution to (3.3), and (φ, a) solving (3.7). The natural adaptation of the above
computation consists in showing that if φ0, a0 ∈ C∞

0 (Rd), the new unknown (ψ,A),
defined by

(3.8) A(t, y) :=
√

Jt(y)a (t, x(t, y)) , ψ(t, y) := φ (t, x(t, y)) ,
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enjoys a zero speed of propagation. Note that in view of Proposition 3.2, we already
know that φ, a ∈ C([0, T∗];H

∞(Rd)), so it suffices to check that (ψ,A) solves a
system for which the argument presented on the toy model of Burgers equation in
Section 2 remains valid. Introducing

M(t, y) = ∇yx(t, y) ∈ R
d×d,

whose determinant is by definition Jt(y), we find:

∂tψ +
1

2

〈

M−1∇ψ,M−1∇ψ
〉

+
1

Jt(y)
|A|2 = 0, ψ|t=0 = φ0,

∂tA = −
√

Jt(y)

(

∇φ · ∇a+ 1

2
a∆φ

)

(t, x(t, y)) , A|t=0 = a0.

We do not express the right hand side of the last equation in terms of (ψ,A): differ-
entiating the first equation with respect to y, the bounds stated in Proposition 3.2
make it possible to infer an inequality of the form

|∂t∇ψ(t, y)|+ |∂tA(t, y)| . |∇ψ(t, y)|+ |A(t, y)|, (t, y) ∈ [0, T∗]× R
d.

Therefore, if suppφ0, supp a0 ⊂ K, then supp∇ψ(t, ·), suppA(t, ·) ⊂ K for all
t ∈ [0, T∗]. Integrating in time the equation solved by ψ, we conclude to the zero
speed of propagation for (ψ,A). Arguing like in Section 2 for the correctors, we
have:

Proposition 3.3. Let φ0, a0 ∈ C∞
0 (Rd) with suppφ0, suppa0 ⊂ K. There for any

t ∈ [0, T∗], where T∗ is given by Proposition 3.2,

suppψ(t, ·), suppA(t, ·) ⊂ K,

where ψ and A are related to φ and a through (3.8). The same is true for the

correctors (ψ(k), A(k))k>1 corresponding to the next terms (φ(k), a(k))k>1 in the as-

ymptotic expansion in (3.6).

Remark 3.4 (Special potentials). In the case where V is linear in x or isotropic
quadratic, explicit formulas allow to bypass the above arguments. If V (x) = E · x
for some (constant) E ∈ Rd and uε solves (1.1), then

vε(t, x) = uε
(

t, x− t2

2
E

)

e
i
(

tE·x− t3

3 |E|2
)

/ε

solves (2.1). If V (x) = ω2

2 |x|2, ω > 0, then

wε(t, x) =
1

(1 + (ωt)2)
d/4

uε

(

arctan(ωt)

ω
,

x
√

1 + (ωt)2

)

e
i ω2t

1+(ωt)2
|x|2

2ε

solves

iε∂tw
ε +

ε2

2
∆wε = (1 + t2)d/2−1|wε|2wε ; wε|t=0 = a0e

iφ0/ε.

If d = 2 (the cubic nonlinearity is L2-critical), we recover exactly (2.1). Otherwise, a
(smooth) time dependent factor has appeared, which obviously does not change the
conclusion of Propositions 2.1 and 2.3. The case of a potential with the opposite
sign is obtained by changing ω to iω in the formulas. See e.g. [5, Section 11.2]
and references therein regarding these changes of unknown functions. For such
potentials, the classical trajectories given by (3.4) are computed explicitly, and we
can check directly the conclusions of Proposition 3.3.
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4. Separation of states

We complete the proof of Theorem 1.3, by proving the nonlinear superposition.
For 1 6 j 6 N , let χj ∈ C∞

0 (Rd;R), 0 6 χj 6 1, with

χj ≡ 1 on suppαj , suppχj1 ∩ suppχj2 = ∅ if j1 6= j2.

We set

a0(x) =

N
∑

j=1

αj(x), φ0(x) =

N
∑

j=1

ϕj(x)χj(x).

Then a0, φ0 ∈ C∞
0 (Rd), φ0 is real-valued, and

uε0(x) = a0(x)e
iφ0(x)/ε.

We can then resume the analysis from the monokinetic case as presented in Sec-
tions 2 and 3, with the same notations. Let φeik be given by Lemma 3.1 (it does
not depend on the initial data, but only on V ). The WKB analysis for each uεj ,
solution to (1.5), involves the following system:

(4.1)











∂tφj +∇φeik · ∇φj +
1

2
|∇φj |2 + |aj|2 = 0, φj|t=0 = ϕjχj ,

∂taj +∇φeik · ∇a+
1

2
a∆φeik +∇φj · ∇aj +

1

2
aj∆φj = 0, aj|t=0 = αj .

To simplify the discussion, suppose first that V = 0, hence φeik = 0. Each solution
to (4.1) remains smooth on some time interval [0, Tj] for some 0 < Tj 6 T , and,
on this time interval, enjoys a zero speed of propagation. As a consequence of
Proposition 2.1, we have

φ =

N
∑

j=1

φj , a =

N
∑

=1

aj ,

since nonlinear terms containing two indices j1 6= j2 involve two functions whose
supports are disjoint. Also, for all k > 1, the correctors satisfy

φ(k) =
N
∑

j=1

φ
(k)
j , a =

N
∑

=1

a
(k)
j .

Set

T ∗ = min (T∗, T1, . . . , TN ) .

As we have, in view of (2.6), in L∞([0, T ∗];L2 ∩ L∞), for any k > 0,

uε −
(

k−1
∑

ℓ=0

εℓa(ℓ)

)

exp

(

i

ε

k
∑

ℓ=0

εℓφ(ℓ)

)

= O
(

εk
)

,

uεj −
(

k−1
∑

ℓ=0

εℓa
(ℓ)
j

)

exp

(

i

ε

k
∑

ℓ=0

εℓφ
(ℓ)
j

)

= O
(

εk
)

, j = 1, . . . , N,

we obtain Theorem 1.3 in the case V = 0. In the case where V is not trivial, we
just have to resume the above arguments by replacing the functions (φ, a) (possibly
with indices and/or superscripts) with (ψ,A), as defined by the change of unknown
function (3.8), which involves only V (see (3.4)), and not the initial data.
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5. Weakly nonlinear case

In this section, we prove Proposition 1.4. Instead of (1.1)-(1.3), we consider the
weakly nonlinear case,

iε∂tu
ε +

ε2

2
∆uε = ε|uε|2uε ; uε0(x) =

N
∑

j=1

αj(x)e
iϕj(x)/ε,

or, equivalently, (1.1) with initial data (1.3) multiplied by
√
ε. When d > 2, the

creation of new WKB terms is possible by resonant interactions, provided that N >

3. The one-dimensional cubic case is special, as there are no nontrivial resonances,
see [6]. In order to present an argument including the cubic one-dimensional case,
we propose a proof which does not use the creation of, e.g., a fourth term out of
three.

To prove Proposition 1.4, in agreement with the assumptions of this statement,
it suffices to set N = 2, and consider linear phases,

ϕj(x) = kj · x.
WKB analysis in the monokinetic case N = 1 leads to the hierarchy

∂tφ+
1

2
|∇φ|2 = 0 ; φ(0, x) = k · x,

∂ta+∇φ · ∇a+ 1

2
a∆φ = −i|a|2a ; a(0, x) = α(x).

The eikonal equation is solved explicitly,

φ(t, x) = k · x− |k|2
2
t.

As ∆φ = 0, the initial amplitude α is transported along the vector k with a phase
self-modulation:

a(t, x) = α(x − tk)e−it|α(x−tk)|
2

.

In the case N = 2, no new WKB term is created, but interactions between the
two modes lead to a modification of the phase modulation. As computed in [6,
Section 3], we find

a1(t, x) = α1(x− tk1)e
−i(2

∫

t

0
|α2(x+(τ−t)k1−τk2)|

2dτ+t|α1(x−tk1)|
2),

a2(t, x) = α2(x− tk2)e
−i(2

∫

t

0
|α1(x+(τ−t)k2−τk1)|

2dτ+t|α2(x−tk2)|
2).

The leading order nonlinear interactions between the two modes correspond to the
integrals in time in the exponentials. In addition, we have (see [5, 6])

sup
t∈[0,T ]

∥

∥

∥uε(t)− a1(t)e
iφ1(t)/ε − a2(t)e

iφ2(t)/ε
∥

∥

∥

L2∩L∞
= O(ε),

for some T > 0 independent of ε, depending only on ‖α̂1‖L1∩L2 + ‖α̂2‖L1∩L2 . The
conclusion in Proposition 1.4 then follows from the property:

sup
t∈[0,T ]

∥

∥

∥
α1(· − tk1)

(

e−2i
∫

t

0
|α2(·+(τ−t)k1−τk2)|

2dτ − 1
)∥

∥

∥

Lp
> 0,

or, equivalently,

sup
t∈[0,T ]

∥

∥

∥

∥

α1 sin

(∫ t

0

|α2(·+ τ(k1 − k2))|2dτ
)∥

∥

∥

∥

Lp

> 0.
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Now let α ∈ C∞
0 (Rd) supported in the ball centered at the origin, of radius 1, and

set

α1(x) = α(x), α2(x) = α(x + 3e1),

where (e1, . . . , ed) is the canonical basis of Rd. Setting k2 − k1 = λe1, we can
choose λ > 0 sufficiently large so the argument of the sine function is not zero on
the support of α for t ∈ [0, T ], hence the result.

Appendix A. Weakly nonlinear case and creation of a new term

In this appendix, we prove that in the weakly nonlinear case, if d > 2, then
nonlinear interactions may lead to the creation of a new WKB term, which is a
stronger phenomenon than that used in the proof of Proposition 1.4. Consider

iε∂tu
ε +

ε2

2
∆uε = ε|uε|2uε ; uε0(x) =

N
∑

j=1

αj(x)e
iϕj(x)/ε,

with now N = 3, and d > 2. The one-dimensional cubic case is special, as there
are no nontrivial resonances, see [6]. Again, we consider linear phases,

ϕj(x) = kj · x.
Recall ([6, Lemma 2.2]) that the resonant set is defined by

Res(n) = {(j, ℓ,m), kj − kℓ + km = kn, |kj |2 − |kℓ|2 + |km|2 = |kn|2}.
is characterized as follows: (kj , kℓ, km) ∈ Res(n) when the endpoints of the vectors
kj , kℓ, km, kn form four corners of a nondegenerate rectangle with kℓ and kn oppos-
ing each other, or when this quadruplet corresponds to one of the following two
degenerate cases: (kj = kn, km = kℓ) or (kj = kℓ, km = kn). Note that we always
have

(A.1) {(j, j, n), ((n, j, j), aj 6≡ 0} ⊂ Res(n),

where aj is the amplitude associated with the phase

φj(t, x) = kj · x− |kj |2
2

t.

In order for the nonlinearity to create a term associated with a phase φ4, out of
three phases associated with wave numbers k1, k2 and k3, we must have

k4 := k2 − k1 + k3, |k4|2 = |k2|2 − |k1|2 + |k3|2.
This resonant condition is equivalent to the following conditions:

(k1 − k2) · (k1 − k3) = 0,

and the endpoints of k1, k2 and k3 are not aligned (the case of alignment corresponds
to the set on the left in (A.1)); this is possible with pairwise different k1, k2, k3 and
k4 6∈ {k1, k2, k3} provided that d > 2, see [6] (or [5, Section 2.6]). For instance if
d = 2, we can choose, for λ > 0,

k1 = λ(1, 1), k2 = λ(1, 0), k3 = λ(0, 1), hence k4 = (0, 0).

In higher dimension, we simply complete each vector by zero coordinates. Then
a new term, associated with the phase φ4 may be created by nonlinear resonance.
Because of the geometric characterization of resonances, no other term can be
created apart from this one, since we have completed a rectangle. The creation is
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effective only if the associated amplitude does not remain zero. The equation for
the corresponding amplitude is

∂ta4 + k4 · ∇a4 = −i
∑

(j,ℓ,m)∈Res(4)

aj āℓam, a4|t=0 = 0.

More generally, the term an solves

∂tan + kn · ∇an = −i
∑

(j,ℓ,m)∈Res(n)

ajāℓam, an|t=0 = αn.

If we assume that the mode 4 is not effectively created, that is a4 ≡ 0, then the
inclusion (A.1) is actually an equality, and

∂taj + kj · ∇aj = −2i

3
∑

k=1

|ak|2aj + i|aj|2aj, j = 1, 2, 3.

hence
aj(t, x) = αj(x− tkj)e

−iSj(t,x), j = 1, 2, 3,

for some explicit real-valued phase, whose expression is irrelevant here (see [6,
Section 3.1] for the formula). Given any T > 0, we may choose α1, α2, α3 compactly
supported, with disjoint supports, k1, k2, k3 like above, so that

a2ā1a3|t=T/2 6≡ 0.

This shows that the term a4 is actually created, in the sense that a4 does not remain
trivial on [0, T ]. The error estimate proved in [7] (see also [5, Section 2.6]) yields

sup
t∈[0,T ]

∥

∥

∥

∥

∥

∥

uε(t)−
4
∑

j=1

aj(t)e
iψj(t)/ε

∥

∥

∥

∥

∥

∥

L2∩L∞

= O(ε),

hence again the conclusion of Proposition 1.4
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