

Xylogenesis Dynamics Simulator 2

Félix Hartmann French National Research Institute for Agriculture, Food and Environment (INRAE)

XyDyS (Xylogenesis Dynamics Simulator)

- XyDyS is an open-source software for modeling and simulating the dynamics of wood formation in conifers.
- Freely available at <u>https://forgemia.inra.fr/felix.hartmann/xydys</u>.
- Focused on understanding the internal regulation of wood formation (basic research in developmental biology).
- Hypothesis-driven approach: a tool for quantitatively testing various hypotheses.
- XyDyS has been presented and illustrated in two research articles:
- 1) Hartmann *et al.* (2017) Modelling wood formation and structure: power and limits of a morphogenetic gradient in controlling xylem cell proliferation and growth. *Annals of Forest Science.*
- 2) Hartmann *et al.* (2021) Modelling the spatial crosstalk between two biochemical signals explains wood formation dynamics and tree-ring structure. *Journal of Experimental Botany*.

Initial motivation:

The auxin gradient as a morphogenetic gradient?

Does the auxin gradient provide enough information to cells to guide the development of the tissue into mature wood?

Further motivation:

Actually, there are many gradients across the tissue

. auxin

- . cytokinins
- . gibberellins
- . peptides (CLE42)

It would be nice to have a tool to easily model and simulate how these gradients regulate wood formation!

A user-friendly interface

A graphical interface allows to build, tune, and explore models.

A variety of outputs are possible to visualize the results of simulations.

Resolved cell phases and processes

Only cell division and expansion are modeled.

Secondary cell wall thickening and lignification are not considered.

Process-representation: the Cambium

The ability of cells to divide is determined by a "division signal". Cells can divide only if the local concentration of division signal is higher than a "division threshold".

Process-representation: Cell enlargement

Dividing cells are also expanding!

(no division without expansion)

An "expansion signal" determines which cells are expanding, based on an "expansion

The expansion rate of a cell is proportional to its concentration of expansion signal and inversely proportional to its size.

Process-representation: wall thickening

Once a cell stopped enlarging, it can still transport signals, but wall thickening is not modeled.

Inputs/forcing

- Biochemical signals (hormones, peptides, ...)
- Imposed boundary concentrations
- Transport processes: diffusion, polar active transport
- Cross-talk between signals
- All settings are saved in JSON files
- Time step for simulation around 1 hour (can be much less for fast-diffusing signals)

imposed boundary concentrations of the signals

Outputs

- The spatio-temporal evolution of the cell file and the signal concentrations, as a video or a sequence of images.
- Xylem growth curves.
- The evolution of the number of cells in each developmental zone.
- Cell diameters at any time step and the final tracheidogram.

An example: Two-signal model with cross-talk

Hartmann et al. (2021) J. Exp. Bot.

- Division signal: cytokinin (diffusive)
- Expansion signal: auxin (polar active transport toward the xylem)
- Polar auxin transporters (PINs) are synthesized only where cytokinin concentration > division threshold (cross-talk).
- Auxin-dependent PIN synthesis.

Limitations and outlooks

- Limitation: Data on hormone concentrations in the cambium are scarce, and little is known about their cross-talks. Many hypotheses have to be made.
- Outlooks:
- 1. Taking temperature into account: Most biochemical processes are affected by temperature, so this effect should be taken into account.
- 2. Trying to relate signal concentrations to environmental factors.