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Abstract

Continuum parallel robots (CPRs) are mainly constituted by flexible links arranged in parallel between a rigid platform and a
rigid base, and they promise remarkable performance in human-robot collaboration applications. New CPRs modelling strategies
and their experimental validation are continuously investigated due to the nonlinear phenomena complexity and the high computa-
tional effort required to solve them. This work focuses on the experimental validation of CPRs equilibrium stability prediction. We
demonstrate that models based on planar displacement assumptions may fail in the equilibrium stability prediction, even though the
CPR is nominally planar. A new CPR prototype for planar applications is proposed, designed, and tested for the scope. Unstable
configurations that limit the robot workspace are theoretically and experimentally investigated. A singularity type, related to out-
of-the-plane uncontrolled motions of the planar CPR, is experimentally identified for the first time. Experiments demonstrate that,
even though the prototype is theoretically planar, a planar model neglecting out-of-the-plane phenomena is inadequate to assess
equilibrium stability limits.
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1. Introduction

Continuum robots (CRs) are usually constituted by flexible
components and designed to achieve safe human-robot interac-
tions in a shared environment. Commonly, CRs resemble serial
manipulators and may suffer from reduced payload capability,
which limits their applicability. Nevertheless, CRs are usually
well suited for small-scale surgical tasks where their intrinsic
compliance grants various advantages [1]. Continuum parallel
robots (CPRs) [2] were later introduced for achieving a good
trade-off between the higher payload capability typical of rigid
links parallel manipulators and the intrinsic safety of contin-
uum robots. CPRs promise interesting features for large-scale
or collaborative industrial tasks where the inherent flexibility of
CPRs may be used as a safety feature. The basic concept of a
continuum parallel robot was introduced in [2], where several
flexible beams placed in a Gough-Stewart-like parallel arrange-
ment were translated at their base to move a rigid platform. Al-
though similar robot architectures were later proposed [3], [4],
[5], there is a growing number of different CPR designed ex-
plicitly for the task they are intended for [6], [7], [8]. Relevant
examples of CPRs applications include pick-and-place [9] or
micrometre positioning [10].
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CRs modelling received significant attention from the re-
search community, and the literature is vast [11]. Alternative
models provide a different trade-off between accuracy and com-
putational complexity, and choosing the appropriate model for
the problem at hand is an open question. To this end, experi-
mental data and simulations of different models have been com-
pared in many works [12], [13], [14]. Pose accuracy, namely,
the model ability to correctly predict the position and orienta-
tion of the robot’s end-effector (EE), received significant atten-
tion: lumped parameter approximations [15], [16], piecewise
constant strains models [17], and shooting approaches [18], [19],
are some of the most relevant examples of experimentally veri-
fied CRs models. For CPRs, the pose accuracy of the shooting
method was investigated in [9] and [10] on a 2, and 3-DoF pla-
nar CPRs, respectively, and in [20] on a 6-DoF CPR; addition-
ally, [21] focused on model parameter calibration. The constant
curvature approach, which is suitable for tendon-driven links,
was also tested in [22] and, finally, discretization through small
segments was experimentally validated for spatial CPRs in [23].

Although pose accuracy is a significant issue for control,
other robot properties are relevant for characterization and per-
formance evaluation. Due to the high elasticity and possibly
limited payload capability of CRs, robot stiffness and workspace
(WS) extension are widely investigated. A CPRs stiffness pre-
diction obtained by a discretization approach was experimen-
tally validated in [24], and the WS of a 6-DoF prototype exper-
imentally verified in [25] by comparing theoretical and actual
posed on several WS slices. Recently, the phenomena limiting
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(a) Design 1 (b) Design 2 (c) Design 3
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Figure 1: Three different possible designs of the RFRFR robot. (a) two motors on the same side in distinct locations, (b) two motors on opposite sides on distinct
locations, (c) two motors on the same side, same location. Figure (d) qualitatively illustrates how mechanical interference reduces the WS with Design 1. Figure (e)
shows the trend of out-of-the-plane EE displacement (∆pz) with Design 2, and (f) illustrates the WS with Design 3. The links length is 0.560 m, while lAB = 0.2 m
for (d),(e), and lAB = 0 for (f).

CPRs workspace became of interest since their understanding
may produce better-performing designs. At WS limits, CPRs
may experience stable-to-unstable transition [26], analogously
to serial CRs [27]. An optimal control approach was proposed
in [26] to assess CPRs equilibrium stability, and experiments
were conducted to verify the correct equilibrium stability pre-
diction. Even though optimal control approaches bring rigorous
derivation of equilibrium stability conditions, the complexity
of the analysis is relevant. Conversely, discrete energy-based
methods [28] bring simplicity to the equilibrium stability anal-
ysis.

The novel contribution of this paper is related to the ex-
perimental validation of CPRs equilibrium stability assessment.
In particular, we demonstrate that models based on planar dis-
placement assumptions may fail in the equilibrium stability pre-
diction, even though the CPR is nominally planar. To this end,
a CPR prototype for planar applications is originally proposed.
The prototype has a RFRFR overall topology [29], [30] and,
thanks to its actuation system, links interference with each other
is avoided throughout the robot WS, leading to a large attain-
able Cartesian WS area. Moreover, the EE motion is planar by

design since the forces exchanged between the links and the
EE are parallel to the motion plane, and the overall torque ap-
plied on the mechanism is normal to the motion plane. The
robot capability in terms of joint-space range (JS), Cartesian
WS size, and equilibrium stability (verified with the energetic
approach of [28]) are compared by using a model that assumes
planar displacements and a full spatial model. Experiments are
conducted to i) verify that a model using planar displacements
assumptions is not adequate to predict the equilibrium stabil-
ity of the proposed prototype and ii) to assess the accuracy of
our equilibrium stability prediction. A singularity type, related
to out-of-the-plane uncontrolled motions of the planar CPR, is
experimentally identified for the first time.

The paper is structured as follows. Section 2 illustrates the
robot design and its prototyping. Then, Section 3 recalls the
derivation of discretized CPR geometrico-static equations, sin-
gularity conditions and equilibrium stability assessment. Sec-
tion 4 is devoted to the robot JS/WS analysis. Section 5 is ded-
icated to the experimental verification of equilibrium stability
prediction, and conclusions are drawn in Section 6.
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2. Prototype Design

This Section focuses on the RFRFR prototype design pro-
posed in this paper. The RFRFR topology was introduced in
[29], and its WS computation was studied in [30]. The RFRFR
robot has two rotative motors (R) whose axes are attached to the
proximal section of two flexible beams (F). The distal sections
of the beams are connected through a passive revolute joint (R),
and the robot EE is coincident with the passive revolute joint R.
All the R joint axes are nominally parallel.

2.1. Architecture Selection

The proposed design aims at realizing a nominally planar
CPR with the largest workspace possible. To keep planar the
EE displacement, the external forces applied to the EE and the
forces exchanged between the legs and the EE need to belong
to the motion plane, with the resultant torque normal to the mo-
tion plane only. In addition, the EE, the links, and the motor
axes should not mechanically interfere with each other: this fea-
ture is a great limiting factor for parallel robots WS size [31].
Some design candidates are the 2-DoF pick-and-place contin-
uum robot of [9], and the RFRFR of [6], but also many rigid-
link five-bar mechanisms may be a source of inspiration [32].
The three most straightforward solutions are hereby discussed:

• Design 1 (Fig. 1a). The two R motors are attached on the
same side of the working plane at a distance lAB > 0. This
design brings simplicity and great accessibility. Thanks
to a clevis fastener, flexible links are aligned at the same
EE cross-section and connected to the passive joint R [9],
and the EE is in static equilibrium. However, mechanical
interference between the links and motor shafts reduces
the robot WS. We used the workspace algorithm of [33]
to compute the WS boundaries generated by mechanical
interferences, and a reduction of the WS to roughly half
of the xy plane occurs (Fig. 1d reports the robot WS ob-
tained with lAB = 0.2 m, links length 0.56 m and no ex-
ternal loads). Preliminary design explorations (not shown
here for brevity) showed that the influence of mechanical
interference reduces by lowering lAB; on the other hand,
lAB cannot be reduced to zero due to actuators encumber-
ance;

• Design 2 (Fig. 1b). The two R motors are attached on the
opposite side of the working plane at a distance lAB ≥ 0.
The flexible beams are connected at different EE cross-
sections (as [32], [6]), and there is no potential mechani-
cal interference between robot links and motor axes. Un-
fortunately, the links wrenches will generate a resultant
torque which is not normal to the motion plane, and the
EE cannot lie in the nominal plane without additional
constraining systems. We studied this phenomenon by
computing the robot WS with a spatial robots model [34],
and we measured the EE out-of-the-plane displacement
∆pz, namely the distance of the EE reference point from
the reference motion plane. For instance, Fig. 1e illus-
trates ∆pz over the robots WS in the case lAB = 0.2, links

length 0.56 m, no external loads and offset between the
plane of the motors 0.020 m. When the EE points toward
the WS centre, ∆pz increases to unacceptable values. This
issue may be solved by considering EE-constraining sys-
tems (e.g. the vaacum system of [35]). However, such a
constraining system modifies the external actions acting
on the robot. In this design, lowering lAB reduces ∆pz,
but even with lAB = 0, ∆pz remains at unaccettable val-
ues. These simulations are not reported here for brevity;

• Design 3 (Fig. 1c). The two actuated revolute joints R
are placed on the same side of the working plane, and
they are coaxial (lAB = 0). Flexible links 1 and 4 are
synchronously moved by the same motor, whereas the
other actuator rotates links 2,3. This design ensures no
mechanical interference, the EE can maintain a planar
configuration, ensuring a large accessible WS (Fig. 1f).
However, the design complexity increases.

Design 3 is the most favourable for realizing a nominally
planar 2-DoF system with the largest workspace, without re-
quiring the addition of external constraints, and thus is selected
for experiments.

2.2. Prototype Manufacture
The proposed prototype is illustrated in Fig. 2. To facilitate

its description, we can subdivide the robot into three groups:
flexible chains, the EE, and the actuation unit.

The beams that transmit the motion from the actuators to
the EE form the flexible chains. As represented in Fig. 2a, we
can distinguish one inner and two outer chains. While four flex-
ible beams make the former, each outer chain is made by two
flexible beams. Beams are made of fibreglass rods of 2 mm di-
ameter. Several possible materials are well suited for CRs (e.g.
NiTinol alloys [4], Nylon [9], spring steel [24]), and we selected
fibreglass mainly for its good tradeoff between lightweight, com-
pliance, and widespread availability on the market. Even if a
single beam of a larger diameter could be used to realize each
flexible chain, we decided to use several beams in parallel. For
a given flexural inertia moment, a single beam with a larger di-
ameter is highly stressed since strains are proportional to the
cross-section diameter. Instead, many small-diameter beams
may guarantee an equivalent inertia moment, but the strain on
each beam is reduced. We also mounted connecting constraints
on each chain to increase the stiffness of the robot in the or-
thogonal direction to the working plane. This way, each flexible
chain resembles a beam with a rectangular cross-section1.

The EE is illustrated in Fig. 2b. The distal sections of the
kinematic chains are connected to rigid clamps, as is done for
the proximal section. The inner chain is clamped at the EE on
EA, while outer chains are connected to EB,EC . Two marker
supports are attached at both sides of the EE to balance the EE
load statically. The total mass of the EE is 218 g.

1A single beam with a rectangular cross-section would be a good design
solution, but the market availability of beams with rectangular cross-section
whose constitutive material has high admissible strains is significantly lower
than circular beams.
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(a) Overview of the prototype (b) End effector (c) Actuation unit

(d) Transmission system assonometric view.
(e) Transmission system cross-section.

Figure 2: The CPR prototype is shown in (a), a top view of the prototype is given in (b) to highlight the actuation unit, and a view of the EE is provided in (c). Then,
(d) provides an assonometric view of the transmisison system, and (e) illustrates a cross-section of the actuation unit: components that rotate at the same angular
velocity are shaded with the same colour.

The actuation unit (Fig. 2c) is composed of Two DC Maxon
motors DCX32L, equipped with a three-stage planetary gear-
box (reduction ratio 150:1), and a transmission system specifi-
cally designed to drive the flexible chains according to Design
3. The transmission working principle is the following (see
Fig. 2d): a rotation of the shaft S 1 causes an angular displace-
ment of pulley P1A. A synchronous belt transmits the rotation
of P1A to the pulley P2A. Similarly, shaft S 2 actuates pulleys
P1B, P1C and synchronous belts transmits the rotations to pul-
leys P2B, P2C , respectively. A set of three concentric shafts
(see Fig. 2e) is used to transmit the rotation of the pulley to
the beam clamps (named CA,CB,CC). Shaft S A connects pul-
ley P2A to CA and, in a similar fashion, shafts S B, S C connects
pulleys P2B, P2C to CB,CC , respectively. Since P2B, P2C rotate
synchronously, also CB,CC , display the same angular motion.
The proximal section of the inner chain is installed on CA, while
the proximal sections of the outer chains are placed at CB,CC .

Finally, a dSPACE 2018-B board completes the automation,
controlling the DC motors.

3. Modelling

This Section briefly describes the energy-based modelling
approach employed in this paper. We focus on the description
of a spatial CPR model, which is the most general, and addi-
tional details on how to simplify it to a planar one can be found
in Section 3.3. Let us consider an initially straight slender beam
of length L, and s is the curvilinear coordinate that spans [0, L]
(Fig. 3a). F0 is a fixed frame, and the pose of each reference
frame Fs, which is attached to each cross-section of the beam
in its centre, can be represented as:

g(s) =
[
R(s) p(s)

0 1

]
(1)

where R ∈ S O(3),p ∈ R3. The evolution of the beam pose over
the s-coordinate is given by:

g
′

(s) = g(s)ξ̂(s) (2)

with (.)′ = d/ds, and ξ̂ ∈ se(3) is the skew-symmetric repre-
sentation of the strain ξ(s) = [u, v] ∈ R6, where u, v ∈ R3 are
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(a) Beam (b) CPR

Figure 3: (a): flexible beam parametrization; (b) schematics of a CPR.

the angular and linear rate of change, respectively. Assuming
that shear and extensibility are negligible and that the local z
axis is normal to the cross-section, we have v = e1 = [0, 0, 1]T .
Material properties are considered linear, elastic, isotropic, and
constant over the length, and only distributed forces f ∈ R3 are
applied over the beam. The total potential energy of the beam
can be obtained as [36]:

Vbeam =

∫ L

0

(
u(s)T KBT u(s) − fT p(s)

)
ds (3)

where KBT = diag(Kx,Ky,Kz) is the local material stiffness
matrix, Kx,Ky are the flexural stiffness around the local xs, ys,
and Kz is the local torsional stiffness around zs. In general,
Kx = EIx,Ky = EIy,Kz = GJz, where E is the Young’s mod-
ulus, G is the shear modulus, Ix, Iy, Jz are the principal inertia
moments of the cross-section.

Then, let us consider a CPR made by n flexible beams
(Fig. 3b): we assume each beam to be actuated at the proxi-
mal Section only (points Ai, with i the index representing the
i-th beam), qai is the i-th actuated variable, and qa ∈ Rn col-
lects the actuated variables. At the distal Section, a passive joint
connects each flexible link to the rigid platform (points Bi). The
frame Fp is attached to the rigid platform. Its pose is described
by (pp,φ) ∈ Rnc , where nc = 3 for the planar case, nc = 6
for the spatial case, and pp,φ represent the position and the
orientation parameters of the platform w.r.t. F0, respectively.
Assuming to have the same number of controlled and actuated
variables, the vector qp ∈ Rn is introduced to stack the con-
trolled variables, which is usually a subset of pp,φ. Last, we
introduce qu ∈ Rnc−n to collect the remaining non-controlled
platform-pose variables. The total potential energy of the CPR
is obtained as:

Vtot(qa,qe,qu,qp) =
n∑

i=1

Vbeami + Vplat (4)

where Vplat = −fT
P pp, and fP a platform load constant w.r.t.

the fixed frame. Three-dimensional moments that are non-
conservative are considered to not appear.

CPRs equilibrium configurations can be found by impos-
ing that Vtot is stationary [28]. A straightforward way to find

critical points of Vtot is to apply discretization strategies [11],
and a finite set of discretization coordinates qe is introduced to
parametrize the elastic deformations of the beams. In this pa-
per, we decided to employ the assumed strain mode discretiza-
tion approach of [34], since it ensures a good trade-off between
accuracy and computational time. The assumed strain mode
approach is based on the discretization of ui of the i-th beam
through base functions as [37]:

ui(s) ≃ N(s)T qei (5)

where N ∈ R3×N f is a matrix of base functions (such as orthog-
onal Legendre polynomials [34]), N f is the number of variables
that discretizes ui, qei ∈ RN f is the vector of the discretiza-
tion variables of the i-th beam, and qe ∈ Rm,m = n(3 × N f )
contains all the discretization variables. Then, to recover g
at each s, we numerically integrate Eq. (2). where ξ̂ is build
by considering the approximated strain as in Eq. (5). Conse-
quently, after the discretization process, Vtot = Vtot(qa, x), with
x = [qd,qp],qd = [qe,qu], and a robot configuration is an equi-
librium configuration if, for a fixed value of qa, x is a critical
point of Vtot [38]. However, due to the closed-loop architecture
of CPRs, variables are related by geometric constraints, here
denoted asΦ = Φ(qa, x) = 0 ∈ Rnϕ without loss of generality2.
In this case, critical point of Vtot are characterized by Lagrange
conditions [38]: x is a critical point of Vtot if, assuming ∇xΦ

full rank, there exists a vector of Lagrange multipliers λ ∈ Rnϕ

such as:  ∇xL = ∇xVtot + ∇xΦ
Tλ = 0

∇λL = Φ = 0
(6)

with L = Vtot +Φ
Tλ. Equation (6) is an undetermined system

of m + nc + nΦ equations in m + n + nc + nΦ unknowns that
represents the geometrico-static model of a CPR. Geometrico-

2Additional details on how to derive Φ can be found in [28], [34].
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Figure 4: Schematics of the Prototype modelling

static problems3 can be stated in an unified way as [28]:

F =


∇xVtot + ∇xΦ

Tλ = 0
Φ = 0
ep = 0

(7)

where eP = qp − qd
p for the inverse geometrico-static problem

(IGSP), eP = qa − qd
a for the forward geometric-static problem

(FGSP), and the superscript (.)d denotes desired values. Both
IGSP and FGSP are square systems of dimension m+n+nc+nΦ
that can be solved thanks to nonlinear root-finding techniques.
By using the assumed strain mode approach [34], g at each
cross-section is obtained by numerical integration of Eq. (2).
Thus, the terms of Eq. (7) that requires the derivative of g w.r.t.
x are obtained by numerical integration of an additional set of
ODEs, integrated together with Eq. (2). The expression of these
terms is long, and its detailed description is not in the scope of
this paper. We address the interested reader to a dedicated tech-
nical report [39].

3.1. Equilibrium Stability and Singularities

After the derivation of FGSP and IGSP, we seek to evaluate
the equilibrium stability of the robot configuration and singu-
larity conditions. To obtain singularity conditions, we linearize
Eq. (6) at a generic equilibrium configuration [28]:[

AL
AΦ

]
∆qa+

[
UL
UΦ

]
∆qd+

[
PL
PΦ

]
∆qp+

[
ΛL
0

]
∆λ+

[
WL

0

]
∆fp = 0 (8)

where:

1. AL = ∇qa (∇xL) , UL = ∇qd (∇xL)

3With FGSP we consider the evaluation of qe,qu,qp, λ for given external
loads and assigned qa. On the other hand, the IGSP means the evaluation of
qe,qu,qa, λ for given external loads and assigned qp.

2. PL = ∇qP (∇xL) , ΛL = ∇λ (∇xL) ,WL = ∇fP (∇xL)
3. AΦ = ∇qaΦ , UΦ = ∇qdΦ , PΦ = ∇qPΦ

The terms of Eq. (8) requires the computation of the second
derivatives of g w.r.t. qa and x. As for the first derivatives of g
w.r.t. x of Eq. (7), also these terms are obtained by integration of
an additional set of ODEs and the details on how the integration
is carried out are reported in [39], for brevity sake.

For the singularity analysis, there is little interest in the vari-
ation ∆λ, since degeneracies of ΛL are unlikely to occur, in
practice [28]. Being Z the matrix spanning the left nullspace
of ΛL i.e. ZTΛL = 0, we eliminate ∆λ by multiplying the first
row of Eq. (8) by ZT :

A∆qa + U∆qd + P∆qp +W∆fp = 0 (9)

where:

A =
[
ZT AL

AΦ

]
,U =

[
ZT UL

UΦ

]
,P =

[
ZT PL

PΦ

]
,W =

[
ZT WL

0

]
(10)

To derive singularity conditions, the inverse and forward kine-
matostatic problems are established [28]. The inverse kine-
matostatic problem means to evaluate∆qa,∆qd for given∆qp,∆fp,
that is: [

∆qa

∆qd

]
= −[A U]−1(P∆qp +W∆fp) (11)

Eq. (11) is solvable as long as T1 = [A U] is full-rank, and rank
deficiencies of T1 are named Type-1 singularities [28]. These
singularities are related to limits of IGSP and impossible mo-
tions of qp. On the other hand, the forward kinematostatic prob-
lem means to evaluate ∆qp,∆qd for given ∆qa,∆fp, that is:[

∆qp

∆qd

]
= −[P U]−1(A∆qa +W∆fp) (12)

Eq. (12) is solvable as long as T2 = [P U] is full-rank, and
degeneracies of T2 are named Type-2 singularities [28] Robot
configurations where T2 is degenerate are related to the limits
of the FGSP solution and uncontrollable qp motions. Then,
we evaluate equilibrium stability by determining the reduced
Hessian matrix Hr of the total potential energy as [28]:

Hr = ZT ∂
2L

∂x2 Z = ZT
[
PL UL

]
Z (13)

The configuration is stable if Hr is positive definite. Please note
that, as long as Z is full rank, T2 is singular if and only if Hr is
rank deficient (see [28] for the proof). Thus, Type-2 singulari-
ties are associated with the variation of the stability pattern.

3.2. Distributed Material Coefficients Computation
The specific design of the flexible chains needs to be ac-

counted for in the robot model (Fig. 4). Each chain comprises
a rigid base attached to the motor shaft, rigidly rotating with it,
some flexible beams fixed to the motor shaft, several connect-
ing constraints between the flexible beams, and finally another
rigid tip attached to the EE revolute joint. As previously men-
tioned, connecting constraints increase the robot stiffness in the
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(a) Young’s’s modulus setup (b) Strain limit setup (c) Cross-secton of the strain-limit setup

Figure 5: Experimental benchmarks. Figure (a) illustrates the Young’s’s modulus estimation setup, Figure (b) shows the strain limit estimation setup and Figure (c)
gives details on the strain limit estimation setup.

orthogonal direction to the motion plane. However, accounting
for their effect in the robot model is not trivial. We can sim-
ulate each beam and each connecting constraint using the as-
sumed mode approach [37], leading to computationally expen-
sive models. Alternatively, other modelling strategies may be
used: piecewise constant curvature approaches [40], or piece-
wise constant strains [41] fits well, but they may require a large
number of elastic coordinates. Thus, we decided to consider
each flexible chain as a single equivalent beam (Fig. 4) mod-
elled using the assumed strain mode approximation [37]. In
this way, we reduce the number of elastic variables in qe neces-
sary to represent the flexible chains while considering the effect
of connecting constraints.

To represent each flexible chain as a single equivalent beam,
we need to calculate an equivalent matrix KBT (Eq. (3)) that rep-
resents the overall effect of several beams in parallel connected
by connecting constraints. Assuming linear isotropic elasticity
of the equivalent beam, we use rules of springs in series and in
parallel to evaluate two flexural stiffness and the torsional mod-
ulus for each flexible chain. By proceeding in this way (see
Appendix A for the mathematical derivation), we obtained:

KBT−in = EI diag(4, 48n2
b, 60n2

b, h
2) (14)

KBT−out = EI diag(2, 24n2
b, 12n2

b, h
2) (15)

where KBT−in is the stiffness of the inner chain, KBT−out is the
stiffness of a single outer chain, nb is the number of segments,
and h is the distance between the beams, assumed to be equal
for each of them. By looking at the expressions of Eqs. (15),
it is clear that adding connecting constraints increases the robot
stiffness in the direction orthogonal to the motion plane. Also,
since we neglect the torsion that acts on each beam, the equiv-
alent parameters depend on the Young’s modulus only: this pa-
rameter should be identified appropriately to obtain accurate re-
sults.

3.3. Remarks on Planarity Assumptions
The proposed prototype (Fig. 2) is theoretically planar, and

using a planar model to simulate it appears legitimate. A planar

model brings mathematical simplicity and a reduced number
of variables to be considered [42]. However, as we later show
with experiments, a planar model neglecting out-of-the-plane
phenomena is inadequate to assess equilibrium stability limits,
and ultimately the workspace size. This Section highlights the
most relevant differences between a spatial model and a planar
CPR model.

Let us consider Fig. 3. For a prescribed CPR motion plane,
a planar CPR model assumes that:

• the cross-section of each beam and the EE only perform
planar displacements belonging to the reference plane;

• the cross-section of each beam and the EE rotate about
an axis orthogonal to the reference plane;

• all the forces belongs to the reference plane, and all the
torques are orthogonal to the said plane only;

Under these assumptions, the beams pose can be defined by
p(s), θ(s), namely the position and the orientation angle of the
frame Fs w.r.t. F0, respectively. In this case, g ∈ S O(2) and
ξ = [u, v] ∈ R3. The scalar quantity u is the beam curvature and
v = [1, 0] ∈ R2 if shear and extensibility are negligible. The
total potential energy of the beam Vbeam of Eq. (3) becomes:

Vbeam =

∫ L

0
Kxu(s)2 − fT p(s)ds (16)

It should be noted that the beams torsion and the out-of-the-
plane curvature do not appear on Vbeam since the beams possible
motions do not allow these deformations. Then, pp ∈ R2, θp ∈

R describes the position and the orientation angle of Fp w.r.t.
F0, respectively. Vtot is obtained as in Eq. (4), and constraints
equations are formalized as in a spatial model but with a lower
dimension of Φ.

A major advantage of using a planar model is the reduced
number of discretization variables employed. When using Eq. (5),
m = n(3 × N f ) elastic coordinates are introduced to discretize
u while, in a planar model, u ∈ R and m = nN f . Then, Eq. (7)
is formulated equivalently, but the number of equations reduces

7



since the dimension of x reduces. Singularity conditions and
the equilibrium stability assessment are performed in the same
fashion in a planar or spatial model but with different dimen-
sions of T1,T2 and Hr.

4. Robot Analysis

In this Section, we focus on material characterization and
JS/WS evaluation of the proposed prototype. To obtain accurate
JS/WS predictions, model parameters should be identified ap-
propriately. While robot geometric parameters can be directly
measured with limited uncertainty, material parameters are af-
fected by a greater variability. Therefore, the following subsec-
tion focuses on material parameters calibration.

4.1. Material Characterization

It is well known from material science that standardized
tests for fibreglass may be conducted to evaluate the Young’s
modulus E, and the strain limit ϵmax [43]. These experimen-
tal setups require complex and expensive equipment that may
not be available. On the other hand, a simple model-based
bending test may be conducted for flexible beams to identify
at least E [3], [44], [45]. In this test, a clamped beam is sub-
jected to several known loading conditions, and the Young’s
modulus is selected as the one that minimizes the error be-
tween model predictions and experimental measures (Fig. 5a).
To this end, nL loads are applied to the tip of a clamped beam.
Being j = 1, · · · , nL the index representing the j-th different
load condition, pe j is the experimentally measured tip deflec-
tion, and pm j the model predicted tip position, which depends
on E. The Young’s modulus is found by solving the nonlinear
least squares problem [45]:

E = argminE

nL∑
j=1

∥pm j − pe j∥
2
2 (17)

or, equivalently, as the solution of the following nonlinear equa-
tions:

G(E) =
∂

∂E

nL∑
j=1

∥pm j − pe j∥
2
2 = 2

nL∑
j=1

(
pm j − pe j

)T
Jm j = 0

(18)

with Jm j =
∂pm j

∂E . The terms pm j, Jm j depend on the selected
beam model: in this work, pm j, and Jm j are obtained thanks
to the use of the assumed strain mode approach of [37], but
their expression is not reported for brevity. We performed the
Young’s’s modulus evaluation with ten different beams, and
each beam was subjected to nL = 20 different load conditions.
As shown in Fig. 5a, a known tip load was applied to the beam,
and the corresponding tip position pe j was measured with a
measurement grid. The resulting Young’s’s modulus was deter-
mined as E = 36.1 GPa, in agreement with the provider range
of [25, 40] GPa.

Since measurement errors may potentially influence the cal-
ibrated value, we propose a methodology to estimate how a

measurement error is reflected on the calibrated E. Being pmes =[
pm1, · · · ,pmi, · · · pmn

]
∈ R2nL the vector that collects the mea-

surements, linearizing Eq. (18) yields:

∂G
∂E

dE +
∂G
∂pmes

dpmes = 0 (19)

with:

∂G
∂E
∈ R ;

∂G
∂E
= 2

nL∑
i=1

(
JT

miJmi + (pmi − pei)T ∂Jmi

∂E

)
(20)

∂G
∂pmes

∈ R1×2nL ;
∂G
∂pmes

= −2 [Jm1, · · · , Jmi, · · · , Jmn] (21)

By further manipulations, we get:

dE = −
(
∂G
∂E

)−1 (
∂G
∂pmes

)
dpmes =Wdpmes (22)

The matrix W ∈ R1×2nL correlates dE to dpmes, Assum-
ing W as deterministic, and assuming each component of pmes

to be affected of a measurement error with normal distribution
N(0, σ2

x), the Young’s modulus error follows a normal distribu-
tion N(0, σ2

E), where σE [46]:

σE =
√

WWTσx = wσx (23)

By considering the measurements used for the Young’s mod-
ulus calibration, we obtained w = 12.3 · 10−2 GPa

mm , and w rep-
resent how a measurement error is projected on a variation of
the calibrated E. For instance, a measurement error of 2 mm
(which is realistic with the employed methodology) results in a
variation of 0.246 GPa of E, which is less than 1% of the com-
puted values of E. Thus, the simple methodology employed fits
the system at hand, which would not significantly benefit from
more accurate tip position measurements.

The second material parameter to be evaluated is the strain
limit ϵmax, which will be used during the JS/WS evaluation to
verify that no leg rupture will occur. As before, instead of per-
forming standard tests, we propose a simplified procedure that
can be easily reproduced for fragile materials. The setup is rep-
resented in Fig. 5b: a flexible beam of radius r is placed be-
tween a V-shaped component and a tool with a circular tip of
radius R (see Fig. 5c). The tool is pressed onto the beam, which
then assumes the same curvature of the tool u = 1/R, where
pressed. Therefore, the strain on the constant curvature portion
is:

ϵ = ru =
r
R

(24)

To estimate ϵmax, we test the beam with several tools character-
ized by decreasing R until a brittle fracture of the beam occurs.
Then, the last value of R where the beam deforms without dam-
age is used to compute ϵmax with Eq. (24). We performed this
procedure with the same beams used for the Young’s modulus
calibration, and we obtained ϵmax = 2.75%, which is in accor-
dance with the provider specification of ϵmax ≥ 2%. Please also
note that the simplified procedure we proposed ensures an un-
derestimation of the real ϵmax: a finite number of tools is used,
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(a) Cartesian Workspace, planarity assumptions. (b) Jointspace Range, planarity assumptions.

Figure 6: Jointspace and Cartesian workspace obtained by using planar displacements assumptions. The Cartesian workspace is represented in (a), and the jointspace
in (b). Stable and unstable configurations are depicted in blue and yellow, respectively. Type-1 singularities are shown in red and Type-2 singularities in black.

(a) Cartesian Workspace, full spatial model. (b) Jointspace Range Magnification, full spatial model.

Figure 7: Jointspace and Cartesian workspace obtained using a full spatial model. The Cartesian workspace is represented in (a), and the jointspace in (b). Stable
and unstable configurations are depicted in blue and yellow, respectively. Type-1 singularities are shown in red and Type-2 singularities in black. Singularities,
where U is degenerate, are plotted in green.

and the exact ϵmax is only approximated by the last value of
ϵ where the beam deforms without damage. In the case more
accurate characterization of ϵmax is required, which is not our
case; standard tests are recommended [43].

4.2. Joint space and Cartesian workspace Analysis
Once the robot model is established and the material param-

eters identified, we can evaluate the robot motion capabilities in
terms of JS/WS computation. The flooding algorithm of [30] is
used for this scope: the flooding algorithm is an explorative al-
gorithm based on a grid discretization of the target space (e.g.
the JS or WS). Several phenomena define the JS/WS limits and
by using the flooding algorithm, we considered:

• Singularities. As explained in Section 3, singularities de-
fine the JS/WS boundaries. A configuration is considered
singular if the inverse condition number of T1 or T2 is
below a defined threshold (10−5 in our case)4;

4Matrix T1,T2 have nonhomogeneous units: the use of the inverse con-
dition number is valid as long as we intend to detect the degeneracy of the
corresponding matrices, and not to analyze robots performances.

• Equilibrium stability. We checked stability by looking at
the positive definiteness of Hr;

• Strain limits on the flexible links: we evaluate if the strain
on each leg does not exceed ϵmax = 2.75 %.

The results of the JS and WS of our prototype are reported in
Figs. 6,7. We performed our evaluation by considering planar
displacement assumptions (Fig. 6) and by using a full spatial
model (Fig. 7). The discretization through assumed mode is
performed by using four modes on each allowed deformation
mode, and thus m = 12 · 2 legs for the spatial model and m =
4 · 2 legs for the planar model. Gravitational loads such as
EE weight and beams distributed weight are considered. No
configuration exceeded the strain limit of ϵmax = 2.75 %.

First, let us consider the case where planar displacements
assumptions are introduced in the robot model: Fig. 6a illus-
trates the WS, and Fig. 6b the JS. Region 1 is a region where
the robot assumes stable configurations. Singularity curve T1a,
that is, a Type-1 singularity where T1 is degenerate with A and
U full rank, delimits 1 from one side and represent the exter-
nal WS boundary (Fig. 6a): there is no solution to the IGSP at
each point of T1a, and the robot EE cannot exceed T1a with
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Figure 8

imposed EE position. Singularity curve T2a is a Type-2 sin-
gularity where T2 is degenerate with P and U full rank, and it
defines the inner JS limits (Fig. 6b): at each point of T2a there
exists no static solution to the FGSP and, by crossing T2a, the
robot equilibrium becomes unstable [28]. Between T1a and
T2a, there exists a small stable region named 2 (magnified in
Fig. 6b) where the robot equilibrium is stable. These config-
urations can be reached by commanding the robot joints, but
region 2 cannot be reached by imposing the EE position since
T1a cannot be crossed with imposed EE position. On the other
side, the singularity curve T2b, which delimits the JS limits,
is a parallel singularity where T2 is singular. Singularity curve
T2b encircles a small WS region named 3 where the robot
equilibrium is unstable5.

Second, we now consider the case where a full spatial model
is used: the WS and the JS are illustrated in Fig. 7a, Fig. 7b, re-
spectively. We can observe that singularity curve T1a,T2a,T2b
are equally predicted by a model with planar displacement as-
sumptions and by a full spatial model. However, the use of a
full spatial model reveals an additional singularity curve named
T L, which is a curve where both T1 and T2 are singular because
U is singular. The singularity curve T L defines a new region 4 ,
where the spatial model predicts an unstable equilibrium, and
the extension of the stable region 1 is consequently reduced.

For each point inside 4 , both planar and spatial model pre-
dicts the same robot configuration in terms of qa, x, but the
equilibrium stability is predicted differently. This discrepancy
between a model with planar displacement assumptions and a
full spatial model is remarkable and, to the best of our knowl-
edge, identified for the first time in CPRs. Thus, experiments
are conducted to verify which simulation prediction is realistic.

5. Experiments

The aim of this Section is to experimentally validate the
analysis conducted in Sec. 4 about the JS/WS prediction of the
proposed prototpe. We first address the question of whether a

5Since T2 defines the JS limits, 3 is not visible in Fig.6b

model with planar assumptions is adequate to model our pro-
totype or not. Then, we focus on the experimental reconstruc-
tion of singularity curves that delimits the prototype range of
motions, namely T2a and T L. For each curve, we compare
simulation with experimental data to assess the accuracy of our
prediction.

To acquire experimental data, we employed the experimen-
tal setup illustrated in Fig. 8. A fixed camera was used to record
images of the Charuco Board marker attached to the EE, and
these pictures were then processed using an OpenCV Python
library [47] to reconstruct the EE pose. For each reconstructed
pose of the EE, the motors’ angular position was also logged,
assuming the motors’ PID controller steady-state error to be
negligible.

5.1. JS and WS verification

In this subsection, we verify the correctness of the JS/WS
simulation we performed in Sec. 4. To do this, we move the
robot in several stable configurations with EE positions equally
distruibuted over the WS, and we store motor angles and EE
position at each configurations. We also seek to reach exte-
rior WS limits, by moving the EE as far as possible from the
motor axis, and inner WS limits, by moving the EE toward the
motor axis.0 Figure 9 displays the superimposition between ex-
perimental data and simulations. Experimental joint angles are
superimposed over the computed JS, while measured EE posi-
tions over the theoretical WS. The model with planar displace-
ments assumptions is used in Figs. 9a,9b and the full spatial
model is employed in Figs. 9c,9d.

By looking at Fig. 9, we observe that experimental data
qualitatively agrees with the simulations obtained by using a
full spatial model is used, while the experiments are in disaccor-
dance with a model that employs planar displacement assump-
tions. In particular, we can state that the stable motion capabil-
ities of the robot are delimited by singularity curves T2a,T L.
While T2a is equally predicted by both models, T L is only vis-
ible by using a full model. We may find an analogy between
these singularities and the constraint singularities appearing in
rigid-link lower-mobility parallel robots [48]. For these robots,
constraint singularities do not appear in the reduced kinemat-
ics model which neglects the possibilities of the robot platform
to move along certain (a priori) constrained directions of the
space. They may be found if and only if the complete static-
equilibrium model, allowing all possible motions in 3D, is an-
alyzed. Analogously to what happens for these constraints sin-
gularities, singularities characterized by the curve T L in the
present work may be observed if and only if the full (spatial)
kinemato-static model of the robot is analyzed.

In the next Sections, we are going to separately investigate
T2a and T L curves, to understand the physical phenomena hap-
pening when crossing singularities, and to assess the accuracy
of our equilibrium stability reconstruction.

5.2. Exterior WS boundary

The exterior WS boundary is defined by singularity curve
T2a, that is a Type-2. As theorized in [28], Type-2 singular-
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(a) Jointspace Range, planarity assumptions (b) Cartesian Workspace, planarity assumptions

(c) Jointspace Range, full spatial model (d) Cartesian Workspace, full spatial model

Figure 9: Superimposition between theoretical and experimental data. Results for the model with planar displacement assumptions are reported in (a) for the
jointspace range (a) and (b) the Cartesian workspace. Then, the jointspace range and the Cartesian workspace obtained with a full model are reported in (c), and
(d), respectively. Stable and unstable configurations are depicted in blue and yellow, respectively. Type-1 singularities are shown in red and Type-2 singularities in
black. Singularities, where U is degenerate, are plotted in green.

ity delimits stable-to-unstable transitions. In particular, we ex-
perimentally observed that T2a is associated with a snapping
phenomenon (see accompanying video at min.0 sec.7). When
quasi-statically reaching a singular configuration, a non-null
motion of the EE occurs even though the motors are braked,
and the robot dynamically snaps, as shown in Fig. 10. The
snapping motion occurring about the T2a curve belongs to the
motion plane: this is reasonable since both planar and spatial
models equally predicted the phenomenon. To reconstruct the
T2a curve, we placed the robot in stable configurations as close
as possible to the stability limit. The motor angles are slowly
adjusted to move near T2a, aiming not to cross it. Once the
robot snaps, the joint values and the Cartesian configuration
prior to snapping are recorded as a JS or WS border points.
Some examples of these configurations near the T2a are de-
picted in Figs. 11a,11b,11c.

To assess the accuracy of our equilibrium stability predic-
tion, we tested 38 different configurations near T2a, with EE
positions equally distributed over the WS. For each test, we
name qexp,pexp the experimental motor angle, and the camera-

acquired EE position where the singularity happens, respec-
tively. We also introduce qt that is the theoretical motors an-
gles where the instability should happen: qt is defined as the
point that lies over T2a closest to qexp. Finally, we define pt

as the Cartesian point that corresponds to qt (see Fig. 12 for a
graphical illustration). For each configuration, we define:

eq = ∥qexp − qt∥2 (25)
ep = ∥pexp − pt∥2 (26)

where eq, ep are named motor angles error and EE position er-
ror, respectively. Table 1 summarizes the results: a mean eq =

2.68◦ is obtained, which corresponds to a mean ep = 23, 13 mm
(4.10 % w.r.t. total link length of 564mm).

The causes of error are numerous: hardware inaccuracies
(e.g., friction, belt elasticity, gearbox clearance) and model er-
rors (such as parameter uncertainties, distributed parameter as-
sumption, and discretization inaccuracy). To investigate the
discretized model errors, we compute pm, that is the EE posi-
tion obtained by solving the FGSP with motor angles qexp (see
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(a) (b) (c)

Figure 10: Snapping phenomenon at the T2a curve: when quasi-statically reaching the singular configuration (a), the robot dynamically snaps (b), and it reaches a
new stable configuration (c).

(a) (b) (c)

Figure 11: External border reconstruction. Three different configurations close to the singularity curve T2a are illustrated.

Figure 12: Graphical representation of the variables necessary for the errors
definitions.

Fig. 12). We also define em as:

em = ∥pexp − pm∥2 (27)

where em represents the model error. The mean value of em,
obtained with the use of four assumed modes [34], is 18,56 mm
(3,29 %), which is comparable to ep. To exclude the discretiza-
tion model by the causes of inacuraccy, we compared the em ob-
tained by the shooting-based model of [3],[49] and our model.
By solving the FGSP over each qexp, the model of [3] results in
a mean em = 17,71mm, comparable to the results of our model.

5.3. Inner WS boundary
The inner WS boundary if defined by singularity curve T L,

where both T1,T2 are rank deficient since U is rank deficient.

eq [◦] ep [mm] em [mm]
Mean 2,68 23,13 19,37

Median 2,78 17,04 16,46
Max 6,56 67,53 45,50

Dev.Std 1,59 14,28 10,63

Table 1: Motor angles, EE position, and model errors for the T2a reconstruc-
tion.

According to the terminology of [28], this is a leg singularity.
This elastic equilibrium limit is different from the snapping phe-
nomena of T2a. Similarly to T2a, a non-null EE motion oc-
curs about the singularity curve even if the motors are braked.
However, the uncontrolled EE motion results in an out-of-the-
plane link deflection and EE motion (as illustrated in Fig. 13).
A demo of this phenomenon is reported in the accompanying
video at minute 0 second 38. When the robot lies in 1 , the
motors rotations generate only in-plane EE motion but, after
crossing T L, the motors rotations generates an out-of-the-plane
EE motion that was not possible before crossing T L (even if
this motion is not controllable).

We tested 22 different configurations with the EE uniformly
placed on T L (see Figs.14a, 14b, 14c for some near-singular
configuration examples). As in the previous case, we focused
on the motor error eq, the EE position error ep, and the model
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(a) (b) (c)

Figure 13: Instability at the T L curve: when quasi-statically reaching the singular configuration (a), the robot EE moves out-of-the-plane (b). The EE is manually
blocked (c) to not brake the robots legs.

(a) (b) (c)

Figure 14: Inner border reconstruction. Three different configurations close to the singularity curve T L are illustrated.

eq [◦] ep [mm] em [mm]
Mean 4,17 27,86 20,59

Median 3,99 26,75 19,50
Max 8,03 44,77 31,52

Dev.Std 1,98 8,44 5,89

Table 2: Motor angles, EE position, and model errors for the T L reconstruction.

error em (Table 2 summarizes the results). We obtained a mean
eq = 4.17◦, which corresponds to a mean ep = 27.86 mm
(4.94 % w.r.t. total link length of 564 mm).

As for T2a, we investigate the discretized-model error: the
mean values of em, obtained with the use of four assumed modes
[34], is 20,58 mm (3,65 %). A similar result is obtained with
the shooting-based model of [3], with a mean error of em =

19.11 mm (3,39 %).

5.4. Discussion of the results

Globally, we obtained a significant agreement between the
experimental data and the equilibrium stability prediction pro-
vided by a full spatial model, as qualitatively illustrated in Fig. 9.
In particular, we can state that the T L singularity curve is cor-
rectly predicted by a spatial model only: this is reasonable since
a planar model disregards out-of-the-plane phenomena. Al-
though planar CPRs are frequently analyzed with planar mod-

els ([29],[42],[22]), this paper clearly showed that planar mod-
els are insufficient in predicting stability limits, and thus JS/WS
limits of such a prototype.

The experimental reconstruction of T2a and T L curves con-
firm the accuracy of our equilibrium-stability prediction ap-
proach since the difference between theoretical and experimen-
tal motor angles at singularities (eq) is very low (≤ 5◦). The
EE position error ep, less than ≤ 5% of the length of the link,
is acceptable considering the current state-of-the-art (see [45]).
As causes of errors, model simplification is one of the possible
reasons, but we primarily need to consider that all the mea-
surements are conducted in the proximity of singular config-
urations, where any small error (e.g. belt elasticity, gearbox
clearance) may be possibly reflected in significant variations of
the configuration variables. We tested the model accuracy in
several stable positions far from singularities (see Fig. 9, stable
points), and the average model error with four assumed modes
is em = 12.81 mm (2.27 %), significantly lower than 19.37 mm
and 20.59 mm of configurations near T2a and T L, respectively.

To the authors’ knowledge, this is the first time a singularity
of matrix U is discovered and experimentally verified for CPRs
with actuation at their base. In tendon-driven CPRs, singulari-
ties of U were identified in [45]. In that case, degeneracies of
U were associated with leg singularities where multiple tendons
were slack. However, the physical phenomena we experience is
different. To better understand what happens in our case, let us
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(a) nb = 8 (b) nb = 20 (c) nb = 50

Figure 15: Comparison of WS by varying the number of connecting constraints (nb). (a) the actual solution, nb = 8, (b) nb = 20, (c) nb = 50. Stable and unstable
configurations are depicted in blue and yellow, respectively. Type-1 singularities are shown in red, and Type-2 singularities in black. Singularities, where U is
degenerate, are plotted in green.

consider the forward kinemato-static problem of Eq. (12), here
reported: [

∆qp

∆qd

]
= J∆qa + C∆fp (28)

where J = −[P U]−1A ∈ R(nc+m)×m is called Jacobian matrix,
and C = −[P U]−1W ∈ R(nc+m)×3 is named compliance ma-
trix. When the manipulator approaches the singularity curve
T L, matrix U becomes rank deficient. Then, by inspection of
C, we noted that submatrix Cu relating ∆qu = Cu∆fp is ill-
conditioned, displaying negligible stiffness in the direction or-
thogonal to the robot motion plane. This further confirms the
inability of the model with planar displacement assumptions in
the identification of T L since it fails to detect the lack of stiff-
ness in the out-of-the-plane direction.

As the manipulator displays negligible stiffness in the di-
rection orthogonal to the robot motion plane when approaching
T L, we explore how the stiffness of the links influences this
phenomenon. To do this, we vary the number of connecting
constraints nb, increasing the torsional stiffness of the beams
(see Eq. (15)). Starting from the current solution with nb = 8,
by increasing the number of nb, the unstable WS area reduces,
as shown in Fig.15. In particular, by selecting nb ≥ 50, almost
all the Cartesian WS is theoretically reachable.

6. Conclusions

This paper addressed the experimental validation of equi-
librium stability of CPRs predictions. We demonstrated the in-
ability of a model based on planar displacement assumptions to
predict the equilibrium stability of a planar CPR. A new planar
CPR was proposed for the scope. The prototype was designed
to be nominally planar and such that no mechanical interfer-
ence between robot components could occur. Because of the
prototype architecture, we also originally proposed a material
parameter modelling methodology for the specific design of the
flexible chains employed. Finally, we experimentally identified

Figure 16: Derivation of distributed parameters

a singularity related to out-of-the-plane uncontrolled motions
of the planar CPR for the first time.

Appendix A. Distributed parameters derivation

As shown in Fig. 16, we model our flexible chain as a series
of flexible segments, with s = 1, · · · , nb indicating the index
of each segment, and nb the number of segments. Segments
are assumed to have the same length Ls = L/nb and, since we
employ circular cross-section beams, Ix = Iy = I. We start
by considering the inner chain made by four links: assuming
the width of the intermediate constraints on the z direction to
be negligible, the flexible chain is equivalent to four beams in
parallel, and kx is given by:

kx =

4∑
i=1

kxi = 4
EI
L3 ; kxi =

EI
L3 (A.1)
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We then consider ky: under small deformation assumptions6,
each segment is equivalent to four parallel beams clamped at
both ends. Thus, the stiffness of each segment kys can be simply
obtained as:

kys = 4
12EI

L3
s
= n3

b
48EI

L3 (A.2)

and the overall stiffness ky is the stiffness of nb elements in se-
ries:

1
ky
=

nb∑
s=1

1
kys
⇒ ky = n2

b
48EI

L3 (A.3)

The computation of the torsional stiffness is not as straightfor-
ward, and it is detailed below. First, let us consider Fig.16,
where h is the distance between the beams, assumed to be equal
for each of them. Due to the symmetry of the system, we can
obtain the kzs of s-th segment by considering only half system:

kzs = 2kb (A.4)

where kb is the contribution of two beams. In order to character-
ize the torsional stiffness, we want to relate the torsion angle θ
to the external moment M. An external moment M is equivalent
to two forces F1, F2 applied to the beams, that is:

M = F1d1 + F2d2 (A.5)

where d1, d2 are the beams distances to the link centerline (see
Fig.16). Then, by the application of F1 and F2, the beams dis-
play tip displacements x1 and, x2 respectively. By considering
beams as clamped at both ends, assuming small deformations
and the local beam torsion over its own axis to be negligible,
F1, F2 are proportional to the tip displacements x1, x2 as fol-
lows:

F1 =
12EI

L3
s

x1; F2 =
12EI

L3
s

x2 (A.6)

By inserting Eq. (A.6) into Eq. (A.5), we obtain:

M =
12EI

L3
s

(x1d1 + x2d2) (A.7)

Under small deformation assumptions, we can approximate x1 ≃

d1θ, x2 ≃ d2θ. Then, by introducing d1 = h/2, d2 = 3h/2, we
obtain:

M =
30EI

L3
s

h2θ (A.8)

and we obtain kb by the definition of the torsional stiffness:

kb =
M
θ
=

30EI
L3

s
h2 (A.9)

by inserting Eq. (A.9) into Eq. (A.4), we obtain:

kzs =
60EI

L3
s

h2 = n3
b

60EI
L3 h2 (A.10)

Then, kz is the stiffness of nb torsional springs in series, that is:

6Please note that small deformations do not implicates small displacements.

1
kz
=

nb∑
s=1

1
kzs
⇒ kz = 60n2

bh2 EI
L3 (A.11)

Finally, KBT is obtained by normalizing over L3:

KBT−in = EI diag(4, 48n2
b, 60n2

bh2) (A.12)

where the subscript ()in individuates the inner chain with four
beams, and diag the 3×3 diagonal matrix whose entries are
placed over its principal diagonal. Similarly, the stiffness of
a single outer chain KBT−out is:

KBT−out = EI diag(2, 24n2
b, 12n2

bh2) (A.13)
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